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Abstract

Video-based person re-identification (Re-ID) aims at matching video sequences of
pedestrians across non-overlapping cameras. It is a practical yet challenging task of
how to embed spatial and temporal information of a video into its feature representa-
tion. While most existing methods learn the video characteristics by aggregating image-
wise features and designing attention mechanisms in Neural Networks, they only ex-
plore the correlation between frames at high-level features. In this work, we target
at refining the intermediate features as well as high-level features with non-local at-
tention operations and make two contributions. (i) We propose a Non-local Video At-
tention Network (NVAN) to incorporate video characteristics into the representation at
multiple feature levels. (ii) We further introduce a Spatially and Temporally Efficient
Non-local Video Attention Network (STE-NVAN) to reduce the computation complex-
ity by exploring spatial and temporal redundancy presented in pedestrian videos. Ex-
tensive experiments show that our NVAN outperforms state-of-the-arts by 3.8% in rank-
1 accuracy on MARS dataset and confirms our STE-NVAN displays a much superior
computation footprint compared to existing methods. Codes are available at https:
//github.com/jackie840129/STE-NVAN.

1 Introduction
Person re-identification (Re-ID) tackles the problem of retrieving pedestrian images/videos
across non-overlapping cameras. Previous approaches mostly focus on image-based Re-ID,
where each pedestrian possesses multiple images for retrieval [4, 9, 11, 18, 22, 24, 34, 42].
Recently, video-based Re-ID has drawn significant attention in literature since retrieving
pedestrian videos is more realistic and critical in real-world surveillance applications [12, 26,
32, 35]. With the emergence of large-scale video-based Re-ID datasets [26, 35], researchers
design Deep Neural Networks to learn robust representation for videos [1, 8, 17, 23, 26, 45].
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To perform video-based Re-ID, typical methods require learning a mapping function to
project the video sequences to a low-dimensional feature space, where Re-ID can then be
performed by comparing distances between samples. As demonstrated by numerous works,
training the convolutional Neural Network (CNN) as a mapping function has dominated over
classic methods with hand-crafted features [6, 15, 20]. Usually, they obtain features for a
sequence by aggregating image features with average or maximum pooling [23, 26]. How-
ever, their approaches fail to handle occlusion or spatial misalignment in video sequences
since it treats all images in a sequence with equal importance [1]. In order to distill rele-
vant information for Re-ID, some works integrate Recurrent Neural Network to learn the
spatial-temporal dependency in an end-to-end training manner [2, 23, 39]. Recently, several
works propose attention mechanism to weight the importance of different frames or differ-
ent spatial locations to aggregate a better representation [1, 8, 17]. While these methods
successfully capture both the spatial and temporal characteristics of video sequences, they
only explore the aggregation of high-level features for representation, which might not be
sufficiently robust for fine-grained classification tasks such as Re-ID [19, 25, 40].

In this paper, we first aim to improve the representation for video sequences by exploit-
ing spatial and temporal characteristics in both low-level and high-level features. Inspired by
Wang et al. [33], we propose a Non-local Video Attention Network (NVAN) by introducing
the non-local attention layer into an image classification CNN model. The non-local atten-
tion layer enriches the local image feature with global sequence information by generating
attention masks according to features of different frames and different spatial locations. By
inserting non-local attention layers at different feature levels, NVAN explores the spatial and
temporal diversity of a sequence and alters its feature representation subsequently rather than
combining individual image features with a set of weights as in previous works. Our NVAN
model surpasses all state-of-the-art video-based Re-ID methods by a large margin on the
challenging MARS [26] dataset, proving that exploiting global information for multi-level
features is crucial for learning representation for video sequences.

