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ABSTRACT

Person re-identification (Re-ID) aims to match images of the
same person across distinct camera views. In this paper, we
propose the Space-Time Guided Association Learning (ST-
GAL) for unsupervised Re-ID without ground truth identity
nor image correspondence observed during training. By ex-
ploiting the spatial-temporal information presented in pedes-
trian data, our STGAL is able to identify positive and negative
image pairs for learning Re-ID feature representations. Ex-
periments on a variety of datasets confirm the effectiveness of
our approach, which achieves promising performance when
comparing to the state-of-the-art methods.

Index Terms— Person re-identification, unsupervised
learning, computer vision

1. INTRODUCTION

Person re-identification (Re-ID) aims to solve the problem
of identifying pedestrians in a camera network. It is fun-
damentally challenging as pedestrians often yield different
poses, scales, and lighting conditions under different cam-
era views. While deep learning methods [1, 2, 3, 4] have
demonstrated promising performance, they typically rely on
labeled datasets to train their models. The task of unsuper-
vised person Re-ID would be more practical yet more difficult
to address. Existing approaches [5, 6, 7] focus on transfer-
ring Re-ID knowledge from a source domain (with ground
truth labels) to the unlabeled target domain. However, as
noted by Li et al. [8], these domain transfer methods typ-
ically overlook the data discrepancy between domains. In-
stead of selecting a “proper” source domain to transfer, some
approaches [8, 9, 10] aim to estimate ID labels directly on the
unlabeled domain. Yet, their performance still significantly
falls behind their supervised learning counterpart.

In addition to visual structure, the spatial-temporal infor-
mation captured along with images, i.e. time stamps and lo-
cation, has been exploited to assist pedestrian identification in
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the literature of multi-camera tracking [11, 12, 13] and person
Re-ID [14, 15]. This information enables us to understand
the pedestrian “traveling pattern” between cameras. As de-
picted in Figure 1, the traveling pattern characterizes the time
for traveling from one camera to another. Therefore, by ob-
serving the time difference between two images, it would be
possible to alleviate the appearance ambiguity problem. How-
ever, the main challenges of utilizing spatial-temporal infor-
mation in unlabeled settings are: 1) One could not easily es-
tablish the traveling patterns without the ground truth identity
of each image. 2) It is not clear how to convert the traveling
pattern information into pedestrian labels for Re-ID purposes.
Existing works either rely on labeled images to build travel-
ing patterns [11, 12, 13, 15] or require learning models with
parameter-tuning efforts [14]. Thus, it is still a challenging
task to realize the above idea in unlabeled settings.

To address these challenges, we propose the Space-Time
Guided Association Learning (STGAL) framework for learn-
ing person Re-ID features with spatial-temporal information
presented in the captured pedestrian images. In particular,
we exploit the time stamps and the camera view of the im-
ages in our STGAL framework. As illustrated in Figure 1,
we first introduce an adaptive method to construct traveling
patterns from unlabeled images. On top of it, we establish a
robust Iterative Best-Buddies Search algorithm and hard sam-
ple mining technique to predict training labels by associating
positive (same ID) and negative (different ID) image pairs.
During inference, we reconstruct the traveling pattern using
the trained model to refine the final person Re-ID results. We
note that our method does not depend on sensitive parameters
and iterative refinement process to learn the model, therefore
it is robust and practically preferable than previous work [14].
Our contributions are highlighted as follows:

• We propose the STGAL framework to leverage spatial-
temporal information for unsupervised person Re-ID.
• We introduce an adaptive method to construct pedes-

trian traveling patterns without ground truth ID.
• We develop an robust matching algorithm and hard

negative mining techniques to predict reliable image
pairs for training Re-ID models.
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Fig. 1: Overview of our STGAL framework. To leverage spatial-temporal information from cross-camera pedestrian im-
ages, we develop an adaptive method for constructing pedestrian traveling patterns (Sec. 2.1), followed by a robust matching
algorithm with hard sample mining techniques to predict positive and negative image pairs for unsupervised re-ID (Sec. 2.2).

