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致謝 

一段漫長的旅程終於結束了。碩逕博的五年就像雲霄飛車一般，經歷了高峰與

低谷。或許五年說長也不長，但我知道這些都是如此的得來不易，從喜歡研究到失

去熱情，最後又再次因為遇見許多貴人而找到自己的價值，找到解決問題時的那種

成就感。一路上真的要感謝非常多人，回首從我大學做專題的那年，就能在每個人

生的階段都遇到影響我很深的人，真的是如此的幸運。 

首先想感謝我的指導教授簡韶逸老師。從大二修老師開的交電，到後來辦活動

需要跟當時是副主任的簡老師交流，就深深感受到老師的個人魅力。老師並不是一

個會跟你娓娓道來一些人生大道理的人，卻能在簡單的談話中了解到老師的處世

哲學，或許就是因為如此親民與日常的講話方式，讓身為學生的我感受到被信任也

讓我完全可以信任這位老師。認識老師到現在八年了，老師依舊如此親切，除了指

導教授的身分外，在我心中老師就像我的大哥，當我迷惘的時候總是能從老師身上

得到一些精神上的幫助。還記得找老師談逕讀博士的時候，老師說到他不太會影響

博士要做什麼，他希望博士生要深度的認識自己知道自己想做什麼。這五年間，老

師真的給我了非常大的自由度也盡其所能地給我幫助，不論是經費設備上的，還是

嘗試各方面的實習，或是在研究上對我的進度與方向規劃，簡老師都不會設限我應

該怎麼做。我想我能在最後成為了我心目中那個理想的博士也是因為找對了指導

教授吧！ 

再來就是一路上指導過我的教授們。我最想感謝的是真的像大哥一般的李宏

毅老師，如果沒有您生動的教學內容，我一定不會踏上機器學習這條路，也不會下

定決心一定要往軟體的方向走。從一開始聽聞有老師電路學上課打電路的槍戰遊

戲給大家看，到網路上自學您開的機器學習，接著面對面跟著老師一起做了兩年的

專題研究，到後來即使不是老師的研究生也還是會在路上巧遇時閒聊幾句。想想能

在對的時間認識這位十一萬訂閱的 Youtuber 真的是太榮幸了! 再來也是在我初踏

上這條路的恩師李琳山教授。大四找研究所的時候其實很猶豫不知道要找簡老師

還是李老師，還記得那天進到論文堆到天花板的李老師辦公室深談了許久，老師告

訴我了一句最重要的話：「不要害怕選擇，有選擇是一件幸福的事！」這句話從此

影響我深遠，讓我勇敢的做每一次的選擇，讓我深深相信，沒有錯的選擇，過去的

每一次選擇都是造就了現在的你。接著我想感謝在我博士期間指導過我也一起合

作論文的王鈺強教授、陳祝嵩教授還有陳駿丞博士。我的研究能力、寫論文的能力

其實都並不如世界各地頂尖的研究者，也不是典型在各大頂尖會議發表論文的博

士生，但是不論是從博士初期花了不少心力指導我論文能力的王教授到後來花了
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許多時間陪我摸索新方向的陳教授與陳博士，他們都不厭其煩地給了我很多很多

的觀念與技術，讓我有機會知道我還有什麼不足，應該要增進什麼技能。最後，我

想感謝在我三次實習中的主管黃毓文博士、張毓麟博士、賴尚宏教授還有 Mentor

王建詒，每一次的實習都讓我知道未來想要什麼不要什麼，尤其是在最後那段微軟

實習的日子，剛好是我在人生低潮時的解藥，這段時間拋開了實驗室的雜事，讓我

在如此自由的環境中重新的認識自己，對於自己的價值有更多的了解，也更清楚我

該追求什麼。 

 再來我想先感謝我的父母與家人，生活中交集雖然不多，但這一路以來，總是

全力支持我人生路上的各種決定。沒有你們過去的栽培，我也無法進到影響我最深

的建中與台大。我也從來不用擔心是否需要額外打工幫忙家裡，因為你們總把家裡

打理得好好的。 接著我想謝謝人生路上與我有交集的朋友們，最重要的還是那群

研究所還留在台大的大學同學們，安薇、志軒、魁哥、奕達、柏翔、宗宏等等(太

多了啦)，生活中能與這些人一起玩樂一起創造回憶大大消除了讀博士的各種壓力

與憂鬱。還有謝謝實驗室的同學們，剛進來就跟研究狂致緯學長一起做事，也因為

一起參加了兩次 CVPR workshop讓我對於研究的世界有更多的憧憬，偉志跟裕盛

學長則是兩位博士模板，讓我在要簽博的時候有對象可以學習。還有兩位我剛讀博

士之後一起合作的碩士生，曼妤跟禹澄，我想你們兩個應該是我最認真帶的人了吧，

一起投了兩篇論文，一起出國，一起重訓，讓我博士初期過得很充實。還有後來的

在賢、昱愷、凱翔、子傑、紹軒，在博理四樓最歡樂的實驗室中，跟你們一起聊天

打屁，一起去邦食堂吃兩個小時，一起去宜蘭玩，真的是讓害怕孤獨的我有了很多

依靠。當然還有沒提到的汶璁，我想你應該是我博士後期在 lab最重要的人了(笑)。

最後的那段日子，小時候不能玩的世紀帝國恰巧來到我的世界，時常跟你討論Viper

又有多神，時常跟你和奕達決戰真的讓我在苦悶的博士生涯有了很多樂趣。 

 最後的最後，我想感謝我自己，只有你自己最知道你經歷了什麼，還記得曾經

煩躁地望著每天就會多出好幾篇 SOTA 的論文，曾經在身邊的朋友一個一個畢業

之後感到孤獨、曾經下定決心走進韶逸辦公室後又被心靈大師說服重拾信心。感謝

我自己從來沒有放棄去發掘自己的價值，也謝謝我在最後努力的朝向各種夢幻的

工作前進、努力，希望我能保持這樣的信念繼續的走下去！ 

 

2022.07.27劉致廷 
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中文摘要 

    不論是如智慧家庭般的小系統，到如校園的中規模系統，或是到一個城市這

樣的大規模系統下，攝影機無所不在。 有了這些相機，我們可以建構一個智慧

的環境。 「多目標多相機追蹤」就是其中最關鍵的技術，它可以追蹤行人經過

不同相機之後的軌跡，有了這些軌跡，我們就可以進而分析在這個環境下每個人

的行走模式。 因為「多目標多相機追蹤」是一個複雜的問題，在我們的博士論

文中，較著重在其中的子研究領域，稱作「行人重識別」。行人重識別目的在給

定兩個已經產生好的跨相機行人定界框後，根據圖片外觀來判斷是否為同一個

人。一個好的行人重識別技術可以直接的影響到整體「多目標多相機追蹤」的表

現。在我們的博士論文中，我們專注於實際世界會有的情況，像是運算量跟表現

上的取捨，或是在沒有人工標籤的情況下學習行人重識別模型。首先第一部分，

因為在實際場域下較常處理視訊序列而非單一張影像，因此我們著重於視訊行人

重識別。我們設計了一個創新的自注意力機制的架構，它可以學習空間與時間中

該專注的部分。接著我們提出了一個基於空間與時間上優化的輕量架構版本，使

其可以在相似的表現下降低了硬體的耗能與運算量。另外，我們探討了目前現有

資料集的問題。我們提出了一個簡單卻有效的前處理方式來減少在資料集中的雜

訊與錯誤，可以幫助正在做此方向研究的研究員不再因為資料集的錯誤而無法提

出有效的解決方法。第二部分，我們專注於處理半監督式學習的行人重識別，也

就是資料集中只有少部分的資料有標籤。我們提出了一個創新的分群機制，它可

以根據有標籤的資料分布來幫助在無標籤的資料上正確地分群，進而利用分群後

偽標籤來學習模型。第三部分，我們希望學習非監督式的行人重識別，也就是在

目標環境並且所有資料都沒有標籤的情況下來學習模型。我們依舊是採用分群方

式來給定資料偽標籤，但是提出了兩個創新的修正機制來修正本來因為分群錯誤

而產生的錯誤偽標籤。 

    另一方面，在實際情況下常常因為硬體限制而無法順利的運行複雜的神經網

路模型，因此，「濾波器剪枝」就是一個可以移除不重要的濾波器的解決方式。

在我們的博士論文中，我們提出兩個剪枝的方式，第一種是層向剪枝。我們會根

據每一層對損失函數的影響來定義每一層的敏感度，接著會從最不敏感的層來做

剪枝。第二種是全局剪枝，也就是全局地估測每個濾波器的重要性。特別的是，

我們提出要把重要性估測結合每個濾波器對目標硬體資源的影響，這樣在最終目

標資源下，我們可以更準確的估測每個濾波器的重要性。 最後，結合我們所提

出的剪枝與行人重識別技術，我們建構了一個及時多目標多相機追蹤系統，這個

系統利用一台電腦模擬真實環境下分散式運算的狀況，來執行行人偵測、行人追

蹤與行人重識別。在我們提出的運算優化方法下，此系統可達到即時的運行，也

就是每秒可以處理超過三十個幀。通過大量的實驗，我們所有提出的方法同時具

有準確性與計算效率，可以很有效的部屬到真實場域中。   
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Abstract

Surveillance cameras are seen everywhere in the world, which can be embedded

into a small system, such as a smart home, a smart campus, or to a large system

like a smart city. With the cameras, we can enable the intelligence. Multi-Target

Multi-Camera Tracking (MTMCT) plays a critical role in the core techniques. It

aims at tracking multiple people captured under different camera views. With

MTMCT, we can extract the walking trajectories of some specific people and

further analyze the patterns of them. Since MTMCT is a complicate problems, we

specifically focus on the sub-problem that is suitable for research, which called

Person Re-identification (re-ID). Re-ID aims at matching two cropped pedestrians

under different cameras with only appearance cues. The performance of the re-ID

will explicitly influence that of the MTMCT system. In this dissertation, we address

multiple aspects of re-ID, and especially focus more on the real-world scenarios,

such as the trade-off between computation and performance, or how to learn under

data without labels. The first part is for video-based re-ID. In the system, it is

more common to match two pedestrians with their image sequence along time. We

demonstrate a novel model architecture for learning self-attention across space and

time and propose a spatially and temporally efficient version that can maintain the

performance but with a more light-weight structure. Then, we also explore the

problems in the existing benchmark for data and evaluation metrics. We further

propose an easy pre-processing technique to reduce the noise in the dataset and

help the community focus on extracting invariant visual appearance. The second

part is for learning re-ID with only few labeled data, which called semi-supervised

i
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ii Abstract

re-ID. We adopt novel clustering methods on the unlabeled data with the guidance

of the labeled ones to progressively learn pseudo-labels for training re-ID models.

The third part is for learning the re-ID model even without any annotated labels.

This work simplifies the problem into cross-domain re-ID that we have data with

labels in the source domain and aim to learn the model on data totally unlabeled in

target domain. We propose two rectification mechanisms that can help clean the

original noise generated from the pseudo-labels of typical clustering algorithm.

On the other hand, for a practical system in our life, if we cannot perform a

model in real-time owing to the hardware constraints, “Network Filter Pruning”

is a solution to remove unimportant filters in a complicated neural network. In

this dissertation, we propose two kinds of pruning techniques. The first one is

called layer-wise pruning. We measure the sensitivity of each layer, which means

the impact on loss of a unit weight in that layer, and start pruning on the less

sensitive layer. The other technique focuses on global pruning, which measures

the importance of each filter at the same time and remove the less important ones.

Specifically, in this work, we combine the importance estimation with the hardware

constraints, which makes it more accurate based on hardware impact of each

weight. With the pruning technique, we combine them with the proposed re-ID

algorithms. We build a real-time MTMCT system on one machine to simulate

distributed multiple cameras in an environment that perform pedestrian detection,

tracking and re-identification at the same time. With all the proposed techniques,

we can largely reduce all the complicated computation in neural network and make

the whole system operate in real-time, which achieves larger than 30 FPS. The

proposed algorithms are all quantitatively and qualitatively evaluated in various

benchmarks on re-ID and image classification. Experimental results all show that

our techniques are efficient and effective in these applications.
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Chapter 1

Introduction

Multi-Target Multi-Camera Tracking (MTMCT) is the core technique in the in-

telligent surveillance system. This task aims at tracking every identity that walks

across different cameras under the environment. With MTMCT, we can analyze

the walking patterns of pedestrians to improve the route planning of hypermar-

ket or amusement park. Also, we can cut the videos from multiple cameras to

generate the video summarization of the targeted person with MTMCT. Since

building an MTMCT system is a complicated problem, researchers split it into a

pipeline structure that contains three computer vision tasks, Pedestrian Detection,

Single-Camera Tracking (SCT), and Multi-Camera Tracking (MCT). Under each

camera, Pedestrian Detection needs to first regress the bounding boxes of each

person in each frame. Then, with SCT, we can link the bounding boxes of the same

person to construct a continuous sequence, which called a trajactory. Last, MCT

aims to associate the trajactories of the same identities across different cameras.

The association of MCT can be based on appearance or temporal cues. However,

it is still a challenging problem because of the diverse conditions between all

cameras. To simplify the problems, researchers formulate the task called Person

Re-identification (re-ID) [9], which aims to match two images captured under

different cameras based on only the “appearance cues”. In this dissertation, we

focus on the person re-identification under multiple real-world scenarios, such as

1
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supervised learning based on video sequences, semi-supervised learning with part

of the identities labeled, or even unsupervised learning with no ground truth labels

of the target environment, which is the most difficult task. We will briefly introduce

re-ID and our contributions in Sec. 1.1.

After learning powerful deep-learning models on high-performance GPU

servers, how to deploy them on edge devices such as the mobile phones, surveil-

lance cameras or embedded system on autonomous cars is a critical issue. Typically,

the low-power computation units can not support the inference of complicated

models in real-time. Thus, network pruning is one of the methods to reduce the

computation of neural network [10]. With network pruning, we can eliminate

the unimportant weights or filters inside the network and thus directly reduce the

number of parameters, the number of operations and the inference latency of it.

In this dissertation, we tackle the filter pruning on convolutional neural networks

(CNN) for two aspects, layer-wise filter pruning and globally determined filer

pruning, which will be introduced in Sec. 1.2

On the other hand, recently, the issue that learning the models with sensitive

and private data, such as captured pedestrians or human face images, is being

brought to public attention. To avoid privacy leakage, in a real-world scenario, we

should not transmit the data captured by local devices to a global central server

for learning a model. Instead, we should learn the models on local clients but also

get a comparable performance. Federated learning (FL) is an emerging technique

that can achieve the goal mentioned above [11]. In this dissertation, we formulate

a novel FL framework to simultaneously improve the generic representation of

global model and the local personalized performance for better user experience.

We will elaborate the detailed concept in Sec. 1.3.

After solving multiple sub-tasks in MTMCT systems, we combine the proposed

techniques of video person re-ID and global filter pruning to construct a real-time

online demo system. This prototype system consists of three parts that are parallelly

executed, video streaming, person detection combined with SCT, and MCT with
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light-weight person re-ID. Each part can perform in real-time with larger than 30

frame-per-second (FPS), and particularly, our MTMCT system can simultaneously

execute on three camera streams, which means three unique pipelines, with only

one RTX 2080 GPU released in 2018. It shows that in the future, with our

system design, it is possible to deploy multiple cameras under an environment and

each pipeline is executed separately with a low-power embedded GPU. We will

briefly illustrate our system in Sec. 1.4. The following sub-sections are detailed

introductions of my research topics:

1.1 Person Re-identification

Person re-identification (re-ID) tackles the problem of matching images of the

same person in a camera network, which has drawn much attention in recent years

because of its wide applications in the intelligent surveillance system. As shown in

Fig 1.1(a), re-ID is formulated as a retrieval problem. Given a query image, we

aims to rank the candidate images in gallery set captured by “different” cameras.

There are two main challenges in re-ID. The first one is the generalization of

open-set recognition problem. In typical machine learning tasks, we have training

and testing set. Although images in testing set are unseen, those are still in the

same classes as the training set. However, in re-ID, the identities in the two sets

are totally different and non-overlapped. In contrast, we have to learn the general

feature representation from the training set and apply it on testing set of unseen

identities. The second challenge is the large intra-class variation. The same person

under different cameras are with intensive variation of appearance, which can be

caused by lighting, pose, viewpoint angles and occlusion, etc. Since the success of

deep-learning, many existing works obtained huge improvements with the aid of

CNN to learn the features with large-scale dataset. The most popular benchmarks

are image-based supervised re-ID, such as Market-1501 [12] and DukeMTMC-

reID [1] dataset. With different kinds of CNN designs and loss functions, lots of
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Figure 1.1: (a) Person re-identification. This is an image matching problem

between query and gallery. The correct matches are in blue rectangles, where the

wrong matches are in red. (b) Video-based person re-ID. The matching of query

and galleries are all based on video tracklets. The pictures are modified from [1, 2].

previous works [13, 14, 15, 16] achieve promising results. TransReID [16] even

reached 95% accuracy on Market-1501 dataset. However, there are still some

limitations and gaps when we want to deploy those high-performance re-ID models

into a real-world scenario. There are three practical aspects we want to tackle,

video-based re-ID, semi-supervised re-ID and cross-domain unsupervised re-ID:

Video-based Person Re-ID Practically in a MTMC system, when we want to

perform the cross-camera matching (re-ID), the input data is not only one image for

an identity. Instead, we can obtain a trajectory that contains multiple continuous

images. Therefore, we focus on the task called video-based person re-ID that given

the query tracklet (part of the whole trajactory), we want to match and rank the

gallery tracklets captured under different cameras, as shown in Fig 1.1(b). In this

dissertation, we proposed a state-of-the-art self-attention non-local model that can

simultaneously attend on important features across spatial and temporal dimensions

given the input image sequence. Furthermore, in extension, to efficiently deploy the

computation-demand self-attention module, we proposed four kinds of reduction al-
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gorithms, spatial stripe, temporal hierarchy, axial attention, and coarse-to-fine gran-

ularity. The detailed descriptions are illustrated in Chapter 2. The main concepts,

methods and experiments are published in our preliminary works [17, 18]. The

source codes of [17] are at https://github.com/jackie840129/STE-NVAN,

and the codes of [18] are at https://github.com/jackie840129/CF-AAN.

Semi-supervised Person Re-ID Regardless of video-based or image-based set-

tings, supervised learning needs lots of annotated training data, and especially,

the cross-camera pairs are difficult for annotation. In the real-world deployment,

one might not be able to collect such a large amount of labeled data in a scene

of interest for training purpose. What might be seen is that only a small part of

identities (and their data) during a time period are collected and labeled. Semi-

supervised learning tries to solve the problem that among the whole training data,

most of them are unlabeled and some of them are labeled. Specifically, in re-ID, the

labeled data are some of the identities across different cameras and the remaining

unlabeled data are from a separate set of identities. In other words, the identities

of labeled and unlabeled training set are non-overlapped. In this dissertation, we

proposed a semantics-guided clustering method with deep progressive learning,

which can progressively assign pseudo-labels to the unlabelled ones. With the truly

labeled and pseudoly labeled training data, we can obtain promising results. The

detailed descriptions are illustrated in Chapter 3. The main concepts, methods and

experiments are published in our preliminary works [19].

Cross-domain Unsupervised Person Re-ID As mentioned above, annotations

for large-scale re-ID data is time-consuming and impractical. Instead of semi-

supervised manner that part of the data are labeled, how to perform re-ID in an

unsupervised way would be a challenging issue to solve. We address the popular

problem called cross-domain unsupervised re-ID, which aims at learning re-ID on

target domain which is totally unlabeled with the aid of some labeled data on a

source domain. The discrepancy between two domains may lead to unpromising

https://github.com/jackie840129/STE-NVAN
https://github.com/jackie840129/CF-AAN
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Figure 1.2: Domain difference in cross-domain unsupervised re-ID.

results. As shown in Fig. 1.2, two datasets may have some inherent bias based on

the weather, dressing and the ethnicity. In this dissertation, we proposed a dual

learning scheme of data clustering with the aid of two rectification methods, which

utilize the feature distribution and the camera information to resolve the original

inferior results of clustering. The details are illustrated in Chapter 4. The main

concepts, methods and experiments are published in our preliminary works [20].

1.2 Filter Pruning for CNN Models

Network pruning is a common solution for optimizing the well-trained models. In

the past, [10] remove unimportant “weights” in CNN model, which can reduce the

number of parameters. However, in convolutional network, weight pruning can not

reduce the number of floating points operations (FLOPs) owing to the unchanged

number of filters. Thus, filter pruning, also known as channel pruning is more

popular because we can structurally remove the whole filter at a time. Fig. 1.3

demonstrates the basic idea of filter pruning. For the i-th convolutional layer,

originally it has four filters, and the output feature map i will has also four channels.

If the second filter is unimportant, we can remove it and consequently reduce one

channel of the output i, which becomes three. In addition, because the output i

is also the input of (i + 1)-th layer, we can further eliminate the second channel

of all the filters in the (i + 1)-th convolutional layer. Then, the next questions are

how to define the importance of filters and where to start pruning the filters. Some

works focus on pruning layer-by-layer [21, 22, 23]. If we target on removing 50%
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Figure 1.3: Illustration of Filter Pruning. If we remove the 2nd filter in layer i,

we will reduce the 2nd channel of both output i and the filters in layer i + 1.

parameters, we can prune 50% filters from the first layer to the last layer separately.

On the other hand, recently, most works focus on pruning globally [24, 25, 26],

which means we determine the redundant filters based on the whole network and

remove the corresponding number of filters. In this dissertation, we focus on both

aspects and proposed novel algorithms to resolve the existing problems:

Layer-wise Filter Pruning In the past, L1-norm [8] is the common way to

determine the importance of a filter. However, the range of weight values between

layers are different. Most works will have to estimate importance of filters and

prune them layer-by-layer, which will incur the other question, which layer should

we prune first? In this dissertation, we focus on two problems. The first one is the

estimation of importance, where we proposed a modified filter sparsity evaluation

metric from [27]. Our method will not be influenced by the different range of

weight values and required no other hyper-parameters for tuning a suitable sparsity

metric. The second one is the order of layers for pruning. We proposed a metric

called layer performance sensitivity, which is calculated by the computation and

performance trade-off of that layer. Thus, we can prune the layer with lowest

sensitivity first to reduce the performance degradation of the models. The details

are illustrated in Chapter 5. The main concepts, methods and experiments are
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published in our preliminary works [28, 29].

Global Filter Pruning Because layer-wise filter pruning is still time-consuming

when finding first suitable layer for pruning, recently, most works adopt the global

filter pruning to estimate the importance at a time. This importance estimation is

based on the loss impact of each filter [26]. In detail, given a batch of data, a filter is

called “unimportant” if the difference of values calculated by model’s loss function

is small when removing that one. Therefore, the importance estimation will be

no longer based on the value of the weights. However, typically, the purpose we

want to apply pruning is that we hope the model to fit some hardware constraints,

such as the number of FLOPs and parameters left. The intuition is that if we can

remove fewer filters to meet the hardware constraints, the performance will retain

higher. In this dissertation, we proposed a constraint-aware importance estimation

mechanism that can estimate the importance of a filter both based on the impact

of loss and constraints, which also achieve the state-of-the-art performance. The

details are illustrated in Chapter 6. The main concepts, methods and experiments

are published in our preliminary works [30]. The source codes of [30] are at

https://github.com/mediaic/CAIE-Filter-Pruning.

1.3 Federated Learning

With the progress of deep-learning, recently the community starts to focus on the

privacy issues when we acquire lots of sensitive training data from the internet.

Commonly, we will collect the data from local devices and transmit them to some

central server for learning the model. However, the private information may leak

to public among the data transmission process. Thus, the task called Federated

Learning (FL) occurs, which is formulated by one central server and multiple

local clients. It aims at learning an aggregated models from data distributed

across local devices [11]. The restriction is that the data can only be trained

on local clients, and any privacy-sensitive information cannot be sent to central

https://github.com/mediaic/CAIE-Filter-Pruning
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Figure 1.4: Basic Concept of Federated Learning. This figure is sourced from [3],

where parties means local clients in this dissertation.

server. Typically, they will only send the weight or training gradients of local

model to the server. As shown in Fig. 1.4, training is on local side, and the

aggregation for the updated model is on the server side. In this dissertation, we

focus on some novel aspects that nearly no papers have addressed. The first

one is the open-set FL problem, which has mentioned in Sec. 1.1. Some well-

known computer vision tasks such as face recognition and re-ID are all open-set

problems. Because the public face benchmark datasets are sufficient enough for us

to formulate it as a FL problem, in this dissertation, we conduct our FL experiments

on face recognition benchmark. The other aspect is the generic or personalized

representations of the trained model. What is the goal for the learned model in

FL setup? What we anticipate is an aggregated generalized model that can obtain

better performance on novel dataset or just a personalized model that can make

better user experience on the local device. In our dissertation, we tackle the two

purposes at the same time and proposed an end-to-end architecture that can learn

the two feature representations simultaneously with meticulously designed loss

functions. The details are illustrated in Chapter 7. The main concepts, methods
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and experiments are published in our preliminary works [31]. The source codes

of [31] are at https://github.com/jackie840129/FedFR.

1.4 Real-time Efficient Online MTMCT System

MTMCT system is commonly composed of three sub-tasks, pedestrian detection

and single-camera tracking (SCT) in each camera and multi-camera tracking (MCT)

across cameras, as illustrated in Fig. 1.5. Pedestrian detection aims at regressing

the bounding boxes of people in each frame. In the past, DPM [32] is an effective

solution. With the rising of deep-learning, powerful object detection algorithm,

such as Mask-RCNN [33] and Yolov4 [34] can be used for detecting humans. For

SCT, we need to link the bounding boxes of the same identity into a continuous

trajactory, or called track. Recently, FairMOT [35] and GNN-MOT [36] utilize

appearance features to help match the current detection boxes and the previously

tracked tracks. After SCT, the tracks will be sent to the unified MCT module,

which are mainly based on the re-ID features. With robust learned re-ID models,

we can compare the feature distance of each track and associate the tracks with

smallest distance. To improve the cross-camera matching, we can even combine

some timestamp information to help filter those pairs that are impossibly matched

along time [37].

An MTMCT system can be constructed offline or online. For only improving

the tracking performance, most works adopt the offline setting [38, 39, 40], which

means it can globally obtain the complete trajactories from the first frame to the

last frame of each video and offline extract, combine and match the features to

associate the cross-camera pairs. However, in a real-world scenario, the setting

above are unrealistic. On one hand, at any timestamp, we can only utilize frames

appeared before to match the candidates. Furthermore, in an online system, we

need to instantly match the trajactory to the previously appeared identities in other

cameras. On the other hand, the challenge to build an efficient MTMCT system

https://github.com/jackie840129/FedFR
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Figure 1.5: Framework of Multi-Target Multi-Camera Tracking System.

is to make it operate in real-time, which means running in about 30 FPS. As

mentioned above, each sub-task is executed with CNN model, which takes lots

of GPU computations. Even we split the system into three parallel pipelines, we

still need to achieve the real-time speed of all of them. If we cannot achieve it,

lots of input frames would be dropped, resulting in inferior tracking performance

and poor user watching experience. In this dissertation. We build an prototype

of real-time online MTMCT system. It can at most synchronously operate all the

sub-tasks with three camera streams as input. To simulate the real-world scenario

that all the sub-tasks operate on its embedded devices with low computation power,

we put all tasks together on only one PC-level GPU. It is worth noting that in order

to reduce the computation-demanded re-ID module in our system, we integrate our

filter pruning technique [30] and video-based efficient re-ID modules [17]. The

details of each sub-module is illustrated in Chapter 8. The source codes of our

system are at https://github.com/jackie840129/MTMCT.

1.5 Contributions and Publications

In this dissertation, we consistently focus on the practical situations in each com-

puter vision sub-task. We proposed multiple methods that can not only achieve

effective performance but also operate with efficient computation cost. Moreover,

https://github.com/jackie840129/MTMCT
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we address the new potential training framework called federated learning that can

optimize the local models without privacy leakage. Last, we combine our proposed

methods and construct an “real-time online” MTMCT system. We summarize our

dissertation into the contributions as the following:

• In video-based re-ID, we proposed a backbone with non-local attention that

can achieve state-of-the-art performance. In the meanwhile, we proposed

four kinds of reduction mechanisms that can largely reduce the complex

computation in the non-local attention module.

• In semi- and un-supervised re-ID, we adopt the clustering methods to gen-

erate pseudo-labels for those unlabeled ones. We proposed rectification

mechanisms based on the inherent characteristics, such as the already la-

beled data or the ID of captured camera to help rectify the noises and errors

in the original pseudo-labels.

• In network filter pruning, we proposed a layer-wise pruning algorithm that

can iteratively chose the least sensitive layer to prune, which can minimize

the performance drop. In addition, in the global filter pruning, we proposed

a constraint-aware importance estimation metric that can accurately measure

the importance of filters based on the loss impact and the target hardware

constraint impact.

• In the field of federated learning (FL), we tackle the open-set FL problem. To

best utilize the existing benchmark and dataset, we focus on face recognition

scenario and proposed an end-to-end framework that can jointly optimize

the generic feature representation and the local personalized representation.

• Last but not the least, we build the prototype of practical online real-time

MTMCT system. It combines efficient pedestrian detection, SCT and MCT

models. In MCT, we combine our proposed video-based re-ID architecture

and our constraint-aware filter pruning to largely reduce the computation

cost.
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1.6 Other Publications

During my doctoral research, I also focus on a similar task called vehicle re-ID,

which contains joint domain learning [41], orientation-aware spatial attention [42],

channel-wise attention [43], adaptive region pooling in backbone [44], learning

with inherent space-time priors [45] and learning with synthetic data [39]. Inter-

ested readers may refer to these publications for more details.
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Video-based Person Re-identification

The content from Sec. 2.1 to Sec. 2.3 are based on our previous work [17], which in-

troduce the non-local backbone and its spatial and temporal reduction mechanisms.

From Sec. 2.4 to Sec. 2.7, which is based on our another work [18], are our findings

of existing problems in benchmark and proposed following solutions. The content

contains a pre-process technique and two reduction methods in non-local-based

backbone model.

2.1 Introduction

Person re-identification (re-ID) tackles the problem of retrieving pedestrian im-

ages/videos across non-overlapping cameras. Previous approaches mostly focus on

image-based re-ID, where each pedestrian possesses multiple cross-camera images

for retrieval [12, 46, 47, 9, 48, 49]. Recently, video-based re-ID has drawn signifi-

cant attention in literature since retrieving pedestrian video sequences is more realis-

tic and critical in real-world surveillance applications [50, 51, 2, 52]. With the emer-

gence of large-scale video-based re-ID datasets [2, 52], researchers design deep

neural networks to learn robust representation for videos [2, 53, 54, 55, 56, 57].

To perform video-based re-ID, typical methods require learning a mapping

function to project the video sequences to a low-dimensional feature space, where

15
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re-ID can then be performed by comparing distances between samples. As demon-

strated by numerous works, training the convolutional neural network (CNN)

as a mapping function has dominated over classic methods with hand-crafted

features [58, 59, 60]. Usually, they obtain re-ID features for a sequence by aggre-

gating image features with average or maximum pooling [53, 2]. However, their

approaches fail to handle occlusion or spatial misalignment in video sequences

since it treats all images in a sequence with equal importance [56]. In order

to distill relevant information for re-ID, some works integrate Recurrent Neural

Network to learn the spatial-temporal dependency in an end-to-end training man-

ner [53, 61, 62]. Recently, several works propose attention mechanism to weight

the importance of different frames or different spatial locations to aggregate a better

representation [55, 56, 57]. While these methods successfully capture both the

spatial and temporal characteristics of video sequences, they only explore the ag-

gregation of high-level features for representation, which might not be sufficiently

robust for fine-grained classification tasks such as re-ID [63, 64].

In this chapter, we first aim to improve the representation for video sequences

by exploiting spatial and temporal characteristics in both low-level and high-level

features. Inspired by Wang et al. [65], we propose a Non-local Video Attention

Network (NVAN) by introducing the non-local attention layer into an image

classification CNN model. The non-local attention layer enriches the local image

feature with global sequence information by generating attention masks according

to features of different frames and different spatial locations. By inserting non-local

attention layers at different feature levels, NVAN explores the spatial and temporal

diversity of a sequence and alters its feature representation subsequently rather than

combining individual image features with a set of weights as in previous works.

It is worth noting that we are the first work applying self-attention mechanism

into re-ID field. Our NVAN model surpasses all state-of-the-art video-based re-

ID methods by a large margin on the challenging MARS [2] dataset, proving

that exploiting global information for multi-level features is crucial for learning
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representation for video sequences.

While applying non-local attention layer to multi-level features significantly

improves the re-ID performance, it comes at a great cost in terms of computation

complexity. In fact, it increases the total floating point operations (FLOPs) by

99.3%, making it difficult to scale up to practical applications. To alleviate such

challenge, we take advantage of the space-time redundancy in pedestrian videos and

propose a Spatially and Temporally Efficient Non-local Video Attention Network

(STE-NVAN). We first reduce the granularity of attention masks in non-local

attention layers by exploiting the spatial redundancy exhibited in pedestrian images.

On the other hand, we explore the temporal redundancy between video frames

to aggregate image-wise information into a representative video feature with a

hierarchical structure. By reducing the computation complexity both spatially

and temporally, our STE-NVAN cut down 72.7% of FLOPs compared to original

NVAN with only 1.1% drop in rank-1 accuracy on MARS dataset. Our proposed

STE-NVAN demonstrates a much superior trade-off between performance and

complexity compared to existing video-based re-ID methods. The contributions of

our work can be summarized as follows:

• We introduce the non-local attention operation into the backbone CNN at

multiple feature levels to incorporate both spatial and temporal characteristics

of pedestrian videos into the representation.

• We significantly reduce the computation count for our Non-local Video At-

tention Network by exploring the spatial and temporal redundancy presented

in pedestrian videos.

• Extensive experiments validate that our proposed model not only outperforms

state-of-the-art methods in re-ID accuracy but also requires less computation

count than existing attention methods for video-based re-ID.
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2.1.1 Related Work

In this subsection, we briefly review the related works regarding image-based

person re-ID, video-based person re-ID and the usage of previous attention mecha-

nisms for the re-ID problem.

Image-based Person Re-ID This field has been extensively studied over the

years. With the success of CNNs [66, 67, 68, 46, 63], deep features learned from

the networks has replaced hand-crafted features [9, 12, 69, 59] for representing

pedestrian images. As suggested by Zheng et al. [70], these networks can be cate-

gorized into discriminative learning and metric learning. Discriminative learning

learns deep features for identity classification with the help of the cross-entropy

loss [66, 67, 68]. As for metric learning, Hermans et al. [46] use the triplet loss

to teach the network to push together features of the same person and pull away

features of different people. In this work, we utilize both loss functions to train our

network for video-based person re-ID.

Video-based Person Re-ID The video-based version is an extension of image-

based person re-ID. Zheng et al. [2] introduce a large-scale dataset to enable the

learning of deep features for video-based re-ID. They first train a CNN to extract im-

age features then aggregate them into a sequence features with average/maximum

pooling. Other works [53, 54, 61] adopt Recurrent Neural Networks to summarize

image-wise features into a single feature by exploiting temporal relation within a

sequence.

Attention in Video-based Re-ID Recently, attention mechanisms are introduced

for capturing spatial and temporal characteristics of pedestrian sequences within

the deep features. Xu et al. [71] introduce the joint attentive spatial and temporal

pooling network to extract sequence features by jointly considering the query

and gallery pairs with an affinity matrix. Li et al. [55] learn attention weights

to combine features of different spatial locations and different temporal frames
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into a sequence feature. Chen et al. [56] utilize techniques in [72] to perform self-

attention on each video snippet and co-attention between video snippets for learning

sequence features. Fu et al. [57] learn sequence features by mining features of

discriminative regions and select important frames with a parameter-free attention

scheme. While these works achieve promising results by introducing spatial and

temporal attention on top of high-level features obtained from image-based CNNs,

they overlook the importance of utilizing video characteristics at intermediate

feature levels. In contrast, our proposed NVAN is able to refine intermediate

features with spatial and temporal information of videos and our efficient STE-

NVAN model substantially reduces the computation cost for incorporating video

characteristics at lower feature levels.