While applying non-local attention layer to multi-level features significantly improves
the Re-ID performance, it comes at a great cost in terms of computation complexity. In fact,
it increases the total floating point operations (FLOP) by 99.3%, making it difficult to scale
up to practical applications. To alleviate such challenge, we take advantage of the space-time
redundancy in pedestrian videos and propose a Spatially and Temporally Efficient Non-local
Video Attention Network (STE-NVAN). We first reduce the granularity of attention masks
in non-local attention layers by exploiting the spatial redundancy exhibited in pedestrian
images. On the other hand, we explore the temporal redundancy between video frames
to aggregate image-wise information into a representative video feature with a hierarchical
structure. By reducing the computation complexity both spatially and temporally, our STE-
NVAN cut down 72.7% of FLOP compared to original NVAN with only 1.1% drop in rank-1
accuracy on MARS dataset. Our proposed STE-NVAN demonstrates a much superior trade-
off between performance and complexity compared to existing video-based Re-ID methods.
The contribution of our work can be summarized as follows:

• We introduce the non-local attention operation into the backbone CNN at multiple
feature levels to incorporate both spatial and temporal characteristics of pedestrian
videos into the representation.

• We significantly reduce the computation count for our Non-local Video Attention Net-
work by exploring the spatial and temporal redundancy presented in pedestrian videos.

• Extensive experiments validate that our proposed model not only outperforms state-
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of-the-art methods in Re-ID accuracy but also requires less computation count than
existing attention methods for video-based Re-ID.

2 Related Work
In this section, we briefly review the related works regarding image-based person Re-ID,
video-based person Re-ID and the usage of attention mechanisms for the Re-ID problem.

Image-based person Re-ID has been extensively studied over the years. With the success
of CNNs [11, 19, 27, 37, 44], deep features learned from the networks has replaced hand-
crafted features [4, 9, 20, 42] for representing pedestrian images. As suggested by Zheng et
al. [43], these networks can be categorized into discriminative learning and metric learning.
Discriminative learning learns deep features for identity classification with the help of the
cross-entropy loss [27, 37, 44]. As for metric learning, Hermans et al. [11] use the triplet
loss to teach the network to push together features of the same person and pull away features
of different people. In this work, we utilize both loss functions to train our network for
video-based person Re-ID.

Video-based person Re-ID is an extension of image-based person Re-ID. Zheng et al. [26]
introduce a large-scale dataset to enable the learning of deep features for video-based Re-ID.
They first train a CNN to extract image features then aggregate them into a sequence features
with average/maximum pooling. Other works [23, 39, 45] adopt Recurrent Neural Networks
to summarize image-wise features into a single feature by exploiting temporal relation within
a sequence.

Recently, attention mechanisms are introduced for capturing spatial and temporal char-
acteristics of pedestrian sequences within the deep features. Xu et al. [38] introduce the
joint attentive spatial and temporal pooling network to extract sequence features by jointly
considering the query and gallery pairs with an affinity matrix. Li et al. [17] learn attention
weights to combine features of different spatial locations and different temporal frames into
a sequence feature. Chen et al. [1] utilize techniques in [29] to perform self-attention on each
video snippet and co-attention between video snippets for learning sequence features. Fu et
al. [8] learn sequence features by mining features of discriminative regions and select impor-
tant frames with a parameter-free attention scheme. While these works achieve promising
results by introducing spatial and temporal attention on top of high-level features obtained
from image-based CNNs, they overlook the importance of utilizing video characteristics at
intermediate feature levels. In contrast, our proposed NVAN is able to refine intermedi-
ate features with spatial and temporal information of videos and our efficient STE-NVAN
model substantially reduces the computation cost for incorporating video characteristics at
lower feature levels.

3 Proposed Method
Given an image sequence of any pedestrians, we aim to learn a CNN to extract its feature
representation that enables video-based person Re-ID in the embedding space. The key to
learning a representative feature for a sequence is to incorporate video characteristics into
the feature itself. To this end, we introduce the non-local attention layer into the CNN to
explore the spatial and temporal dependency of a video sequence. We propose a Non-local
Video Attention Network (NVAN) in Sec. 3.1 to apply such operations at different feature
levels. However, we observe incredibly large computation complexity with the introduction
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Figure 1: (a) Details of Non-local Attention Layer. (b) Overview of our Non-local Video
Attention Network (NVAN). In NVAN, given T sampled images as input, the 5-Non-local
ResNet-50 network generates T features, which incorporates the spatial and temporal infor-
mation of videos at multi-levels with the help of Non-local Attention Layers. The features
are then pooled into one vector in FPL for loss optimization and Re-ID matching.

of attention mechanisms. Hence, we further propose the Spatially and Temporally Efficient
Non-local Video Attention Network (STE-NVAN) in Sec. 3.2 to alleviate the computation
cost by exploiting spatial and temporal redundancy which exists in pedestrian videos.