2. SPACE-TIME GUIDED ASSOCIATION
LEARNING

Given a set of unlabeled pedestrian images X , our goal is to
learn a function F : (xi, xj)→ R that predicts the confidence
of two images xi, xj ∈X belonging to the same identity. In
this paper, we focus on predicting pseudo labels (i.e., posi-
tive and negative image pairs) with spatial and temporal in-
formation. We first introduce an adaptive method to construct
traveling patterns of pedestrians in Section 2.1, followed by a
robust matching algorithm to perform unsupervised labeling
in Section 2.2. During inference, the traveling patterns will
be utilized to obtain the final Re-ID results (Section 2.3). The
framework of our proposed model is illustrated in Figure 1.

2.1. Constructing Adaptive Traveling Patterns from
Unlabeled Data

As shown in Figure 1, the pedestrian traveling patterns char-
acterize the time spent to travel between any camera pair.
The traveling patterns could serve as a cue to discriminate
visually ambiguous pedestrians. Previous work [11, 12, 13,
15] typically construct traveling patterns with labeled train-
ing data, which is not feasible under our unsupervised set-
ting. While Lv et al. [14] also propose an unsupervised ap-
proach for building traveling patterns, their method requires
different sets of heuristic parameters to work under different
datasets, which is not fully unsupervised essentially. In con-
trast, we propose an adaptive method to automatically esti-
mate the traveling pattern without any identity labeling.

Given a feature extractor φ and xi, xj as images captured
by cameras ci, cj , respectively, we predict their visual associ-
ation probability by:

Pv(xi, xj) = e−α·D(φ(xi),φ(xj)), (1)

where α is a fixed scaling factor andD(·, ·) represents the Eu-
clidean distance function. To build traveling patterns without
ground truth identity, we seek guidance from the intra-camera
characteristics of surveillance videos. More specifically, we
utilize the fact that an image pair captured at the same time
in the same camera view must be of different identities, i.e.,
a negative image pair. These negative pairs allow us to au-
tomatically determine the matching criteria in a data-oriented
fashion. To observe the matched image pairs across cameras,
we have:

Mci,cj =
{

(xi, xj) : Pv(xi, xj) > σ
∣∣∣ xi∈Xci , xj ∈Xcj

}
, (2)

where Mci,cj denotes the matched image pairs between cam-
era ci, cj and Xci , Xcj denotes the images captured by cam-
era ci, cj . Note that σ is automatically determined by the
largest feature distance observed in the aforementioned nega-
tive pairs through:

σ = max (Pv(xai , x
b
i )), (3)

where (xai , x
b
i ) are any intra-camera negative pairs.

To further exploit the spatial-temporal information of
pedestrian images, we observe their traveling patterns by
constructing the PDF of traveling time between cameras
ci, cj based on Mci,cj :

Pt(∆|ci, cj) =
|{(xi, xj) : ∆−ε < |ti − tj | < ∆+ε}|

|Mci,cj |
, (4)

where (xi, xj) ∈ Mci,cj are matched cross-camera images
with time stamps ti, tj and ε is a short time interval. The
traveling probability Pt provides auxiliary information to dis-
criminate visually ambiguous images. The visual similarity
Pv and traveling probability Pt can be further combined to
estimate a more robust association probability Pa of an im-
age pair by:

Pa(xi, xj ,∆, ci, cj) = Pv(xi, xj) · Pt(∆|ci, cj). (5)
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Fig. 2: Iterative best-buddies search algorithm. Images in
yellow bounding boxes denote the query image. Images in
green have the same ID as the query, while images in purple
have different IDs. Note that our searching algorithm identi-
fies positive image pairs based on the travelling patterns ob-
served from unlabeled pedestrian data.

2.2. Iterative Best-Buddies Search for Label Prediction

With the estimated traveling patterns, we propose algorithms
discover useful positive and negative image pairs from the tar-
get domain in a fully unsupervised setting. The collected pos-
itive and negative image pairs are then used for training the
feature extractor φ.