2.2 Proposed Non-Local Video Attention Network

and Two Reduction Mechanisms

Given an image sequence of any pedestrians, we aim to learn a CNN to extract

its feature representation that enables video-based person re-ID in the embedding

space. The key to learning a representative feature for a sequence is to incorporate

video characteristics into the feature itself. To this end, we introduce the non-local

attention layer into the CNN to explore the spatial and temporal dependency of

a video sequence. We propose a Non-local Video Attention Network (NVAN)

in Sec. 2.2.1 to apply such operations at different feature levels. However, we

observe incredibly large computation complexity with the introduction of attention

mechanisms. Hence, we further propose the Spatially and Temporally Efficient

Non-local Video Attention Network (STE-NVAN) in Sec. 2.2.2 to alleviate the

computation cost by exploiting spatial and temporal redundancy which exists in

pedestrian videos.
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Figure 2.1: Overview of our NVAN. In NVAN, given T sampled images as input,

the backbone ResNet-50 embedded with 5 Non-local layers generates T features,

which incorporates the spatial and temporal information of videos at multi-levels

with the help of Non-local Attention Layers. The features are then pooled into one

vector in FPL for loss optimization and re-ID matching.

2.2.1 Non-local Video Attention Network

To extract features for an image sequence, we take input as a subset of video

frames selected by restricted random sampling (RRS) strategy and forward through

a backbone CNN network incorporating non-local attention layers and a feature

pooling layer (FPL) to obtain the representation vector for video-based re-ID, as

shown in Figure 2.1.

Restricted Random Sampling (RRS) There are several ways to handle the long-

range temporal structure. To balance speed and accuracy, we adopt the restricted

random sampling strategy [55, 73]. Given an input video V, we divide it into T

chunks {Ct}t=[1,T ] of equal duration. For training, we randomly sample an image

It in each chunk. As for testing, we use the first image of each chunk. The video is

then represented by the ordered set of sampled frames {It}t=[1,T ].

Non-local Attention Layer To embed video characteristics into the features,

we introduce the non-local layer proposed by Wang et al. [65] into the backbone
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CNN, as illustrated in Figure 2.2. Given an input feature tensor X ∈ RC×T ×H×W

obtained from a sequence of T feature maps of size C × H ×W , we desire to

exchange information between features across all spatial locations and frames.

Let xi ∈ RC sampled from X , the corresponding output yi ∈ RC of non-local

operation can be formulated as follow:

yi = 1∑
∀j eθ(xi)T ϕ(xj)

∑
∀j

eθ(xi)T ϕ(xj)g(xj). (2.1)

Here, i, j = [1, THW ] indexes all locations across a feature map and all frames.

We first project x to a lower dimensional embedding space RC′ by using linear

transformation functions θ, ϕ, g (1 × 1 × 1 convolution). Then, the response of

each location xi is computed by the weighted average of all positions xj by using

Embedded Gaussian instantiation. The Equation 2.1 in non-local layer is a self-

attention mechanism which is also mentioned in [65]. The overall non-local layer

is finally formulated as Z = WzY + X , where the output of non-local operation

is added to the original feature tensor X with a transformation Wz (1 × 1 × 1

convolution) that maps Y to the original feature space RC . The intuition behind

the non-local operation is that when extracting features at a specific location in a

specific time, the network should consider the spatial and temporal dependency

within a sequence by attending on the non-local context. In our person re-ID

scheme, we embed five non-local layers into our backbone CNN which is a ResNet-

50 network [74] to comprehend the semantic relation presented in videos, as shown

in Figure 2.1.

Feature Pooling Layer (FPL) After passing the image sequence through the

backbone CNN and non-local attention layers, we employ the feature pooling layer

to obtain the final feature for re-ID. We apply 3D average pooling (3DAP) along

the spatial and temporal dimension to aggregate the output features of each image

into a representative vector, followed by a batch normalization (BN) layer [75]. We

train the network by jointly optimizing the cross-entropy loss and the soft-margin

batch-hard triplet loss [46]. Interestingly, we empirically find that optimizing
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Figure 2.2: Details of non-local attention Layer. The non-local attention layer is

a self-attention mechanism.

cross-entropy loss on the final feature while optimizing triplet loss on the feature

before BN results in the best re-ID performance. A rational explanation is that

the embedding space without normalization is more suitable for distance metric

learning such as the triplet loss, while the normalized feature space forces the

model to classify samples on a more constraint angular space with cross-entropy

loss [46, 76, 77]. It is worth noting that this findings is proved by an image re-ID

work [78] afterwards.

2.2.2 Spatially and Temporally Efficient Non-local Video Atten-

tion Network

While our proposed NVAN is able to capture sophisticated properties of video

sequence with the help of non-local operations, we observe a significant increase

in the computation complexity, where FLOPs ramps up to two times compared to

the original ResNet-50 model, as shown in Table 2.1 that we use T = 8 images as
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Figure 2.3: Spatial Reduction Non-local Layer. We use “Make Stripe” module to

average pool the features of each stripe. Before the residual addition, we repeat the

tensor of shape C × T × S to C × T ×H ×W .

input sequence. For scaling NVAN to practical usage scenarios, we introduce two

complexity reduction techniques to cut down the computation count.

Spatial Reduction with Pedestrian Part Characteristics Originally, the intro-

duced non-local operations perform dense affinity calculation between features

of all THW positions to obtain a fine attention mask. This results in heavy com-

putation of complexity O(C ′T 2H2W 2 + CC ′THW ) for each non-local attention

layer. Applying the non-local attention layer to lower feature levels incurs larger

complexity since low level features are typically of higher H, W . To alleviate such

effect, we group the features along the horizontal direction to form a more compact

representation of the feature tensor. The intuition is that pixels of the same hori-

zontal stripe tend to share similar characteristics which can be utilized to generate

coarse representation of the image. It is worth noting that while similar ideas have

been explored in re-ID literature [15, 62, 59], they use this concept to generate

finer features for re-ID. In contrast, we exploit this redundancy to obtain coarser
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representation. We partition the original feature tensor X ∈ RC×T ×H×W into S

horizontal groups by adding the “Make stripe” module at the input of non-local

operations. The resulting tensor X ′ ∈ RC×T ×S requires only O(C ′T 2S2+CC ′TS)

to complete the operation, which is irrelevant to the spatial size of feature maps.

This dramatically reduces the computation complexity and enables us to deploy

non-local operation to lower feature levels with constant computation cost. We

name it Spatial Reduction Non-local Layer and illustrate the idea in Figure 2.3.

Temporal Reduction with Hierarchical Structure During our experiments,

we observe that features refined by non-local operations are often temporally

similar since non-local operation aims to embed global temporal information into

the features. Inspired by this observation, we exploit the temporal redundancy

between features of different frames and propose a hierarchical structure to reduce

the heavy computation of extracting sequence feature. We illustrate this idea in

Figure 2.4. After passing a sequence of images through a series of convolutions

(Residual blocks) and non-local attention layers, we apply max pooling across

features of adjacent frames and reduce the temporal feature dimension by a factor

of 2. We perform the same reduction operation after another stacks of Residual

blocks until the temporal dimension is reduced to 2, which is then sent to FPL

for final feature summarization. This temporal reduction technique cuts down

the computation required for extracting sequence feature with Residual blocks

and non-local attention layers. By applying both the Spatial Reduction Non-local

Layers and the Hierarchical Temporal Reduction structure, we come up with

the final Spatially and Temporally Efficient Non-local Video Attention Network

(STE-NVAN) for video-based person re-ID.

2.3 Experiments of NVAN and STE-NVAN

We evaluate our approach on two large-scale video-based person re-ID datasets,

MARS [2] and DukeMTMC-VideoReID [52]. We conduct ablation studies to
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Figure 2.4: Temporal Reduction with Hierarchical Structure. We apply max-

pooling across adjacent features after the stages with non-local layers to construct

our hierarchical structure.

validate the effectiveness of non-local operations and the two proposed reduction

methods. We compare our NVAN and STE-NVAN models to existing state-of-the-

arts to demonstrate that our proposed models display superior performance while

requiring less computation counts.

2.3.1 Experimental Setup

Datasets and Evaluation Protocal MARS [2] is one of the large video-based

person re-ID datasets, consisting of 17,503 tracks and 1,261 identities. Each track

has 59 frames on average. Deformable Part Model [32] is employed to detect

pedestrians and GMCP [79] is used to track pedestrians. To make the dataset even

more challenging, they include 3,248 distractor tracks in the dataset. DukeMTMC-

VideoReID [52] is another large-scale benchmark recently introduced for video-

based person re-ID. It comprises 4,832 tracks and 1,404 identities and 408 distractor

identities. Each track contains 168 frames on average. Detection and tracking

ground truth are manually labeled. In the following literature, DukeMTMC-

VideoReID will be abbreviated as “DukeV” for convenience. In our experiments,
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we adopt the standard train/test split and report both rank-1 accuracy (R1) and

Mean Average Precision (mAP) to evaluate the re-ID performance. The R1 only

measures the accuracy of first rank, but owing to multiple ground truth matches in

gallery set, mAP can comprehensively measure the performance of each algorithm,

which is illustrated in [12].

Implementation Detail For the RRS strategy described in Sec. 2.2.1, we segment

each video into T = 8 chunks and sampled 8 images as the input sequence. Each

frame is resized to 256×128 and synchronously augmented with random horizontal

flip for each track. We adopt the ImageNet pre-trained ResNet-50 [74] as our

backbone network, and modified conv5 1 to stride 1 instead of stride 2 to better

adapt the re-ID task. For our NVAN, we insert 2 non-local attention layers after

conv3 3, con3 4 and another 3 after con4 4, con4 5, con4 6 respectively. As for

STE-NVAN, we set S = 16 in Spatial Reduction Non-local layer and perform

max-pooling right after the second and the fifth non-local attention layer to reduce

temporal dimension. We train our network for 200 epoch with both cross-entropy

loss and triplet loss [46] and choose Adam optimizer with an initial learning rate

of 10−4 and decay it by 10 every 50 epochs. Following the suggestion in [46], we

sample 8 identities, each with 4 tracks, to form a batch of size 8 × 4 × 8 = 256

images.

2.3.2 Ablation Studies

Effectiveness of Non-local Attention Layer and Two Reduction Methods We

first compare our NVAN model with two baseline models to demonstrate the power

of non-local operations. The two baseline models (ResNet-50) use the same back-

bone network as NVAN but without non-local attention layers. The only difference

between the two baselines is that one replace the 3DAP in FPL with 3D maximum

pooling operation. The first three rows in Table 2.1 illustrate the results. It reveals

that non-local operations improve the R1 and mAP significantly by 2.7%, 3.7% on
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Table 2.1: Comparisons of different baselines with two reduction methods.

This table shows the performance results and the computation count of baseline

models, NVAN and STE-NVAN. The “Reduc.” is the abbreviation of Reduction.

Method
Feature MARS DukeV

# FLOPs
Aggregation R1 mAP R1 mAP

ResNet-50 FPL 87.3 79.1 95.0 92.7 30.4 G
ResNet-50 max-FPL 86.3 76.6 95.4 92.4 30.4 G
NVAN FPL 90.0 82.8 96.3 94.9 60.0 G
NVAN+Spatial Reduc. FPL 89.7 82.5 96.3 94.7 30.4 G
NVAN+Temporal Reduc. FPL 89.2 81.2 95.6 93.7 40.4 G
STE-NVAN FPL 88.9 81.2 95.2 93.5 16.5 G

MARS and 1.3%, 1.6% on DukeV. The improvement confirms the effectiveness

of incorporating spatial and temporal characteristics in the sequence feature of

different semantic levels. However, we observe an dramatic 99.3% increase in

FLOPs accompanying the introduction of non-local operations. Therefore, we

propose two reduction techniques by exploiting spatial and temporal redundancy

in pedestrian videos. Table 2.1 shows that our spatial reduction strategy cuts

down the FLOPs to approximately the same level as baseline networks while only

incurring 0.3% R1/mAP drop on MARS and 0.2% mAP drop on DukeV. As for

temporal reduction, we save 32.6% of FLOPs from NVAN and sustain only 1.1%

R1 loss on both datasets and 1.7% and 1.2% mAP loss. Finally, by applying both

spatial and temporal reduction techniques on NVAN, which is our STE-NVAN,

we achieve 72.7% FLOPs reduction compare to NVAN and requires 45.7% less

FLOPs compare to the baseline that doesn’t employ any attention mechanism. It

shows that our proposed STE-NVAN not only improves the re-ID performance but

also demonstrates a more efficient method of extracting sequence features.

Analysis of NVAN To better understand the property of non-local operations,

we conduct analysis on NVAN regarding RRS strategy and number of inserted

non-local attention layers. In Table 2.2, we discover that by increasing the number

of frames T sampled from a sequence in RRS, re-ID performance increases steadily
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as more frames provide richer information about a pedestrian. We pick T = 8

for our NVAN and STE-NVAN in consideration of the memory capacity of our

machine. On the other hand, we observe performance gain as we insert more

non-local attention layers. In Table 2.3, we insert a non-local layer at conv4 6 for

“1 layer” and insert 3 non-local layers at conv3 4, conv4 5, conv4 6 for “3 layers”.

We insert 5 non-local layers for NVAN and STE-NVAN since it performs the best.

Analysis of STE-NVAN Next we investigate the parameters for designing STE-

NVAN. Starting from NVAN, we apply the spatial reduction techniques to group

features into horizontal stripes in non-local attention layer. Table 2.4 shows that

while increasing number of stripes S does not introduce excessive additional

FLOPs, it improves the re-ID performance subtly. As for analyzing temporal reduc-

tion, we increase the pooling operations throughout the network. For comparison,

“in 3DAP” in Table 2.5 is the NVAN model that pools all features after the last

convolutional layer. By employing additional pooling after the non-local layers

located in stage4 (“+ stage 4”), we reduce 10.7% of FLOPs from NVAN. And by

introducing another additional pooling after non-local layers at stage3 (“+ stage

3”), we remove 32.7% of FLOPs from NVAN while only dropping 0.8% and 0.7%

of R1 on MARS and DukeV.

2.3.3 Comparison with State-of-the-art Approaches

Table 2.6 reports the comparison of our NVAN and STE-NVAN to state-of-the-

art video-based person re-ID approaches. For STA [57], we display their results

sampling 8 images per sequence to be fair with our method. On MARS, our

NVAN achieves 90.0% in R1 and 82.8% in mAP, surpassing all methods by a

large margin. Our efficient STE-NVAN also performs better than all methods in

R1 and breaks even with STA in mAP despite using less FLOP than NVAN. On

the other hand, our NVAN and STE-NVAN still displays competitive results on

DukeV, where re-ID on DukeV is easier than MARS since detection are manually
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Table 2.2: Comparison of NVAN network with different # frames of RRS

strategy.

# frames
MARS DukeV

R1 mAP R1 mAP

T = 4 89.0 81.0 95.3 92.7
T = 6 89.4 81.6 95.6 93.4
T = 8 90.0 82.8 96.3 94.9

Table 2.3: Comparison of NVAN network with different # non-local layers

embedded.
# non-local MARS DukeV

layers R1 mAP R1 mAP

1 layer 89.0 81.8 95.8 93.7
3 layers 89.0 82.4 96.3 94.9
5 layers 90.0 82.8 96.3 94.9

Table 2.4: Comparison of different # stripes in spatial reduction non-local

layer.

# stripes
MARS DukeV

#FLOPs
R1 R1

S = 4 89.6 96.3 30.4G
S = 8 89.5 96.1 30.4G
S = 16 89.7 96.3 30.4G

Table 2.5: Comparison of different pooling position combinations in hierarchi-

cal structure.
Pooling MARS DukeV

#FLOPs
positions R1 R1

in 3DAP 90.0 96.3 60.0G
+stage 4 89.8 96.1 53.6G
+stage 3 89.2 95.6 40.4G

annotated. The superior re-ID performance on two benchmark datasets proves

the value of applying non-local operations for extracting a better representation of

videos.

To take the computation complexity into consideration, we compare our method

with existing methods that also uses attention mechanisms on the performance-
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Table 2.6: Comparison with state-of-the-arts approaches on MARS and DukeV

Methods Source
MARS DukeV

R1 mAP R1 mAP

CNN+Kiss. [2] ECCV16 65.0 45.6 - -
SeeForest [54] CVPR17 70.6 50.7 - -
LatentParts [80] CVPR17 70.6 50.7 - -
TriNet [46] arXiv17 79.8 67.7 - -
ETAP-Net(supervised) [81] CVPR18 80.8 67.4 83.6 78.3
STAN [55] CVPR18 82.3 65.8 - -
CSACSE+OF [56] CVPR18 86.3 76.1 - -
STA (N=8) [57] AAAI19 86.2 81.2 96.0 95.0
NVAN (ours) - 90.0 82.8 96.3 94.9
STE-NVAN (ours) - 88.9 81.2 95.2 93.5
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Figure 2.5: Computation-performance plot of our proposed STE-NVAN and

existing methods with attention mechanisms.

computation plot in Figure 2.5. We visualize mAP on MARS dataset for the perfor-

mance and # of FLOPs for computation counts. For STA, we report three variants

of their with different numbers of sampled frames per sequence to better demon-

strate their trade-off. Results show that our proposed STE-NVAN exhibits a much

better mAP-FLOPs trade-off compared to current state-of-the-arts. STAN [55] and

CSACSE+OF [56] even lands outside of the plot since their mAP and FLOPs are

beyond the scale of our plot. The results not only indicates the advantage of our
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proposed spatial and temporal reduction techniques but also reveal the importance

of considering computation complexity when design feature extractors for video

sequences.
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2.4 Problems in Existing Benchmarks and Solutions

Recently, many works continuously improve the performance of video-based re-ID

on benchmarks [82, 83, 84], the most commonly used methods for tackling video

sequences are the 3D convolution layer [85] and non-local operation [65], which

can effectively aggregate the features along the spatial and temporal dimensions.

However, in contrast to image-based setting that the training and testing images of

pedestrians are chosen with the least noise from their belonged tracklets, the video-

based re-ID faces more unexpected challenges owing to the imperfect bounding

box detection.

MARS [2], the largest video-based re-ID dataset so far, adopted traditional

DPM [32] as the pedestrian detector and applied GMMCP tracker [79] with color

histogram as image features, which is not robust enough for linking people under

a complicated environment with occlusion. As Fig. 2.6 illustrated, the bounding

boxes generated by the weak detector cannot well fit the desired identity (the girl

with white dress). Recently, Gu et al. [82] proposed the appearance preserving

module (APM) inserted before the 3D convolution to align the features along the

temporal axis based on each anchor (the center) frame of the 3D sliding windows.

Although the method achieves the state-of-the-art performance, it still cannot

resolve the problems when the center frame contains unexpected noise, such as

the fourth frame in Fig 2.6, where the APM will align the third and fifth frames (if

the filter size along the temporal axis is 3) according to the appearance of the man

with blue T-shirt.

…

t=1 t=2 t=3 t=4 t=N

video tracklet with misaligned and unfit bboxes

Figure 2.6: Misaligned video tracklets in MARS dataset.
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…

t=1 t=2 t=3 t=4 t=N

video tracklet with misaligned and unfit bboxes

…

re-Detect and Link

t=1 t=2 t=3 t=4 t=N

Figure 2.7: Tracklet processed by our DL module. The tracklet after DL is less

interfered by the man in blue T-shirt.

Since efficient deep-learning algorithms are well-developed for object detection

and tracking in the past few years [86, 33, 34, 87], to help the community for the

further development of invariant representation without the hassle of the spatial

and temporal alignment, we revised the original dataset with our proposed simple

but effective re-Detect and Link (DL) module. Because we cannot obtain the

original video stream containing the whole image frame, our DL module serves

as a pre-processing technique on the re-ID data. Given the original noisy cropped

sequence, we first apply a pretrained efficient object detector [34] to generate much

tighter bounding boxes. If there are multiple pedestrian candidates, we will link

the pedestrians based on their image features using ID-discriminative embedding

(IDE) [70]. Last, according to the aspect ratio and the position of the bounding

box, we resize and pad it to the desired image size, as shown in Fig 2.7 and the

details are in Sec. 2.5.1.

2.4.1 Re-evaluation of Current Methods

Surprisingly, with only the input data processed by our DL module first, even

the C2D baseline method [82], which only averages the features of each image
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Table 2.7: Performance of recent state-of-the-arts reproduced with our re-

Detect and Link (DL) on MARS [2]. The score with underline is the runner-up.

Method
Original Results w/ our DL
mAP rank-1 mAP rank-1

FT-WFT [89] 82.9 88.6 83.8 90.0
P3D-C [88, 82] 83.1 88.5 85.0 91.0
C2D [82] 83.4 88.9 84.9 91.0
Non-Local [82, 17] 85.0 89.6 86.2 91.4
TCLNet [83] 85.1 89.8 85.8 90.8
AP3D [82] 85.1 90.1 85.4 91.0

generated by 2D ResNet-50 [74], or the normal 3D convolution model P3D-

C [88] can achieve promising results. As shown in Table 2.7, we conduct more

experiments on the original and the processed data using some recent state-of-the-

arts reproduced by ourselves. From the table, it can be seen that originally the

AP3D with the APM module proposed by Gu et al. [82] (the last row) can boost

about 2% in mAP compared to its P3D-C counterpart (the second row). However,

with the aligned input images generated by our DL module, it only increase 0.4% in

mAP. This shows that the state-of-the-art AP3D cannot extract more discriminative

features for re-ID given the already aligned data. Furthermore, we can see that the

self-attention based Non-local Network [82, 17] combined with our DL module

can achieve the new state-of-the-arts, which means the self-attention on the less

noisy data can generate more representative re-ID features. Thus, in the next step,

we focus on the Non-local Network but developing an efficient baseline model

which can perform comparable results.

2.4.2 Efficient Non-local Network

Non-local Network achieves state-of-the-art performance on video-based re-ID, but

its high computation cost remains an issue for practical usage. Each feature point

along spatial and temporal dimensions needs to compute its self-attention map for

all other points. To reduce the computation while retaining the performance of
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Non-local Network on re-ID, following the idea of axial-attention [90, 91] and the

multi-granularity (coarse-to-fine) structure in [92], we propose the Coarse-to-Fine

Axial-Attention Network (CF-AAN). With the axial attention, we can factorize the

3D attention operation into three 1D attention ones sequentially along the height-,

width- and temporal-axis. To further boost the efficiency, in contrast to [92] that

adding the coarse-to-fine module after the whole model backbone, we directly

integrate it into our axial-attention. We split the input tensor into multiple scales

along the channel dimension, and transform the spatial dimension from coarse to

fine scales. To the best of our knowledge, we are the first to adopt axial-attention in

video-based re-ID. Our DL+CF-AAN approach not only achieves the state-of-the-

art performance on two large-scale datasets [2, 52], but also significantly save the

computation as compared with vanilla Non-local Network, which can be regarded

as an efficient baseline self-attention method.

2.4.3 Labeling Noise in Existing Dataset

In addition to the application of our DL module that can significantly improve

the performance, we also find that there are multiple labeling errors or noises

in the MARS testing data. As shown in Fig. 2.8(a), the two tracklets are labeled

as different identities (ID 142 and 184) but are actually the same person. Or in

Fig. 2.8(b), the tracklet with ID 404 in camera 2 also appears in the distractor class

(ID 0), which will make the model easily match the two tracklets but counted as an

error matching in the evaluation. There are also some ambiguous cases that cannot

be distinguished even by human. As in Fig 2.8(c), the ID 318 is the man in blue

behind but the bounding boxes also contains the woman in white (ID 322). Thus,

we revise the labels in the testing set and the original evaluation protocol. The

details will be described in Sec. 2.6.4. We hope that the release of our DL processed

test data update on MARS can help the community to validate their methods on a

clean testing set and push the further development of improved representation.
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0142C2T0008 0184C5T0025

Appears in distractorLabeling Error(a)

0404C2T0015 0000C2T1600

(b)

0318C6T0027

…

Ambiguous identity(c)

Figure 2.8: Illustration of the labeling errors and ambiguous cases in MARS [2]

testing set. More samples and details can be found in Sec. 2.6.4

2.4.4 Contributions

Our contributions for tackling the noisy dataset can be highlighted as follows:

• We propose a re-Detect and Link module that can align the noisy tracklet

on the image level, which makes a simple method achieving comparable

performance.

• Besides the aligned data, we additionally provide revised identity labels

and evaluation protocol in MARS testing set, which helps validate the new

methods on a corrected benchmark.

• A baseline Coarse-to-Fine Axial Attention Network (CF-ANN) is proposed,

which performs axial-attention from coarse to fine levels, which not only

reduces the computation cost but achieves the promising performance.

2.4.5 Related Work

We first briefly review the recent development of video-based re-ID after our

proposed work [17], and some works related to self-attention and related to dataset

revision.

Video-based Person Re-identification Inspired by the success of 3D CNN on

action recognition [93, 94], the work [95] first adopted the 3D convolution to

automatically learn the relation from low- to high-level features along spatial and

temporal dimensions. In order to resolve the alignment problems, Gu et al. [82]
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then proposed an APM module inserted before the 3D convolution to align the

features among each 3D filter. In contrast to treating each frame even, some

works utilized the attention mechanism that can focus on some specific regions

representing the identity better [55, 57, 92]. Zhang et al. [92] explored the attention

mechanism with a global reference, which can effectively learn the attention more

on the region with close relation to the global guidance. Besides performing

attention on the last layer of CNN features, our previous work [17] perform

attention on mid-level features inside the backbone. Compared to those methods,

our model is based on the self-attention operation and added with computation

efficient structures into the model design.

Self-Attention Since the self-attention based Transformer [72] obtained a great

success in nature language processing, recently many works started to tackle

the problems in computer vision with self-attention [65, 96, 97, 98, 90, 99, 100,

91]. The plain type of the self-attention is the non-local network [65] without

the position encoding and multi-head attention and was proposed to solve the

problem of video classification. Because the non-local self-attention is computation

demanding, axial-attention [90, 99] were proposed to factorize the operation into

multiple 1D self-attentions, which can extremely reduce the cost. Dosovitskiy et

al. [97] and Carion et al. [100] even integrated the whole transformer respectively

into the image classification and object detection tasks, and they all obtained

comparable performance to the methods with original CNN backbone. Our work

focus on adding the efficient axial-attention module with our proposed coarse-to-

fine structure into typical CNN to learn spatially and temporally attentive feature

representation.

Dataset and Evaluation Protocol Revision In the field of person re-identification,

there is no work exploring and revising the original imperfect data or discussing

the evaluation protocols, labeling errors, and the ambiguous cases in the testing

set. We found that in the field of face detection, there are some works investi-
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gating the noise in the labels or the bias in evaluation protocols [101, 102, 103].

Mathisas et al. [101] provided improved annotations of existing face datasets and

evaluation criteria that resolved the original problems. Besides, they also showed

that when properly used, a simple vanilla baseline can reach top performance on

face detection. Lin et al. [102] and Zhang et al. [103] both tried to remove the

data with labeling errors before training by utilizing the inherent data distributions.

Compared to our work, we adopt pretrained deep learning-based object detector to

refine the original test data that are unfit to the target identity. With the aligned data,

even a simple baseline method can achieve outstanding performance. Moreover, we

manually check the errors with the existing re-ID evaluation protocol and provide

some revision of not only the labels but the evaluation protocol.

2.5 Proposed DL+CF-AAN Framework

Fig. 2.9 demonstrates the pipeline of our re-Detect and Link (DL) techniques

and the proposed Coarse-to-Fine Axial Attention Network (CF-AAN). Given an

original imperfect video tracklet V with N images, V = {I1, I2, .., IN}, we first

adopt our DL module to obtain the processed tracklet V ′, which is more robust and

aligned. The detail of our DL will be described in Sec. 2.5.1. Then, as the typical

pipeline of video-based re-ID, we sample T frames from V ′ as the input of our

CF-AAN. Our network consists of a backbone CNN and multiple Coarse-to-Fine

Axial Attention (CF-AA) modules, which are separately inserted between the

CNN blocks. The operations in our CF-AAN are described in Sec. 2.5.2. Last, in

Sec. 2.5.3, the video features generated by our CF-AAN will be aggregated with

the masks created along with DL module and optimized with the common losses

for re-ID.
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Figure 2.10: Illustration of the re-Detect and Link module.

2.5.1 Data Alignment with Re-detect and Link Module

With the noisy video tracklet V with N images, we sequentially perform our re-

Detect and Link (DL) method on each video frame and create a new processed

tracklet V ′ with N frames, too. As illustrated in Fig. 2.10, first, all images are

padded and fed to the object detector [34] to generate candidate bounding boxes

with the “person” class. For the first frame, if there are multiple candidates, we

will assume that the bounding box with larger area is the desired one. Then, similar

to the feature-based real-time object tracking [87], we extract the feature f of the

cropped image I ′
1 by the IDE feature extractor trained on the original dataset [2],

and save it as the global feature fg = f1. Next, for each consecutive frame i, if

there are multiple candidates, we will compare each extracted feature f j
i to the

global feature fg and choose the one with the smallest Euclidean distance, where

j is the index of the candidate bounding box in ith frame. After choosing the

candidate for the ith frame, the global feature will then be updated by

fg = αfg + (1− α)fi , (2.2)

where α is set to 0.9 in our case.

Note that in re-ID datasets, we cannot obtain the original full image frame

captured by cameras and perform our DL method. Thus, after we apply object

detection on the noisy cropped image, we may obtain a new cropped identity with
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only part of his/her appearance, as shown in Fig 2.7. According to the aspect ratio

and the position of the bounding box in the image, if the bounding box is slim (the

height is much larger than the width) and its position is on the left (right) of the

image, we will shift it to the right (left), resize it based on its original aspect ratio

and pad it to the desired image size. Furthermore, we also create a mask Mi of the

output image I ′
i representing whether each pixel is the padded one or not. This

mask will then be applied in the feature aggregation of our CF-AAN, which will

be described in Sec. 2.5.3.

Discussion Comparing to other methods proposing an automatically learned

feature alignment mechanism inside their backbone model [104, 82], our DL

module adopts an additional object detector to help reduce the original noise in

the data. It seems that our method requires additional computation cost but and

utilizes extra information. However, we want to point out that the goal behind our

DL module is to simulate a nowadays real-life scenario with efficient and robust

deep learning-based object detection and tracking before re-ID. Thus, when it

really comes to the re-ID phase, actually there has been no need for this additional

cost of DL module on the input tracklet. Furthermore, as shown in the Table 2.7,

with the aligned data, the simplest baseline can obtain a promising re-ID result

and the original state-of-the-art methods that specifically deal with the problems of

misalignment will not retain its competitiveness. We think that with the release

of the data processed by our simple alignment method, it can help the community

explore more on the attention-based methods or the methods for learning invariant

feature representation.

2.5.2 Coarse-to-Fine Axial Attention Network

As shown in Table 2.7, the existing self-attention based Non-local Network can

achieve the best result on the aligned data. However, the efficiency is the main

drawback. We propose a simple method called Coarse-to-Fine Axial-Attention
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Network that contains a coarse-to-fine mechanism and a position-sensitive axial-

attention which dramatically reduce the computation burden but retain comparable

performance.

Self-Attention: We first introduce the typical 3D self-attention [65] operation

as follows. Given an input feature map x ∈ RCin×T ×H×W with channels Cin,

temporal length T , height H , and width W , the output y at position o = (i, j, t),

yo ∈ RCout , is computed by aggregating all the projected input as :

yo =
∑
p∈N

softmaxp(qT
o kp)vp (2.3)

where N is the set of the whole HWT locations, and queries qo, keys ko, and

values vo are three different linear projections of the input xo, ∀o ∈ N from

dimension Cin to intermediate Cq,k for query and key projection or Cout for value

projection. As opposed to convolution which only captures local relations, this

mechanism allows us to capture related but non-local context in the whole feature

map. Commonly, it will be inserted into multiple locations between the backbone

CNN layers, and each complexity is O(H2W 2T 2).

Axial-Attention: To reduce the computation of non-local self-attention, in 2D

image classification tasks, the axial-attention has been proposed [90], they factor-

ized the 2D self-attention operation into two 1D axial-attentions. When applied

to our video-based re-ID, the 3D self-attention will be consecutively factorized

into height-axis, width-axis and the temporal-axis. With this transformation, the

complexity can be reduced to O(H2WT + HW 2T + HWT 2). The formulation

of the axial-attention, with the height-axis as an example, is as follows.

yo =
∑

p∈NH×1×1

softmaxp(qT
o kp)vp (2.4)

where the location p only lies along the H axis.

Furthermore, based on the concept proposed in the Transformer [72], many

works start to encode the positional encoding into the self-attention structure [100,



doi:10.6342/NTU202202005

2.5. Proposed DL+CF-AAN Framework 43

96, 98]. Thus, the final method we adopt is based on the positional-sensitive

axial-attention proposed in [99], where the learnable positional encoding vectors

depends on the query vectors, key vectors and the value vectors. The formulation

is as follows with the height-axis as an example.

yo =
∑

p∈NH×1×1

softmaxp(qT
o kp + qT

o rq
p−o + kT

p rk
p−o)(vp + rv

p−o) (2.5)

where the rq
p−o, rk

p−o, and rv
p−o are the learned relative positional embedding. Be-

sides, in practice, as shown in Fig 2.9, we will extend the single-head attention into

multi-head attention to generate a mixture of affinities. To retain the complexity,

if there are M parallel single-head attentions, in the mth head, each dimension of

the qm,km, and vm will be shrunk to Cq,v

M
and Cout

M
. The dimension of the learnable

positional vectors rq
p−o, rk

p−o and rv
p−o are also shrunk but the vectors are shared

across each head. Thus, the final output zo will be the concatenation of each head,

zo = concatm(ym
o ), with the same dimension Cout. Last, after conducting the

axial-attention (AA) along the three dimensions, we will project the output feature

from dimension Cout back to Cin and added with the input tensor x to become a

new refined tensor x′, which is formulated as follows.

x′ = x + Conv(AAT (AAW (AAH(x)))) (2.6)

Coarse-to-Fine Axial Attention: In addition to multi-head attention that learns

different structure of affinities, we propose a Coarse-to-Fine Axial-Attention mod-

ule (CF-AA) that not only makes the self-attention learn on different scales of the

spatial dimension but further reduce the computation. Different from [92], which

can only perform multi-scale structure on the last layer of CNN backbone with the

smallest resolution, we can apply our structure along with the axial-attention from

the mid-level stage to high-level stage inside the backbone. As shown in Fig. 2.9,

we split the input tensor x with S scales along the channel dimension and for the

sth scale, we downsample the spatial resolution to Hs ×Ws, where Hs = H
2s−1

and Ws = W
2s−1 . Thus, if S = 2 as an example, the original input tensor x will
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be split into x1 ∈ R
Cin

2 ×T ×H×W with a fine scale and x2 ∈ R
Cin

2 ×T × H
2 × W

2 with a

coarse scale. The split tensors are then separately fed into the axial-attention and

the outputs are upsampled and concatenated along the channel dimension in order

to retain the original tensor size.

2.5.3 Feature Aggregation and Optimization

Our CF-AAN contains a 2D CNN backbone and several CF-AA modules inserted

between the CNN blocks. After the last CNN layer, there will be T tensors with

size RC′×H′×W ′ . As mentioned in Sec. 2.5.1, because there are some input pixels

which are the padded ones without any information, we first downsample the mask

M to M ′ according to the spatial dimension H ′ and W ′, and utilize the mask to

average-pool on the desired spatial region to generate T vectors with C ′ dimension.