3.1 Non-local Video Attention Network
To extract features for an image sequence, we take input as a subset of video frames selected
by restricted random sampling (RRS) strategy and forward through a backbone CNN net-
work incorporating non-local attention layers and a feature pooling layer (FPL) to obtain the
representation vector for video-based Re-ID, as shown in Figure 1 (b).

Restricted Random Sampling (RRS). There are several ways to handle the long-range
temporal structure. To balance speed and accuracy, we adopt the restricted random sampling
strategy [17, 31]. Given an input video V, we divide it into T chunks {Ct}t=[1,T ] of equal
duration. For training, we randomly sample an image It in each chunk. As for testing, we use
the first image of each chunk. The video is then represented by the ordered set of sampled
frames {It}t=[1,T ].

Non-local Attention Layer. To embed video characteristics into the features, we introduce
the non-local layer proposed by Wang et al. [33] into the backbone CNN, as illustrated in
Figure 1 (a). Given an input feature tensor X ∈ RC×T×H×W obtained from a sequence of T
feature maps of size C×H×W , we desire to exchange information between features across
all spatial locations and frames. Let xi ∈ RC sampled from X , the corresponding output
yi ∈ RC of non-local operation can be formulated as follow:

yi =
1

∑∀ j eθ(xi)T φ(x j)
∑
∀ j

eθ(xi)
T φ(x j)g(x j). (1)

Here, i, j = [1,T HW ] indexes all locations across a feature map and all frames. We first
project x to a lower dimensional embedding space RC′ by using linear transformation func-
tions θ ,φ ,g (1× 1× 1 convolution). Then, the response of each location xi is computed
by the weighted average of all positions x j by using Embedded Gaussian instantiation. The
Equation 1 in non-local layer is a self-attention mechanism which is also mentioned in [33].
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The overall non-local layer is finally formulated as Z = WzY +X , where the output of non-
local operation is added to the original feature tensor X with a transformation Wz (1×1×1
convolution) that maps Y to the original feature space RC. The intuition behind the non-local
operation is that when extracting features at a specific location in a specific time, the net-
work should consider the spatial and temporal dependency within a sequence by attending
on the non-local context. In our person Re-ID scheme, we embed five non-local layers into
our backbone CNN which is a ResNet-50 network [10] to comprehend the semantic relation
presented in videos, as shown in Figure 1 (b).

Feature Pooling Layer (FPL). After passing the image sequence through the backbone
CNN and non-local attention layers, we employ the feature pooling layer to obtain the fi-
nal feature for Re-ID, shown in Figure 1 (b). We apply 3D average pooling (3DAP) along
the spatial and temporal dimension to aggregate the output features of each image into a
representative vector, followed by a batch normalization (BN) layer [13]. We train the
network by jointly optimizing the cross-entropy loss and the soft-margin batch-hard triplet
loss [11]. Interestingly, we empirically find that optimizing cross-entropy loss on the final
feature while optimizing triplet loss on the feature before BN results in the best Re-ID per-
formance. A rational explanation is that the embedding space without normalization is more
suitable for distance metric learning such as the triplet loss, while the normalized feature
space forces the model to classify samples on a more constraint angular space with cross-
entropy loss [5, 11, 21, 30].

3.2 Spatially and Temporally Efficient Non-local Video Attention
Network

While our proposed NVAN is able to capture sophisticated properties of video sequence
with the help of non-local operations, we observe a significant increase in the computation
complexity as shown in Table 1, where FLOP ramp up from 30.4G to 60.0G. For scaling
NVAN to practical usage scenarios, we introduce two complexity reduction techniques to
cut down the computation count.