For discovering positive pairs, we develop a robust match-
ing algorithm inspired by the Best-Buddies Pairs (BBP) con-
cept in the field of template matching [16]. Given a query
image, we rank all cross-camera images with the association
probability Pa. A best-buddies pair in this case is a pair of
images that mutually treat each other as their top-ranked can-
didate. The BBP approach can discover one (but only one) re-
liable positive match for a query. Yet, it fails to discover other
valid positive matches that are important to help us learn ro-
bust feature extractor. Take three images of the same ID cap-
tured by three distinct cameras as an example. Ideally, any
two images form a positive pair, so we have a total of

(
3
2

)
= 3

effective positive pairs. However, the standard BBP only al-
lows an image to be matched with one another, so only one
positive pair can be found. To overcome this problem, we pro-
pose the Iterative Best-Buddies Search (IBBS) to find multiple
matches for a single query image. As depicted in Figure 2, af-
ter performing BBP once, we remove the top-ranked sample
(current best-buddy) from the candidate pool and run the BBP
again. By iterating the process until no more BBP is found,
we can discover multiple valid positive pairs for training. In

practice, we perform IBBS for all camera pairs simultane-
ously to discover positive samples automatically.

As for labeling negative pairs, the most straightforward
way would be to regard image pairs with low Pa as negatives.
Yet, we find these samples ineffective for training since most
negatives could be easily distinguished by the pretrained fea-
ture extractor. Instead, we select a pool of image pairs with
Pa lower than the median of the data and sample negative
pairs from the pool with probability in proportion to their Pv .
These samples serve as the hard negative examples to teach
the feature extractor to be more robust because they are visu-
ally similar but are disagreed by the traveling patterns.

2.3. Model Learning and Inference

With the predicted (pseudo) positive and negative pairs, we
train our feature extractor with the batch-hard soft-margin
triplet loss [17, 2]:

L =
∑
q,p,n

log(1 + e‖φ(xq)−φ(xp)‖2−‖φ(xq)−φ(xn)‖2). (6)

where xq, xp, xn denotes the query, positive and negative im-
age. The triplet loss enforces the feature extractor to asso-
ciate positive pairs and separate negative pairs in the embed-
ding space. Though iterating the labeling and training process
may improve the extractor, we find our predicted labels suf-
ficiently robust to achieve optimal performance in just one-
step, which is more time-efficient. During inference, we re-
estimate the pedestrian traveling patterns using techniques in-
troduced in Section 2.1, and utilize both the visual feature
and the traveling pattern to calculate the final ranking func-
tion F(xi, xj ;φ) ≡ Pa(xi, xj ,∆, ci, cj).

3. EXPERIMENTS

3.1. Experimental Settings

We conduct experiments on person Re-ID datasets that comes
with time stamps and location information. All ground truth
ID labels are excluded during the entire training process.
Market-1501 [18] consists of 32,668 pedestrian images and
1,501 IDs captured by 6 cameras. DukeMTMC-ReID [19]
contains 36,411 pedestrian images of 1,812 IDs captured by
8 cameras. In the rest of this paper, we abbreviate Market-
1501, and DukeMTMC-ReID as Market and Duke. As for
evaluation, we report the rank-1 accuracy (R1) of Cumulative
Matching Characteristics and the Mean Average Precision
(mAP) [18].

3.2. Implementation Details

We adopt ResNet-50 [20] as our feature extractor φ and use
the 2048-d feature after the last pooling layer to represent the
input image. We pretrain our feature extractor with intra-
camera labels estimated by SSTT [8], an unsupervised la-
beling method. We note that our method also works with



Table 1: Performances of unsupervised Re-ID meth-
ods. Note that “Transfer” indicates use of other source do-
main labeled data, while “S.T.” denotes observation of spatial-
temporal information. For our method, we report the perfor-
mance of retrieving images with feature distance Pv in Eq. 1,
and with association probability Pa in Eq. 5.

Method
Supervision

Category
Market Duke

R1 mAP R1 mAP
BOW [18] N/A 35.8 14.8 17.1 8.3
PUL [10] N/A 45.5 20.5 30.0 16.4
SPGAN [7] Transfer 58.1 26.9 46.4 26.2
TFusion [14] S.T. 60.8 - - -
TAUDL [8] N/A 63.7 41.2 61.7 43.5
BUC [9] N/A 66.2 38.3 47.4 27.5
ARN [6] Transfer 70.3 39.4 60.2 33.4
ECN [5] Transfer 75.1 43.0 63.3 40.4
Ours (Pv) S.T. 72.1 48.4 68.4 47.1
Ours (Pa) S.T. 93.1 63.5 86.0 68.5

other general pretrained models as demonstrated in later ex-
periments. During training, we optimize Eq. 6 for 30,000 iter-
ations with Stochastic Gradient Descent (SGD) with learning
rate of 0.0005. In all experiments, we fix α in Eq. 1 to be 0.01
and ε in Eq. 4 to be 10 seconds.