Then, we aggregate the features with the typical average operation followed by a

Batch-Normalization (BN) layer [75] to create the final feature representation fV of

the video tracklet. To optimize the network, we follow the two loss combinations

in BoT [78], which consists of a batch-hard triplet loss [46] on the features before

BN and a cross-entropy loss [70] on the identity classifier (a fully-connected layer)

after the feature fV .

2.6 Experimental Results

In this Section, we conduct extensive evaluation and ablation studies of the pro-

posed approach in addition to the analysis and correction of data noise and labeling

errors for the evaluation dataset. Same as our previous work [17], we evaluate

the proposed method on two large-scale datasets, MARS [2] and DukeMTMC-

VideoReID [52], abbreviated as DukeV. We use the rank-1 (R1) in the Cumulative

Matching Characteristics (CMC) and the mean Average Precision (mAP) [12] as

evaluation metrics.
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2.6.1 Implementation Details.

re-Detect and Link. Our object detector is the Yolov4 [34] pretrained on the

COCO dataset [105]. The IDE [2] model for linking the candidates is a ResNet-

50 [74]. We perform our DL module both on MARS and DukeV dataset. However,

because only the MARS dataset is adopted with traditional detector and tracker,

where the data in DukeV is manually labeled, the processed data of DukeV is

almost the same as before.

CF-AAN. For our CF-AAN, we adopt ImageNet pre-trained ResNet-50 [74] as

our backbone. Similar to the structure of Non-local Network [65], we insert 5

CF-AA modules, 2 after conv3 3, conv3 4 and another 3 after conv4 4, conv4 5,

and conv4 6 respectively. In our coarse-to-fine structure, we split the feature into

four levels (S = 4) and in each axial-attention, we set the number of head M = 2.

Thus, the total number of heads in a coarse-to-fine axial-attention module is equals

to 8, which is similar to the original axial-attention network [99]. In the training

stage, we sample T = 6 images as an input tracklet. Each frame in a tracklet is

resized to 256× 128 and synchronously augmented with random horizontal flip.

As for the optimizer, Adam with weight decay 5× 10−5 is adopted. We train the

model for 220 epochs. The learning rate is initialized to 10−4 and multiplied by 0.1

after every 50 epochs. In the testing stage, for each tracklet, we split it into several

6-frame clips, and then the feature representations for each clip are averaged to

become the final representation.

2.6.2 Ablation Study

In Table 2.8, we conduct ablation study on our proposed re-Detect and Link (DL)

module and our Course-to-Fine Axial-Attention Network (CF-AAN). Besides

the re-ID performance, we also calculate the computation cost of inference in

terms of GFLOPs. We first analyze the effectiveness of the DL module on our

baseline method (the first two rows). Our “Baseline” method, with 24.52 GFLOPs
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Figure 2.11: Examples of video tracklets processed by our DL.

operations, contains the same ResNet-50 backbone, types of losses and training

details but without all the axial-attention modules, which is just the average of

features in each frame. We can clearly see that with the aligned data processed by

DL, there is an obvious improvement of the performance (1.7% in mAP). Thus, the

alignment of the input video tracklet is crucial and important for the subsequent

feature extraction. We also demonstrate some extra examples in Fig. 2.11. We

can see that the problems of misalignment in the left tracklet and the multiple

candidates in the right tracklet are resolved after processed with the DL module.

Next, we compare the self-attention based methods. The first one is Non-local

Network (the 3th row), which is with single head 3D self-attention but without

the positional encoding. Although it can improve about 1.1% in mAP compared

to the baseline, the computation also increases (+17.213 GFLOPs), which is

extremely large and almost equal to the baseline. After replacing the operation

with axial-attention, the computation can reduce to only +0.361 GFLOPs, while

the performance slightly decrease owing to its factorized self-attentions. With the

multi-head structure (the 5th row), it can retain the computation cost but increase

the performance. We then apply two types of positional encoding to explore their

effectiveness. The first one is the sinusoidal encoding (the 6th row) which is the

same as the experiments in [96] and the learnable relative positional embedding
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(the 7th row) proposed in [99]. We can see that there is no significant influence of

all kinds of positional encoding but the relative and learnable characteristics are

the best for re-ID, which can achieve 86.4% in mAP. Last, in the last two rows, we

demonstrate the benefits brought by our coarse-to-fine structure. We can see that,

because the spatial dimensions decrease in the coarser scale, the total operations

also decrease. When the number of scales is 4, the operation can increases only

0.126 GFLOPs compared with the baseline, which is only about 1% of those

in Non-local Network. Furthermore, owing to the coarse-to-fine structure that

makes the self-attention learn on different scales, the performance even increases

to 86.5% in mAP on MARS dataset. The CF-AAN with four scales is our final

model performing the video-based re-ID.

2.6.3 Comparison with State-of-the-art Approaches

We compare recent state-of-the-art approaches with our methods on MARS and

DukeV datasets in Table 2.6. We can see that in the past, the methods that globally

perform attention mechanism on the last CNN features are the mainstream for

dealing with video tracklet [55, 106, 56, 57]. However, the noise and unaligned

appearance between frames make it hard to learn a robust attention score. In

another way, TCLNet [83] conduct the attention frame by frame, which is less

interfered by the alignment problems. AP3D [82] is the recent work that adopts

3D convolution with a feature alignment module inserted between 3D CNN blocks.

We can see that once reducing this unaligned problem, a 3D CNN can achieve

the best results (in R-1). The MG-RAFA [92] is also the attention-based method,

but they adopt the multi-granularity (multi-scales) structure on the output of the

CNN features, where the features will then be fed to their global attention methods.

This structure obtains the best results in mAP. Our method consists of a simple but

effective pre-processing DL module followed by an extremely efficient CF-AAN.

Different from [92], our coarse-to-fine structure is inserted with the axial-attention

module between the backbone CNN blocks. We can see that our methods achieve
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Table 2.9: Comparison with state-of-the-arts (%). The score with underline is

the runner-up.

Method
MARS DukeV

mAP R-1 mAP R-1

DRSA (CVPR18)[55] 65.8 82.3 - -
EUG (CVPR18)[107] 67.4 80.8 78.3 83.6
DuATM (CVPR18)[106] 67.7 81.2 - -
TKP (ICCV19)[108] 73.3 84.0 91.7 94.0
M3D (AAAI19)[95] 74.1 84.4 - -
Snippet (CVPR18)[56] 76.1 86.3 - -
STA (AAAI19)[57] 80.8 86.3 94.9 96.2
VRSTC (CVPR19)[84] 82.3 88.5 93.5 95.0
NVAN (BMVC19)[17] 82.8 90.0 94.9 96.3
FT-WFT (AAAI20)[89] 82.9 88.6 - -
TCLNet (ECCV20)[83] 85.1 89.8 96.2 96.9
AP3D (ECCV20)[82] 85.1 90.1 95.6 96.3
MG-RAFA (CVPR20)[92] 85.9 88.8 - -
DL+CF-AAN (Ours) 86.5 91.3 96.2 96.7

promising performance, which outperform AP3D [82] 1.4% in mAP and 1.2% in

R-1 on the MARS dataset. Although the data in DukeV are manually labeled, our

model still can retain comparable performance. Thus, in summary, with almost no

extra computation cost compared to the baseline, where conducting the DL module

is also effortless in real-life scenario, we are the state-of-the-art in terms of the

popular mAP metric for the video-based person re-ID task.

2.6.4 Label Cleaning and New Evaluation Protocols

As described in Sec. 2.4.3, we found some labeling errors or ambiguous cases in

the MARS dataset. Thus, we manually check the testing data of the unmatched

ones in evaluation and propose a new protocol which additionally address three

kinds of new situations: labeling errors, duplication in distractor, and ambiguous

identity.
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Figure 2.12: Three kinds of label noises in the MARS testing data.

Purely labeling errors by annotators: There are also three kinds of labeling

errors shown in Figs. 2.12(a)-(c). The first one is that a tracklet may be annotated as

another existing identity (2.12(a)). Or, there are completely two groups of tracklets

labeled as a different person but in fact with the same identity (2.12(b)). Sometimes

the tracklet does not belong to any other identities in the testing set. As Fig. 2.12(c)

shows, the identity 270 is the woman but the tracklet marked with red box is the

baby she holds. For those three cases, we fix the annotation with the correct or new

identity.

Duplication in Distractor Class: In the original evaluation protocol of MARS [2],

if a query tracklet matches a gallery tracklet with the same identity but under the

same camera, this match will be ignored because re-ID aims at matching pairs

across cameras. However, the “distractor class (ID 0)” in MARS consists of not

only the false positive bounding boxes created by pedestrian detector but also some

duplicated bounding boxes of the tracklets in testing set. As shown in Fig. 2.12(d),

the tracklet with ID 374 under camera 2 will easily match the same tracklet in dis-

tractor and strangely counted as an incorrect match. Thus, we revise the evaluation

protocol that if a tracklet matches the other one under the same camera with its

same identity or the distractor class, they will both be ignored.

Ambiguous Identity: There are some ambiguous cases in the dataset. As the

tracklet in Fig. 2.12(e), the unfit bounding box contains two persons (ID 485 and
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Table 2.10: Performance evaluated with/without new evaluation protocols

(N.E.) and the computation cost of recent methods with DL on MARS [2].

Method (w/ our DL)
w/o N.E.
(mAP)

w/ N.E.
(mAP)

# GFLOPs

C2D [82] 84.9 87.5 24.520
P3D-C [88, 82] 85.0 87.5 26.030
AP3D [82] 85.4 88.2 26.369
TCLNet [83] 85.8 88.4 30.150
Non-Local [82, 17] 86.2 88.6 41.733
CF-AAN (ours) 86.5 88.9 24.646

ID 422) from the beginning to the end of the tracklet. With our DL, there is only

one person left but the true identity cannot be even distinguished by human. For

those cases, we will add an additional ambiguous identity of the tracklet and in the

evaluation process, the matches of those identities will all be counted as the correct

ones.

Similar to Table 2.7, we reproduce some existing methods not only with data

processed by our DL but evaluated under our new protocols, which are shown

in Table 2.10. Furthermore, with their released codes, we also demonstrate the

computation cost in inference time with fairly 6-frames clip as input data in terms

of GFLOPs. We can see that all methods can improve largely by 2.5% in mAP, but

our CF-AAN still achieves the best result (88.9% in mAP). When regarding the

computation cost, those of our CF-AAN are comparable to the ones of the simplest

C2D baseline method and promisingly, also lower than all existing state-of-the-arts.

2.7 Summary

We introduce a Non-local Video Attention Network (NVAN) which incorporates

multiple non-local attention layers to extract spatial and temporal video character-

istics from low to high feature levels, which enrich the representation of videos in

person re-identification. To alleviate the computation cost, we proposed a Spatially

and Temporally Efficient Non-local Video Attention Network (STE-NVAN), which
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spatially reduce the non-local operation by utilizing pedestrian part characteris-

tics and temporally reduce the operation with hierarchical structure. Extensive

experiments are conducted to prove that our STE-NVAN is a superior trade-off

between performance and computation. Furthermore, we tackle the problem of

existing dataset, where the unaligned input sequence hinder the performance of

state-of-the-art methods. We present a simple re-Detect and Link module to further

process the datasets, which can significantly refine the data generated with obsolete

methods. Then, we proposed Coarse-to-Fine Axial-Attention Network, which

significantly improves the original non-local module in terms of computational

cost with three 1D position-sensitive axial-attentions and the proposed coarse-to-

fine structure while achieving the state-of-the-art performance. With our refined

data, we find that several baseline models can achieve comparable results with

current state-of-the-arts. In addition, we also disclose the errors not only for the

identity labels but also the evaluation protocol for the test data of MARS. With

these findings, we hope the release of corrected data can encourage the community

for the further development of invariant representation on view, pose, illumination,

and other variations without the hassle of the spatial and temporal alignment and

dataset noise.
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Chapter 3

Image-based Semi-supervised Person

Re-identification

3.1 Introduction

With the emergence of large-scale datasets [12, 1], in supervised image-based re-ID,

methods employing deep convolutional neural networks (CNN) have demonstrated

great successes [109, 68, 46, 70, 67, 63, 110]. Yet, in practical scenarios, one

might not be able to collect such a large amount of labeled data in a scene of

interest for training purposes. Instead, one typically encounters semi-supervised

setting in real-world re-ID tasks. More precisely, one can collect a number of

fully labeled pedestrian data across camera views during specific time period,

while the remaining training data under such views observed at other time periods

remain unlabeled. Thus, one cannot easily apply and train existing supervised

re-ID methods on semi-supervised data.

To address the aforementioned problem of semi-supervised person re-ID, we

can consider two possible settings. Recent works like [111, 112] assumes that

each identity has at least one image in the training set. However, in practice,

identity labels of labeled and unlabeled ones do not overlap (e.g., re-ID of different

time periods). Thus, we follow the setting in [113, 114] that only a small part of

53
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the identities (and their data) are seen and available. For the remaining training

data, they are from a separate set of identities and are totally unlabeled during the

training process. In other words, the identities of labeled and unlabeled training set

are non-overlapped.

It is worth noting that, the above semi-supervised person re-ID setting is rarely

addressed but practical and also challenging, since the number of identities is

unknown in the unlabeled set. With only a small part of labeled identities available

in this semi-supervised setting, we need to exploit the unlabeled images to assign

pseudo-labels for training purposes. Existing works like [113, 114] simply apply

K-means clustering on the unlabeled data, and then assign pseudo-labels to these

data according to clustering results. However, they need to assume that the number

of cluster K (i.e., identity) is known before training. They directly use the ground

truth number of identities to obtain the best results, which might not be sufficiently

practical either. Furthermore, assigning pseudo-labels to all unlabeled data as [113]

needs to be carefully handled, otherwise undesirable labeling errors would degrade

the performance of the re-ID model.

To address semi-supervised person re-ID with labeled and unlabeled training

data sharing disjoint identity labels, we propose a Semantics-Guided Clustering

with Deep Progressive Learning (SGC-DPL) framework. By jointly exploiting

labeled and unlabeled training data, our SGC-DPL aims to augment original label

information for learning re-ID models. With the guidance of labeled training data,

we first advance the affinity propagation (AP) [115] and propose the Semantics-

Guided AP (SG-AP), which is a clustering technique without knowing the number

of cluster K. Then, we identify and assign pseudo-labels for the unlabeled training

data based on the clustering results in a progressive fashion. That is to say, we

will gradually enlarge the number of unlabeled data be assigned pseudo-labels

for alleviating the errors in the original clustering results. In addition, different

from [114, 116], our progressive learning approach does not require any pre-defined

selection threshold or the total number of the assigned unlabeled data, which is
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also determined by the guidance of the labeled data.

To the best of our knowledge, in the task of person re-ID, we are among the first

to leverage the knowledge in labeled set to perform clustering without knowing the

number of cluster in advance. Furthermore, we do not require heuristic hyperpa-

rameters selection in our AP-based learning model due to our jointly/iteratively

exploiting labeled and unlabeled training data.

We now highlight the contributions of this work:

• We address the task of semi-supervised person re-ID with labeled/unlabeled

training data sharing disjoint identity labels.

• With the guidance of labeled data, our proposed Semantics-Guided Clus-

tering with Deep Progressive Learning (SGC-DPL) framework can jointly

exploit the labeled and unlabeled training data in a progressive fashion, while

no prior knowledge of the number of identities and the amount of assigned

unlabeled data are needed.

• Our model performs favorably against state-of-the-art semi-supervised re-

ID approaches, and produces impressive results when comparing to fully-

supervised methods.

3.2 Related Work

Supervised person re-ID As mentioned before, with the recent success of deep

learning, recent re-ID methods [12, 70, 68, 109, 46, 15, 78] rely on learning

CNN models using a large number of labeled training data. Once the learning

of complete, re-ID can be simply performed by matching features of query and

gallery images. Generally, two types of loss functions are considered for training

re-ID CNN networks: identity classification and verification losses. The former

is viewed as the cross-entropy loss [68, 70], which encourages the network to

correctly recognize the identities of input images. On the other hand, popular

verification loss like triplet loss [46, 117] are utilized to encode input images, so
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that positive and negative image pairs can be distinguished properly in the learned

embedding space. Recent works like [78] jointly use these two types of losses,

and very promising results are reported. As noted above, while these methods

achieve promising re-ID performance, they require a large amount of labeled data

for training purposes, which is often not practical in real-world re-ID applications.

Semi-supervised person re-ID Since collecting and annotating a large amount

of training data are often not applicable in real-world applications, how to design

and train re-ID models in a semi-supervised setting would be of increasing interest.

Some works [118, 119] approach this setting by utilizing labeled training data for

synthesizing unlabeled ones via Generative Adversarial Network (GAN) [120].

Once the synthesized images are generated, the multi-pseudo regularized labels

can be assigned like [118] or the labels are determined according to the relation

of labeled and unlabeled data in the feature space [119]. However, the generated

data are not visually robust and the real unlabeled data are also neglected for

training the network. A number of works focus on one-example or few-example

settings [111, 121, 122, 112], i.e., assuming that only one or few images of each

identity are available in the training set, while the remaining ones are of the same

identities but unlabeled during training. In [111], a region metric learning method

is proposed, which identifies neighbors of the same identity labels and forms a

discriminative metric. Wu et al. [112] propose a learning method for the unlabeled

data which contains the exclusive loss and a progressive pseudo-labels estimation

technique. While the above setting requires semi-supervised learning models, one

might not be able to collect labeled data for each identity in advance and cannot

expect that the identities in unlabeled data would remain the same.

Semi-supervised affinity propagation and Progressive learning Without know-

ing the number of clusters in advance, affinity propagation (AP) is a suitable clus-

tering solution. Some works [123, 124] propose semi-supervised AP that utilizes

the labeled data as additional constraints when clustering on the unlabeled data.
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However, both constraints assume a shared label space between those labeled

and unlabeled data, which is not suitable for real-world settings. Our proposed

semantics-guided AP can learn an adaptive AP mechanism on the labeled set and

adapt it to the disjoint unlabeled set.

Progressive learning, which is in the field of self-paced learning (SPL) [125],

aims to obtain knowledge from easy to hard samples in a pre-defined scheme,

and the self-paced paradigm is theoretically analyzed in [126, 127]. In the semi-

supervised re-ID field, many works [116, 112, 114] adopt the progressive learning

scheme but they all need to determine a heuristic parameter for the selection

threshold or the cardinality of the unlabeled set for training between each iteration.

In this paper, we exploit the labeled data and propose a progressive learning method

that can automatically generate the suitable threshold for data selection.

Unsupervised person re-ID We note that, a number of unsupervised person

re-ID works are presented, which will also be compared in the following sections.

BUC [128] and AE [129] try to directly learn discriminative CNN representations

on the target unlabeled dataset. For example, Lin et al. [128] utilize bottom up

clustering to leverage the pseudo-labels, while Ding et al. [129] adaptively select

image pairs for training re-ID. On the other hand, most works choose to learn the

representation of the unlabeled data with the aid of a source dataset in the other

domain. MAR [130] propose the soft-multilabel technique for the data in target

domain which is based on the relation of the unlabeled data to all the labeled source

identities, while SSG [131] utilize a self-similarity grouping to mine the potential

similarities for both global and local features. Since annotating at least a small

amount of data in the target domain is practical for real-world re-ID applications,

we will focus on the semi-supervised setting as described above and will not

address the pure or cross-domain unsupervised settings.
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Figure 3.1: Overview of our proposed SGC-DPL for semi-supervised re-ID. At

each iteration t, we perform semantics-guided affinity propagation (SG-AP) to

jointly cluster labeled and unlabeled data and progressively select a subset from

unlabeled data for soft pseudo-label assignment. This augments labeled dataset

without knowing the exact number of ID labels in advance.

3.3 Semantics-Guided Clustering with Deep Progres-

sive Learning

For the sake of completeness, we first define the problem formulation of semi-

supervised re-ID and the notations used in this paper. Assume that we have

access to a set of N l labeled images X l = {xl
i}N l

i=1 and their associated label set

Y l = {yl
i}N l

i=1, where yl
i ∈ [1, 2, ..., C l] and C l denotes the number of identities in

the labeled data. In addition, another set of Nu images Xu = {xu
j }Nu

j=1 without

any label information are also available during training. Note that the number of

identities Cu in the unlabeled set Xu is unknown (which is different from [113,

114]), while their identities are non-overlapped with Y l.

Instead of training the CNN model using {X l,Y l} only, we additionally lever-

age the image from Xu to augment the labeled training data. As depicted in

Fig. 3.1, we propose Semantics-Guided Clustering with Deep Progressive Learn-

ing (SGC-DPL) for solving this semi-supervised person re-ID task. This is realized

by our semantics-guided affinity propagation (SG-AP) and progressive data selec-
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Figure 3.2: Model initialization for semi-supervised re-ID. To initialize the re-ID

model, the ID/triplet losses are observed from {X l, Y l}, while the augmented

triplet loss is additionally observed by exploiting positive pairs from Xu and

negative pairs across X l and Xu.

tion strategies. This would iteratively assign soft pseudo-labels Y p to a selected

subset Xr ⊂ Xu, and augment labeled data for training standard re-ID models.

3.3.1 Model Initialization in Semi-Supervised Re-ID

We now present our model initialization process, which is depicted in Fig. 3.2.

Following the model architecture and the training strategy described in [78], we

first use a CNN as a feature extractor ϕ, and thus the features of labeled images

ϕ(xl) are used to train the batch-hard triplet loss [46]. A BatchNorm [75] and a

fully-connected layer are used to construct a C l-class classifier for optimizing the

identity classification loss (ID loss) [68].

In our semi-supervised re-ID task, ID labels are non-overlapped between train-

ing data X l and Xu. Inspired by [132], we further propose an augmented triplet

loss that utilize the unlabeled set to generate additional positive and negative pairs.

To be more specific, given any image in Xu, we first perform data augmentation

for an unlabeled image as a novel image with the same label (and thus form a

positive pair). On the other hand, we also randomly pick any two images from X l

and Xu (one from each) to form a negative pairs. Therefore, the original triplet

loss will be observed by such augmented positive and negative pair data.
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3.3.2 Semi-Supervised Affinity Propagation

Without knowing the number of clusters in advance, Affinity Propagation (AP) [115]

is a robust unsupervised clustering algorithm, which is analyzed in our supple-

mentary materials with DBSCAN [133]. To jointly exploit labeled and unlabeled

training data for learning re-ID models, we present a novel algorithm of semantics-

guided affinity propagation (SG-AP), which is a semi-supervised clustering method.

Based on AP, we additionally perform clustering on labeled data to generate se-

mantics (i.e., ID label) guidance for clustering on unlabeled set. That is, we aim

at preserving the consistency between the clustering and identity outputs, and

augment labeled data from the unlabeled data set for semi-supervised training

purpose. Next in Sec. 3.3.3, we will briefly review AP algorithm followed by our

proposed semantics-guided affinity propagation described in Sec. 3.3.4.

3.3.3 Brief Review of Affinity Propagation

Given a set of unlabeled data points X = {x1, x2, ..., xN}, AP takes one similar-

ity matrix s between data points as input, where each similarity element s(i, j)

shows how likely xj would serve as an exemplar for xi. The similarity score

can be calculated via s(i, j) = −∥ϕ(xi)− ϕ(xj)∥2
2, where i ̸= j. This formula

indicates the negative euclidean distance between feature points. Note that this

distance metric is concurrently optimized by triplet loss in re-ID task, which is also

beneficial to the clustering result. Without pre-defining the number of objective

clusters, AP only needs to define a score s(i, i) for each data point i so that data

points with larger s(i, i) are more likely to be chosen as cluster exemplars. These

values are called “preferences”. Such preferences will greatly affect the final

clustering result after the learning procedure of AP. However, it is hard to decide

the proper preference value for each data point while the value is usually given

based on heuristic experiments. In the original AP [115] algorithm, the preference

values are “equally” assigned to all the data as s(i, i) = p ∀i, where p is either

set to be as the median of the pairwise similarities, which results in a moderate
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number of clusters, or their minimum resulting in a small number of clusters. To be

more precise of AP learning procedure, two values are passed between data points

during internal clustering iteration: responsibility r and availability a. For each

step t, responsibility rt(i, j) is calculated by the similarity matrix s and at−1, and

availability at(i, j) is calculated by rt−1. Finally, for a data point xi, the exemplar

of xi is selected by:

ci ← arg max
xj
{r(i, j) + a(i, j)}, (3.1)

where ci denotes the exemplar for xi when convergence.

3.3.4 Semantics-Guided Affinity Propagation

While AP is an effective unsupervised clustering algorithm not requiring the

prior knowledge of the number of clusters, it cannot be directly applied to semi-

supervised re-ID tasks. This is because that performing clustering on the unlabeled

dataset does not necessarily output data clusters corresponding to desirable ID

labels. Moreover, assuming all data points possess the same preference with value

p hinders the clustering results. To overcome the above challenges, we present

semantics-guided affinity propagation (SG-AP), which jointly exploit labeled and

unlabeled training data. With the semantics (i.e. ID label) guidance of labeled data,

our goal is to cluster and assign psuedo-labels for unlabeled ones to augment the

labeled data for training purposes.

To solve the aforementioned problem that preference values of all data are

equally assigned, our SG-AP first introduces an adaptive preference function that

generates a suitable preference of each data point based on the observed feature

distribution, which is produced by calculating the similarities between each data

point to the others. The core idea is that, if the distance between a point xi to

other points is larger than the one between xj to others, the point xi should has a

lower possibility to be a cluster exemplar than xj does, which results in a lower

preference value. To achieve this goal, we first define the Similarity Ranking
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coefficient (SR) of each xi as:

SR(xi) = N ×
∑N

j=1,j ̸=i s(i, j)∑N
i=1

∑N
j=1,j ̸=i s(i, j)

, (3.2)

where N is the number of clustered data and s(i, j) indicates the element in the

similarity matrix s of the data points. The summation of the similarities among

data point xi to other N points (
∑N

j=1,j ̸=i s(i, j)) will be normalized and multiplied

by N to represent the relative ranking value of xi be chosen as a cluster exemplar

among the N data points. Then, we can define the adaptive preference of xi as:

Adaptive Preference(xi) = s(i, i) = SR(xi)× p, (3.3)

where the SR(xi) serves as an adaptive ranking weight for the original preference p,

resulting in different preference values for each data point based on its similarities

to the other data points. Note that both the elements in similarity matrix s and p

are negative values; therefore, a data point with high relative ranking to be a cluster

exemplar will result in a smaller SR and a larger preference s(i, i).

Although we have adaptive preference, the constant p is still determined by

heuristic experiments (median or minimum of similarities), and that might lead

to undesirable cluster results on the unlabeled data. To exploit the semantics

information (ID labels) in the labeled set, we proposed our SG-AP in the semi-

supervised manner. This is realized by enforcing the clustering of labeled data to

fit the desirable ID labels. That is, given labeled and unlabeled data {X l, Xu}, we

first calculate (3.3) with p initially set as the median of similarity matrix observed

from the labeled set, where N equals to N l + Nu. Since the number of identities

C l is known, we can search for p∗ that makes the number of exemplars of labeled

set after clustering best matches C l. If the number of exemplars is larger than C l

(i.e., over-clustering), smaller p will be considered (and vice versa). This searching

process can be sped up with Binary Search on data pair similarities observed from

X l. With p = p∗ and N = Nu in (3.3), we perform clustering on Xu and obtain

C ′ exemplars, and such results are guided by the semantics information observed

in X l as described above.
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3.3.5 Progressive Learning from Unlabeled Data

Our SG-AP performs clustering on unlabeled data based on the semantics guidance

of labeled dataset. To jointly exploit labeled and unlabeled data for training

effective re-ID models, the second stage in our SGC-DPL is to progressively assign

soft pseudo-labels for selected unlabeled data with high confidence, so that learning

of semi-supervised re-ID models can be further achieved.

3.3.6 Progressive Data Selection Strategy

To better leverage the clustering results after our SG-AP process, we now present a

data selection strategy by choosing a reliable subset Xr from the unlabeled set Xu

in a progressive fashion, as shown at the right part of Fig. 3.1. For each cluster, if

the instances xu
i of that cluster whose feature-level distance to the exemplar xu

ci
is

smaller than a threshold τ , we will select such instances with the corresponding

labels into the reliable subset Xr. The threshold τ will be progressively enlarged

to bring in more unlabeled data to effectively train the re-ID model. A formal

definition for Xr can be formulated as follows:

Xr = {xu
i | ∥ϕ(xu

i )− ϕ(xu
ci

)∥2
2 < τ} (3.4)

It is worth noting that, different from most existing progressive learning strate-

gies which typically utilize pre-defined thresholds for data selection [116, 112, 114],

our threshold τ can be observed from the labeled set directly. To be more spe-

cific, τ = τl + dt, where τl is determined based on labeled set, which dominates

the threshold value and dt is for enlarging the threshold gradually based on the

SGC-DPL iteration. Since τl is seen as the expected maximum distance between

an exemplar and its positive members, we utilize the distance distribution of data

pairs in the labeled set to leverage informative hints within such data selection

process. Fig. 3.3 depicts the distributions of feature distances within positive and

negative pairs in the labeled set X l on semi-supervised Market-1501 dataset [12].

From Fig. 3.3, it is obvious that we can pick a threshold which is data-dependent
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Figure 3.3: Determining threshold τl for progressive data selection. We illustrate

the distributions of distance between pairwise data of X l on Market-1501 with

semi-supervised setting. The blue and red curves are those for positive and negative

pairs, respectively. The intersection of the two curves indicates the threshold τl

which minimizes the data assignment errors for that dataset.

and separates positive and negative pairs with minimum errors. With this obser-

vation, the threshold τl can be assigned as the distance value on the intersection

line, using the labeled training data of interest. Then, between each progressive

learning iteration in SGC-DPL, τl will be gradually increased till all the instances

are selected into the reliable set accordingly.

3.3.7 Soft Pseudo-label Assignment

To train our re-ID model in this semi-supervised setting, the above process allows us

to select reliable data Xr based on SG-AP results. In order to assign pseudo-labels

Y p for such data without the prior knowledge of cluster/ID numbers, we choose to

assign soft pseudo-labels to alleviate possible clustering or label assignment errors.

That is, given a data point xr
i in Xr and C ′ cluster exemplars, the soft pseudo-label

vector yp
i is defined as follows:

yp
i = softmax([−d(i, 1),−d(i, 2), ...,−d(i, C ′)]) (3.5)

where d(i, j) is the feature distance for data xr
i to the jth exemplar in the unlabeled

set. In other words, for xr
i , the logit of the jth element in yp

i depends on the distance
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between xr
i and the jth exemplar. The smaller the distance is, the larger the logit is.

After obtaining the reliable data and its soft pseudo-labels {Xr, Y p}, such

augmented data will be added to the original labeled set X l for jointly learning for

re-ID model. With refined model, the resulting feature extractor will be utilized for

SG-AP and progressive data selection in the next iteration.

3.3.8 Learning Objective of Our Model

To train our entire SGC-DPL framework for achieving semi-supervised re-ID, we

alternate between the above SG-AP and progressive data selection process for

assigning soft pseudo-labels to unlabeled data, which augment the original training

set {X l, Y l} to an updated one {X l, Y l, Xr, Y p}. We then re-fine our model with

the new training data in that iteration by jointly optimizing batch-hard triplet loss

and ID loss as [78]. Since new C ′ identities are added to the original training set,

the classifier in our re-ID model will be expanded to train the ID loss with Y p and

Y l, where yp
i is a soft label vector used in the cross-entropy loss. In addition, our

model is trained using the triplet loss. Since data pairs in {Xr} are unlabeled, we

determine the identity for selecting positive and negative pairs of xr
i by our SG-AP

clustering results.

3.4 Experiments

3.4.1 Datasets

We evaluate our method on two benchmarks, Market-1501 [12] and DukeMTMC-

reID [1], which are two large-scale datasets with multiple cameras.

Market-1501. The Market-1501 [12] is composed of 32,668 labeled images of

1,501 identities collected from 6 camera views. The dataset is split into two fixed

parts: 12,936 images from 751 identities for training and 19,732 images from 750

identities for testing. During testing phase, 3368 query images from 750 identities
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are used to retrieve people in the gallery set.

DukeMTMC-reID. The DukeMTMC-reID [1] is a subset of DukeMTMC [134],

which is created for re-ID purpose. It is collected from 8 cameras and contains

36,411 labeled images belonging to 1,404 identities. 702 identities with 16,522

images are used for training, and 2,228 images from other 702 identities are used

for query images retrieving the rest 17,661 gallery images.

3.4.2 Experimental Settings and Protocols

We employ the standard metrics of the cumulative matching curve (CMC) and the

mean Average Precision (mAP). We report the rank-1 accuracy in CMC and the

mAP for the testing set in both datasets. We follow the semi-supervised settings

in [113, 114], which splits the training set into two parts: one is labeled and the

remaining is unlabeled, according to the proportion ratio of person identities. The

ratios are set as 1/3, 1/6, and 1/12. For example, for the 1/6 case, only about

125 among 751 identities in the training set of Market-1501 [12] are labeled

across cameras and the remaining images in the training set are unlabeled. For

fair comparison to some state-of-the-arts, we also adopt the setting that only 50

identities (50 ID) are labeled.

3.4.3 Implementation Details

We employ ResNet-50 [74] as the backbone in our feature extractor ϕ. The 2048-d

feature vectors produced by last layer of our feature extractor are used for re-ID and

trained with batch-hard triplet loss as well as the PK training strategy suggested

by Hermans et al. [46]. We sample P = 16 different identities and K = 4 images

for each person at a time to form a batch data of size 64. To improve the supervised

training performance, we also follow some of the tricks proposed in [78], which

contains the BNNeck, warmup and the REA. We use Stochastic Gradient Descent

(SGD) to optimize our model ϕt for total 200 epochs with the augmented training

set {X l, Y l, Xr, Y p} and with the initial learning rate of 0.01 decaying by 10
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Table 3.1: Comparisons with unsupervised and semi-supervised re-ID methods

on Market-1501 and DukeMTMC-reID(%).

Method Supervision
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

BUC [128] purely

unsupervised

66.2 38.3 47.4 27.5

AE [129] 77.5 54.0 63.2 39.0

MAR [130]
cross-domain

unsupervised

67.7 40.0 67.1 48.0

SSG [131] 80.0 58.3 73.0 53.4

MMT [135] 87.7 71.2 78.0 65.1

POE [112] one-example 55.8 26.2 48.8 28.5

ID-disjoint semi-supervised

UMDL [136]

50 ID

labeled

35.6 13.4 19.5 8.3

PUL [114] 50.9 24.8 36.5 21.5

MVC [113] 49.9 24.9 35.7 22.5

MVSPC [114] 62.1 40.9 51.5 31.5

Ours 83.8 65.3 74.4 56.1

MVC [113]
1/3 ID

labeled

75.2 52.6 57.6 37.8

MVSPC [114] 80.1 62.8 70.8 50.3

Ours 91.1 76.4 82.2 66.5

BoT [78] fully-supervised 94.5 85.9 86.4 76.4

every 50 epochs. The total training iterations of our SGC-DPL framework is set as

t = 8. In the internal semantics-guided affinity propagation (SG-AP), the searching

process of p∗ will be terminated if the clustered results on X l match the number of

identities (C l) or converge to a fixed number of exemplars for 5 iterations. In our

progressive data selection, the dt is initially set as 0 and gradually added with a

step size 1 to bring in more unlabeled data.

3.4.4 Comparison with Existing Methods

We first compare our methods with existing two unsupervised settings, one-example

setting and the fully-supervised approaches, and report the results on the two
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datasets in Table 3.1. For the purely unsupervised methods [128, 129], which

directly exploit the target unlabeled data without utilizing a source dataset, there is

still a performance gap to the fully-supervised method [78] because they cannot

learn the cross-camera image variation in the dataset. AE [129] achieve a great

improvement because they additionally utilize a style transfer network provided

by [137], which implies that generating various positive pairs in the domain of

interest would help. For the cross-domain unsupervised methods [130, 131, 135],

they can initialize and update the model with the aid of all labeled data in source

dataset; therefore, the performance can be more satisfactory when comparing to

the methods above. We note that, while the one-example setting POE [112] adopt

a common semi-supervised setting and they also utilize the progressive learning to

leverage reliable unlabeled data, a significant performance gap between theirs and

fully-supervised BoT [78] is also observed. This indicates that this one-example

semi-supervised learning approach cannot produce promising performance in such

settings.