Spatial Reduction with Pedestrian Part Characteristics. Originally, the introduced non-
local operations perform dense affinity calculation between features of all T HW positions to
obtain a fine attention mask. This results in heavy computation of complexity O(C′T 2H2W 2+
CC′T HW ) for each non-local attention layer. Applying the non-local attention layer to lower
feature levels incurs larger complexity since low level features are typically of higher H,W .
To alleviate such effect, we group the features along the horizontal direction to form a more
compact representation of the feature tensor. The intuition is that pixels of the same hor-
izontal stripe tend to share similar characteristics which can be utilized to generate coarse
representation of the image. It is worth noting that while similar ideas have been explored
in Re-ID literature [2, 3, 20, 28], they use this concept to generate finer features for Re-ID.
In contrast, we exploit this redundancy to obtain coarser representation. We partition the
original feature tensor X ∈RC×T×H×W into S horizontal groups by adding the “Make stripe”
module at the input of non-local operations. The resulting tensor X ′ ∈ RC×T×S requires
only O(C′T 2S2 +CC′T S) to complete the operation, which is irrelevant to the spatial size
of feature maps. This dramatically reduces the computation complexity and enables us to
deploy non-local operation to lower feature levels with constant computation cost. We name
it Spatial Reduction Non-local Layer and illustrate the idea in Figure 2 (a).
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Figure 2: (a) Spatial Reduction Non-local Layer. (b) Temporal Reduction with Hierar-
chical Structure. Details are explained in Section 3.2. Noting that, for figure (a), before the
residual addition, we repeat the tensor of shape C× T × S to C× T ×H ×W . As for fig-
ure (b), we apply max-pooling across adjacent features after the stages with non-local layers
to construct our hierarchical structure.

Temporal Reduction with Hierarchical Structure. During our experiments, we observe
that features refined by non-local operations are often temporally similar as non-local oper-
ation aims to embed global temporal information into the features. Inspired by this observa-
tion, we exploit the temporal redundancy between features of different frames and propose
a hierarchical structure to reduce the heavy computation of extracting sequence feature. We
illustrate this idea in Figure 2. After passing a sequence of images through a series of con-
volutions (Residual blocks) and non-local attention layers, we apply max pooling across
features of adjacent frames and reduce the temporal feature dimension by a factor of 2. We
perform the same reduction operation after another stacks of Residual blocks until the tem-
poral dimension is reduced to 2, which is then sent to FPL for final feature summarization.
This temporal reduction technique cuts down the computation required for extracting se-
quence feature with Residual blocks and non-local attention layers. By applying both the
Spatial Reduction Non-local Layers and the Hierarchical Temporal Reduction structure, we
come up with the final Spatially and Temporally Efficient Non-local Video Attention Net-
work (STE-NVAN) for video-based person Re-ID.

4 Experiments
We evaluate our approach on two large-scale video-based person Re-ID datasets, MARS [26]
and DukeMTMC-VideoReID [35]. We conduct ablation studies to validate the effectiveness
of non-local operations and the two proposed reduction methods. We compare our NVAN
and STE-NVAN models to existing state-of-the-arts to demonstrate that our proposed models
display superior performance while requiring less computation counts.

4.1 Experimental Setup
Datasets and Evaluation Protocal. MARS [26] is one of the large video-based person
Re-ID datasets, consisting of 17,503 tracks and 1,261 identities. Each track has 59 frames
on average. Deformable Part Model [7] is employed to detect pedestrians and GMCP [41] is
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Table 1: Comparisons of different baselines with two reduction methods. This table
shows the performance results and the computation count of baseline models, NVAN and
STE-NVAN. The “Reduc.” is the abbreviation of Reduction.