3.3. Comparisons with State-of-the-arts

We compare our STGAL with existing unsupervised person
Re-ID methods in Table 1. When retrieving with pure vi-
sual features (Pv in Eq. 1), our method is able to compete
with state-of-the-art methods on both datasets. Note that un-
like domain transfer methods, ours does not require another
“relavent” labeled dataset during training. The model gains
performance from reliable pseudo-labels predicted by our
IBBS algorithm and hard negative examples. Furthermore,
when retrieving with the help of traveling patterns (Pa in
Eq. 5), which is the full version of our framework, our ST-
GAL improves over the best performer by 18% and 22.7%
in R1 on Market and Duke. This significant improvement
attributes to the additional cues provided from space-time
information. The traveling patterns predicted by our method
rule out large proportion of improbable matches and narrow
down to those that are physically plausible.

3.4. Ablation Study

The effectiveness of STGAL. In Table 2, we study the ef-
fectiveness of STGAL with different baseline models. We
report the retrieval results using Pv (Eq. 1) in this table to
focus on the feature extractor performance. First, we com-
pare to a feature extractor pretrained on an unrelated Re-ID
dataset following the convention of previous work [14, 10]
(Baseline A). Our STGAL gains 20.6% and 16.7% in R1 on
Market and Duke thanks to the reliable labels predicted with

Table 2: Effectiveness of STGAL. Baseline A: Pretrain on
an unrelated Re-ID dataset. Baseline B: Pretrain on estimated
intra-camera labels [8].

Methods Market Duke
R1 mAP R1 mAP

Baseline A 30.2 10.1 23.2 10.7
+STGAL 50.8 20.3 39.9 16.5
Baseline B 50.7 26.2 45.7 26.6
+STGAL 72.1 48.4 68.4 47.1

Table 3: Effectiveness of Iterative Best-buddies Pair Algo-
rithm.

Method Market Duke
R1 mAP R1 mAP

BBP 62.4 33.6 67.2 46.1
IBBS (Ours) 72.1 48.4 68.4 47.1

the help of traveling patterns and robust algorithms. More-
over, as our method focuses on predicting inter-camera la-
bels for unsupervised Re-ID, we note that STGAL could be
combined with any intra-camera label estimation techniques
such as [8]. Therefore, we demonstrate a baseline where
we pretrain our feature extractor on intra-camera labels using
SSTT [8] (Baseline B). By applying STGAL on this baseline,
we improve performance by 21.4% and 22.7% in R1 on Mar-
ket and Duke. The consistent gain on both baselines attributes
to our adaptive construction of traveling patterns and reliable
postive and negative labeling methods. The performance gain
on both baselines confirms the effectiveness of our method.
Effectiveness of Iterative Best-Buddies Pair algorithm. In
Table 3, we further analyze the performance of our IBBS al-
gorithm tailored for multi-camera Re-ID in comparison to the
standard BBP described in Section 2.2. We report the retrieval
results of Pv (Eq. 1) in this table to better visualize feature ex-
tractor performance. The feature extractor trained with IBBS
labeled positive pairs gains 14.8% and 1.0% in mAP on Mar-
ket and Duke datasets. Our IBBS is able to discover more
valid positive pairs than the BBP method because IBBS does
not constrain an image to be matched to at most one another.
And by robustly extracting more positive pairs, our model is
able to learn with more training samples and therefore result-
ing in better performance.

4. CONCLUSION

In this paper, we present a novel STGAL framework to learn
Re-ID features without any ID ground truth. We generate
psuedo labels for image pairs by exploiting spatial-temporal
information within pedestrian images to train our feature ex-
tractor. Through the experiments, we confirm the effective-
ness of our algorithm design and achieve promising perfor-
mance on several unsupervised person Re-ID benchmarks.
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