On the other hand, as the setting considered in [136, 116, 113, 114], our semi-

supervised person re-ID utilizes disjoint identities in labeled and unlabeled set. For

fair and complete comparisons, we only report results with 50 labeled identities and

the ratio of labeled identities as 1/3 in Table 3.1. Other different ratios of labeled

data (1/6 and 1/12) are reported in Table 3.2. For the setting that only 50 identities

are labeled, it is clear that our SGC-DPL performed against the state-of-the-art

MVSPC [114] by a large margin such as 24.4% and 24.6% in terms of mAP on

Market-1501 and DukeMTMC-reID, respectively. The promising results can also

be observed in the setting that 1/3 of the identities are labeled. Our superiority over

these state-of-the-art approaches demonstrates the effectiveness of the proposed

SG-AP and the guided progressive learning against the K-means clustering without

guidance and the pre-defined self-paced learning in [114]. We then further analyze

the effectiveness of each component in the next section.
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Table 3.2: Ablation studies of the proposed method in terms of R-1 and mAP

(%). Note that Init., Clus., P.L. and Pseu.-labels indicate the uses of techniques

discussed in Sec. 3.3.1, Sec. 3.3.2, Sec. 3.3.6 and Sec. 3.3.7. All methods in this

table share the same backbone model.

Experimental setting
Components M-1/12 M-1/6 M-1/3

Init. Clus. P.L. Pseu.-labels R-1 mAP R-1 mAP R-1 mAP

{X l, Y l} ✘ ✘ ✘ ✘ 56.8 30.2 68.0 43.3 82.6 61.2

{X l, Y l, Xu} ✔ ✘ ✘ ✘ 62.8 38.4 74.0 50.6 83.4 63.7

{X l, Y l, Xu} ✔ AP ✘ Hard 78.4 55.4 83.5 63.8 88.5 71.9

{X l, Y l, Xu} ✔ AP ✘ Soft 79.0 57.0 85.5 65.9 88.6 72.5

{X l, Y l, Xu} ✔ AP ✔ Soft 81.5 61.0 85.9 69.7 89.4 73.7

{X l, Y l, Xu}(Ours) ✔ SG-AP ✔ Soft 87.9 71.6 89.8 74.9 91.1 76.4

All training data Fully-supervised training R-1 / mAP : 91.3 / 79.1

3.4.5 Ablation Studies

To assess the effectiveness of each introduced component in our SGC-DPL, we

conduct ablation studies and report the results on Market-1501 in Table 3.2. The

experiment is composed of three kinds of semi-supervised settings, which depends

on the ratio of labeled identities (1/3, 1/6 or 1/12) on Market-1501 dataset (M) and

thus denoted as M-1/3, M-1/6, and M-1/12. We also demonstrate the same results

on DukeMTMC-reID dataset in Table 3.3.

Ablation studies on Market-1501 We first assess our initialization strategy in

Sec. 3.3.1 using {X l, Y l, Xu}. As listed in the first two rows in Table 3.2, the

re-ID model with our initialization strategy outperformed the naive model trained

on {X l, Y l} only, especially on the M-1/12. With initialization confirmed, we next

consider assigning hard/soft pseudo-labels to all unlabeled data simply based on

standard AP, without semantics guidance from the labeled set. The results are

shown in the third and fourth rows in Table 3.2, indicating that our soft pseudo-

labels can alleviate the errors in AP. From the fifth row of this table, we see that



doi:10.6342/NTU202202005

70 3. Image-based Semi-supervised Person Re-identification

Table 3.3: Ablation studies of the proposed method on DukeMTMC-reID

in terms of R-1 and mAP (%). Note that the settings are the same as those in

Market-1501. All methods in this table share the same backbone model.

Experimental setting
Components D-1/12 D-1/6 D-1/3

Init. Clus. P.L. Pseu.-labels R-1 mAP R-1 mAP R-1 mAP

{X l, Y l} ✘ ✘ ✘ ✘ 46.2 27.0 61.2 40.6 71.5 53.1

{X l, Y l, Xu} ✔ ✘ ✘ ✘ 50.0 29.1 65.0 43.5 73.7 54.9

{X l, Y l, Xu} ✔ AP ✘ Hard 63.3 44.0 73.2 55.4 79.0 62.0

{X l, Y l, Xu} ✔ AP ✘ Soft 65.9 47.1 73.8 55.8 79.4 62.4

{X l, Y l, Xu} ✔ AP ✔ Soft 68.9 50.9 74.7 57.3 78.7 63.3

{X l, Y l, Xu}(Ours) ✔ SG-AP ✔ Soft 74.1 56.4 77.6 61.0 82.2 66.5

All training data Fully-supervised training R-1 / mAP : 85.5 / 71.3

applying our progressive learning strategy for selecting reliable data to augment

the labeled training set would help, while replacing the standard AP by our SG-AP

would achieve the best results (i.e., our proposed SGC-DPL). Take M-1/12 for

example, where only 60 identities are labeled, when comparing to the baseline

approach of using soft pseudo-labels by standard AP only (i.e., the fourth row in

Table 3.2), the performance was increased by a large margin from 57.0 to 71.6

in mAP, which confirms our ability in jointly exploiting labeled and unlabeled

data for improved re-ID learning. Finally, we see that with one third of labels

observed (i.e., M-1/3), our model was able to produce comparable performances

as the fully-supervised model with the same backbone and same training methods

produced by ourselves. (i.e., the last row in Table 3.2).

3.4.6 Ablation Studies on DukeMTMC-reID

We also provide the ablation studies on the other large-scale dataset, DukeMTMC-

reID [1] (D), with three semi-supervised settings depend on the ratio of labeled

identities (1/3, 1/6 and 1/12) and thus denoted as D-1/3, D-1/6, and D-1/12 in

Table 3.3. By the way, we did not apply our method on MSMT17 dataset [49]
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Figure 3.4: 2D t-SNE visualization of internal SG-AP clustering results on

sampled X l and Xu from the M-1/6 dataset. Data with the same color represent

instances of the same cluster, while labeled/unlabeled data with the same ground

truth identity are bounded by circles/rectangles. Note that instances bounded by

dotted circles/rectangles indicate mismatch between clustering and ID labels, while

those by solid circles/rectangles denote the match between them.

because it is no longer available now. Same as the comparison on Market-1501 [12]

in the main paper, it also shows the effectiveness of our proposed SGC-DPL

framework. When comparing to the baseline method using soft pseudo-labels by

standard AP only (i.e., the fourth row in Table. 3.3), the performance on D-1/12 was

increased by a large margin, too. Furthermore, the performance of our SGC-DPL

on D-1/3 can also approach that with the fully-supervised method.

3.4.7 Visualization of SG-AP

To demonstrate the effectiveness of our SG-AP, as shown in Fig. 3.4, we visualize

the clustering results across internal searching process in our SG-AP. Data points

with the same color represent the same cluster after our SG-AP, while the labeled

and unlabeled data are bounded by circles and rectangles, respectively. And, each

circle/rectangle indicates a ground truth ID label (e.g., we have cl
1 to cl

3 and cu
1 to

cu
5 to denote the ID labels for labeled and unlabeled data, respectively in Fig. 3.4).

From the left hand side of this figure, we see that our SG-AP initially divided

instances in both labeled and unlabeled data of the same ground truth ID into
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Table 3.4: Preliminary experiments with Affinity Propagation and DB-

SCAN. This table shows the clustering results with different clustering algorithms

and the re-ID performance after training for one iteration.

Methods Param. setting
M-1/3 M-1/6

#cluster #ID R1 mAP #cluster #ID R1 mAP

AP default 565

501

87.9 70.8 589

626

82.7 62.8
DBSCAN default 1 – – 1 – –
DBSCAN SSG [131] 381 88.1 70.5 266 81.0 60.7

multiple clusters, which is not desirable. With our SG-AP progresses for searching

suitable p described in Sec. 3.3.4, the number of clusters on labeled set would

match C l as shown in the right part of Fig. 3.4, which also guide the unlabeled ones

for improved clustering results (e.g., cu
1 to cu

5 in the right most part in Fig. 3.4).

3.4.8 Analysis of Different Clustering Algorithms

Initially, we conduct experiments to evaluate the effectiveness between two widely

used clustering solutions that are both no need for deciding the number of clusters in

advance, Affinity Propagation (AP) [115] and DBSCAN [133]. We did not conduct

the experiments of K-means clustering with different K to validate the robustness as

in [114] because we think that even the possible range of the number of identities

is also unknown. For AP, we all adopt the default hyperparameters proposed

in [115]. For the hyperparameters in DBSCAN, we adopt two settings, one is

with the default values and the other one is proposed in SSG [131]. Experiments

are conducted on the unlabeled set of M-1/3 and M-1/6, whose feature extractors

are only initialized on each {X l, Y l}, respectively. Table 3.4 shows the results.

We demonstrate the number of cluster in the first iteration and its ground truth

number of identities. In addition, we also show the re-ID performance after the first

training iteration (t = 1) with hard pseudo-labels and without progressive learning

on {X l, Y l, Xu, Y p}. It can be seen that with the default setting in DBSCAN, we

obtain an undesirable clustering results. With the meticulous design in DBSCAN
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Figure 3.5: Performance on two datasets along the SGC-DPL iteraions. We see

that the performances generally converged after the 5th iteration. Thus, we had

t = 8 in our work which would be a reasonable choice.

that follows SSG, the performance can just compete against the AP with default

values. Thus, in our SGC-DPL, we choose to adopt AP for clustering the unlabeled

data.

3.4.9 Analysis of total #iterations in SGC-DPL

We analyze the hyper-parameter t, which is the total number of iterations in our

SGC-DPL framework. Fig. 3.5 shows the performance along the SGC-DPL itera-

tions in terms of rank-1 and mAP on Market-1501 and DukeMTMC-re-ID datasets,

respectively. Each dataset consists of three semi-supervised settings considered.

The 0th iteration represents the model performance after our initialization method.

From these figures, we observe that the performance converged after the 5th itera-

tion in both datasets. Thus, we set t = 8 which would be a reasonable choice for

the proposed SGC-DPL framework.

3.4.10 Visualization of our Progressive Learning Strategy

For each iteration in our progressive learning strategy, we will create a reliable

subset for each cluster with the threshold τ which is automatically generated based

on the labeled set. The τ will be increased progressively in each iteration to enlarge
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exemplar

exemplar exemplar

exemplar exemplar exemplar

SGC-DPL iteration 1 SGC-DPL iteration 3 SGC-DPL iteration 5

SGC-DPL iteration 1 SGC-DPL iteration 3 SGC-DPL iteration 5

Cluster A

Cluster B

Figure 3.6: Visualization of our progressive learning strategy on M-1/6. We

illustrate example results of selected two clusters by SGC-DPL. The images in

green bounding boxes represent those with the same ID (as that of the cluster

exemplar), while images in red bounding boxed are not. The red dotted circle

denotes the reliable data subset selected. We see that the ID labels were noisy in

the beginning of clustering. Reliable data selected over iterations would update

both pseudo-label prediction and clustering, which effectively augment labeled

data from unlabeled data for improved learning.

the subset till all the samples are in the subset. Fig. 3.6 shows two visualized

cluster examples in our SG-DPL iterations on M-1/6 dataset. Each row represents

the cluster members of the same exemplar along the iterations. The images with

green border are with the same ground truth identities to the exemplar, and those

with red are not. The red circle represents the reliable subset. We can observe that

for the first iteration, the cluster results contain some errors which includes the

incorrect identities. However, with our threshold for the reliable subset, we only

assign pseudo-labels to the correct samples. As the network be optimized on the
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Table 3.5: Comparisons with the state-of-

the-arts on VeRi-776 [6] (%).

Method Supervision R1 mAP

Ours

1/12 labeled 76.2 38.0
1/6 labeled 78.7 43.6
1/3 labeled 84.3 56.7
fully-sup 90.1 64.7

RAM [138]
fully-sup

88.6 61.5
GRF-GGL [139] 89.4 61.7

Table 3.6: Comparisons with the state-of-

the-arts on CUB-200 [7].

Method Supervision R1 NMI [140]

Ours

1/12 labeled 47.2 56.5
1/6 labeled 48.1 58.7
1/3 labeled 48.8 59.3
fully-sup 49.7 59.3

Proxy [141]
fully-sup

49.2 59.5
Smart+ [142] 49.8 59.9

correct data, the cluster results will be more accurate. Furthermore, as the threshold

be enlarged, more correct data will be assigned pseudo-labels for learning re-ID

model.

3.4.11 Extension on other tasks

Although our SGC-DPL mainly tackled the semi-supervised setting practically in

the task of person re-ID, it can be generally applied and extended to other tasks

with the same setting. Therefore, we extended our SGC-DPL to the tasks of vehicle

re-ID on the VeRi-776 [6] and image retrieval on the CUB-200 [7] datasets to

verify the generalization ability. Different from other semi-supervised settings, the

identities are also disjoint between labeled and unlabeled set in the training data

and the ratio of the labeled data is also set as 1/3, 1/6 or 1/12. Compared to person

re-ID, vehicle re-ID is a more challenge task owing to the large variation between

the same vehicles captured from different views (i.e. rear and front) and the similar

appearance between vehicles with the same car model, color and views. The image

retrieval on CUB-200 is quite challenging, too. There are only 100 classes in the

original training set and we would only have 17 labeled classes if the 1/6 setting

is applied. Table 3.5 and 3.6 show the promising results that with the guidance

of labeled set, our SGC-DPL can compete against the fully-supervised (fully-sup)

state-of-the-arts approaches.
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Implementation details of the extension experiments For vehicle re-identification,

the widely used VeRi-776 dataset [6] contains 776 different vehicles captured,

which is split into 576 vehicles with 37,778 images for training and 200 vehicles

with 11,579 images for testing. The training details all follow those in our main

paper for person re-ID, which contains the same CNN backbone and the same

three training tricks proposed in [78].

For image retrieval, we adopt CUB-200 dataset [7]. This dataset is a fine-

grained bird dataset containing 11,788 images of 200 bird species. Following

existing methods [141, 142], we use the first 100 categories with 5,864 images

for training, and the remaining 100 categories with 5,924 images for testing. The

ratio for the labeled data in our semi-supervised setting is also applied on the

100 training classes. For learning on labeled or pseudo-labeled data, we follow

the triplet training network proposed in [142]. The reason for choosing [142] but

not other state-of-the-arts is that adopting this purely triplet training can easily

demonstrate the performance improvement with or without our SGC-DPL. In

Table 3 & 4 of our main paper, the performances of the “fully-sup” setting produced

by ourselves are the upper-bound of our SGC-DPL method on two datasets, which

means we directly train the supervised network with all training data.

3.5 Summary

In this work, we presented a novel Semantics-Guided Clustering with Deep Pro-

gressive Learning (SGC-DPL) framework for semi-supervised person re-ID. Our

core novelty lies in the proposed clustering algorithm, semantics-guided affinity

propagation (SG-AP). Without the prior knowledge of the cluster numbers, we

are able to cluster unlabeled data with the semantics-preserving guarantees, under

the guidance of labeled data. Together with the progressive learning strategy, our

model is able to select unlabeled data and assign soft pseudo-ID labels, which

allows one to augment the labeled training dataset and thus results in improved
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re-ID performances. Qualitative and quantitative results confirm the design of our

SGC-DPL framework, which performed favorably against recent semi-supervised

methods while achieving comparable performances as fully-supervised ones did.
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Chapter 4

Image-based Unsupervised Person

Re-identification

4.1 Introduction

Person re-ID tackles the problem of matching images of the same person across non-

overlapping cameras, which has drawn much attention in recent years because of its

wide applications in the intelligent surveillance system. As mentioned before, many

existing works obtained great success by adopting supervised learning approaches

with the aid of deep CNN [15, 13, 14]. However, these methods depend on large-

scale labeled dataset that entails significantly high annotation costs, which are

impractical to be applied in real-world scenarios. Thus, how to perform person

re-ID in an “unsupervised” manner would be a critical yet challenging issue to

solve.

Cross-domain unsupervised re-ID, which aims at learning re-ID on the target

unlabeled domain with the aid of labeled data on a source domain, is one of the

unsupervised problems that has been continuously addressed. To exploit the dis-

criminative characteristics inherently accessible in the target domain, some recent

works focused on clustering-based methods [143, 116, 131, 144] which acquire

pseudo identity labels by clustering the unlabeled data. Thus, the estimated corre-

79
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Figure 4.1: Problems in clustering-based re-ID methods. Motivated by the

problems of hard training samples, our work aims to rectify them by pulling close

the hard positive pairs and pushing away the hard negative ones.

spondence can help CNN for the unsupervised training. However, the underlying

drawback of clustering-based methods is that the capability of re-ID model highly

relies on the “quality” of the clustering results. In other words, the inconsistency

between the generated pseudo-labels and the ground truth labels would undesir-

ably degrades the re-ID performance, which generally arise from the misclustered

hard training pairs. For instance, the same identity pairs captured under different

cameras with intensive variations of the appearance could be possibly misclustered

to different groups (we call it the hard positive). Or two people with similar

appearance but only with subtle difference are likely to be clustered into the same

group and be assigned with the same pseudo-label (we call it the hard negative).

These two situations are harmful for re-ID model learning because they all degrade

the discriminative ability for identifying people. With the above observations, we

propose a Hard Samples Rectification (HSR) learning scheme which contains

two components in the dual aspects: 1) an inter-camera mining technique (ICM)

which utilizes the feature distribution and the camera ID information to resolve the

shortcomings in the original clustering results caused by the hard positive pairs.

2) a part-based homogeneity technique (PBH) to split the possible hard negative

pairs within a cluster into different groups by their features of local parts. Fig. 4.1

illustrates the common problems of the clustering-based methods and the objective
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of our proposed approaches.

Normally, data points with similar appearance will be projected into the near-by

region in the feature space. In view of the intent of clustering, those adjacent feature

points will be assigned with the same pseudo-labels. However, simply selecting

positive pairs within each cluster is ineffective for model learning because it neglect

the hard positive pairs that are clustered to different groups with appearance

variations under different camera views. To better alleviate this problem, we

consider the intrinsic properties beyond clustering results and propose the inter-

camera mining technique (ICM), which utilizes the context information of the

camera ID that can be easily obtained in the re-ID dataset. Specifically, for each

anchor image in the training procedure, we will mine and pull close those possible

hard positive pairs which are mutually similar but with different camera views.

By taking the advantage of these hard samples, ICM can concomitantly rectify the

cluster quality and steadily improve the re-ID performance.

As the number of training epochs grows, the capability of CNN model will

encounter a bottleneck that some misclustered hard negative pairs would never be

assigned to different clusters owing to their same pseudo-labels in CNN training.

To refine the cluster containing hard negative pairss, we propose the part-based

homogeneity technique (PBH) which forcibly regroups the imperfect cluster with

part-based features. With the PBH, we can split the hard negative samples among

a cluster and assign them with different pseudo-labels. The critical idea behind is

that the part-based feature gives a finer insight of a person; thus, with our PBH,

the hard negative samples among a cluster will have the chance be rectified and

assigned with different pseudo-labels.

The main contributions of this work can be summarized as follows:

• We proposed an inter-camera mining technique (ICM) to mine potentially

hard positive samples and alleviate the clustering bias of human appearance.

• The proposed part-based homogeneity technique (PBH) effectively regroups

the imperfect clusters containing hard negative samples.
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• We conduct extensive experiments on two large-scale benchmarks and our

HSR achieves promising performances in cross-domain unsupervised person

re-ID.

4.2 Related Work

We introduced some related work of unsupervised re-ID, where the supervised

re-ID has been introduced in Chapter 2&3.

To reduce the labeling effort, unsupervised cross-domain re-ID methods focus

on leveraging prior knowledge of labeled source domain to improve the model

performance on unlabeled target domain of interest. In UMDL [136], the proposed

asymmetric multi-task dictionary learning aims to learn a shared dictionary across

domains. Due to the rise of deep learning, recent works address this unsupervised

re-ID problem based on deep learning frameworks. Some approaches focus on

utilizing the image-to-image translation. SPGAN [145] aims to translate images

from the source domain to the target domain while preserving the self-similarity

of the original identity. HHL [132] introduce a Hetero-Homogeneous learning to

enforce camera invariance by translating images between cameras and enforce the

domain connectedness by constructing negative pairs between domains simultane-

ously. However, these methods depend upon the quality of generated images and

overlook the discriminative information in target domain. While these methods

aim to reduce the discrepancy between source and target domains, some other

works leverage auxiliary information other than visual similarity. Yu et al. [130]

propose to learn a soft multilabel vector for each unlabelled target image based on

the labelled people from an auxiliary dataset as the reference information. Still,

reference images from auxiliary dataset might not be precise enough to represent

the characteristic of images in target dataset.

To mine the potential supervision in unlabeled target domain, another train

of thought for solving the unsupervised problems are proposed by utilizing the



doi:10.6342/NTU202202005

4.3. Hard Samples Rectifications 83

clustering algorithm to estimate pseudo identity labels. In PUL [116], a progressive

unsupervised learning is proposed to learn re-ID information based on iterations

between clustering and CNN fine-tuning with reliable selected data. Yu et al. [143]

develop a cross-view asymmetric metric learning based on clustering labels. Re-

cently, SSG [131] propose a self-similarity grouping to mine potential similarities

for both global and local features and PAST [146] introduce a new ranking-based

triplet loss to avoid selecting unreliable samples from clustering results. How-

ever, these learning methods is seriously impeded by the incorrectly estimated

pseudo-labels from clustering algorithms. Thus, our framework tackles the above

problem beyond the original clustering methods from two aspects: pulling close

and pushing away the potentially hard positive and hard negative pairs respectively,

which can further rectify the unreliable pseudo-labels.

4.3 Hard Samples Rectifications

4.3.1 Overview of our HSR Learning Scheme

We first define the notation to be used in this paper. Given an unlabeled target

dataset
{
I t

c,i

}Nt

i=1
containing total Nt training images, where c denotes the camera ID

of image I t
c,i, and a source labeled dataset which serves as a preliminary knowledge

base for learning re-ID, the goal of our model is to learn the discriminative ability

to perform person re-ID on the target dataset. With those two kinds of data,

we first learn a feature extractor ϕ on the labeled source dataset as a pretrained

feature embedding function ϕ(·, θs), where θs is the parameters learned on the

source domain. Then, the learning scheme is shown in Fig. 4.2. Same as [131],

we utilize an unsupervised clustering algorithm called DBSCAN [133], which

does not required the knowledge of exact number of identities, to generate the

pseudo-labels for the target unlabeled images based on the extracted feature vectors

ϕ(I t
c,i, θs). With each “estimated” pseudo-label yt

i available, we can learn the re-ID

model with the typical supervised manner, which consists of the cross-entropy



84 4. Image-based Unsupervised Person Re-identification

cam
1 cam

2

𝜙

Part-b
ased

 
clu

sterin
g

R
e-assign

lab
els

…
…

𝓛
𝒕𝒓𝒊𝒑

+
𝓛
𝑪𝑬

V
erify

 ea
ch

 clu
ster

R
etu

rn
 n

ew
 la

b
el

U
n

lab
elled

 d
ata

𝓛
𝑰𝑪𝑴

u
p

p
er fea

tu
re

C
am

 1
C

am
 2

C
am

 3
lab

el 1
lab

el 2
lab

el 3

lo
w

er fea
tu

re

In
ter-C

a
m

era
 M

in
in

g

P
a

rt-b
a

sed
 H

o
m

o
gen

eity (P
B

H
)

C
lu

sterin
g

Figure
4.2:O

verview
ofthe

proposed
H

SR
learning

schem
e.Initially,the

feature
extractor

ϕ
is

pretrained
on

the
source

dataset.

Foreach
iteration

afterclustering,w
e

firstrectify
the

hard
negative

pairs
in

the
im

perfectclusters
w

ith
ourpart-based

hom
ogeneity

technique
(PB

H
)by

splitting
and

regrouping
the

sam
ples.The

new
refined

pseudo-labelis
then

em
ployed

as
the

supervised
inform

ation

to
fine-tune

the
m

odelalong
w

ith
the

cross-entropy
loss

and
tripletloss.In

the
otheraspect,w

e
apply

inter-cam
era

m
ining

technique

(IC
M

)as
a

com
plem

entofclustering
results

by
pulling

close
the

possible
hard

positive
pairs

w
hich

are
m

utually
top-K

closestto
the

anchorim
age

and
atthe

sam
e

tim
e

captured
in

differentcam
era

view
s.



doi:10.6342/NTU202202005

4.3. Hard Samples Rectifications 85

loss (LCE) that helps correctly classify the identities and the triplet loss (Ltrip)

for controlling the distance of the positive and negative pairs in the embedding

feature space. The clustering and network optimization stages will be conducted

iteratively, and the performance of re-ID model and the quality of clustering results

will improve steadily. However, it will reach a bottleneck owing to the situations

caused by the hard samples as mentioned above.

we propose Hard Samples Rectification (HSR) learning scheme, which dually

rectifies the hard positive and negative samples with two components: inter-camera

mining (ICM) and part-based homogeneity (PBH) techniques, as shown in Fig. 4.2.

During training, ICM will mine possible hard positive pairs with different camera

views and apply triplet loss to pull close those pairs in the feature space. On the

other hand, PBH technique will refine the potential imperfect clusters by splitting

the hard negative pairs within the same group.

4.3.2 Inter-Camera Mining

As mentioned in Section 4.1, hard positive pairs may be assigned to different

pseudo-labels due to the variance of appearance under different cameras. After

several iterations of clustering and network training, it will leads to a vicious

cycle that the positive pairs used to optimize the model are only those with similar

appearance, which goes against the goal of person re-ID to match people “across”

cameras. Thus, we propose an inter-camera mining technique as a role of assisting

the original clustering method to mine the hard positive samples.

In practice, shown in Algorithm 1, we first compute the similarity matrix

S ∈ RNt×Nt for all target images, where the element in the i-th row and j-th

column is the negative Euclidean distance of ϕ(I t
i ) and ϕ(I t

j). Then, after sorting

each row in descending order, we form the possible hard positive ranking list

of each image by selecting its top-K closest images according to the matrix S,

denoted as Rank(I t
i ) with a total length of K. It is worth noting that in order to

emphasize on “inter-camera” positive pairs, we remove those images captured
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Algorithm 1: Inter-Camera Mining

Input: Image feature vectors {ϕ(I t
i )}

Nt

i=1 and its camera ID {ci}Nt

i=1 on target

domain

Output: Possible hard positive pairs

1: Calculate similarity matrix S ∈ RNt×Nt .

2: for i=1 ; i ≤ Nt ; i=i+1 do

3: Sort S[i] in descending order.

4: Rank(I t
i ) = top-K images

{
I t

j

}K

j=1
in S[i] with cj ̸= ci

5: end for

6: Mutual-K : Choose image pairs (I t
i , I t

j) conformed to I t
j ∈ Rank(I t

i ) and

I t
i ∈ Rank(I t

j).

7: return all chosen pairs.

by the same camera as the image I t
i . To ensure the robustness and correctness of

our inter-camera mining, inspired by Dekel et al. [147], we additionally conduct

a K mutually best-buddies pairs technique. That is to say, for every image I t
j in

Rank(I t
i ), I t

i should as well be in Rank(I t
j). Thus, only the image pair (I t

i , I t
j) that

meets the above requirement would be taken into account as a reliable hard positive

pair in the following CNN training.

With the mined hard positive pairs, we additionally apply the triplet loss LICM ,

where the selection of positive samples is based on our ICM mining results. Notes

that it differs from the original Ltrip which samples the positive pairs based on

the pseudo-labels generated by original clustering algorithm. As for the choice

of negative samples of each anchor I t
i in LICM , we choose from the images with

different pseudo-labels from I t
i and at the same time not in its rank list Rank(I t

i ).

Different from [146], we embed the accessible camera information and the mutual

similarity, which benefits the correctness and the robustness of additional triplet

pairs mining. With our LICM iteratively shortening the distance of these mined

hard positive samples, it can progressively ensure the ability of our model to match
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person regardless of the variation between camera views and at the same time

improve the quality of the clustering results.

4.3.3 Part-based Homogeneity

Different people with only subtle difference are possibly assigned with the same

pseudo-labels, which would degrade the model ability to discriminatively identify

people in detail. In the aim of separating imperfect clusters which possibly contain

hard negative pairs, we develop a novel method called part-based homogeneity

(PBH) as a rectification technique by utilizing the local features which provide finer

information other than the global one. First, we need to define the imperfectness of

a cluster and select the candidates for applying our PBH. To this end, we utilize

Silhouette score [148], which is an evaluation metric for measuring how well a

sample is clustered to its group without the requirement of the ground truth labels.

By computing the mean Silhouette score of data in each cluster i, denoted as

mSil(i), we can further select the imperfect cluster with its mSil(i) smaller than

an empirically predefined threshold λ. Our proposed PBH technique is then applied

on every selected cluster to refine the original clustering results, as illustrated in

Fig. 4.3.

To start with, we split and pool the output feature maps of every sample in the

selected cluster j into two parts: upper and lower features, which are formulated as

{fu,i}Nj

i=1 and {fl,i}Nj

i=1, where Nj is the number of samples in cluster j. Then, we

respectively employ the K-means clustering with K = 2 on {fu,i}Nj

i=1 and {fl,i}Nj

i=1

to observe the data distribution of the finer local features. Consequently, each

sample is assigned with two temporary labels based on the groups of its upper and

lower features, denoted as yu and yl. With the part-based label pair (yu, yl), we can

re-assign new pseudo-labels to the samples in cluster j according to a look-up table,

as shown in Fig. 4.3. The idea behind is that only the data with both similar local

parts, which means the same (yu, yl), can be assigned with the same pseudo-label.

Notably, because the number of contained ground truth identities in the imperfect
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Figure 4.3: Illustration of part-based homogeneity technique. We extract local

features of upper part and lower part for each sample in the imperfect cluster and

apply K-means clustering on the local features respectively to obtain two kinds of

part-based labels. With the two temporary local labels, the cluster is then split into

at most four different groups according to the look-up table.

cluster is unknown, we suppose that if the cluster is defined as an imperfect one,

it would contain at least two ground truth labels. Furthermore, the progress of

iterative learning can ensure that even the selected imperfect cluster contains more

than two ground truth labels, the split clusters would still have the chance to be

defined as imperfect ones in the next iteration. In summary, by considering the

local features, our PBH maintains the homogeneity within the new cluster and

avoids assigning the same pseudo-label to globally similar hard negative pairs.

4.3.4 Optimization Procedure

For each iteration, after clustering the unlabelled data by DBSCAN, we would first

verify the imperfect clusters and adopt the proposed PBH technique to refine the

original estimated pseudo-labels. Then, we jointly utilize the triplet loss (Ltrip)

and the cross-entropy loss (LCE) to optimize the CNN network with those updated

pseudo-labels. Besides the positive and negative pairs sampled from the pseudo-

labels, we also jointly adopted the triplet loss LICM according to our ICM sampling
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technique. The overall loss function can be written as follows:

Ltotal = LCE + Ltrip + LICM (4.1)

Specifically, for all the triplet losses, we adopt the improved version called weighted

triplet loss proposed in [48] which can be formulated as follow:

L =
∑
a,p,n

F (wpd(ϕ(Ia), ϕ(Ip))− wnd(ϕ(Ia), ϕ(In))), (4.2)

where Ia indicates an anchor image, with its associated positive and negative

pairs Ip and In , respectively. The wp and wn are the adaptive weights calculated

according to the normalized feature distances between the anchor and its training

pairs, and we use a soft-plus function F (x) = log(1 + ex) as a penalty function

instead of a typical hinge function with margin.

4.4 Experiments

4.4.1 Datasets and Evaluation Protocol

Same as before, we evaluate our approach on two large-scale person re-ID bench-

marks: Market-1501 [12] and DukeMTMC-ReID [1], abbreviated as “Market”

and “Duke” in the following sections. Rank-1 (R1) accuracy (%) and the Mean

Average Precision (mAP, %) are used to evaluate the re-ID performance. In our

experiments, the label information of the training data in the target domain is not

available during the whole learning process. Notes that in the following tables,

“Duke→Market” means we pretrained on the Duke dataset (source) and tested on

the Market dataset (target), and vice versa.

4.4.2 Implementation Details

We adopt ResNet-50 [74] as our feature extractor ϕ and use the last 2048-d feature

vector to represent the data in both training and clustering. Notes that we split

the last feature map before average pooling into the upper and lower local feature
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Table 4.1: Comparisons with state-of-the-art unsupervised re-ID methods on

Market and Duke.

Methods
Duke→Market Market→ Duke
R1 mAP R1 mAP

PUL [116] 45.5 20.5 30.0 16.4
CAMEL [143] 54.5 26.3 - -
SPGAN [145] 58.1 26.9 46.9 26.4
HHL [132] 62.2 31.4 46.9 27.2
MAR [130] 67.7 40.0 67.1 48.0
PAST [146] 78.4 54.6 72.4 54.3
SSG [131] 80.0 58.3 73.0 53.4
pMR-SADA [149] 83.0 59.8 74.5 55.8
GDS-H [144] 81.1 61.2 73.1 55.1
HSR (Ours) 85.3 65.2 76.1 58.1

parts in our proposed PBH technique. The image size is 256× 128 and augmented

with random erasing and horizontal flip. Each mini-batch is with size 32, which

consists of 8 randomly sampled pseudo-identities, and for Ltrip, each contains

4 sampled images in their cluster, but for LICM , the 4 samples come from the

possible hard positive ranking list. Empirically, we set K = 10 in the ICM, the

number of local features = 2 (upper and lower) in PBH, and set the threshold

λ = mean(mSil)− 3std(mSil) in our PBH, where mean(mSil) and std(mSil)

denote the average and standard deviation of mSil of all clusters. We choose the

SGD optimizer with the learning rate = 0.005 to optimize the model for 10 epochs

in each iteration, where the total #iterations is 30.

4.4.3 Comparison with State-of-the-arts

We compare our proposed HSR with existing state-of-the-art unsupervised cross-

domain re-ID methods on Market and Duke datasets in Table 4.1. Based on the

common settings, we use Duke as the source dataset when test on Market and vice

versa. We can see that our HSR outperforms all the compared methods significantly

on both datasets.

Among the compared methods, PUL [116], CAMEL [143] and two latest
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Table 4.2: Ablation studies of proposed methods in terms of R1 and mAP (%).

Experimental setting
loss functions & components Duke→Martket Market→ Duke
LCE Ltrip LICM PBH R1 mAP R1 mAP

Direct Transfer 50.1 20.9 36.2 18.3
Baseline ✓ ✓ 72.9 46.3 60.2 42.2
Baseline w/ PBH ✓ ✓ ✓ 74.5 47.1 63.5 44.6
Baseline w/ LICM ✓ ✓ ✓ 83.8 63.3 73.5 54.4
HSR (Ours) ✓ ✓ ✓ ✓ 85.3 65.2 76.1 58.0

approaches, PAST [146] and SSG [131], also aim to exploit discriminative infor-

mation in target domain based on pseudo-label estimation. Different from them,

our HSR focusing on mining hard positive and hard negative samples to assist

the unreliable clustering results thus gives a promising gain in the performance.

Specifically, HSR achieve rank-1 accuracy = 85.3% and mAP = 65.2%, which

outperforms the best of these approaches by margins of 5.3% and 6.9% in Market-

1501. Similar improvement can be seen in DukeMTMC-ReID by achieving rank-1

= 76.1% and mAP = 58.0%, with a margins of 3.1% and 3.7%. In summary, our

method effectively enhance the model capability by alleviating the effect of hard

cases in clustering-based methods.