Method Feature MARS DukeV # FLOPAggregation R1 mAP R1 mAP
ResNet-50 FPL 87.3 79.1 95.0 92.7 30.4 G
ResNet-50 max-FPL 86.3 76.6 95.4 92.4 30.4 G
NVAN FPL 90.0 82.8 96.3 94.9 60.0 G
NVAN+Spatial Reduc. FPL 89.7 82.5 96.3 94.7 30.4 G
NVAN+Temporal Reduc. FPL 89.2 81.2 95.6 93.7 40.4 G
STE-NVAN FPL 88.9 81.2 95.2 93.5 16.5 G

used to track pedestrians. To make the dataset even more challenging, they include 3,248 dis-
tractor tracks in the dataset. DukeMTMC-VideoReID [35] is another large-scale benchmark
recently introduced for video-based person Re-ID. It comprises 4,832 tracks and 1,404 iden-
tities and 408 distractor identities. Each track contains 168 frames on average. Detection
and tracking ground truth are manually labeled. In the following literature, DukeMTMC-
VideoReID will be abbreviated as “DukeV” for convenience. In our experiments, we adopt
the standard train/test split and report both rank-1 accuracy (R1) and Mean Average Precision
(mAP) to evaluate the Re-ID performance.

Implementation Detail. For the RRS strategy described in Sec. 3.1, we segment each
video into T = 8 chunks and sampled 8 images as the input sequence. Each frame is
resized to 256× 128 and synchronously augmented with random horizontal flip for each
track. We adopt the ImageNet pre-trained ResNet-50 [10] as our backbone network, and
modified conv5_1 to stride 1 instead of stride 2 to better adapt the Re-ID task. For our
NVAN, we insert 2 non-local attention layers after conv3_3,con3_4 and another 3 after
con4_4,con4_5,con4_6 respectively. As for STE-NVAN, we set S = 16 in Spatial Reduc-
tion Non-local layer and perform max-pooling right after the second and the fifth non-local
attention layer to reduce temporal dimension. We train our network for 200 epoch with both
cross-entropy loss and triplet loss [11] and choose Adam [14] optimizer with an initial learn-
ing rate of 10−4 and decay it by 10 every 50 epochs. Following the suggestion in [11], we
sample 8 identities, each with 4 tracks, to form a batch of size 8×4×8 = 256 images.

4.2 Ablation Studies

Effectiveness of Non-local Attention Layer and Two Reduction Methods. We first com-
pare our NVAN model with two baseline models to demonstrate the power of non-local op-
erations. The two baseline models (ResNet-50) use the same backbone network as NVAN
but without non-local attention layers. The only difference between the two baselines is that
one replace the 3DAP in FPL with 3D maximum pooling operation. The first three rows in
Table 1 illustrate the results. It reveals that non-local operations improve the R1 and mAP
significantly by 2.7%,3.7% on MARS and 1.3%,1.6% on DukeV. The improvement con-
firms the effectiveness of incorporating spatial and temporal characteristics in the sequence
feature of different semantic levels. However, we observe an dramatic 99.3% increase in
FLOP accompanying the introduction of non-local operations. Therefore, we propose two
reduction techniques by exploiting spatial and temporal redundancy in pedestrian videos.
Table 1 shows that our spatial reduction strategy cuts down the FLOP to approximately the
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Table 2: Comparison of NVAN network with
different # frames of RRS strategy.

# frames MARS DukeV
R1 mAP R1 mAP

T = 4 89.0 81.0 95.3 92.7
T = 6 89.4 81.6 95.6 93.4
T = 8 90.0 82.8 96.3 94.9

Table 3: Comparison of NVAN network with
different # non-local layers embedded.

# non-local MARS DukeV
layers R1 mAP R1 mAP
1 layer 89.0 81.8 95.8 93.7
3 layers 89.0 82.4 96.3 94.9
5 layers 90.0 82.8 96.3 94.9

Table 4: Comparison of different # stripes in
spatial reduction non-local layer.

# stripes MARS DukeV #FLOPR1 R1
S = 4 89.6 96.3 30.4G
S = 8 89.5 96.1 30.4G
S = 16 89.7 96.3 30.4G

Table 5: Comparison of different pooling po-
sition combinations in hierarchical structure.