4.4.4 Ablation Study

To further analyze our proposed method, we perform ablation study to evaluate

the effectiveness of each component in HSR on both datasets. Results are shown

in Table 4.2. First, we directly apply the model pretrained on source dataset to

the target dataset, denoted as “Direct Transfer”. The inferior performance due to

the discrepancy between domains reveals the necessity of applying unsupervised

method for learning person re-ID on target domain.

Performance of baseline method To directly learn the representation for unla-

belled target domain, we utilize the clustering algorithm (DBSCAN) as a baseline

method to generate pseudo-labels and train the CNN model in supervised manner
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with cross-entropy loss (LCE) and triplet loss (Ltrip). As shown in the second row

of the Table 4.2, the baseline model achieves 72.9% / 46.3% and 60.2% / 42.2% in

terms of R-1/mAP on Market and Duke respectively. The unsatisfactory results can

be explained by the inaccurate pseudo-labels, thus degrades the model capability

to identify people.

The effectiveness of ICM For ICM and PBH, We first validate the effectiveness

of proposed ICM with LICM in the fourth row of Table 4.2. First, a significant

improvement can be observed by adding ICM to the baseline model (Baseline

w/ LICM ), which gains 17.0% and 12.2% in mAP when tested on Market and

Duke. This demonstrates that our inter-camera mining adequately assist the model

learning for identifying people regardless of the cross-camera scene variation.

To validate the robustness of our proposed technique, we also calculate the

precision of the selected positive pairs from ICM. Specifically, for every samples

I t
i in the target domain, we compute the average of true positive rate of their

corresponding Rank(I t
i ). It can progressively rise up to 82% in our iterative learning

process, and notably, we can also reach a maximum rate of 17% in our Rank(I t
i )

of “hard positive samples”, which possess the same ground truth identities yet

are originally assigned into different clusters. This show that our ICM not only

alleviate the impact of extensive variation across camera views but concurrently

remedy the original clustering result and favorably generate possible hard positive

pairs for re-ID learning.

The effectiveness of PBH The hard negative pairs being clustered to a same

group is a critical factor that will hinder the model ability for distinguishing

different people in detail. With our PBH, the imperfect cluster will be split into

multiple group and re-assigned the new pseudo-labels. The performance results

in the last row of Table 2.8 shows that adding with PBH, our final HSR learning

scheme can improve 1.9% and 3.6% in terms of mAP on the two datasets compared

to the “Baseline w/ LICM ”.
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Figure 4.4: Visualization of features within a sampled imperfect cluster via

t-SNE. Left: Multiple included ground truth identities within a single cluster, each

of which is shown in a color. Right: Regrouped clusters from PBH. Samples with

the same color indicates same new pseudo-label.
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Figure 4.5: Visualization of V-measure score w/ and w/o PBH. V-measure score

between the original clustering result and the one applied with PBH along the

training iteration.

To further validate the effectiveness of PBH, we visualize the features, their

ground truth labels and the new assigned labels in an imperfect cluster via t-

SNE [150]. As illustrated in Fig. 4.4, the sampled imperfect cluster which is

originally assigned with only one pseudo-label actually contains multiple ground

truth identities indicated by different colors. By applying PBH to split and regroup

the samples, where data with the same rectified pseudo-label are in the same
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color, we can refine the original clustering result and steadily obtain the best re-ID

performance. In addition, to measure the overall effectiveness, we compare the

V-measure score [151] in each iteration between the original clustering result and

the one applied with our PBH, where V-measure is the overall evaluation measure

of cluster quality that satisfies several desirable properties of cluster solutions. As

illustrated in Fig. 4.5, with the aid of our PBH, the V-measure score constantly

exceed the one of original clustering result, which indicates that our PBH fairly

improve the cluster quality.

4.5 Summary

In this work, we introduce a hard samples rectification (HSR) learning scheme to

address the issue of hard samples that degrades the performance in clustering-based

methods. Specifically, we propose an inter-camera mining technique to match

people under various camera views, and a part-based homogeneity technique to

split hard negative pair within same cluster in a part-based manner. With our HSR,

the model can learn a discriminative representation for unlabelled target images

and receive a significant improvement of re-ID performance.
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Chapter 5

Layer-wise Filter Pruning for Neural

Network

5.1 Introduction

Convolutional Neural Network (CNN) has been widely used since it attained

significant improvement the first time on ImageNet Classification Challenge [152].

In recent years, various advanced architectures of cNN are proposed [153, 74],

which achieve state-of-the-art performance on many computer vision tasks, such as

image segmentation [154], object detection [33], and image super resolution [155].

The general trend of designing a well-performed network is making it deeper

and more complex. However, it also increases the number of parameters and

convolution operations at the same time, which means it will consume substantial

storage and computational resources. Commonly, we can conduct the training stage

of deep CNNs on high-performance GPU clusters, but for the Internet of Things

(IoT) applications, we consider more about the inference stage on local devices with

lower computation ability, such as mobile phones or surveillance cameras. Local

computation on embedded system is more preferred than cloud-based solution

owing to the real-time processing, better privacy, and no transmission bandwidth

constraint. Under these considerations, it is much more difficult to employ those

95
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high computation-demanding models on edge devices.

For these purposes, various works focus on optimizing the deep neural networks

by removing the redundancy. In the past few years, Han et al. achieved impressive

compression rates on VGGNet [153] by pruning parameters with small magnitudes

[10]. With these compression methods, we can efficiently reduce the parameters

in fully-connected layers or in the filters of convolutional layers. However, the

pruning result on convolutional layers leads to sparse weight matrix with the same

model architecture. Therefore, without alternative libraries or specific hardware

accelerators conducting sparse operations, the compressed network with weight

pruning cannot actually help reduce the computation time on general processors,

such as GPUs and DSPs. Rather than weight pruning, filter removal (or filter

pruning) is another aspect of pruning, which is beneficial for general computing

platforms. CNNs with large capacity usually have redundancy among different

filters; thus, Li et al. [8] and Chen et al. [27] first propose methods to optimize the

model architecture by removing the entire convolution filter at a time according

to different definition of filter importance. They both probe the filter importance

layer-by-layer and remove a portion of unimportant filters layer-wisely.

This layer-wise filter pruning incurred a problem that which layer we should

prune the model first. Based on the definition of filter sparsity [27], our previous

work [29] first analyzes the sensitivity of a group of layers, such as the first, middle

and last part. By pruning the less sensitive part, we can obtain lower performance

drop with the same number of parameters left. Nonetheless, there are still no clear

and systematic methodology for probing the sensitivity of a CNN network. In this

paper, inspired by rate-distortion optimization (RDO) technique widely employed

in video and image coding, we define the sensitivity of each convolutional layer

and propose a new computation-performance optimization (CPO) algorithm to

successively choose the proper layers to reduce the computation by filter removal

when given some performance constraints. The layer with the lowest sensitivity

will be pruned first, and by monitoring the performance sensitivity globally, we can
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derive the number of filters to remove for each layer. By pruning the model with our

filter removal method and the CPO algorithm, we can find out the optimal number

of channels in each layer of a deep well-trained but redundant CNN network. In

order to prove the effectiveness of the proposed method, a deep CNN model for

image super resolution (SR) and three models for image classification are employed.

Compared with the previous work [29], our method achieves larger reduction of

computation and parameters under the same performance constraint. Furthermore,

we also compare the experimental results with the state-of-the-art filter pruning

method [8] to show that the proposed method can reduce more parameters.

Specifically, our contributions are:

• Exploring the redundancy of convolutional layers with their sensitivity and

filter sparsity,

• Proposing the Computation-Performance Optimization (CPO) method for

systematically reducing computation operations under given performance

drop constraint, and

• Applying CPO on SR and image classification tasks, which leads to signifi-

cant improvement of computation reduction.

5.2 Backgrounds of Pruning

Several methods have been proposed in order to compress networks. Pruning is

shown to be effective in reducing the network complexity and over-fitting. By

eliminating weight connections, it sometimes even leads to performance gain.

Early works such as Optimal Brain Damage (OBD) [156] and Optimal Brain

Surgeon (OBS) [157] compute the saliency of each individual parameter through

second order derivatives and remove those with lower saliencies. However, with the

growing scale of modern network architectures, it becomes unrealistic to compute

the saliency of every parameter. Therefore, Han et al.remove weights whose

magnitudes are smaller than a certain threshold [10]. In addition to pruning, they
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incorporate weight sharing and Huffman coding to further boost the compression

rate while still being able to retain the original performance at the same time.

From the perspective of filters within convolutional layers, Jaderberg et al.present

an approximation of full rank filter banks as a combination of rank-1 filter basis

and reduces the inference time [158]. Group-wise Brain Damage [159] revisits

the concept of OBD and leverages the fact that convolutions are in practice matrix

multiplications. They group together entries of the convolution filters and reduce

them to zeros in a coordinated way. Anwar et al.introduce three levels of struc-

tured sparsity, which are channel-wise, filter-wise and intra-filters strided sparsity

when it comes to pruning weights and filters [160]. They also point out that other

compressing techniques (e.g. quantization) are orthogonal to pruning, and will

enable greater computation and storage savings.

Then, many works start to directly remove filters [27, 8, 29], they point out that

removing redundant filters to alter the network architecture can dramatically save

the computation. Among those network compression and optimization techniques

described above, filter removal is one of the methods with high potential since it

can be used not only for model size compression but also for computation reduction

for general computing platforms. In the well-performed work conducted by Li et

al. [8], they use the L1-norm of every filter to rank the removing order. In addition,

the number of filters to be removed in each layer is decided by observations and

empiricism. Different from their L1-norm calculation and based on the sparsity

definition in our previous work [29], in this paper, we provide a well defined

metric, performance sensitivity (PS), to measure the layer’s sensitivity for filter

pruning. With the guide of PS and the constraint of a given expected performance

drop, we can layer-wisely remove sparse filters and fine-tune the model to find

the suitable number of filters to remove for each layer. Experiments on image

classification and image super resolution are conducted to prove the effectiveness

of the proposed method and our method can be comparable or even better than the

state-of-the-art [8].
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5.3 Proposed Layer-wise Filter Removal

The operations of the i-th CNN layer involve convolving a 3-D tensor (input,

xi ∈ RCi×Yi×Xi) with Ni different 3-D tensors (filters, Fi,n ∈ RCi×Hi×Wi) to

extract different features and then generating a 3-D feature map tensor (output,

yi ∈ RNi×Y ′
i ×X′

i), where Ci, Yi, Xi are channel, height and width of the i-th

input tensor, Hi, Wi are height and width of one filter, and Ni is the number of

convolution filters in the i-th layers, which is equal to Ci+1, the number of channels

of the next layer. Y ′
i , X ′

i are slightly different from Yi, Xi owing to the boundary

of convolution, and the output tensor is also the input tensor of the next layer. The

filter pruning procedure is based on removing one complete filter of the i-th layer

at a time, which reduces CiHiWiX
′
iY

′
i operations. And furthermore, it will also

eliminate one feature map channel at the next layer, so it will concurrently reduce

Ni+1Hi+1Wi+1Xi+1Yi+1 operations.

Given a well-pretrained CNN model, in the network optimization process with

layer-wise filter removal, the number of filters and which filters to be removed

among each layer are two important parameters we need to determine. Within one

layer, we define the filter sparsity and rank the possible candidates to be removed;

between layers, we propose a Computation-Performance Optimization (CPO)

algorithm to take sparsity and performance sensitivity, which will be defined later,

into consideration to iteratively determine the sequence of layer-wise reducing

factors (the ratio of removed filters). Specifically, owing to different tasks or

applications, the users may have an expected acceptable performance drop after

model pruning. Therefore, we can adaptively prune the CNN network according

to any expected drop. Fig. 5.1(a) illustrates our CPO system. Given a trained

CNN network and an expected performance drop by the user, the CPO system

will iteratively determine the reducing factor of every convolutional layer for the

“Filter Removal Process”. After pruning and retraining, we will do “Performance

Evaluation” and start the next CPO iteration to generate the next reducing factor.
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Figure 5.1: (a) Flow of Conducting CPO System. (b) Intra-layer Filter Removal

Process. Figure (a) illustrates the whole CPO pruning algorithm. Given an expected

drop by the user, the system will iteratively prune the well-trained CNN model by

determining the layer-wise reducing factors, and evaluate the model performance

to start the next iteration. Figure (b) demonstrates the intra-layer filter removal

process with a given reducing factor. We first rank the filters in the i-th layer by

sparsity and remove the first Niri filters. When Ni = 10,ri = 0.3, after pruning, 7

filters will exist and the output feature map will remain 7 channels, too.
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5.3.1 Definition of Sparsity

The criterion of redundancy is defined layer-by-layer according to their weight

distribution. For a specified layer i, we use Mi to represent the mean value of all

absolute filter weights:

Mi =
∑

n,c,h,w |Fi,n,c,h,w|
Ni × Ci ×Wi ×Hi

, (5.1)

where n, c, h, w are the indices of the filter tensor F . Then the Sparsity Si(n) of

the n-th filter at layer i can be written as:

Si(n) =
∑

c,h,w σ(Fi,n,c,h,w)
Ci ×Wi ×Hi

,

σ(x) =


1, if |x| < Mi

0, otherwise

(5.2)

In other words, for a specific layer i, if a filter has several coefficients which are less

than the mean value, Si(n) is close to 1, which means this filter is more redundant

than others. We then rank the filters in the i-th layer in descending order according

to their sparsity values. When we conduct CPO at the i-th layer afterwards, the

filters ranked higher will be removed first.

5.3.2 Definition of Reducing Factor

Considering that the number of convolution filters vary from layer to layer, it

is not convenient for us to compute the exact number of redundant filters when

conducting CPO algorithm. We thus define the reducing factor ri, 0 ≤ ri ≤ 1

for the i-th layer. The value of ri is the ratio of the numbers of removed filters to

all filters at the layer i. Fig. 5.1 (b) demonstrates an example of intra-layer filter

removal process. For the i-th layer, there are Ni = 10 filters, and originally the

output feature map will contain 10 channels. We first calculate the filter sparsity

Si(n), and construct the ranked sparsity list. If we set ri = 0.3, Niri = 3 filters on

the top of the ranked list will be removed and 3 channels of the output feature map

will be removed as well.
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5.3.3 Concept of Computation-Performance Optimization

The next step is to determine the reducing factors while considering the global

effects of filter removal across layers. Inspired by the rate-distortion optimization

(RDO) technique in video and image coding [161, 162], we propose the concept of

computation-performance optimization (CPO) for CNN optimization. In video and

image coding systems, RDO is the method to determine the optimal bit allocation

to achieve the minimized distortion δ∗ under a given bit-rate constraint Rc:

δ > δ∗ ∀ R < Rc (5.3)

To solve this problem, in [162], a post-compression rate-distortion optimization

(PCRDO) is proposed for image coding. An image is decomposed into several

small coding unit CUi, and ∆δi/∆Ri is calculated, where ∆δi is the global distor-

tion reduction when coding unit CUi in included, and ∆Ri is the required bitrate

for this coding unit. Given any λ, the set of coding units

{CUi |∆δi/∆Ri > λ} (5.4)

is an RDO solution under the total bit-rate

Rc =
∑
{Ri |∆δi/∆Ri > λ}. (5.5)

Inspired by PCRDO, we model the filter removal process as a computation-

performance optimization (CPO) problem, that is, we would like to achieve the

minimized performance drop D∗ under a given computation budget ζc. A group of

filters is then employed as the small unit, and the associated ∆D/∆ζ is derived

for selecting the filter to be removed. Similarly, the units with larger ∆D/∆ζ are

kept, that is, the units with smaller ∆D/∆ζ are removed to achieve computation-

performance optimization. Note that ∆D/∆ζ can be viewed as a kind of perfor-

mance sensitivity.
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5.3.4 Definition of Performance Sensitivity

For one specific convolutional layer, we can deduce the potential redundancy of

filters by calculating the filter sparsity with (5.2), and consequently we can first

remove the filters with high sparsity. However, for the entire CNN model, we have

no clear criterion for determining which layer we can conduct filter pruning first.

Based on the concept of CPO, we define the Performance Sensitivity (PS) of the

i-th convolutional layer with the change of reducing factor (ri) and performance

drop (D):

PSi(∆ri, ∆D) = ∆D

∆ζ
= ∆D

∆ri ×Wi ×Hi × Ci

, (5.6)

where D is the performance drop, which is a positive value, and ∆D is the change

of drop between two pruning steps. ∆ri is the change of reducing factor, and the

whole denominator part approximates the computation change ∆ζ for removing a

portion of filters in the i-th layer.

The Performance Sensitivity (PS) represents the aptness of being pruned for a

layer. When conducting our Computation-Performance Optimization (CPO) with

reducing factor, it is more likely to assign higher reducing factors to the layers with

lower PS values.

5.3.5 Computation-Performance Optimization

The problem left now is to determine the exact number of filters allowed to be

removed for each single layer without apparent performance drop. Based on the

concept of CPO, the Performance Sensitivity (PS) is employed to balance the

trade-off between “Computation Reduction” and “Performance Drop”. The whole

algorithm flow is demonstrated in Algorithm 2.

First, we need to find out the PS value of each layer. By emulating the method

in finding layer-wise sensitivity [163], we iteratively set r = 0.5 to halve the

number of filters in one layer and meanwhile keep the rest untouched. With those

remained parameters, we retrain the model for few epochs to fine-tune the model
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until convergence. After obtaining the performance drop Di, PSi can be calculated

with ∆ri = 0.5 − 0 = 0.5 and ∆Di = Di − 0 = Di in (5.6), where the initial

reducing factor and the initial drop are both zero. Finally, with this pruning test

for each layer respectively, we can construct the sensitivity list for the subsequent

steps. The reason why we choose half over other fractions to probe the sensitivity is

two-fold. For one, if a too small portion of filters is pruned away, the performance

will be quickly restored through the retraining process, resulting in unstable PS

values. For the other, it inherently fits the property of Binary Search (BS) [164]

to find out the appropriate reducing factor for the consecutive procedures in the

proposed CPO algorithm.

Second, with the PS list obtained by setting ri = 0.5 for each layer i respec-

tively, we sort it in ascending order and start removing filters from the least sensitive

layer, which is called “the current layer” in following descriptions. Following the

Binary Search order, we increase the reducing factor from ri = 0.5 to 0.75, 0.875...

for the current layer, unless one of the following conditions is met:

1. When the performance drop becomes intolerable.

2. When the updated PS value of the current layer becomes larger than that of

the runner-up.

3. When the layer run out of filters to remove.

The performance drop is intolerable when it exceeds the expected drop Dexp,

which is decided by the user of our CPO system. When it happens, we will

take a step back by following the binary search order. That is to say, instead of

removing Niri,k filters which causes unexpected drop for the k-th step, we remove

Ni
(ri,k+ri,k−1)

2 filters. If it is still intolerable, we will search the suitable reducing

factor for the current layer until the drop becomes smaller than Dexp. Next, we

move on to removing the filters at the next least sensitive layer.

The second condition appears during the sensitivity updating within the current

layer. The goal of updating the PS value is to evaluate the performance change

owing to the computation reduction, or we can say the incrementally increased
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reducing factor. That is, for example, if ri,k = 0.75 and ri,k−1 = 0.5 in the k-th and

(k− 1)-th steps, respectively, ∆ri is set as 0.75− 0.5 = 0.25 in (5.6). Note that PS

will become higher and higher when we continue removing filters from one single

layer, which is a kind of diminishing marginal utility. Therefore, when we detect

that the PS value of the current layer has grown larger than the runner-up layer i′

in the sensitivity list, it strongly suggests that this reducing factor influences the

whole performance too much, and we will then switch to the next layer i′.

In addition, once we decide the number of filters to remove in the i-th layer,

the PS value of the (i + 1)-th layer in the original sensitivity list is also updated

because of channel reduction. As mentioned in Sec. 5.3.2, if we remove ni filters

in the current layer i, every filter in the (i + 1)-th layer will also be reduced by

ni channels, which causes the reduction of computation at that layer. Therefore,

we need to modify the denominator term Ci+1 of (5.6), and it will simultaneously

increase the PSi+1 value.

The procedure described above will iterate through all of the layers that are

available for filter pruning. For the experiments in SR, we will not prune the

last convolutional layer because the number of filters at that layer is only one.

Meanwhile for the experiments in image classification, the available layers for

filter pruning in our CPO algorithm differ from model to model. It depends on the

original architecture (VGGnet, ResNet and so on) or whether the hidden layers

exist between the last convolutional layer and the output layer. If there is only one

linear layer which maps the feature map of the last convolutional layer to the class

prediction, we will not remove the filters in the last convolutional layer because

it will correspondingly remove some of the parameters in the next linear layer

and meanwhile greatly influence the prediction performance. We will discuss the

details in Sec. 5.4.
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Algorithm 2: Flow of CPO
Input :A trained CNN model, An expected performance drop Dexp

1 Start probing the Performance Sensitivity as follows ;

2 repeat through every convolutional layer

3 Prune the i-th layer with ri = 0.5 and obtain the corresponding drop (Di)

after retraining few epochs;

4 Calculate the Performance Sensitivity (PSi) according to (5.6) and add it to

PS list;

5 Recover the i-th layer by setting ri = 0;

6 until all available layers are iterated through;

7 Start determining the actual ri for every layer as follows;

8 repeat for picking the minimum i from sorted PS list

9 Start pruning the i-th layer as follows ;

10 Loop k for ri,k starting from 0.5 in BS order :

11 Prune the layer with ri,k for the k-th iteration and retrain the model for

few epochs;

12 Update the PS value and check the termination conditions;

13 if it meets the conditions 1) or 2). then

14 repeat

15 Step back to ri = (ri,k+ri,k−1)
2 ;

16 until the drop is acceptable;

17 break the loop;

18 else if it meets conditions 3). then

19 break the loop;

20 else

21 Go to next iteration with larger reducing factor.

22 EndLoop

23 Update the PS list owing to channel reduction;

24 Remove the i-layer in PS list and sort it again;

25 until sorted PS list is empty;
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5.3.6 FLOPs and Parameters Calculation

After conducting CPO, we can significantly remove a large number of parameters,

which will result in smaller storage size and less floating point operations (FLOPs).

To quantify the operations remained in all convolutional layers, we follow the

equations:

FLOPs =
∑

i

Ni × (Wi ×Hi × Ci)× (Xi × Yi), (5.7)

where Wi, Hi, and Ci are the width, height, and number of channels of Ni filters

in the i-th layer respectively, while Xi and Yi are the width and height of the

convolved input. To calculate the parameters in the meantime, we just remove the

(Xi × Yi) terms of the shifting window operations of convolution in (5.7), and thus

we can obtain the parameter size inside all convolutional layers.

5.4 Experiments

5.4.1 Experimental Setup

Model and Datasets We conduct experiments on two tasks to demonstrate our

CPO algorithm, which are image super-resolution and image classification. For

image super-resolution, we employ the residual CNN model in Very Deep Super

Resolution [155] (VDSR). This model is constructed only with convolutional lay-

ers; therefore, the model size and the computation time will not be influenced

by the fully-connected layers. As for image classification, we construct a modi-

fied VGG-19 model [153], a self-designed ResNet-32 model and a self-designed

MobileNet-22 model, which are modified from ResNet-34 [74] and Mobilenet-

v1 [165], respectively. These three networks are dedicated models for training

and testing on Cifar-10 dataset [166]. Cifar-10 is a small dataset including 10

categories, and all of which are composed of 3-channel RGB images with the

resolution of 32 × 32. The following experiments will be conducted on the four
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models. Notes that owing to the page length, the experiments of MobileNet would

be only demonstrated in our paper [28].

Setup for Comparison with Baseline Methods For the tasks mentioned above,

we first construct a baseline method as what was done in our previous work [29],

called Uniform Removal (UR). UR will remove filters with a fixed reducing

factor ri across all available layers. After that, we retrain for few epochs to

recover the performance. The number of retraining epochs may be slightly larger

than that in [29] because we find that the performance drop will be stable if we

make the retraining stage converge. To prove the effectiveness of our method, we

perform CPO on the original model and set the expected drop Dexp same as the

validation drop obtained from UR. We then compare the remaining parameters

and FLOPs between CPO and UR. We also conduct some experiments with Dexp

set as other values to observe the trade-off between performance and computation.

The expected drop and the drop monitored in CPO algorithm are all tested with

the validation set, which is seen but not trained during the procedure. After our

CPO algorithm, we will test the model with a totally unseen testing set to evaluate

our model performance. It is worth noticing that once one filter is removed, the

number of channels in every filter of the next layer will consequently decrease by

one. This is the reason why the actual parameters removed will be more than the

percentage of filters we attempt to remove in UR. In addition, we conduct CPO

experiments from lower Dexp to higher one, and we will use the model pruned by

lower Dexp as the base model to continue the next experiment of higher Dexp.

Hardware Simulation Our proposed method is trying to reduce the entire con-

volutional filters that have less contribution to the network. Therefore, it genuinely

reduces not only the parameters but also the FLOPs when performing on any

hardware platform. We simulate the operations on the Systolic CNN AcceLEr-

ator Simulator (SCALE-sim) proposed by ARM [167] to prove the reduction of

computation. This tool can help generate the computation cycles and the DRAM
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read/write bandwidth. In the following sections, we will only show the total cycle

count of network inference stage for simplicity.

Shallow and Deep Model Comparison Aside from comparing the results be-

tween UR and CPO, we also design a shallow model with comparable parameters

to the deep model pruned by our CPO system. The results will show the trade-off

between training time and the performance of the model.

5.4.2 Experiments on Fully Convolutional VDSR network

We obtain the well-trained VDSR model from the official website [168]. Because

we have no knowledge of which validation set the model was originally validated

on, we choose Set5 [169] as our validation set and Set14 [170] as the final testing

set, both with ×2 scale. These two datasets are commonly used in image super-

resolution tasks. The model structure is a 20-layer residual CNN as illustrated in

Fig. 5.2. The input is an interpolated low-resolution (ILR) image with one channel

(Y channel), and the output is the derived high-resolution (HR) one. During

training and validation, for convenience, we will use input images with sizes of

41×41 that are randomly cropped from the dataset, which is same as the settings in

VDSR. When performing testing phase, the input and output sizes can be arbitrary

depending on the testing image. Among the convolutional layers, each of the first

19 layers has 64 filters, but only one filter exists in the last layer to generate the

residual part, which is added by the low resolution image to finally generate the

high-resolution one. Since the last layer of VDSR has only one filter, we perform

filter-pruning on the rest of the layers. There are two main reasons for conducting

our experiments on VDSR. First, the fully-convolutional model can help us clearly

evaluate the performance of our filter removal method. Second, since the task of

SR is difficult in computer vision, we are interested in finding the redundancy of

an SR model.

Table 5.1 shows the experimental results of pruning VDSR network. We use
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Input ILR
(Y channel)

outputHR
(Y channel)

Figure 5.2: Network structure of VDSR. The 20-layer residual network is com-

posed of 20 times convolutions and nonlinear operations. There is no pooling

layer, so the output of the residual part has the same size as the input. ILR means

Interpolated Low-Resolution and HR represents High-Resolution.

PSNR (dB) to evaluate the performance. The first four columns are the model

settings and performance results. The last column is the summed computation

latency calculated in cycle count after performing the network inference on one

input image, which has the size of 41×41 in this case, with the SCALE-sim neural

network simulator. In all tables, “Val” means validation and “Params” represents

parameters. First, the upper part is the performance of the original trained model,

which achieves 40.26dB on the validation set and 33.08dB on the Set14 testing

set. The baseline UR results are in the middle. Owing to the unchanged size of

the feature maps among the VDSR network, the percentage of parameters and

FLOPs remained, which are calculated by (5.7), are the same. Note that the PSNR

drop of the results are slightly different from those in [29] because we conduct 5

retraining epochs instead of 3 as mentioned above. We show three results with

different reducing factors. When we increase the reducing factor, the remaining

parameters decrease but the performance will also drop accordingly.

At the bottom part of Table 5.1, it shows the results with our proposed CPO.

The first column is the user expected drop (Dexp), and the second column is the

final validation drop after the last pruning and retraining iteration. Note that the

three settings whose expected drops are marked with (∗) correspond to the three

baseline UR methods. It can be seen that CPO can achieve results superior to UR

for every reducing factor. With comparable PSNR drop on unseen testing set, CPO
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Table 5.1: Experimental results of VDSR. This table shows the settings and

performance results of the original model, the models pruned after UR and our

proposed CPO. Set14 is our unseen testing set and the last column is the cycle

count after our SCALE-sim CNN hardware simulator.

Original Model

Reducing
Factor

Val PSNR (dB) Params / FLOPs Set14 PSNR (dB)
Latency
(Cycle)

0 40.26 6.7× 105/ 33.08 7.6× 106

1.1× 109

Uniform Removal (UR) [29]

Reducing
Factor

Val Drop (dB)
Params / FLOPs
Remained (%)

Set14 Drop (dB)
Latency
(Cycle)

0.0625 0.10 87.91 / 87.91 0.11 5.9× 106

0.1250 0.13 76.60 / 76.60 0.19 5.5× 106

0.2500 0.26 56.31 / 56.41 0.29 3.8× 106

CPO (Ours)

Dexp (dB) Final Val Drop (dB)
Params / FLOPs
Remained (%)

Set14 Drop (dB)
Latency
(Cycle)

0.10∗ 0.08 72.31 / 72.31 0.12 5.2× 106

0.13∗ 0.14 64.68 / 64.68 0.15 4.7× 106

0.18 0.18 54.25 / 54.25 0.2 4.0× 106

0.26∗ 0.26 51.52 / 51.25 0.28 3.8× 106

0.32 0.32 45.85 / 45.85 0.34 3.4× 106

is able to achieve more computation reduction. It can save about 50% of parameter

storage and computation with minor performance drop (Val:0.26dB/Test:0.28dB).

In addition, it also shows that about 30% of the computations are redundant given

only a negligible drop (Val:0.05dB/Test:0.12dB). For a model purely containing

convolutional layers, our method will surely alleviate the computational burden

on the hardware. Furthermore, we also conduct two other expected drop settings

to observe the trend between performance drop and computation reduction. We

find that we only get marginally additional computation reduction when we have

already removed the majority of redundancy in the model. The reason we speculate

is that the difficult SR task is a regression task rather than a classification task, so
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Table 5.2: Comparison of Shallow Model and Pruned Deep Model (VDSR). This table

shows the trade-off between training a shallow model and pruning a given well-trained

deep model. We choose the CPO results with Dexp = 0.32 to do the comparison.

Val PSNR (dB)
Params / FLOPs
Remained (%)

Set14 PSNR
(dB)

Training time
(epochs)

Original 40.26 100 / 100 33.08 100
Shallow 39.82 44.54 / 44.54 32.62 80

CPO(0.32) 39.94 45.85 / 45.85 32.74 305

there might be not so much redundancy in the VDSR model. However, we can

still eliminate 15% more of the parameters than UR method did when there is a

negligible drop.

Designing a shallow model can also reduce the computation cost. However,

a non-deep network may sometimes fail to perform well. Table 5.2 shows our

experimental results. The shallow VDSR model is composed of 10 convolutional

layers, and the remained parameters are comparable to the model pruned after CPO

with the settings of Dexp = 0.32. We can see that our method can perform well on

the validation and testing sets. We use the number of training epochs to evaluate

the training time. Although our method can perform better, the trade-off is that it

may take more time to retrain the model with conducting CPO than simply train

the shallow model from scratch. In addition, the retraining time is also higher than

that in UR (5 epochs) which is mentioned in Sec. 5.4.1. we think that increased

retraining time is not the main consideration. The purpose of our algorithm is to

reduce the burden when we deploy the model on some hardware devices at last.

Therefore, we can use a powerful GPU first to eliminate the redundancy as much

as possible by reasonable offline training, and then deploy the model on those

hardware devices.
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5.4.3 VGG-19 on Cifar-10 Image Classification

The following are the experiments on Cifar-10 image classification task with three

dedicated neural network models. The purpose of all our experiments is to observe

the impact of removing filters in convolutional layers. Hence, there are no hidden

fully-connected (FC) layers in our self-designed models. We only use one linear

layer to map the flattened feature map after the last pooling layer to the classes

prediction.

The first self-designed model is a modified VGG-19 network, which contains

16 convolutional layers and one linear layer. There are five convolution parts,

and the settings in each part such as the number and sizes of convolution filters

are all the same as the original network. The final output layer which contains

512×10 parameters will map the feature vector to the 10 classes output. Moreover,

we implemented Batch-Normalization (BN) [75] after every convolution layer,

which are not shown in the table. BN layers store additional statistical information

of the preceding feature maps and also contain the parameters of linear shifting

operation; therefore, the removal of filters will result in corresponding reduction of

the variables in BN layers, too. Furthermore, we preserve all the filters in the last

convolutional layer in order not to accordingly influence the last output layer, which

contains less parameters but plays a role in the feature-to-class transformation.

In summary, filter-pruning will only be performed on the first 15 layers in our

modified VGG-19 network to gain undistracted insight into how the removal of

filters in convolutional layers affects the performance.

The experimental results of VGG-19 on Cifar-10 are shown in Table 5.3. We

randomly choose ten percent of the training data as our validation set. Then, we

train the unpruned VGG-19 network by ourselves. It achieves 93.16% validation

accuracy and 92.98% testing accuracy. Based on the model, we conduct both UR

and our CPO algorithm. Same as the notation in Table. 5.1, we use (∗) to represent

the value of Dexp which is set as the “Val Drop” evaluated after performing UR.

It can be seen in Table 5.3 that the remaining parameters of the new architecture
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Table 5.3: Experimental results of VGG-19 on Cifar-10. The number of retrain-

ing epochs after every pruning iteration is 8. The last column is the cycle count

after our SCALE-sim CNN hardware simulator.

Original Model
Reducing

Factor
Val Acc (%) Params / FLOPs Testing Acc (%)

Latency
(Cycle)

0 93.16 2.0× 107/ 92.98 3.7× 106

3.9× 108

Uniform Removal (UR) [29]
Reducing

Factor
Val Drop (%)

Params / FLOPs
Remained (%)

Testing Drop (%)
Latency
(Cycle)

0.250 1.60 58.47 / 56.78 1.25 2.0× 106

0.375 2.34 41.84 / 39.72 1.89 1.4× 106

0.500 3.72 27.96 / 25.70 3.52 9.5× 105

0.625 5.32 16.84 / 14.72 4.01 5.1× 105

CPO (Ours)

Dexp (%) Final Val Drop (%)
Params / FLOPs
Remained (%)

Testing Drop (%)
Latency
(Cycle)

0.25 0.14 28.57 / 54.09 0.50 (0.40) 1.6× 106

0.58 0.44 15.68 / 42.26 0.83 (0.76) 1.2× 106

1.60∗ 1.58 10.23 / 28.11 1.83 (1.34) 7.9× 105

2.34∗ 2.16 5.75 / 20.18 2.49 (1.73) 5.5× 105

3.72∗ 3.58 2.49 / 16.88 4.44 (2.72) 4.5× 105

5.32∗ 5.18 2.07 / 13.74 6.29 (3.91) 3.5× 105

derived from our CPO algorithm are radically less than that of UR. Notice that the

reduction in FLOPs of the models derived by CPO are not as much as the reduction

in parameters. The explanation is that owing to the low PS values of the last few

layers in VGG-19, as Fig 5.3 shows, we prefer to remove the filters at those layers.

However, the Xi, Yi of those feature maps are small because we’ve gone through

many pooling layers. Therefore, the overall reduction in FLOPs will not be as

much as that in parameters. Next, for the testing drop in the CPO part, the original

performance after retraining for 8 epochs in the final iteration is a little less than

the results of UR. Our conjecture is that the models suffer much more parameter

reduction after CPO than after UR; therefore, we need more retraining epochs for
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Figure 5.3: VGG-19 Performance Sensitivity List.

the last iteration in CPO to recover the performance. Hence, the number in the

parentheses on the right side is the drop after retraining for 40 epochs. It shows

that the model can recover to the comparable performance as expected. We also

conduct two CPO experiments to observe the redundancy when given negligible

drops. We find that almost 70% parameters can be removed in the redundant

VGG-19 network.

Tabel 5.4 also shows the performance of training a shallow model. The model

is constructed with 5 convolutional layers, where each layer contains 64, 128, 256,

512 and 512 filters. Cifar-10 is less complicated in comparison with other large

image classification dataset, for which VGG-19 is originally designed. Therefore,

the shallow model with only 5 convolutional layers can even achieve 89.56% testing

accuracy. This time we choose the CPO results with comparable performance

(90.26%) to compare the remaining computation. We can claim that our CPO

is able to detect a great amount of redundancy in VGG-19 and remove almost

97% of parameters. However, same as the VDSR experiment stated above, we

need to spend more training time to achieve this performance. In details, we use

one Geforce 1080Ti GPU to train the Cifar-10 dataset, and it only takes less than

fifteen seconds to train for an epoch. Therefore, in practice, our CPO method takes

reasonable training time for some small dataset.
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5.4.4 ResNet-32 on Cifar-10 Image Classification

It has been a well-known fact that VGG-19 contains great amount of redundancy.

Therefore, it can be easily pruned without apparent performance drop. To prove the

effectiveness of our CPO, we modify the original architecture of ResNet-34 [74]

and design a dedicated ResNet-32 to train on Cifar-10. ResNet is recently one of

the most powerful networks, and meanwhile it contains less parameters than the

VGG network. Our ResNet-32 possesses 31 convolutional layers and 1 FC layer to

map to 10 classes. Among the convolutional layers, except for the first layer, every

2 layers constitute a residual block. There are three stages presented in the model,

and each contains 10 convolutional layers. The sizes of output feature maps at the

end of each stage are 32×32, 16×16, and 8×8. We utilize 1×1 convolutions to

deal with the conflict when the input and output of a residual shortcut have different

channel dimensions, which is also the design adopted by the original ResNet model.

In details, our ResNet-32 only contains approximately 9% parameters compared to

the above VGG-19 network.

It is worth noticing that in our experiments, not every convolutional layer is free

to be pruned. On one hand, for a residual block with input and output of identical

dimensions, the shortcut is an identity mapping. Hence we do not prune the second

layer of the residual block with an eye to maintaining the number of channels of the

output feature map, which will be added with the identity mapping. On the other

hand, same as the method proposed in [8], when a residual block has input and

output of different dimensions, we remove filters in the 1×1 shortcut convolution

Table 5.4: Comparison of Shallow Model and Pruned Deep Model (VGG-19). This

table also shows the trade-off between shallow and pruned deep model.

Params / FLOPs
Remained (%)

Testing Acc (%) Training time (epochs)

Original 100 / 100 92.98 300
Shallow 19.51 / 17.17 89.56 200

CPO(3.72) 2.49 / 16.88 90.26 620
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Figure 5.4: (a)Shortcut Convolution Pruning.(b)Shortcut Identity Padding. For

the residual block with convolution shortcut (a), we first remove the filters in the shortcut

and then remove the corresponding filters. For the identity mapping after the shortcut

convolution (b), we will do zero-padding to make the dimension of feature maps consistent.

with a given reducing factor, and then remove the filters in the second layer of

the residual block according to the indices removed in the shortcut convolution.

Fig. 5.4 (a) demonstrates this pruning process, our system will first determine the

filter be removed in the shortcut convolution, like the second and third filters, and

subsequently remove the corresponding filters in the second convolution layer to

avoid dimension conflict. Additionally, when filters are removed in a residual block

with convolution shortcut, the identity mapping of the next residual block will

cause a conflict. Fig. 5.4 (b) shows the situation. The channel of the input feature

map is reduced owing to the filter removal of the preceding layer. Because we will

not prune the second convolution layer as mentioned above, there will be a conflict

on the identity mapping. Therefore, we will zero-pad the feature map to match the

dimension when performing identity addition. Considering the situations about

dimension consistency above, the first layer and the FC layer are intact as well.

Therefore, there is a limitation on the maximum portion of parameters that can

be pruned. It is worth noting that the methods for pruning on skip-connection

layers in ResNet has been addressed and also been improved recently [26]. Thus,

in Chapter 6, we will use the advanced methods in our filter pruning.

The experimental results can be found in Table. 5.5. All the settings are the same
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Table 5.5: Experimental results of ResNet-32.

Original Model
Reducing

Factor
Val Acc (%) Params / FLOPs Testing Acc (%)

Latency
(Cycle)

0 94.66 1.9× 106/ 94.58 1.8× 106

2.8× 108

Uniform Removal (UR) [29]
Reducing

Factor
Val Drop (%)

Params / FLOPs
Remained (%)

Testing Drop (%)
Latency
(Cycle)

0.125 0.64 85.34 / 76.60 0.86 1.5× 106

0.250 1.44 71.30 / 56.31 1.25 9.6× 105

0.375 1.88 57.89 / 39.14 1.89 7.7× 105

0.500 2.84 45.09 / 25.08 3.52 5.3× 105

CPO (Ours)

Dexp (%) Final Val Drop (%)
Params / FLOPs
Remained (%)

Testing Drop (%)
Latency
(Cycle)

0.25 0.32 74.92 / 81.88 0.61 (0.30) 1.5× 106

0.64∗ 0.48 60.27 / 60.88 0.89 (0.56) 1.1× 106

1.44∗ 1.28 38.11 / 42.63 2.16 (1.47) 8.2× 105

1.88∗ 1.68 30.62 / 36.81 2.61 (1.84) 7.1× 105

2.84∗ 2.78 23.98 / 26.31 3.54 (3.06) 5.4× 105

as VGG-19, except that the testing drop in the parentheses are the drop retraining

for 100 epochs after the final CPO iteration. We speculate that ResNet-32 model

involves more complicated operations (shortcut convolution and zero-padding);

therefore, it needs more epochs to recover the performance. Still, we can see

that all the computation reduction done by CPO performs better than that by UR,

except one point where the remaining parameters are less than UR but FLOPs is

a little bit more. This is also caused by removing most of the parameters at the

last convolution stage. In summary, given a well-performed ResNet model (Test

Acc:94.58%) with less parameters, although we can not remove as much parameters

as we did for VGG-19 network, we still can eliminate 30% of parameters with

negligible drop (0.30%) and remove almost 80% of weights with an accuracy that

is still higher than 90%.

The comparisons of the performance with shallow networks in Sec. 5.4.2, 5.4.3
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Table 5.6: Comparison of fine-tuning and random initialization of pruned ResNet-32

on Cifar-10. This table shows that fine-tuning the model after CPO can perform better and

more effective than training the model from scratch of the same model architecture with

random weight initialization.

Extra epochs Val Acc (%) Test Acc (%)

CPO (1.44) 100 93.76 93.11

Random Initialization
100 92.14 91.60
260 93.70 93.20

show that a deep but “thin” network, which means the number of filters in each

layer is less than those in the original model, perform better than a shallow network

with comparable parameters. We now conduct another experiment on ResNet-32

to discuss the importance of first conducting CPO on the original deep but “fat”

model and then fine-tune on it. Without CPO, one can exhaustively try different

light-weight architectures, randomly initialize the weight and train the model from

scratch to meet the expected performance metrics. However, it is not efficient

for optimization and the performance may not be as expected. Table. 5.6 shows

the results. The first row is the performance of our CPO with Dexp = 1.44. As

the experiments conducted above, the pruned architecture found by CPO will be

fine-tuned for extra 100 epochs to recover the performance. 93.76% and 93.11%

are the validation and testing accuracy after fine-tuning. The next two rows are

the experiments performed on the same architecture of that in CPO (1.44) but

with random initialization on the weights. It shows that if we train from scratch

with the same number of epochs, the performance is still far from the result after

CPO. Not until the 260-th epochs does it reach the comparable performance to

ours. Therefore, initializing the model with the original weights helps us speed up

the training process and at the same time retain excellent performance.

For image classification, we use Cifar-10 dataset to quickly demonstrate the

efficacy of our proposed CPO method. And after conducting experiments on the

self-designed networks, we can claim that no matter what kind of architectures,
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our CPO can alter the structure effectively according to the complexity of the task

and the expected acceptable performance drop Dexp given by the user. In the next

section, we will compare our CPO to the state-of-the-art filter pruning method [8]

at that time with two standard models proposed in their experiments, which are

a VGG-16 model that is also trained on Cifar-10 dataset and a ResNet-34 model

trained on Imagenet [152] dataset.

5.4.5 Comparison with Current Filter Pruning Method

Recently, the outstanding work [8] utilized similar concept of filter-pruning and

achieved impressive compression rate. They determine which filters to be pruned

within a single layer Li by calculating the L1-norm of each filter Fi,j in that layer,

i.e. the L1-norm of filter j in i-th layer is sj = ∑ |Fi,j|. And they remove those

with smaller sj first. In addition, they decide the number of filters to be pruned for

each layer based on observations and empiricism. They independently prune each

layer by different numbers of filters and respectively inspect their performance

on the validation set. According to the layer’s resilience to filter pruning, they

empirically assign the suitable number of filters to be pruned for each stage of

convolutional layers, where the convolutional layers in the same stage have the

same size of feature maps. Therefore, layers in the same stage will have the same

number of filters left afterwards. We choose two networks which are commonly

used and also in their experiments, VGG-16 and ResNet-34, to demonstrate our

CPO method and show the performance and computation comparisons.

Table 5.7 shows the performance of the original and pruned models. The upper

part is the results in [8], and the lower part is ours. In order to have the same

representation in their experiment, we use “Error” to represent miss classification

rate (MCR). Note that their unpruned VGG-16 model is unreleased, so we train

a model from scratch with exactly identical architecture, which results in a slight

difference of the performance error. In addition, there is no expected performance

drop (Dexp) in their method; therefore, we perform our CPO method with Dexp set
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Table 5.7: VGG-16 Comparison between CPO (Dexp = 0.1) and [8]. Both

experiments use VGG-16 trained on Cifar-10 as the targeted model and retrain 40

epochs afterwards. CPO achieves more reduction in parameters and FLOPs and

meanwhile maintains the performance.

Model Error FLOPs Remained Params Remained

VGG-16 [8] 6.75% 3.13× 108 (100%) 1.5× 107 (100%)
Pruned [8] 6.60% 2.06× 108 (65.8%) 5.4× 106 (36.0%)

VGG-16 (ours) 6.48% 3.13× 108 (100%) 1.5× 107 (100%)
Pruned (CPO) 6.66% 1.97× 108 (53.0%) 3.3× 106 (22.1%)

as 0.1%. The result shows that CPO achieves more reduction in parameters and

FLOP. Moreover, the error performance of the CPO-pruned model (6.66%) is also

comparable to theirs (6.60%).

Next, the ResNet-34 network trained on famous Imagenet dataset is the other

pruned target. Imagenet contains one million training images with one thousand

label classes. Therefore, it is considered to be hard to discover the redundancy

within the model that is trained on this large dataset. We perform our proposed

CPO with the pruning method elaborated in Sec 5.4.4. Because of the great amount

of training time required for one training epoch, we only conduct three epochs for

every retraining stage and for every epoch we only randomly sample 1/3 images

for training. Table 5.8 shows the experimental results of the two pruning methods.

Notice that the performance of the two unpruned models may not be identical

because of the different released sources, and our pretrained ResNet-34 model

is obtained from Pytorch [171]. Obviously, the computation reduction of the

two methods are not as much as that in VGG-16. By performing our CPO with

Dexp = 1.3%, we can discover 14.4% of redundancy for parameters and obtain

less than 1% drop of the performance, which is better than the other. Nonetheless,

when it comes to FLOPs, our method only removes 15% redundancy. The reason

is same that it tends to eliminate the filters at the last few layers because removing

the filters in those layers harm the performance less. Compared with [8], they
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Table 5.8: ResNet-34 Comparison between CPO (Dexp = 1.3%) and [8] on

Imagenet.

Model Error FLOPs Remained Params Remained

ResNet-34 [8] 26.77% 3.64× 109 (100%) 2.16× 107 (100%)
Pruned [8] 27.83% 2.76× 109 (75.8%) 1.93× 107 (89.2%)

ResNet-34 (ours) 26.68% 3.64× 109 (100%) 2.16× 107 (100%)
Pruned (CPO) 27.66% 3.11× 109 (85.4%) 1.85× 107 (85.6%)

empirically decide the number of filters to be removed in every convolutional stage

according to the layer sensitivity. Therefore, by removing the filters in the first few

layers, the FLOPs can be pruned more (75.8% remained) but at the same time, the

classification performance can not be controlled. Conducting the CPO to ResNet-

34 model on Imagenet dataset takes almost a week with two Geforce 1080Ti

GPUs. Therefore, we are not able to conduct many experiments to progressively

increase the expected drop to improve the performance. We believe that if we

progressively increase the Dexp to a higher number and conduct the retraining

stage for more than three epochs, like the 8 epochs in previous experiments but

at the same time increasing the training time for the corresponding proportion, or

conduct the experiments with paralleled and high bandwidth GPU devices in order

to reduce the training time, we can obtain a model with less computation by our

proposed CPO. In addition, for this kind of model trained on large dataset, besides

conducting filter pruning to specifically alter the model architecture, we can still

combine other methods like quantization to help deploy the model on edge devices.

5.5 Summary

In this work, we present a Computation-Performance Optimization (CPO) method

by removing filters in convolutional layers of a neural network. It utilizes Sparsity,

Reducing Factor, and Performance Sensitivity to determine which and how many

filters to prune in one layer. With an expected drop given by the user, CPO can
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effectively alter the model structure according to the complexity of the task. For

super-resolution, it reduces more than 50% of parameters in VDSR but only causes

about 0.28dB in performance drop. Furthermore, CPO is also proved to be efficient

when applied to image classification. We conduct VGG-19 and ResNet-32 (on

Cifar-10) to demonstrate that it can eliminate great amount of parameters and

FLOPs without significant drop in accuracy. Compared with previous works, CPO

provides a solution to determining the layer-wise hyperparameters of filter pruning,

and achieves superior results.
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Chapter 6

Global Filter Pruning for Neural

Network

In recent years, global filter pruning has been more popular than layer-wise pruning.

In this chapter, we will introduce and demonstrate our contributions in global filter

pruning.

6.1 Introduction

As mentioned before, the computaion demanding CNNs are hard to be deployed

on embedded devices. Thus, how to optimize and accelerate the heavy network

but maintain the performance at the same time would be a critical issue to solve.

Network pruning is a common solution for optimizing the model. Given a large

and deep neural network, the goal of pruning is trying to obtain an optimal sub-

network with acceptable performance drop, or even sometimes resulting in a small

gain, by exploring and removing the redundant parts of the model. Based on

the categories of a unit being pruned at a time, filter pruning [8], also known as

channel pruning [22], is one promising technique which effectively reduces the

computation cost by regarding a structural portion, such as a convolutional filter or

a channel in output feature maps, of the model as a unit when performing network

125
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pruning. Furthermore, among all the relevant approaches of filter pruning, the

global method [24, 25, 26, 172] which determines the redundant filters based on

the whole network is usually more popular than those pruning the filters layer-

by-layer [21, 8, 23] because globally removing the redundancy is more flexible

and time-efficient. In detail, the procedure of the global method can be described

as follow: the pruning algorithm first repeatedly removed unimportant filters in

a given trained CNN until the pruned network satisfied given pruning objectives.

Then, the fine-tuning training process will be conducted to retain performance. As

for the pruning objective, commonly, it would be the number (or ratio) of filters

left, or other computation resource constraints such as floating-point operations

(FLOPs), number of total parameters, inference latency, and so on.

The core component of global filter pruning is the process to determine the

“importance” of each filter and thus iteratively remove the least important one in

the whole network. The correctness of the importance estimation will explicitly

affect the final performance results. In the past, the L1-norm [8] or sparsity [29]

of a filter is used, while recently, most works [24, 26, 172] achieve outstanding

results by estimating the importance of a filter based on its impact on the loss

when being removed. However, we found that the “pruning objective” at hand is

not taken into consideration during importance estimation in those works, which

reduces the correlation between the estimated importance of filters and the optimal

solution for pruning the network under the specific objective. Molchanov et al. [24]

has proposed a method to consider the given pruning objective during importance

estimation, but the integration method cannot be proved to achieve an optimal

result. In addition, when the objective contains multiple resource constraints, which

is practical in the real-world scenario, previous methods can only keep pruning

the model until it separately matches all constraints. Because they cannot jointly

consider all objectives, the pruning results will not meet all constraints accurately

at the same time and consequently lead to worse performance.

To solve the problems mentioned above, we propose a novel method called
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Constraint-Aware Importance Estimation (CAIE) to integrate the information

of given resource constraints into the original importance estimation of filters.

Given any single resource constraint as in other works, we first need to define

the “resource impact” of a filter, which is the normalized amount of resource

reduction in the whole network when the specific filter is removed. Then, by

mathematical derivation, we can combine the original impact based on the loss

function and the impact based on the specific constraint to estimate the new

constraint-based importance of a filter. Additionally, when we encounter multiple

resource constraints, our integration method can be easily generalized to the

formulation with multi-constraints. With our CAIE, in each pruning iteration, we

can remove the filters that will make the pruned sub-network most close to the

objective but with the least impact on the loss function, which is, therefore, the

optimal solution compared to others. Moreover, when applying our generalized

estimation method under multi-constraints, we can achieve the best performance

over state-of-the-arts and simultaneously meet all the given constraints accurately.

We now highlight the contributions of this work:

• We propose a novel method called Constraint-Aware Importance Estimation

(CAIE) to estimate the importance of filters in combination with the given

resource constraint, which can obtain the best results compared to those only

based on the loss function.

• The proposed method can be easily generalized into the pruning problem

under multiple constraints, which is practical to real-world scenarios.

• Under the same amount of resource consumption of the pruned model, we

can achieve the state-of-the-art performance results with our proposed CAIE

method.
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6.2 Related Work

6.2.1 Filter Pruning

Network pruning is a common method to obtain a compact network from a large one

by removing the redundant parts. Comparing to the traditional weight pruning [10],

which only removes the redundant parameter individually, in CNNs, filter pruning

can effectively reduce the computation consumption by treating a convolutional

filter in the model as the unit for pruning. To determine the redundant filters, some

works focus on evaluating the importance of filters in a single layer and remove

unimportant ones “layer-by-layer”. In contrast, others are interested in the global

method that evaluate and prune filters based on the whole network.

Layer-wise filter pruning Among the methods pruning layer-by-layer, some

works [8, 173, 29, 174] believe that there is a strong correlation between the im-

portance of a filter and its corresponded parameter-dependent values, such as its

L1-norm [8], L2-norm [173], sparsity [29] or the distance to the geometric median

of filters in a single layer [174]. On the other hand, some works introduce using

training data to yield the criterion for filter removal [21, 22, 23]. Thinet [21] and

CP [22] select filters that can minimize the feature reconstruction error layer-by-

layer by solving LASSO problem [175]. Moreover, DCP [23] adopts additional

discrimination-aware losses to guide the selection of redundant filters and enhance

the discrimination ability of features. However, all of the methods mentioned above

can only compare filters in the same layer; in other words, the cross-layer compari-

son is not available. Furthermore, layer-wise filter pruning is time-consuming and

requires a pre-defined pruning ratio for each layer, which may reduce the flexibility

of the left network and cause a worse performance result. Therefore, we focus on

solving the filter pruning problem with the global method.

Global filter pruning To make the estimated values for filter importance globally

comparable, Molchanov et al. [24] utilizes a layer-wise normalization technique
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to rescale the original importance score, which is generated by Taylor expansion

of the impact on the loss function caused by the removal of filters. NISP [176]

measures the importance of features in the final response layer then propagates

the importance score for each filter in the whole network from the final response

layer to the first layer. Some works [25, 177] try to take advantage of batch-

normalization (BN) layers [75]. They enforce the sparsity of the scaling factor γ in

the BN layer by adding a regularization term in training and prune filters depending

on a global threshold over the value of γ. Recently, to assess the importance of a

filter more accurately, Molchanov et al. [26] modifies the Taylor expansion method

in [24] so that the additional normalization is not required. Combining the Taylor

expansion method and the sparsity enforcement technique, GBN [172] introduces

“Gate Decorator” and applies it on BN layers for importance estimation and sparsity

training. Although they can obtain a promising performance, except the work [24],

none of these methods consider the given constraint during importance estimation

of filters.

6.2.2 Constraint-based Network Optimization

Some works try to integrate the information of given constraints when optimizing

the network. Molchanov et al. [24] add a regularization term about the given

constraint to the original score of the filter importance. However, this method

introduces an extra parameter λ to control the amount of regularization, which is

selected empirically and sensitive to the magnitude of the regularization term and

the original importance score. LCP [178] adopts an evolutionary algorithm to offset

the importance of a filter with the given constraints, which is originally evaluated

by the impact on the loss. Though LCP also considers the given constraints when

searching the offset value, their belief that the optimal importance estimation of

filters is based on the impact on loss is incorrect since it should also be related to

the given constraint. Morphnet [179], a work about network architecture search,

introduces the resource-weighted regularizer in the loss function to search the
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proper width of each layer that is optimal to the targeted resource. Even so,

Morphnet can only concern about a single resource at a time. To sum up, our

method can easily merge the information of the given constraints during importance

estimation in global filter pruning.

6.3 Constraint-Aware Importance Estimation

To clearly unify and compare to the works with filter pruning, we will first introduce

the preliminaries and define the optimization problem of original filter pruning in

the global method. Then, in order to solve the problem under a single constraint,

we re-formulate the global filter pruning problem and solve it with our proposed

Constraint-Aware Importance Estimation (CAIE), which is then generalized to deal

with problems under multiple constraints. At last, we will summarize our iterative

pruning and fine-tuning scheme with CAIE in.

6.3.1 Preliminaries of Filter Pruning

Given a network with parameters θ and a datasetD = {(xi, yi)}N
i=1 with N training

data and label pairs (xi, yi), the goal of network training is to minimize the given

loss function L(D; θ). In filter pruning, we first define the set of removable filters

in the network with parameters θ as F(θ). Then, the pruning algorithm will aim

to yield a smaller model with left parameters θF ′ that can also minimize the loss

function L(D; θF ′) by removing a subset of filters F ⊂ F(θ) in the network under

a specific constraint, which can be formulated as follow:

argmin
F
L(D; θF ′) s.t. C(θF ′) ≤ C (6.1)

where F ∪ F ′ = F(θ), C is the given pruning constraint and C(θ) is the amount

of concerned resource consumption for the network with parameters θ. In a typical

filter pruning problem, the common pruning constraint C is the maximum expected

number of filters left, and the corresponded measurement C(·) would be the total

number of filters |F(·)|.



doi:10.6342/NTU202202005

6.3. Constraint-Aware Importance Estimation 131

Specifically, when under the setting of pruning in global method, we would

first obtain a well-trained network with parameters θ∗. Thus, the objective for the

optimization problem can be change into minimizing the difference of performance

caused by removing the filters in the network whose parameters are initialized

with θ = θ∗. This difference is commonly evaluated by calculating the loss

impact [24, 26, 172], defined as ℓ(F ), when removing the filter set F for θ. The

ℓ(F ) can be formulated as:

ℓ(F ) =M(L(D; θ), L(D; θF ′)), (6.2)

where M(·) is a distance metric function such as squared difference [26] or

absolute difference [24, 172]. Therefore, with ℓ(F ), the optimization problem is

re-formulated as:

argmin
F

ℓ(F ) s.t. C(θF ′) ≤ C. (6.3)

This problem would then be solved with greedy strategy: iteratively estimating

the importance of each filter f , I(f), in the network left and pruning those least

important ones that can minimize the loss impact until the given constraint is

satisfied. Commonly, the importance of a filter I(f) is assigned as its loss impact

in this greedy process:

I(f) = ℓ(f) . (6.4)

During implementation, instead of evaluating I(f) for all filters inF(θ) with |F(θ)|

pruned models in total, which is time-consuming, I(f) is usually estimated by

first-order Taylor approximation [26], where all required gradients can be obtained

by back-propagation at once.

The effectiveness of the criterion “selecting the least important filter” is based

on the assumption that the impact of a single filter in the removed filter set can

be considered individually, which is only valid when a small number of filters are

removed. This is why in the solution to problem (6.3), they iteratively remove part

of the most unimportant filters and then re-settle the problem with the network left

as a “new initialization”.
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6.3.2 Single-constraint Importance Estimation

Among previous works, we found that the estimation of filter importance with

(6.4) is a lack of information about the given constraint or the concerned resource,

which decreases the credibility of acquiring the best pruning result. Hence, we

propose a Constraint-Aware Importance Estimation (CAIE) method, which

aims to simultaneously combine the information of constraint and performance

during importance estimation for a single filter. To better derive our solution, we

will first re-formulate the original pruning problem (6.3) into the summation of the

individual contribution to performance change and resource reduction for a single

filter without losing authenticity.

First of all, those common choices of metric functionM(·) ensure the linearity

of loss impact, as a result, problem (6.3) can be rewritten as:

argmin
F

∑
f∈F

ℓ(f) s.t. C(θF ′) ≤ C. (6.5)

In practical usage, the given constraint C could be the maximum value of a

certain type of computation resource, such as FLOPs. To better solve the

pruning problem under such scenarios, we introduce the resource impact, r(F ),

of a filter set F , which is the proportion of the reduction in resource consumption

while pruning F :

r(F ) = C(θ)− C(θF ′)
C(θ) . (6.6)

Therefore, we can rewrite (6.5) with our defined resource impact:

argmin
F

∑
f∈F

ℓ(f) s.t. r(F ) ≥ R , (6.7)

where the pruning objective R = C(θ)−C
C(θ) is the minimum proportion of total

reduction given a constraint C.

Last, since we will resolve problem (6.7) iterativly during the process of

pruning, we can apply an useful assumption when a small number of filters are

removed at a time: “the resource impact of a filter set F is equal to the sum of
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resource impact of individual filter f in the set F ”. Accordingly, we formulate the

optimization problem of single-constraint pruning as:

argmin
F

∑
f∈F

ℓ(f) s.t.
∑
f∈F

r(f) ≥ R . (6.8)

In particular, as in previous works, applying the constraint C with the number (or

ratio) of filters left is just a special case of (6.8) with r(f) = 1
|F(θ)| :

argmin
F

∑
f∈F

ℓ(f) s.t.
∑
f∈F

r(f) = |F |
|F(θ)| ≥ F0, (6.9)

where F0 = |F(θ)|−C
|F(θ)| is the minimum ratio of filters to be removed to the total

number of filters.

Now, given this new optimization problem (6.8), we want to find the optimal

solution through ranking filters by estimating suitable importance score function

g, I(f) = g(ℓ(f), r(f)), which contains information about the given constraint.

Intuitively, I(f) should possess the following characteristics:

1. If two filters f1, f2 have the same value of resource impact, r(f1) = r(f2),

the importance should be dominated by the corresponding loss impact.

2. If two filters have the same loss impact value, ℓ(f1) = ℓ(f2), the one with

larger resource impact should have higher priority of being pruned since

removing the filter with a higher reduction in resource consumption is more

beneficial to the progress of pruning.

To possess the property mentioned above, we propose the Constraint-Aware

Importance Estimation (CAIE) method under a single constraint, which is a

feasible form of importance I(f) to solve problem (6.8):

Ising(f) = ℓ(f)
r(f) . (6.10)

We first qualitatively illustrate the effectiveness of our CAIE in Fig. 6.1, where the

path colored in red is with our method, and the two axes represent the total number

of loss impact and resource impact. Because our importance estimation Ising(f)
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Ours

Others

Total resource 
impact

Total loss 
impact

Figure 6.1: Comparison of our CAIE to others under the single-constraint

pruning problem. The paths colored in red and blue denote the pruning process gen-

erated by our method and others, respectively. Each colored vector between two points

illustrates the loss impact ℓ(f) (vertical component) and the resource impact r(f) (hor-

izontal component) when removing the filter f . Our method, which considers the two

components jointly, can generate a better result with a lower total amount of loss impact

under the same pruning objective R.

represents the performance drop per unit of resource reduction, comparing to the

original I(f) that only based on ℓ(f), greedily selecting those filters with lower

Ising(f) would lead to the smallest performance drop when reaching the needed

total amount of resource reduction R. To confirm the correctness of our CAIE

under single constraint (6.10), we give a more rigorous proof as follow:

Proof. FI and F ∗ indicate our solution and the optimal solution respectively.

In general, resource impact of a single filter r(f) is far less than the pruning

objective R, which implies that we can neglect the difference between total resource

reduction
∑

f r(f) and pruning objective R in both solutions, hence,
∑

f∈FI r(f) =∑
f∈F ∗ r(f).

Let S0 := FI ∩ F ∗ and suppose that FI ̸= F ∗, we have S1 := FI \ (S0) ̸= ∅
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and S2 := F ∗ \ (S0) ̸= ∅. Then,

∑
f∈S1

r(f) =
∑

f∈FI

r(f)−
∑

f∈S0

r(f)

=
∑

f∈F ∗
r(f)−

∑
f∈S0

r(f) =
∑

f∈S2

r(f) .
(6.11)

Based on the facts that FI ∩ S2 = ∅, S1 ⊂ FI and the criterion “selecting least

importance filter” in the pruning algorithm, we have

max
f∈S1
I(f) ≤ max

f∈FI
I(f) ≤ min

f∈S2
I(f) . (6.12)

Therefore,

∑
f∈S1

ℓ(f) =
∑

f∈S1

ℓ(f)
r(f)r(f) =

∑
f∈S1

I(f)r(f)

≤ max
f∈S1
I(f) ·

∑
f∈S1

r(f)

≤ min
f∈S2
I(f) ·

∑
f∈S2

r(f)

≤
∑

f∈S2

I(f)r(f)

=
∑

f∈S2

ℓ(f)
r(f)r(f) =

∑
f∈S2

ℓ(f) ,

(6.13)

and ∑
f∈FI

ℓ(f) =
∑

f∈S0

ℓ(f) +
∑

f∈S1

ℓ(f)

≤
∑

f∈S0

ℓ(f) +
∑

f∈S2

ℓ(f) =
∑

f∈F ∗
ℓ(f) .

(6.14)

We can see that with (6.14), the total loss impact of our solution FI will always be

equal to or less than that of the optimal solution F ∗. In other words, our solution FI

is thus an optimal solution to the problem of single-constraint pruning (6.8).

6.3.3 Multiple-constraint Importance Estimation

In practical scenarios, given any desired platform, we may need to jointly consider

some pruning constraints of different resources at the same time, such as regarding
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the # of parameters left of the model owing to the memory storage and the # of

FLOPs based on the platform’s computing power. Therefore, we need to generalize

the aforementioned single-constraint pruning problem into that under multiple

constraints and generalize the solution with our CAIE.

In formulation, when given k constraints {Ci}k
i=1, we can first generalize (6.8)

to the problem of multiple-constraint pruning:

argmin
F

∑
f∈F

ℓ(f) s.t.
∑
f∈F

ri(f) ≥ Ri, ∀i ≤ k , (6.15)

with ri(f) = Ci(θ)−Ci(θf ′ )
Ci(θ) and the pruning objective Ri = Ci(θ)−Ci

Ci(θ) for each con-

cerned resource i. Specifically, we can neglect the resource i when Ci(θ)−Ci < 0,

which means its consumption is already lower than the given constraint; thus, the

pruning objective of resource i should be modified as Ri = max(Ci(θ)−Ci

Ci(θ) , 0).

To better derive the solution, we need to jointly consider all different resource

impacts when removing one filter f . We define the joint resource impact and the

overall pruning objective as the vector form, r⃗(f) = ⟨r1(f), r2(f), ..., rk(f)⟩ and

R⃗ = ⟨R1, R2, ..., Rk⟩, in the resource space Rk. With the linearity of vectors, the

total resource impact
∑

f∈F ri(f) for all resource i when pruning the filter set F

can thus be easily obtained by summation of the resource impact vectors r⃗(f):〈∑
f∈F

r1(f),
∑
f∈F

r2(f), ...,
∑
f∈F

rk(f)
〉

=
∑
f∈F

r⃗(f) . (6.16)

Furthermore, in the space Rk, we found that the direction of R⃗ is the optimal

direction for pruning because the objective point R = (R1, R2, ..., Rk) is the

closet point on the boundary of the constraints in problem (6.15) to the origin

of the resource space. Hence, when finding the optimal solution, we only need

to focus on the components of ⃗r(f) with a positive contribution to the direction

of R⃗. Consequently, we define the effective resource impact, re(f), as the scalar

projection of r⃗(f) onto R⃗:

re(f) = r⃗(f) · R⃗

|R⃗|
=

∑
i ri(f)Ri√∑

i R2
i

, (6.17)
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(a) (b)

Total impact on 

resource 1

Total impact 
on resource 2

Total impact 
on resource 2

Total impact on 

resource 1

Figure 6.2: (a) Illustration of the effective resource impact. (b) The modified

problem in multiple-constraint pruning. We take the problem under two resource

constraints (R1, R2) as an example and demonstrate the resource impact on the

resource plane. (a): The effective resource impact re(f) is the scalar projection

of r⃗(f) to the objective vector R⃗. (b): Dotted lines are the boundaries of the

constraints in the modified problem (6.19) with vectors R⃗t and R⃗t+1 in pruning

iteration t and t + 1. As we remove some filters in the network, we will adjust the

objective vector from R⃗t to R⃗t+1 in order to make the pruning direction still point

to the point R.

which is also illustrated in Fig. 6.2 (a). With re(f), our generalized Constraint-

Aware Importance Estimation (CAIE) under multiple constraints Imul(f) can be

defined as the formula similar to that in single-constraint pruning (6.10):

Imul(f) = ℓ(f)
re(f) . (6.18)

It’s worth noting that in fact, the importance Imul(f) is the optimal solution to

the following modified problem:

argmin
F

∑
f∈F

ℓ(f) s.t.
∑
f∈F

re(f) ≥ |R⃗| , (6.19)

which is transformed from the problem under single constraint (6.8) with the

substitution in some of the notations. Although the boundary of constraints in

original problem (6.15) and that in the modified one (6.19) are distinctive, shown
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R1 Total impact on resource 1

Total impact 
on resource 2

R2

Total loss impact
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Ours

Others

𝑟(𝑓)
ℓ(𝑓)

Figure 6.3: Comparison of our CAIE to others under the multiple-constraint

pruning problem. We demonstrate the pruning problem under two constraints. The

paths colored in red and blue denote the pruning process generated by our method

and others respectively. Each colored vector between two points is composed by

the loss impact ℓ(f) and the resource impact vector r⃗(f) when removing the filter f .

Our method with CAIE is able to reach the pruning objectives simultaneously and

also jointly considers all the impacts to generate a better result with lower total

loss impact under the objective R.

in Fig. 6.2 (b), the point R is also the closet point on the boundary in (6.19) to the

origin, which is the same as problem (6.15). Moreover, from iteration t to t + 1

among the pruning process, we will also adjust the objective vector R⃗ whenever

we remove a small number of filters. Thus, also shown in Fig. 6.2 (b), we can

always consider the optimal direction in the process and consequently be able to

reach the final pruning objective point R accurately.

Last, same as the signle-constraint pruning, in Fig. 6.3, we demonstrate the

effectiveness of our CAIE method under multiple constraints (colored in red) when

comparing to others only based on the loss impact (colored in blue), where the

x-y plane is the resource space, and the z-axis denotes the total loss impact. With

our CAIE, the path which represents the iterative pruning result always moves



doi:10.6342/NTU202202005

6.3. Constraint-Aware Importance Estimation 139

toward the pruning objective point R while previous methods can only “separately”

match each constraint (i.e., first meet R1 then R2). Moreover, since we greedily

select the filters with the smallest importance score Imul(f), which is the slope

of performance change on the effective reduction of all the resources, we can

acquire the result with the smaller overall impact on loss than others when it

meets R. To summarize, our CAIE method can generate the optimal result under

any combination of resource constraints.

Algorithm 3: Global Filter Pruning with CAIE
Input: Pre-trained network parameters θ∗, dataset D, k pruning

constraints {Ci}k
i=1

Output: pruned network parameters θ∗
p

1: Set θ∗ as the initialization of the concerned network θ

2: while θ not satisfy given constraints do

3: Estimate the loss impact ℓ(f) for each filter f in θ with n mini-batches of

data in D

4: Evaluate the pruning objective vector R⃗ from θ and the resource impact

vector r⃗(f) for each filter f in θ

5: Calculate the importance score I(f) with formula (6.17) and (6.18)

6: Remove a filter set F containing m least important filters based on I(f)

and acquire a left network θF ′

7: Set θF ′ as the concerned network θ for next iteration

8: end while

9: Fine-tuning θ with D and yield a pruned model θ∗
p

6.3.4 The Overall Pruning Scheme

Our algorithm of global filter pruning follows the procedure of “iteratively pruning

then fine-tuning”, illustrated in Algorithm 3. During a single iteration in the pruning

stage to remove a small number of filters, we first estimate the loss impact ℓ(f) of



doi:10.6342/NTU202202005

140 6. Global Filter Pruning for Neural Network

each filter f following the method proposed in [26]. Next, we will evaluate the

resource impact vector r⃗(f) and the pruning objective vector R⃗. With ℓ(f), r⃗(f)

and R⃗ at hands, our Constraint-Aware Importance Estimation (CAIE) can integrate

those components with formula (6.17) and (6.18) to generate the importance I(f)

of each filter as the criterion for pruning. The iterative pruning process will

continue until the pruned network satisfies the given constraints, then followed by

the fine-tuning process to further boost the performance at last.

6.4 Experiments

6.4.1 Implementation Details

Dataset Our CAIE is evaluated on the CIFAR-10 [166] and ImageNet ILSVRC-

12 [152]. The CIFAR-10 dataset contains 50k training images and 10k test images

in 10 classes, while the ImageNet dataset contains 1.28M training images and 50k

test images in 1000 classes. We follow the standard process of data augmentation

in both datasets. For training data of CIFAR-10, the process contains padding

images to 40× 40, randomly cropping a 32× 32, then normalizing with the mean

and standard deviation of the dataset; for testing data of CIFAR-10, we only apply

data normalization to the images. For the training set in ImageNet, the process

contains re-sizing images to 256 × 256, randomly cropping a 224 × 224 patch,

randomly flipping horizontally, and normalizing them with mean and variance of

ImageNet. For the testing set in ImageNet, we re-size images to 256× 256, crop

them into a 224× 224 patch then apply data normalization.

Loss impacts We choose the method proposed by Molchanov et al. [26] to

evaluate the loss impact ℓ(f) of a filter f . The formula of loss impact is ℓ(f) =

(γc
∂L
∂γc

+ βc
∂L
∂βc

)2, where γc and βc are the scaling and shifting parameters of “the

following BatchNorm [75] (BN) layer” in the channel c corresponding to the filter

f . The gradients ∂L
∂γc

and ∂L
∂βc

in the formula above would be computed whenever
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a mini-batch of training data is given. We average the loss impacts calculated in

n mini-batches using a running average with coefficient 0.9. Additionally, the

gradients would also be utilized in updating the network when evaluating the loss

impacts of filters. If the network such as ResNet [74] or MobileNetV2 [180]

contains residual blocks or depthwise convolutional layers that some specific layers

should be pruned in the same way, as described in [26], we will sum over the

corresponding loss impacts in the same channel of these grouped layers as the

overall loss impact.

Resource impacts The ith resource impact ri(f) of the filter f among the same

layer share the same value. Thus, we can evaluate the resource impact for layer

l by randomly removing a filter in layer l plus the corresponding channel of

each filter in the succeeding (l + 1)th layer, then measuring the proportion of

reduction in the concerned resources. Also, when we encounter residual blocks

or depthwise convolutions containing grouped layers, we will randomly remove

an output channel in these layers following the rule in the works [181, 172] to

evaluate the overall resource impact.

Pruning and fine-tuning In both stages, the batch size is set to be 256 and 64 in

CIFAR-10 and ImageNet, respectively. In a single pruning iteration, the number

of batches n used for estimating importance and the number of pruned filters m

are set to be 30 and 25 in both datasets. For optimizing the neural network, we use

SGD with an initial learning rate 10−3 and runs for 30 epochs in ImageNet and

240 epochs in CIFAR-10 of the fine-tuning stage. The learning rate will decay by

5 every 10 epochs in ImageNet and every 80 epochs in CIFAR-10.

6.4.2 Evaluation

We conduct experiments in Table 6.1 and Table 6.2 to verify our method when

given pre-trained models, such as the ResNet series [74], MobileNetV2 [180] and
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the VGG network [153], and some resource constraints. In our experiments, we

adopt two commonly used concerned resources, which are the total FLOPs (f )

and the network parameters (p), respectively. The given constraints would be the

maximum proportion of the specific resource that could remain. For example,

(f.33, p.31) indicates that there should be at most 33% FOLPs and 31% parameters

left of the pruned model. The performance of a pruned model would then be

evaluated by its top-1 accuracy (P. Top-1) and the accuracy drop after pruning

(Top-1↓).

Effectiveness of our CAIE We conduct ablation studies in Table 6.1 to compare

the pruning results of the model with and without applying our CAIE on ImageNet

and CIFAR-10. Each block in the table containing five rows shows a group of

experiments on the pre-trained model and its original top-1 accuracy. The first

row in each block is the “baseline” result without CAIE, which only takes the

loss impact as the importance while pruning until separately meets the constraints.

Since the constraints only determine the ending point of the baseline pruning, we

will examine our CAIE pruning with specific constraints under which the baseline

pruning obtains the same pruning result as the first row. The second and the third

rows are used to confirm the correctness of our CAIE under a single constraint. As

we can see, the results in these two rows have the same amount of the constrained

resource compared to the baseline result yet reach better performance. The fourth

row demonstrates the flexibility of our CAIE that can accurately adapt to the given

multiple constraints. In some cases (f.44, p.20 in VGG16-BN), the result generated

by CAIE may not meet the constraints simultaneously, but the performance is still

better than that in the baseline result. Last, the fifth row is to affirm the effect

of CAIE when the given multiple constraints are set to the same as the resource

consumption of baseline results, such as (f.33, p.26) is the same as (32.83, 25.94)

in the first block. As we can see, our results can still outperform the baseline for all

the models. Altogether, our CAIE can always yield improvement in performance
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Table 6.1: Ablation Studies of our CAIE. Each block spaced apart by double

line represents a group of experiments. The column “w/ − w/o CAIE” illustrates the

performance gain after applying our CAIE comparing to the first row (baseline) in each

block.

Model Constraints w/ CAIE
FLOPs left

(%)
Param. left

(%)
P. Top-1

(%)
Top-1↓

(%)
w/ − w/o
CAIE (%)

ImageNet [152]

ResNet-50
(orig. top-1 : 76.13%)

f.33, p.31 ✘ 32.83 25.94 71.57 4.56 -
f.33 ✔ 32.95 49.40 73.90 2.23 2.33
p.26 ✔ 46.64 25.80 71.96 4.17 0.39

f.33, p.31 ✔ 32.90 30.76 72.39 3.74 0.82
f.33, p.26 ✔ 32.47 25.89 71.92 4.22 0.34

ResNet-50
(orig. top-1 : 76.13%)

f.65, p.70 ✘ 64.83 64.27 75.59 0.54 -
f.65 ✔ 64.58 85.72 76.02 0.11 0.43
p.65 ✔ 79.80 64.70 75.80 0.33 0.21

f.65, p.70 ✔ 64.95 69.88 75.83 0.30 0.24
f.65, p.65 ✔ 64.81 64.61 75.69 0.44 0.10

ResNet-34
(orig. top-1 : 73.31%)

f.78, p.79 ✘ 77.55 71.43 72.67 0.64 -
f.78 ✔ 77.47 90.43 73.15 0.16 0.48
p.72 ✔ 85.89 71.29 72.72 0.59 0.05

f.78, p.79 ✔ 77.43 78.94 72.91 0.40 0.24
f.78, p.72 ✔ 77.72 71.32 72.73 0.58 0.06

MobileNetV2
(orig. top-1 : 71.88%)

f.50, p.32 ✘ 49.80 31.49 62.64 9.24 -
f.50 ✔ 49.77 67.58 67.23 4.65 4.59
p.32 ✔ 67.38 31.88 63.84 8.04 1.20

f.50, p.50 ✔ 49.72 48.24 6.28 5.60 3.64
f.50, p.32 ✔ 49.63 31.97 63.13 8.75 0.49

CIFAR-10 [166]

VGG16-BN
(orig. top-1 : 93.34%)

f.44, p.20 ✘ 43.32 9.93 92.94 0.40 -
f.44 ✔ 44.00 12.55 93.06 0.28 0.12
p.10 ✔ 42.90 9.69 93.02 0.32 0.08

f.44, p.20 ✔ 43.07 12.19 93.11 0.23 0.17
f.44, p.10 ✔ 42.43 9.89 92.98 0.36 0.04

ResNet-34
(orig. top-1 : 94.13%)

f.40, p.15 ✘ 29.90 14.48 93.34 0.79 -
f.30 ✔ 29.82 19.95 93.48 0.65 0.14
p.15 ✔ 35.69 14.79 93.46 0.67 0.12

f.40, p.15 ✔ 35.10 14.88 93.50 0.63 0.16
f.30, p.15 ✔ 29.64 14.79 93.40 0.73 0.06
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Table 6.2: Comparison to state-of-the-arts on ImageNet. To compared with others,

we set the resource constraints based on the resource left of the pruned model in other

works.

Model
Orig. Top-1

(%)
Method

FLOPs left

(%)

Param. left

(%)

P. Top-1

(%)

Top-1↓

(%)

ResNet-50
76.18 Taylor-FO-BN-56% [26] 32.76 30.86 71.69 4.49

76.13 Ours (f.33, p.31) 32.90 30.76 72.39 3.74

ResNet-50
72.88 Thinet-30 [21] 34.66 28.49 68.42 4.46

76.13 Ours (f.33, p.26) 32.47 25.89 71.92 4.22

ResNet-50
76.15 FPGM-only 30% [174] 58.80 - 75.59 0.56

76.13 Ours (f.55) 54.77 77.35 75.62 0.53

ResNet-50
76.18 Taylor-FO-BN-81% [26] 65.03 69.92 75.48 0.70

76.13 Ours (f.65, p.70) 64.95 69.88 75.83 0.30

ResNet-50
- NISP-50-B [176] 55.99 56.18 - 0.89

76.13 Ours (f.56, p.56) 55.89 55.84 75.25 0.88

ResNet-34

73.31 Taylor-FO-BN-82% [26] 77.74 78.90 72.83 0.48

73.23 Li et al. [8] 75.80 89.20 72.17 1.04

73.31 Ours (f.78, p.79) 77.43 78.94 72.91 0.40

when given any constraints.

Comparison to state-of-the-arts In Table 6.2, we compare our CAIE with

others on the ImageNet. Given a pruning result in other works, we will conduct

experiments with our CAIE under the resource constraints corresponding to the

resources left of others. Compared to the state-of-the-art Taylor-FO-BN [26], which

contains the same calculation of loss impact and the pruning procedure as ours,

results with CAIE can achieve better performance. Furthermore, compared to those

with different importance estimation and the pruning process [21, 174, 176, 8], our

method can still obtain the best results. It is worth noting that for a fair comparison,

we did not show the results of GBN [172] because they apply other losses to

reinforce the sparsity when training.
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6.5 Summary

In this work, we propose a novel method called Constraint-Aware Importance

Estimation (CAIE) to estimate the importance of filters in the network under the

given multiple resource constraints, which integrates information of the impact

on the considered resources with the impact on loss function when removing a

filter. We demonstrate the effectiveness of our method, and we can achieve state-

of-the-art performance comparing to others under the same amount of resource

consumption of the pruned model.
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Chapter 7

Joint Generic and Personalized

Federated Learning

In this chapter, we focus on the new trend for training a distributed models, called

federated learning (FL). Owing to the more widespread applications of locally face

recognition than person re-ID and more well-established large-scale benchmarks

for face recognition, we first explore the possibility of the combination for

federated learning and face recognition. Fig. 7.1 shows our expected FL scenario,

where the face images on local clients are private and we aim at improving both

the generic and personalized face representation of the pre-trained face model. It is

worth noting that the mainstream training framework of re-ID is derived from face

recognition because face recognition has been addressed for a long time. Specially,

re-ID and face recognition are both the open-set problem, where the classes of

training and testing set are different and non-overlapped. Thus, metric learning are

the main solution in both tasks. The following sections will illustrate our proposed

joint learning FL framework on face recognition benchmark but in our future work,

illustrated in Sec. 7.7, we will apply our proposed joint learning scheme on existing

person re-ID benchmarks to also formulate them as a FL problem.

147
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Figure 7.1: The Federated Learning (FL) setup for face recognition. Given a

pre-trained face recognition model, we aim to simultaneously improve the generic

face representation at the server, and produce an optimal personalized model for

each client without transmitting private identities’ images or features out of the

local devices.

7.1 Introduction

Face recognition has been an active and vital topic among computer vision com-

munity for a long time. The state-of-the-art training frameworks formulate face

recognition as a metric learning problem, and employ the large-scale identity

classification as the proxy task to learn face features, which could discriminate

between different identities robustly. Recently, the quick evolution of softmax-

based loss functions for identity classification greatly promote the performance of

face recognition. However, the training of face recognition model heavily relies

on centralizing a huge amount of personal face images, which are usually not

accessible due to the uprising privacy concern in many countries. Therefore, it is

necessary to navigate the development of face recognition under the premise of
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privacy preservation.

Federated learning (FL) provides a distributed and privacy-aware framework to

train models where multiple clients collaboratively learn without sharing their data

with the central server or other clients. A classical FL method called FedAvg [11]

aggregates and averages the gradients from local clients on the server, and transmit

the updated model back to the clients for the next round of local optimization.

In the past few years, there has been significant progress in FL [182] on image

classification task, which boosts the performance of aggregated global model under

diverse FL scenarios. However, these approaches cannot be directly applied onto

face recognition due to several critical reasons:

1. Face recognition is an open-set classification task, where training and testing

identity classes are different.

2. The identity classes between local clients are different, which results in

different model architectures in clients.

3. In a more practical setup for face recognition [183], the FL training starts

from a publicly available face recognition model, rather than from scratch as

in traditional FL.

In order to address these aforementioned issues, a recent work FedFace [183]

proposed an FL framework for face recognition model training in a privacy-aware

manner. It tackles the challenging setup where each of the participating clients

has face images of only one identity. It employs a mean feature initialization

method for the local identity proxy and a spreadout regularizer [184] at the server

side to ensure that the identity proxies from the local clients are well separated.

However, FedFace is limited as it only addressed a single scenario. In the real-

world face recognition applications, local edge devices could be registered by

multiple identities. Moreover, there exists a serious privacy concern in FedFace

as it requires the local device to transmit the identity proxy to the server, which

could violates the FL protocol [185]. A concurrent work [186] tries to mitigate

this privacy concern through the Differential Privacy approach.
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To enable federated learning in more realistic face recognition settings, we

propose a novel framework called FedFR, which could jointly improve generic

and personalized face representations without breaking the privacy on clients.

First, we leverage the globally shared dataset to regularize the training on local

clients, as the local client only has much less identities than the pre-trained dataset.

With the additional transmission of the shared class embedding matrix, it can

effectively prevent the local model from over-fitting and also improve the generic

representation at the server. Secondly, in order to reduce the computation overhead

and improve the training efficiency, a novel hard negative sampling strategy is

proposed to select the most critical data samples from the globally shared dataset.

In addition, a contrastive loss applied on the local face representation during

training could further restrict the local model drifting. Last but not least, we are

interested in simultaneously optimizing the user experience on local clients, which

is not explored in previous works. Although personalized FL [187] has been

studied for a while, those methods are sub-optimal on the face recognition task.

We propose a Decoupled Feature Customization (DFC) module, which consists of

a feature transformation layer and one-vs-all binary classifiers. The module locally

learns a customized feature space which is optimized for recognizing the registered

identities at each client.

We validate FedFR on IJB-C [188] dataset for the generic recognition model

performance under different FL scenarios. We also build the personalized face

recognition evaluation protocol with MS-Celeb-1M [189] dataset to validate the

effectiveness of the proposed DFC module. Each technique in FedFR could

substantially improve both generic and personalized face representations. Our

main contributions are summarized as follows:

• We propose a novel joint optimization federated learning framework FedFR,

which can effectively improve both generic and personalized face recogni-

tion models under different scenarios while strictly following the privacy

constraints.
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• Several training techniques (hard negative sampling, contrastive regular-

ization) are proposed and tailored for the face recognition task, and these

techniques can better bridge the gap between global and local representa-

tions.

• We propose the Decoupled Feature Customization (DFC) module, which is

the key component to enable concurrent optimization of the personalized

face recognition model. The proposed binary classification objectives are

also effective for optimizing the performance on each client.

• Experimental results show that our proposed solution can consistently out-

perform previous approaches in several challenging generic and personalized

FL benchmarks.

7.2 Related Work

Face Recognition Recently, great progress has been achieved in face recogni-

tion with large-scale training data [190, 189, 191], sophisticated network struc-

tures [192, 74] and advanced designs for softmax-based loss functions [77, 193,

194]. However, these state-of-the-art methods are not directly applicable to the

federated learning setting since they assume centralized data is available on a server.

Without the access to private face images from local clients, the feature learning is

prohibited as the model cannot compare features between different identities. In

addition, how to leverage additional identities to improve the feature incrementally

based on a pre-trained face recognition model was never discussed in previous

works, as they always assumed to train the model from scratch. In our federated

setup, we aim to improve a publicly available pre-trained face recognition model

at the server from multiple clients in a collaborative manner, while keeping the

private face images and identity features at the local clients.

Federated Learning Federated Learning (FL) [3, 182, 195] is a learning setup in

machine learning which aims to learn a model over multiple disjoint clients while
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maintaining local data privacy. The most well-known and commonly used FL algo-

rithm is FedAvg [11], which learns a global model by averaging weight parameters

across local models trained on private client datasets. Many recent works proposed

to improve FedAvg from different perspectives: model convergence [196, 197],

robustness [198], communication [199], and non-IID clients [200, 201]. Most of

the previous computer vision related FL works only studied image classification

tasks with small-scale datasets (e.g. MNIST, CIFAR-10). To the best of our knowl-

edge, FedFace [183] is the only one which addressed the face recognition model

training in the federated setup. To enhance the pre-trained FR model, it applies the

spreadout regularizer [184] at the server side to ensure the identity proxies from

clients are well separated. Our work differs in that we do not transmit identity

prototypes as it could leak the private identity info from clients. Moreover, our

work is scalable to different scenarios where each client contains more than one

identity.

Personalized Federated Learning Personalized FL [187] aims to learn a cus-

tomized model to meet each client’s objective. Instead of training a single “general”

model which is optimized for generic metric, this FL setup seeks to acknowl-

edge the data heterogeneity among clients by constructing a “personalized” model

which fits each client’s need. Many recent techniques [202, 203, 204] proposed

to leverage multi-task learning (MTL) [205] methods to incorporate clients’ task

objectives into the FL framework. Another stream of approaches [206, 207] em-

ployed meta-learning to learn a decent initial model that can be adapted to each

client after some steps of local fine-tuning. Besides, [208] showed that conducting

post-processing (e.g. fine-tuning) onto a generic FL model could achieve compara-

ble results with other personalized methods. However, the latter two streams of

approaches would require an additional stage for local adaptation. Our framework

employs the MTL based approach which can optimize general and customized

face recognition models simultaneously.
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7.3 Proposed FedFR

In this work, we build a novel FL framework for the face recognition (FR) task.

In the following, we will first establish the proposed FL setup for joint generic

and personalized face recognition. Next, we introduce some preliminaries of our

framework, which are some basic techniques popularly employed in FR and FL

respectively. Then, we will describe technical details of the proposed FedFR

solution.

7.3.1 Problem Setup

Face recognition systems are widely applied on local user devices. Typically,

the deployed model is trained on a public dataset in advanced on a server. To

continuously improve the generic face representation, the intuitive way is to collect

the images stored in local devices (clients) and update the model trained with

augmented data. However, as mentioned previously, due to privacy issues, it is

prohibited to upload any identity-related information, such as the face images and

its features. Federated learning (FL) provides a framework to train models where

multiple clients collaboratively learn without sharing their data with the server or

with other clients. As shown in Fig 7.1, different from typical FL setting that learns

the model from scratch, in face recognition, we target on how to enhance the

generic representation of pre-trained model by leveraging the data on clients

under the privacy constraint. Besides, we also focus on the optimized user

experience. Although an improved generic model can implicitly achieve it, a client-

specific personalized model optimized by local objectives could achieve optimal

performance on the device. Thus, we jointly consider the situation that whether

we can obtain a personalized face model which is dedicated to recognize the

registered identities on each client. To the best of our knowledge, we are the first

to explore the personalized FL setup in face recognition.
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7.3.2 Preliminaries

Face Recognition FR is an open-set problem, where the classes (identities) in

training and testing are different. In the training phase, current FR methods are

typically based on an identity classification objective, where the model embeds an

input image into a high-dimensional representation and generates the class logits

by computing the similarity between the input feature and all class embeddings

(proxies). Then a softmax cross-entropy loss will be adopted to supervise the model.

In our setting, the pre-trained generic face model is trained with the commonly

used Cosface loss [77], which adopts an additive margin softmax. Formally, given

the face embedding model Θ and an input image x with y-th class, we can obtain its

deep feature f = Θ(x) ∈ Rd. There is also a class embedding matrix Φ ∈ Rd×K ,

where K is the total number of classes and the j-th column Φj means the learned

proxy of j-th class. Following Cosface loss, the original j-th logit (Φj · f + b) will

be simplified by ignoring the bias b and normalizing the ∥f∥ and ∥Φj∥ to 1, which

is just the cosine similarity cos θj . Last, the additive margin softmax cross-entropy

loss for x will be computed as follows:

Lcos = − log es(cos θy−m)

es(cos θy−m) + ∑K
j ̸=y es cos θj

, (7.1)

where s and m are the scaling constant and the additive margin, respectively.

During the testing stage, the learned face embedding model Θ will embed the

query face image into a d-dim face feature, and the system would compare the

cosine distance between the query feature and pre-registered features for identity

authentication.

Federated Learning In our FL setup, we consider C local client nodes and one

central server with the face recognition model Θ0
g pre-trained on a publicly available

large dataset Dg, which has Ng images from Kg identities. Each local client i is

initialized with Θ0
l(i) = Θ0

g and registered with Nl(i) images from Kl(i) identities,

which is much smaller than the public one. Our objective is to simultaneously
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improve the model Θg for generic face representation and optimize each Θl(i)

for personalized client customization under the privacy constraints. We adopt

the most commonly used FL algorithm, FedAvg [11], as our baseline method.

Due to the mutual exclusive classes between local clients, we follow previous FL

works [209, 210] that only send the backbone model Θ to the server, and keep the

class embedding matrix on clients. The steps for collaborative training by server

and clients are as follows:

1. In the t-th communication round, the server sends the global model Θt
g to all

client nodes.

2. The i-th client updates the model Θt
l(i) at round t based on Nl(i) local data

and local learned class embedding Wl(i) with Cosface loss Lcos, which is a

Kl(i)-class classification problem.

3. The local clients only send the backbone model Θt
l(i) to the server. The

server will update the global model by taking a weighted average of them as

follows:

Θt+1
g = 1

N

∑
i∈[C]

Nl(i) ·Θt
l(i), (7.2)

where N is the total number of training images across all client nodes.

4. Last, the updated global model will then be transmitted to each client and

steps 2− 4 are repeated until convergence.

FedAvg can perform well on clients with IID-distributed data. However, for our

face recognition setup, the identity distributions on each client are different. Just

optimizing on local data with limited number of identities to obtain Θt
l(i) could harm

the original performance of the pre-trained model (as shown in the experimental

results). Furthermore, although Θt
l(i) can improve the personalized representation

for these Kl(i) identities, it will be continuously updated by the global model along

the communication rounds, which cannot achieve optimal performance for the

local users.
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7.3.3 FedFR: Joint Optimization Federated Framework

To tackle the issues in FedAvg, we propose a joint optimization framework FedFR,

which can effectively improve the generic face representation at the server with

the use of globally shared data, and also optimize the personalized recognition

performance simultaneously at local clients. We first provide an overview of

FedFR, and the system architecture is also illustrated in Figure 7.2. Built upon the

baseline FL pipeline, we introduce several novel techniques:

1. We employ the globally shared dataset Dg to better regularize the local

model training, which could prevent the model from over-fitting on local

identities.

2. The Hard Negative Sampling strategy is introduced to select the most critical

data from Dg to significantly reduce the computation on local clients.

3. The Contrastive Regularization is employed to control the drift of model pa-

rameters and better bridge the gap between global and local representations.

4. To simultaneously optimize face representation for local clients, we propose

the Decoupled Feature Customization module to transform the global

representation for better fitting the local distributions. The corresponding

margin-based binary classification loss LBCE establishes a better local ob-

jective to supervise the learning of the decoupled branch

We elaborate each technique in details as follows.

Leveraging Globally Shared Data Some previous FL works on image classifica-

tion [211, 212] has shown that leveraging globally shared dataset can better address

the issue of heterogeneous clients. In the face recognition FL setup, the global

dataset Dg which was used for pre-training the server model can be naturally shared

to all the local clients. We could further regularize the training of local clients by

providing the class embedding matrix Φg of the shared Kg identities. As shown

in Figure 7.2, given the shared dataset Dg on client i, the local client could build

a more “balanced objective” by concatenating Φt
l(i) = Φt

g with the local private
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embedding matrix Wl(i) as a new learnable proxies and learn to classify Kg + Kl(i)

identities with Lcos. Thus, our balanced Cosface loss would be formulated as:

Lcos = − log es(cos θy−m)

es(cos θy−m) + ∑Kg+Kl(i)
j ̸=y es cos θj

, (7.3)

where the denominator is added with additional Kg negative terms. For the end of

each round t, beside sending the backbone Θt
l(i) back to server, the learned class

embeddings Φt
l(i) related to Kg global identities can also be sent back and updated

by:

Φt+1
g = 1

N

∑
i∈[C]

Nl(i) · Φt
l(i). (7.4)

Hard Negative Sampling Strategy Jointly training with Dg can prevent model

from over-fitting on local data. However, the large number of public data will also

increase the computation burden on local clients, which will enlarge the training

time and degrade the communication efficiency between server and clients. To

obtain a better trade-off, we propose a hard negative (HN) sampling strategy to

only choose a subset DHN from Dg, which is critical for learning with Dl(i). The

proposed technique is described as follows.

At the start of each communication round t on local client i, we first forward

the global and local data to Θt
g to generate their features. Then we can calculate

the pair-wise cosine similarity between them. To make the training more efficient

but at the same time maintain the performance, we only sample the “hard” global

data for model learning, which is with similarity larger than threshold tHN to any

of the local data. Intuitively, with larger tHN , the less global data will be used

for training. We decide the threshold by leveraging the inherent feature space of

the pre-trained model. As mentioned above, the pre-trained model is trained with

Cosface loss, where the similarity of each sample to its proxy should be larger than

those to others by a margin m. Thus, if any negative pair with similarity larger

than tHN = m, they should be served as a hard negative pair.
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Contrastive Regularization on Local Clients Inspired by the related work [201],

which proposed a model-contrastive loss on the local training to prevent local

model from deviating too much from the global model, we also apply the similar

regularization on our face recognition task. Namely, we aim to decrease the

distance between the face representation learned by the local model at time t

(f = Θt
l(i)(x)) and the one learned by the global model (fglob = Θt

g(x)), and

increase the distance between the face representation learned by the local model

at time t (f = Θt
l(i)(x)) and time t− 1 (fprev = Θt−1

l(i) ). Thus, the local contrastive

loss term Lcon is defined as

Lcon = − log exp(sim(f, fglob)/τ)
exp(sim(f, fglob)/τ) + exp(sim(f, fprev)/τ) , (7.5)

where “sim(·, ·)” measures the cosine similarity between face features, and τ

denotes a temperature hyperparameter.

Decoupled Feature Customization With the contrastive regularization, the local

model can avoid over-parameterizing for the local objective and continuously

improve the generic face representation. However, it will go against the goal which

we aim to simultaneously obtain a personalized model to improve the local user

experience. Thus, as shown in Figure 7.2, we propose a novel Decoupled Feature

Customization (DFC) module to resolve this seemly contradicting scenario. In

order not to influence the feature f for generic representation, inspired by [213],

we adopt a transformation Π(f) with a fully-connected layer to map it to a client-

specific feature space, which can recognize the Kl(i) identities well. To achieve

this goal, there should be a local objective for optimization. Inspired by [214], we

propose to adopt the binary classification on each local identity for the personalized

purpose. Given the transformed feature f ′ = Π(f), we will feed it into Kl(i)

binary classification branches (which the total trainable weight vectors are denoted

as Ωl(i)). The k-th module contains learnable parameters which only target on

classifying the positive samples from the k-th class and the negative samples from

“any other” classes. Formally, we follow the loss in the related work that used
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margin-based binary cross-entropy (LBCE) to supervise our personalized branch:

LBCE = λ

s′ · log
(

1 + exp
(
− s′ · (g(cos θk)−m′)− b

))
+ 1− λ

s′ ·
∑
j ̸=k

log
(

1 + exp
(
s′ · (g(cos θj) + m′) + b

))
,

(7.6)

where cos θj is the cosine similarity of transformed input feature f ′ and the j-th

weight vector Ωl(i),j in the binary classification, b is the learned bias, and the

function g(z) = 2((z + 1)t′
/2)− 1 is used to increase the empirical dynamic range

of cosine similarity. The notations λ, s′ and m′ all follow those in the related work,

which are the balanced factor, scaling constant and cosine margin.

It is worth mentioning that although there are only Kl(i) binary classification

branches, not only the local data but the global data can be used to optimize our

DFC module because each branch only needs to recognize “whether it is the k-th

identity or not”. This objective just well-fits our personalized goal that given an

unseen query image, a well-performed local face recognition system should quickly

determine whether it is the registered identity or not.

Learning Pipeline Our overall learning framework is based on FedAvg, where

there will be T communication rounds and in each round, the local clients will

update the model for E epochs. In the local client training, the model will be opti-

mized in an end-to-end manner with the total objective Ltotal, which is formulated

as:

Ltotal = α1Lcos + α2Lcon + α3LBCE, (7.7)

where all the modules Θt
l(i), Φt

l(i), W t
l(i), Πt

l(i), Ωt
l(i) and bias b would be updated.

However, only the Θt
l(i) and Φt

l(i) will be sent back for globally averaged with (7.2)

and (7.4). In the testing phase, Θg is used for generic evaluation and [Θl(i), Πl(i)] is

used for personalized evaluation. More details of the whole algorithm pipeline are

in the supplementary materials, which is in Sec. 7.6.
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7.4 Experiments

7.4.1 Experimental Setup

Dataset We use the MS-Celeb-1M [189] as the training dataset. To avoid the

long-tail distribution, we manually select 10k identities from the dataset where each

identity contains 100 face images. Within the selected subset, 6000 identities (Kg)

are used for pre-training the global model, and the other 4000 identities are equally

distributed into local clients. For each identity in each local client, we use 60 images

for local training, and 40 images for personalized model evaluation, respectively.

Besides MS-Celeb-1M, IJB-C [188] dataset which contains 3531 identities with

diverse appearance is used for evaluating the generic model performance. The

selected list for FL training will be released for fair comparison in the future.

Evaluation Metrics For the generic model evaluation, we strictly follow the IJB-

C evaluation protocol, which is commonly used in the face recognition community.

We report the true acceptance rates (TAR) at different false acceptance rates (FAR)

for 1:1 verification protocol, and true positive identification rates (TPIR) at different

false positive identification rates (FPIR) for 1:N identification protocol.

Regarding the personalized model evaluation, we carefully build up the metrics

and protocols as we are the first to investigate the personalized face recognition

setup. The evaluation is supposed to only focus on the face recognition user

experience of the registered identities on each local client. Therefore, we establish

two evaluation protocols to better measure the client-specific performance: 1)

Firstly, similar to the 1:1 verification protocol in IJB-C, we establish a list of

positive pairs and negative pairs for evaluation. In each client, we formulate

genuine matches from local identities and build up imposter matches by pairing

one local identity with a random identity from other clients. For the 40 local

clients scenario where each client is registered with 100 identities, there are 7.8k

positive pairs and about 630 million negative pairs in one client. We average the
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true acceptance rates (TAR) across all clients as the final personalized verification

performance. 2) Secondly, we build up an 1:N identification protocol to estimate

the login experience on a local client (device). Intuitively, the registered images

from one local identity are combined to form its gallery feature. And the testing

images from all clients are taken as the probe features. For the 40 local clients

scenario, there are 100 gallery features and 160k probe features in one client.

Similarly, we average the true positive identification rates (TPIR) across all clients

as the final personalized identification performance.

Implementation Details For the backbone face model, we adopt the same 64-

layer CNN architecture from [76, 77], which outputs a 512-dimensional feature

vector. The image preprocessing techniques are the same as [193], where the

image is cropped to size 112× 112 and the pixel value is normalized to [−1, 1]. To

simplify our network training, all hyper-parameters in Lcos, Lcon and LBCE are

empirically set as the same ones in the related work, where m=m′=0.4, s=s′=30,

τ=0.5, λ=0.7 and t′=3. For Ltotal, the α1, α2 and α3 are empirically set as 1, 5 and

10. We adopt SGD optimizer with weight decay 5× 10−4 and learning rate 0.001.

For the FL setup, we conduct T =30 communication rounds and in each round the

local clients conduct E=4 epochs.

7.4.2 Ablation Studies

Effectiveness of each modules To validate the effectiveness of each proposed

module, we report the ablation studies in Table. 7.1. The experiments are conducted

with one central server and 40 clients, where each client contains 100 identities.

The performance is evaluated both on the generic and personalized benchmark. If

it is under the FL setup, the global model Θg will be used to test on the generic

evaluation and each local model Θl(i) will be tested on personalized data, where the

shown scores are the average over all clients. Notes that for the 1:N identification

in personalized evaluation, we average the feature of training images based on their
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identities as the gallery features in that client.

The first row is the performance of pre-trained model trained on public data

with 6k classes, which is the target model that needs to be improved. Start from

2nd to 5th row, the FL setup is employed where 4k augmented IDs are added but

with privacy constraints. And for the last row, it is the ideal situation that we can

centrally optimize the model with data of 10k IDs. We can see that in the second

row, our baseline method which directly optimizes the model with local data and

perform FedAvg on the server cannot perform well. The performance is even

worse than the pre-trained one owing to the over-fitting on local data. Leveraging

the public data is a solution, but it may suffer from long training time and large

computation overhead. With our proposed Hard Negative sampling strategy where

only a subset of global data serving as negative pairs to the local data, in the 3rd

row, not only the generic representation but also the personalized evaluation can be

boosted. Contrastive regularization is designed for regularizing the local model

from training towards the undesired local minimum. We can see that in the 4th

row, the performance improves greatly on generic evaluation. However, under

the same feature space parameterized by Θ, a more generalized representation

will harm the performance for recognizing specific identities on clients. Thus,

in the 5th row, which is our final proposed FedFR architecture with the DFC

branch, we decouple the feature from the original feature space to a new one with

a transformation Πl(i) , and optimize this space with binary cross-entropy loss

tailored for the personalization. We can see that with Θg for generic representation

and [Θl(i), Πl(i)] for personalized evaluation, both of them can achieve superior

results.

Analysis of the tHN in Hard Negative Sampling In our experiments, we choose

tHN equals to the margin m=0.4 in Cosface used in pre-training the model. To

validate the effectiveness, as shown in Figure 7.3, we demonstrate the global

performance on IJB-C and its training efficiency under different hard negative
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Figure 7.3: The generic model performance and the model training efficiency under

different Hard Negative thresholds.

thresholds with 100 IDs per client. The training efficiency is measured in terms of

the training steps per epoch. We can see that with tHN =0.4, the number of sampled

global data can be largely reduced by 10 times but with only 0.2% drop of the

global performance, which is the best trade-off configuration in our experiments.

7.4.3 Comparison with FedFace

To compare the results with FedFace [183], as shown in Figure 7.4, we construct

the FL setting with diverse identities per client under total 100 clients, which is

from 40 to 1. We demonstrate the results of the pre-trained model, ideal central

training (upper bound), FedFace and our proposed FedFR. Because FedFace cannot

be adopted on multiple IDs in a client and their FL dataset is not released, we re-

implement their method on our setting that uses Cosface loss as the local objective

if the number of ID is larger than 1, and also apply spreadout regularizer at the

server side to separate the class proxies from clients. From the comparison on

the generic model performance, FedFace could easily over-fit on local dataset

and performs inferior to the pre-trained model in these scenarios. In contrast, our
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Figure 7.4: Generic model performance compared to FedFace. We fix the

number of clients to 100 and conduct 4 scenarios of different #IDs in one client.

proposed FedFR can still improve the generic face representation under the most

challenging scenario where there is only one identity in the client.

7.4.4 Comparison with Personalized FL Methods

To validate the effectiveness of our Decoupled Feature Customization (DFC)

module, we compare with the latest personalized FL method [208], which is a

two-stage local adaptation approach. For fair comparison, we re-implement the

“Fine-tune” and “KD” local adaptation methods, which were shown to be effective

in image classification tasks, in our face recognition setup. In the first stage, the

server and clients collaboratively learn to obtain a great generic model, where we

use the proposed hard negative sampling strategy and the contrastive regularization

in the experiments. Then, in the second stage, each client separately optimizes its

local model for personalization. For the “Fine-tune” method, we directly optimize

each model with Cosface loss with the local and sampled global data. For the “KD”

method, it is with a Knowledge Distillation technique that besides the original

Cosface loss, we also supervise the output logits of local model (student) by the
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Table 7.2: Comparison of other personalized techniques. It is conducted on 40

clients with 100 IDs per each.

Method Modules

Personalized Evaluation

1:1 TAR @ FAR 1:N TPIR @ FPIR

1e-6 1e-5 1e-5 1e-4

Yu et al.

2020

Fine-tune 73.81 86.21 88.37 93.90

KD 75.82 87.65 89.50 94.67

Ours

(w/ branch)

Cosface 82.93 91.88 90.67 95.59

BCE 88.32 95.46 95.17 97.94

logits generated from original global model (teacher) with KL-Divergence loss.

As illustrated in Table. 7.2, our proposed one-stage personalization method can

outperform the two local adaptation strategies. In addition, we also conduct a

variant of our method, which is also a decoupled branch but adopts a Cosface

loss with multi-class classification for supervision. It is clearly verified that the

proposed binary classification objective better fits the need for the personalized

face recognition on clients.

7.5 Summary

In this work, we address the face recognition model training under the practical

federated learning setting, where each client is initialized with the pre-trained

model. We propose a novel joint optimization framework FedFR, which can

improve the generic face representation of the global model and at the same time

enhance the personalized user experience. While the proposed hard negative

sampling and contrastive regularization can efficiently bridge the gap between

global and local training, the Decoupled Feature Customization (DFC) module is

another novel component to enable concurrent optimization of the personalized

face recognition model. The effectiveness of the proposed solution is verified on

several challenging generic and personalized face recognition benchmarks. We

hope that the work and the release of the personalized FR benchmark can facilitate

the future research on the federated learning for face recognition.
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Table 7.3: Choices of models on Personalized Evaluation of FedFR

Evaluated Model

Personalized Evaluation

1:1 TAR @ FAR 1:N TPIR @ FPIR

1e-6 1e-5 1e-5 1e-4

Θg 70.95 84.40 80.30 88.98

Θl(i) 81.46 92.17 91.15 95.64

[Θl(i), Πl(i)](Ours) 88.32 95.46 95.17 97.94

7.6 Supplementary Materials of FedFR

7.6.1 Learning Pipeline of FedFR

Algorithm 4 demonstrates our whole FedFR pipeline in detail. Given a central

server and C local clients, we will conduct T communication rounds and in each

round, the local client conduct E training epoch. After local training, all the Θt
l(i)

and Φt
l(i) will be sent to server and perform FedAvg to generate Θt+1

g and Φt+1
g . To

evaluate the global generic evaluation, the model Θg will be used and for each local

personalized evaluation, we will concatenate the [Θl(i), Πl(i)] as the personalized

backbone to generate customized feature representation.

7.6.2 Models for Personalized Evaluation

For personalized face recognition, we want to validate that using [Θl(i), Πl(i)] can

obtain the best results compared to using Θg or Θl(i) for personalized evaluation.

Table 7.3 demonstrate the results on different models trained under our FedFR

framework. The first row is the personalized result of global model Θg. We can

see that it is not suitable for user customization. The second row is the local

backbone Θl(i) without the concatenation of Πl(i). We can see that the local feature

can improve the performance, but with our Decoupled Feature Customization, the

personalized feature ([Θl(i), Πl(i)]) can well-fit the local distribution and outperform

all the others.
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Algorithm 4: The FedFR framework

1 Input: #communication rounds T , #clients C, #local epochs E, hard negative

threshold tHN , hyper-parameter α1, α2, α3, learning rate µ

2 Output: global model Θg, personalized models Πl(i)andΘl(i) (i = 1, 2, ... C)

1: Server executes:

2: initialize Θ0
g and Φ0

g with the pre-trained model

3: for t = 0, 1, ..., T − 1 do

4: for i = 1, 2, ..., C do

5: Send the global models Θt
g and Φt

g to client i

6: Πl(i), Θt
l(i), Φt

l(i)← ClientTraining (i, Θt
g, Φt

g)

7: end for

8: Θt+1
g ← 1

N

∑
i∈[C] Nl(i) ·Θt

l(i)

9: Φt+1
g ← 1

N

∑
i∈[C] Nl(i) · Φt

l(i)

10: end for

11: return ΘT
g , ΦT

l(i), ΠT
l(i) (i = 1, 2, ... C)

12:

13: ClientTraining (i, Θt, Φt):

14: Θt
l(i), Φt

l(i) ← Θt, Φt

15: W t
l(i), Πt

l(i), Ωt
l(i) ←W t−1

l(i) , Πt−1
l(i) , Ωt−1

l(i)

16: Dt
HN ← select hard negative sets with threshold tHN from Dg

17: for epoch e = 1, 2, ..., E do

18: for each batch B = {x, y} of Dl(i)
⋃

Dt
HN do

19: Ltotal ← α1Lcos(Θt
l(i), Φt

l(i), W t
l(i), B) + α2Lcon(Θt

l(i), Θt−1
l(i) , Θt, B) +

α3LBCE(Θt
l(i), Πt

l(i), Ωt
l(i), B)

20: Θt
l(i) ← Θt

l(i) − µ▽Θt
l(i)
L

21: Φt
l(i) ← Φt

l(i) − µ▽Φt
l(i)
L

22: Πt
l(i) ← Πt

l(i) − µ▽Πt
l(i)
L

23: W t
l(i) ←W t

l(i) − µ▽W t
l(i)
L

24: Ωt
l(i) ← Ωt

l(i) − µ▽Ωt
l(i)
L

25: end for

26: end for

27: return Πt
l(i), Θt

l(i), Φt
l(i)
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7.7 Future Work

Pedestrian data captured by surveillance cameras is also sensitive. The FL frame-

work for optimizing re-ID model is necessary. We follow the proposed FL datasets

in [215] that four datasets are served as clients, shown in Table 7.4. The testing set

of the clients are served as the personalized evaluation in our setting. The other four

datasets are unseen and served as the generic evaluation. We preliminary adopt the

baseline method FedAvg [11] to analyze the performance under FL scenario.

Table 7.4: Statistics of person re-ID FL datasets.

Types Datasets Train ID Train Img
Test

Test ID Query Img Gallery Img

Clients
(Personalized)

Market1501 [12] 751 12936 750 3368 19732
DukeMTMC [1] 702 16522 702 2228 17661
CUHK03 [47] 767 7365 700 1400 5328
MSMT17 [49] 1041 30248 3060 11659 82161

Unseen
(Generic)

VIPeR [9] - - 316 316 316
iLIDS [51] - - 60 60 60
GRID [216] - - 125 125 125
PRID [216] - - 100 100 649

Table 7.5 show the preliminary results, it can be seen that adopting FedAvg can

achieve comparable results of personalized evaluation to the training only on the

local data itself. In the future, we will explore the combination of our proposed (1)

hard negative sampling, (2) contrastive regularization, and (3) decoupled feature

transformation techniques on federated re-ID benchmarks.

Table 7.5: Results on clients and unseen datasets. Thanks Shu-Yu Lin for helping

conduct experiments.

Method
Market Duke CUHK03 MSMT17

mAP R1 mAP R1 mAP R1 mAP R1
local supervised 68.2 87.4 57.0 77.2 39.2 43.2 28.8 60.0

FedAvg [11] 70.8 88.0 57.7 74.6 29.6 31.8 32.8 51.7

Method
VIPeR iLIDS GRID PRID

mAP R1 mAP R1 mAP R1 mAP R1
FedAvg [11] 48.4 38.6 39.7 28.0 20.8 39.7 70.0 77.2
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Chapter 8

Prototype of Real-time Online

MTMC Tracking System

8.1 Introduction

Multi-Target Multi-Camera Tracking (MTMCT) algorithms have been studied in

many existing works [38, 39, 40]. However, they only focus on “offline processing”,

which means given all recorded surveillance videos, they separately perform

pedestrian detection on each frame, single-camera tracking on each video, and

multi-camera tracking on each complete trajactory (also called track) across all

cameras. Although this pipeline achieves the best performance, it is not practical in

real-world surveillance system. In realistic situation, we are only able to deploy an

“online” MTMCT system, where each module can only process the video frames

had been recorded, and can not acquire any frame in the future.

To build an online system, the easiest way is transmitting all recorded frames

from cameras to the cloud server and processing the detection, tracking, and tra-

jactories association on it; then sending the results of matching pedestrians across

cameras to the end user, which is shown in Fig. 8.1. Nonetheless, as mentioned

in Chapter 1, this system will encounter many challenges owing to increasing

resolution of videos, computation burden of each computer vision algorithm and

171
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Figure 8.1: Typical cloud computing scheme. The thickness of green arrow

illustrates the amount of transmission data. The circle in yellow represents the unit

responsible for computing.

the privacy sensitive issues. First, the resolution will directly influence the available

transmission bandwidth. Green arrows in Fig. 8.1 illustrate the amount of trans-

mission data. If the bandwidth is not enough, it may result in delays in traveling

time between cameras and gateways, or gateways and cloud server. This is not

desirable in an online system if we expect it operating in the real-time speed (about

30 FPS). The second problem is that the computation of complicated algorithms

are all on the cloud, which is illustrated with yellow circle in Fig. 8.1. With the

development of deep-learning, each sub-task in MTMC system needs CNN for

generating high-performance results. To operate the whole system in the real-time

speed with data from multiple cameras simultaneously, we will need a powerful

GPU on the cloud server, which causes high power consumption and costs. Last

but not the least, the privacy is also an issue. Gateways are typically deployed

under the same local network of cameras, whereas the cloud server is not. The

transmission process between gateways and cloud may be hacked and thus the

private data will has the chance to be leaked into the public internet.
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Figure 8.2: Proposed distributed computing scheme. The thickness of green

arrow illustrates the amount of transmission data. The circle in yellow represents

the unit responsible for computing.

To solve the aforementioned issues, we propose a distributed online MTMC

system, as shown in Fig. 8.2. First, we enable the computation ability on each local

device, including the cameras and gateways. Because the low-power constraints

and low computation ability of the embedded SoC (System on Chip) engine, each

device can only execute part of the computation of the whole system, such as

only the object detection or the re-ID feature extraction; furthermore, in order to

increase the latency, each task can only utilize a light-weight architecture of the

CNN models. With the on-device computation, we can shrink the amount of data

for transmission, for example, after the object detection on local cameras, we can

only transmit the cropped bounding boxes for single-camera tracking. Second,

we remove the role of central server, where each gateway will have the ability

to communicate with others. Ideally, after the gateways compute re-ID features

for a track, it will need to associate gallery features from other cameras. Thus,

with the real-time communication, each gateway can contain a shared information
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Figure 8.3: Ideal pipeline framework for practical MTMCT system.

memory of all the trajectories having exited their belonged camera scene. Without

the central server, there will be no privacy issues of the system and it can protect

the leakage of sensitive data.

In this dissertation, we practically build the prototype of our proposed on-

line MTMC tracking system. The overall system architecture is introduced in

Sec. 8.2. In order to operate it in a real-time speed, for object detection and single-

camera tracking, we adopt state-of-the-art algorithms and the off-the-shelf network

optimization mechanism, which will be described in Sec. 8.3. For the design

of multi-camera tracking, we adopt our proposed video-based person re-ID and

constraint-aware pruning algorithm to perfectly make our model perform efficiently.

The details will be introduced in Sec. 8.4.

8.2 System Architecture

In order to make our prototype system flexible for replacing each module with

existing stat-of-the-art CNN architectures, we build our system under the Python

framework [217]. As shown in Fig. 8.3, to increase the processing speed, under

each camera stream, we split our system into four parallelly executed pipelines

(each is a thread in Python), where the bottom line illustrates the ideal hardware

engine for running this distributed MTMCT system. The first thread is for video

streaming, which will be executed on the Codec engine on the surveillance camera.
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Figure 8.4: Simulated pipeline framework for our MTMC system.

Furthermore, if the camera is embedded with SoC system, we can execute some

light-weight models on it. We put the detector and single-camera (SC) tracker

on the second thread for generating tracks of people. Then, the instant results

will be written to the output buffer and sent to the gateways of the local network.

We assume gateway has more computation power than the camera, which may

contains low-end graphic card or specific ASIC and FPGA. In the third thread,

the re-ID extractor will first generate features of each track. Owing to the online

characteristic that the length of each track will increase along time, we will con-

tinuously accumulate the features and compute the running average to represent

the track. To perform multi-camera (MC) matching, the gateways will query the

features of other pedestrians having left their camera views, which are saved in

a shared memory that is synchronized across all gateways. The last thread is for

displaying the results on original frame image. We build the display system with

Flask package [218], which enables users monitoring each frame from all cameras

through the front-end web page.

To quickly demonstrate our online system, we construct a simplified version,
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where we remove the transmission between each embedded device. We construct

three independent camera streams on one single mid-end computer, which contains

only one GPU for simulating all computing units executing CNN models at the

same time. Fig. 8.4 demonstrates our final system architecture. We further compare

the specs of our demo PC system with the low-end embedded system on the

market in Table. 8.1. It can be seen that it is reasonable for simulating the whole

system, which ideally contains multiple embedded systems, with only a single

mid-end GPU. In detail, if we demonstrate the system with three camera streams,

there will be 6 threads simultaneously execute the CNN models with the aid of

GPU. Thus, using one mid-end GPU can not only reduce the burden for building

and maintaining the communication protocols between devices but also help us

correctly evaluate the latency and effectiveness of our algorithms.

In the following sections, we will introduce the implementation details of each

module and also demonstrate the optimization methods for making our system

execute in a real-time speed (∼30FPS). In brief, we adopt TensorRT [219] in

our detection module and our CAIE pruning technique on our spatially efficient

video-based re-ID module.

Table 8.1: Hardware Specs of my PC and embedded devices on the market.

My PC
Processor Intel Core i7-8700K (6-cores)

RAM 16GB

GPU
Name : Nvidia RTX 2070

CUDA Core : 2304
Mem. bandwidth : 448 GB/s

Nvidia Jetson Xavier NX
Processor NVIDIA Carmel ARM v8.2 (6-cores)

RAM 8GB

GPU
CUDA Core : 384

Mem. bandwidth : 59.7 GB/s
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8.3 Pedestrian Detection and Tracking

For the two sub-tasks, we directly survey state-of-the-art algorithms to meet our

needs. In object detection, we can choose the effective Yolov4 [34] series, and in

SCT, we can adopt the fast and accurate DeepSort [220]. However, concatenating

those two tasks are regarded as “two-stage” tracking-by-detection method. It is

inefficient because we need to execute two types of CNNs consecutively, one

for detection and the other for tracking. In recent years, one-stage method has

been more and more popular since it only needs one CNN for both detection and

tracking. JDE [87] utilize the final features of Yolov3 [221] as the representation of

pedestrians in DeepSort, and FairMOT [35] adopt CenterNet [222] as the backbone

to generate the bounding boxes and the features at the same time. Although these

one-stage methods can largely reduce the computation burden, as the analysis

in [35], there exists some inherent contradictions. For pedestrian detection, the

final features of the backbone are used to classify whether it is a pedestrian or not

and regress the coordinates. Thus, the network will try to make the appearance

features of all pedestrians more similar to each other and more different from other

non-pedestrian classes. In contrast, for tracking, we need discriminative features

of persons which can help correctly associate the same identity in the environment.

With this contradiction, we cannot both enhance the performance of tracking and

detection at the same time. Recently, an outstanding work [5] proposed a simple but

very effective one-stage tracking method called ByteTrack. It first suggest that we

should utilize a powerful and efficient detection module. With the rapid progress

of object detection, they choose to adopt the recently proposed YoloX [4], which

has achieved the best trade-off on all benchmarks. Then, with accurate bounding

boxes at hands, they proposed their BYTE tracker, which is the advanced version

of outdated IoUTracker [223]. This tracker didn’t need any appearance feature

but surprisingly achieve promising results. In our MTMCT system, we choose to

adopt ByteTrack and we will briefly introduce the details in the following.

ByteTrack contains two parts, YoloX for detection and BYTE tracker for SCT,
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Figure 8.5: Speed-accuracy trade-off of accurate models (left) and Size-accuracy

curve of lite models on mobile devices (right) for YOLOX and other state-of-the-art

object detectors. This figure and captions are all copied from [4].

which is a two-stage traditional IoUTracker. YoloX is an improved version of

Yolov5 [224], where the backbone model is the same as them. The difference is

that YoloX utilize the anchor-free detection head which is similar to FCOS [225].

With anchor-free design, there is no need for calculating the suitable anchor sizes at

first. YoloX also proposed many training techniques, and readers can refer to their

paper for more information. In brief, YoloX achieve the best trade-off between the

performance and the inference latency, which is shown in Fig. 8.5.

After detecting the pedestrians, ByteTrack [5] proposed that we should keep

both the boxes with high confidence and low confidence. Previous works only

retain the high-confidence boxes for data association owing to avoiding the false

positive boxes. However, when some true positive boxes are occluded, their

confidence scores decrease and they will be filtered out automatically. This results

in fragmentation and ID switch of the trajactories, which will degrade the overall

performance. Their BYTE tracker subvert the concept and keep the boxes into two

parts for their proposed two-stage association. In the first stage, they associate the

boxes with high confidence with the tracked tracks and the unmatched tracks will be

left for the second stage. Then, in the second stage, the boxes with low confidence

will be matched to those left tracks. It is worth noting that in each matching phase,

only the IoU calculated by bounding boxes will be used, which means there is no
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Figure 8.6: ByteTrack achieves the best performance and best FPS. This figure is

copied from [5].

CNN inference in the BYTE tracker. The unmatched low-confidence boxes will be

removed and only the unmatched high-confidence boxes will have the chance to be

initialized as the new-born tracks. Readers can refer to their papers for more details,

and Fig. 8.6 illustrates their trade-off comparing to other tracking algorithms on

the popular MOT benchmarks [226].

For the implementation details, considering the computation costs, we adopt

YoloX-S model as the detection backbone, and utilize the pre-trained weights

provided by [5] which is trained on MOT17 dataset [227]. The input image size of

our model is reisized to 1088× 608, which is commonly used in the tracking tasks.

In the following, we will use “ByteTrack” to represent the YoloX-S detection and

BYTE tracker.

8.3.1 Problems Related to Inference Latency

Performed on our PC, if there is only one camera stream, it can operate in real-

time speed, which is at most ∼ 37 FPS. However, if we parallely execute three

camera streams, it can only achieve average 25 FPS, as shown in the upper part of

Table 8.2. To improve the latency, in recent Nvidia GPUs (including low-levels
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embedding devices and PC-level graphic cards), it supports half-precision (16-bit)

floating points operations, which will barely influence the algorithm performance

in inference stage. Thus, we directly apply this inherent optimization technique,

which is shown in the middle part of Table 8.2. For three parallel camera streams,

it can increase about 1 FPS obviously. Nonetheless, it does not meet our need of

the real-time speed. We then apply the optimization toolkit called TensorRT [219]

proposed by Nvidia. It can optimize the model architecture and the scheduling of

load-store operations from memory which are dedicated for the running platform.

As a result, as shown in the bottom part of Table. 8.2, our system can operate in

real-time speed, which can process at the 36.1 FPS. This represents that out object

detection and tracking tasks are not the bottleneck of the whole MTMC system.

If we can optimize the afterward re-ID feature extraction and MC matching with

real-time speed, the whole system can meet our needs.

8.3.2 Problems Related to Tracking Performance

For our demo system, we utilize DukeMTMC [134] videos as the input streams.

However, the ground truth annotations have been taken down owing to the privacy

issues. We can only visualize the bounding boxes to evaluate our system. Thus,

after visualizing some difficult cases, we found that our ByteTrack cannot perform

well when two pedestrians walk through each other in the same horizontal line.

When they are overlapped, the association of only using IoU of bounding boxes

will fail, which is shown in Fig. 8.7 that after the overlap of two persons, the

Table 8.2: Optimization of ByteTrack in FPS.

Methods System FPS

ByteTrack
1 camera 37.0
3 cameras 25.1

ByteTrack + half-precision
1 camera 37.0
3 cameras 26.1

ByteTrack + half-precision
+ TensorRT

1 camera 36.5
3 cameras 36.1
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Figure 8.7: Visualization of two identities before/after the overlap with original

ByteTrack.

identity will switch to each other.

To make a trade-off between the processing speed and the tracking performance,

we embedded a light-weight ResNet-18 [74] (R-18) as the appearance feature

extractor into original ByteTrack. Before associating with the high-confidence

bounding boxes, we will first extract the appearance features and associate them

with the feature distance. Although the ResNet-18 is not a powerful feature extrac-

tor, we only need it to help match the bounding box and the track with high visual

similarity. Thus, the threshold of the feature distance is small enough to ensure

that we will not match two identities with slightly similar visual appearance. The

overall detection and tracking flow in our system is shown in Fig. 8.8. To maintain

the latency, we also apply TensorRT on our R-18 network. The degradation of

running latency can be seen in Table 8.3, where it only decreases 1 FPS in our

system. The visualization can be seen in Fig. 8.9, where the bounding boxes and

the corresponding identities are correct along the timestamps.

Table 8.3: Degradation of our R-18+ByteTrack in FPS.

Methods System FPS
Optimized ByteTrack 3 cameras 36.1

Optimized ByteTrack
+ R-18

3 camera 35.1
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Figure 8.8: The flow of our detection and tracking system under one camera.

Figure 8.9: Visualization of two identities before/after the overlap with our

ByteTrack+R-18.

8.4 Multi-Camera Tracking and Latency Improve-

ment

For multi-camera tracking, we first need to generate the re-ID features of each

track, which is anticipated to be invariant of a person across cameras. Because each

person under a single camera contains a track with continuous cropped bounding

boxes along the time, we can adopt our proposed non-local video-based re-ID

model introduced in Chapter 2. However, we cannot directly obtain the complete

track owing to the online setting, where the bounding boxes of each identity are

sent to MCT module instantly and continuously. Thus, we decide to generate the
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Figure 8.10: The flow of generating re-ID features of each track.

re-ID feature once we collect T frames of that track, and adopt the running average

to represent the overall features from the start of the track. In our system, we

choose T = 4, and Fig. 8.10 demonstrates our flow for first utilizing re-ID model

and then applying running average to generate features for multi-camera matching.

To choose a suitable re-ID model, we compare the performance and latency of

each model we’ve proposed. In our system, the cropped person image is resized to

256× 128 and thus, the testing input of our model is with size 4× 3× 256× 128,

where 4 is the number of frames and 3 is the number of image channels. Table 8.4

illustrates the results. We compare the latency of four different models on CPU

and GPU, where the second row is the spatially efficient version of NVAN that

the non-local attention is split to multiple stripes. The latency is calculated by

the average of model inference in 100 times. It is worth noting that there is no

obvious difference of latency on GPU between each model. We think that because

GPU can accelerate the matrix multiplication, if only one model and one input

data are executed on the GPU, there is no burden for it and instead, the model with

other non-matrix-multiplication operations will increase the inference time. In

contrast, if we put the model on the hardware with only 6-cores CPU, we can see

the difference of each model. Considering the performance and the latency, in our
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Table 8.4: Comparison of model latency (sec) and performance on DukeV

Methods Latency on CPU Latency on GPU mAP
NVAN [17] 0.143 0.012 96.1

Spatial-NVAN [17] 0.101 0.013 96.1
STE-NVAN [17] 0.088 0.013 95.5

CF-AAN [18] 0.118 0.015 96.2

Figure 8.11: The flow of query the cross-camera ID from shared memory. After

matching with highest similarity, we will record the camera and ID of each other,

where C1 means camera 1.

system, we adopt the “Spatial-NVAN” as our finalized model in the re-ID feature

extractor.

After obtaining the features, we can perform multi-camera matching, which

is the last step in Fig. 8.4. The MC matcher contains a shared memory which

contains the features of each person left their cameras. For the current track in the

view, we will query the memory every 40 frames to match whether there is a same

person leaving other cameras. If the matched feature similarity (the largest one) is

larger than a threshold, we will save the matching information and display on the

videos. Fig. 8.11 demonstrates our matching flow, where the ID 1 in camera 1 will

be matched to the ID 11 under camera 2.
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Table 8.5: Comparison of system FPS with different re-ID model

System
FPS

#cameras Detector SCT Re-ID

3 YoloX BT+R-18 - 35.1
3 YoloX BT+R-18 NVAN 29.1
3 YoloX BT+R-18 Spatial-NVAN 30.0
3 YoloX BT+R-18 R-34 34.5
3 YoloX BT+R-18 Spatial-NVAN + CAIE (f.75) 33.6

8.4.1 Improvement of Latency with our CAIE Pruning

Table. 8.5 demonstrates the system FPS with different re-ID models, where ’BT’

is the BYTE tracker. As shown in the first three rows, using the computationally

expensive NVAN will degrade the average FPS from 35.1 to 29.1. After changing

to proposed Spatial-NVAN, it can increase to 30.0. However, we still hope to

increase the latency. One of the choices is adopting TensorRT as in Sec. 8.3.1.

In this dissertation, instead, we choose to combine our proposed CAIE pruning

illustrated in Chapter 6, into the proposed Spatial-NVAN model. In CAIE, we first

need to target on some hardware constraints; thus, we explore another light-weight

model, which is the Resnet-34 in our experiments, to served as the target # FLOPs

of the CAIE. As shown in the fourth row of Table 8.5, using R-34 (ResNet-34)

as the re-ID feature extractor can maintain the system with 34.5 FPS. Therefore,

because the FLOPs of R-34 is about 0.75× of the Spatial-NVAN, we set the

constraint f.75 in our CAIE. The last row of Table 8.5 shows our final result. We

didn’t illustrate the re-ID evaluation on DukeV but the pruned model still can

achieve the same performance of the unpruned one. For the latency, our pruned

model can increase the FPS from 31.0 to average 33.6 of all three cameras, which

is larger than the real-time speed.

It is worth noting that although the FLOPs of pruned model is equal to that

of R-34, it cannot truly reflect on the latency. The number of layers, number of

channels and the acceleration of GPU will all influence the final inference speed.

The optimal way is to measure the model latency as the hardware constraint in our
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CAIE, and owing to the complicate reform of CAIE if using latency as constraints,

we only adopt the basic version, where the advanced one is introduced in the

thesis [228].

8.5 Visualization of our System

Fig. 8.12 demonstrates two successfully matched identities across cameras. Let’s

first see Fig. 8.12(a), where the matched identity is walking from camera 3 to

camera 2. In the frame No. 211 under camera 3, the man is tracked with ID 2.

After exiting camera 3 and entering camera 2, the man with locally tracked ID

22 is correctly matched to previously appeared ID 2 under camera 3. Fig. 8.12(b)

illustrates the other example that the ID 25 under camera 2 is also correctly matched

to the ID 19 under camera 1.

Figure 8.12: Visualization of two successfully matched identities in our system.
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8.6 Summary

In this chapter, we introduce a distributed MTMCT system, which can alleviate the

burden of transmission bandwidth and the privacy leakage problem. Under this

scenario, we construct a prototype online system executed on one PC with mid-

level graphic card to simulate the real-world scenario and evaluate the performance

of each sub-module. With our optimization, each sub-module can operate in real-

time speed, which is larger than 30 FPS. Specifically, for the re-ID model, we

combine our proposed spatial-NVAN [17] and proposed CAIE pruning [30] to

reduce the complex computation of filter convolutions.



doi:10.6342/NTU202202005

188 8. Prototype of Real-time Online MTMC Tracking System



doi:10.6342/NTU202202005

Chapter 9

Conclusion

In this dissertation, we target on building a real-world multi-target multi-camera

tracking system. The core technique is the person re-identification (re-ID) for multi-

camera tracking. Thus, we address many practical scenarios in the learning of re-ID

model to make it efficient and effective. In Chapter 2, we address the video-based

supervised re-ID, where the state-of-the-art non-local video attention network is

proposed. However, to make it more efficient, we propose spatial and temporal

reduction versions to alleviate the computation burden of self-attention operations.

Also, we found that the noise in the dataset influences the fair comparison of

different algorithms. We propose a simple pre-processing technique to refine the

input of each method and also achieve the best trade-off between performance

and computation. In Chapter 3 and Chapter 4, we tackle the practical semi-

and un-supervised scenarios respectively. With those unlabeled data, we apply

cluster mechanism to generate pseudo-labels of them. In our works, we propose

rectification methods to help reduce the noise and errors in the pseudo-labels and

progressively utilize them to learn the re-ID models. In Chapter 7, we focus on the

new learning framework called federated learning (FL). To prevent the sensitive

data such as face images or pedestrian images from being hacked through the

data transmission, we can only learn the models on multiple local devices and

transmit non-private information to the central server for aggregation, such as the

189
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locally learned neural networks. In our work, we apply the FL setting on well-

developed face recognition dataset and first propose a joint optimization framework

for simultaneously improving the generic representation of aggregated model and

the personalized representation of local models.

To further reduce the model latency on the target hardware, we also focus

on model pruning. Chapter 5 focus on layer-wise filter pruning, where we can

probe the sensitivity of each layer and choose the most insensitive layer to prune

first. In Chapter 6, we follow the most popular global filter pruning method but

propose that we should also consider the hardware constraints when estimating the

importance of each filter. We propose the constraint-aware importance estimation

technique to achieve the best accuracy under the same constraints of others.

Last, we build a prototype of distributed multi-target multi-camera tracking

system. Our system is operated with the online setting that we can only obtain

the present and previous frames of the cameras, which is practical in the real-

world environment. With off-the-shelf algorithms in fast object detection, single-

camera tracking, and the combination of proposed efficient video-based re-ID and

constraint-aware pruning, our self-build system can promisingly achieve real-time

speed (> 30 FPS) when simultaneously operating on three parallel camera streams.

In the future, first, we expect to explore the deployment of FL on person re-ID

datasets, where the privacy issues are concerned most in the recent research of

artificial intelligence. Then, we also want to improve the effectiveness of multi-

camera tracking in our proposed system. The cross-camera matching are only based

on appearance feature now, and we can further improve the matching criterion by

adding the spatial constraints or temporal constrains that can be easily obtained

in the multi-camera system. We hope that our prototype system can facilitate the

community for quickly building an efficient and effective multi-camera system

with state-of-the-art researches in computer vision.
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identical and heterogeneous data,” in International Conference on Artificial

Intelligence and Statistics. PMLR, 2020. 152

[198] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
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D. Bacon, “Federated learning: Strategies for improving communication

efficiency,” arXiv preprint arXiv:1610.05492, 2016. 152

[200] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of

fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019. 152

[201] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in CVPR,

2021. 152, 159

[202] P. P. Liang, T. Liu, L. Ziyin, N. B. Allen, R. P. Auerbach, D. Brent,

R. Salakhutdinov, and L.-P. Morency, “Think locally, act globally: Fed-



doi:10.6342/NTU202202005

218 REFERENCE

erated learning with local and global representations,” arXiv preprint

arXiv:2001.01523, 2020. 152

[203] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: Federated

learning on non-iid features via local batch normalization,” arXiv preprint

arXiv:2102.07623, 2021. 152

[204] H.-Y. Chen and W.-L. Chao, “On bridging generic and personalized feder-

ated learning,” arXiv preprint arXiv:2107.00778, 2021. 152

[205] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint

arXiv:1707.08114, 2017. 152

[206] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He, “Federated meta-learning

with fast convergence and efficient communication,” arXiv preprint

arXiv:1802.07876, 2018. 152

[207] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning:

A meta-learning approach,” arXiv preprint arXiv:2002.07948, 2020. 152

[208] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning by

local adaptation,” arXiv preprint arXiv:2002.04758, 2020. 152, 166

[209] W. Zhuang, Y. Wen, X. Zhang, X. Gan, D. Yin, D. Zhou, S. Zhang, and S. Yi,

“Performance optimization of federated person re-identification via bench-

mark analysis,” in Proceedings of the 28th ACM International Conference

on Multimedia, 2020. 155

[210] C. Li, D. Niu, B. Jiang, X. Zuo, and J. Yang, “Meta-har: Federated

representation learning for human activity recognition,” arXiv preprint

arXiv:2106.00615, 2021. 155

[211] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated

learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018. 157



doi:10.6342/NTU202202005

REFERENCE 219

[212] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust

model fusion in federated learning,” arXiv preprint arXiv:2006.07242, 2020.

157

[213] C.-Y. Wang, Y.-L. Chang, S.-T. Yang, D. Chen, and S.-H. Lai, “Uni-

fied representation learning for cross model compatibility,” arXiv preprint

arXiv:2008.04821, 2020. 159

[214] Y. Wen, W. Liu, A. Weller, B. Raj, and R. Singh, “Sphereface2: Binary

classification is all you need for deep face recognition,” arXiv preprint

arXiv:2108.01513, 2021. 159

[215] G. Wu and S. Gong, “Decentralised learning from independent multi-domain

labels for person re-identification,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 2898–2906. 170

[216] C. C. Loy, C. Liu, and S. Gong, “Person re-identification by manifold rank-

ing,” in Proceedings of IEEE International Conference on Image Processing

(ICIP), 2013, pp. 3567–3571. 170

[217] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,

CA: CreateSpace, 2009. 174

[218] M. Grinberg, Flask web development: developing web applications with

python. ” O’Reilly Media, Inc.”, 2018. 175

[219] N. TensorRT. [Online]. Available: Available:https://developer.nvidia.com/

tensorrt/ 176, 180

[220] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime track-

ing with a deep association metric,” in Proceedings of IEEE International

Conference on Image Processing (ICIP). IEEE, 2017, pp. 3645–3649. 177

[221] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv

preprint arXiv:1804.02767, 2018. 177

Available: https://developer.nvidia.com/tensorrt/
Available: https://developer.nvidia.com/tensorrt/


doi:10.6342/NTU202202005

220 REFERENCE
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