Pooling MARS DukeV #FLOPpositions R1 R1
in 3DAP 90.0 96.3 60.0G
+stage 4 89.8 96.1 53.6G
+stage 3 89.2 95.6 40.4G

same level as baseline networks while only incurring 0.3% R1/mAP drop on MARS and
0.2% mAP drop on DukeV. As for temporal reduction, we save 32.6% of FLOP from NVAN
and sustain only 1.1% R1 loss on both datasets and 1.7% and 1.2% mAP loss. Finally, by ap-
plying both spatial and temporal reduction techniques on NVAN, which is our STE-NVAN,
we achieve 72.7% FLOP reduction compare to NVAN and requires 45.7% less FLOP com-
pare to the baseline that doesn’t employ any attention mechanism. It shows that our proposed
STE-NVAN not only improves the Re-ID performance but also demonstrates a more efficient
method of extracting sequence features.

Analysis of NVAN. To better understand the property of non-local operations, we conduct
analysis on NVAN regarding RRS strategy and number of inserted non-local attention layers.
In Table 2, we discover that by increasing the number of frames T sampled from a sequence
in RRS, Re-ID performance increases steadily as more frames provide richer information
about a pedestrian. We pick T = 8 for our NVAN and STE-NVAN in consideration of the
memory capacity of our machine. On the other hand, we observe performance gain as we
insert more non-local attention layers. In Table 3, we insert a non-local layer at conv4_6
for “1 layer” and insert 3 non-local layers at conv3_4,conv4_5,conv4_6 for “3 layers”. We
insert 5 non-local layers for NVAN and STE-NVAN since it performs the best.

Analysis of STE-NVAN. Next we investigate the parameters for designing STE-NVAN.
Starting from NVAN, we apply the spatial reduction techniques to group features into hor-
izontal stripes in non-local attention layer. Table 4 shows that while increasing number of
stripes S does not introduce excessive additional FLOP, it improves the Re-ID performance
subtly. As for analyzing temporal reduction, we increase the pooling operations through-
out the network. For comparison, “in 3DAP” in Table 5 is the NVAN model that pools all
features after the last convolutional layer. By employing additional pooling after the non-
local layers located in stage4 (“+ stage 4”), we reduce 10.7% of FLOP from NVAN. And
by introducing another additional pooling after non-local layers at stage3 (“+ stage 3”), we
remove 32.7% of FLOP from NVAN while only dropping 0.8% and 0.7% of R1 on MARS
and DukeV.
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Table 6: Comparison with state-of-the-arts approaches on MARS and DukeV.

Methods Source MARS DukeV
R1 mAP R1 mAP

CNN+Kiss. [26] ECCV16 65.0 45.6 - -
SeeForest [45] CVPR17 70.6 50.7 - -
LatentParts [16] CVPR17 70.6 50.7 - -
TriNet [11] arXiv17 79.8 67.7 - -
ETAP-Net(supervised) [36] CVPR18 80.8 67.4 83.6 78.3
STAN [17] CVPR18 82.3 65.8 - -
CSACSE+OF [1] CVPR18 86.3 76.1 - -
STA (N=8) [8] AAAI19 86.2 81.2 96.0 95.0
NVAN (ours) - 90.0 82.8 96.3 94.9
STE-NVAN (ours) - 88.9 81.2 95.2 93.5

4.3 Comparison with State-of-the-arts Approaches

Table 6 reports the comparison of our NVAN and STE-NVAN to state-of-the-art video-based
person Re-ID approaches. For STA [8], we display their results sampling 8 images per
sequence to be fair with our method. On MARS, our NVAN achieves 90.0% in R1 and
82.8% in mAP, surpassing all methods by a large margin. Our efficient STE-NVAN also
performs better than all methods in R1 and breaks even with STA in mAP despite using less
FLOP than NVAN. On the other hand, our NVAN and STE-NVAN still displays competitive
results on DukeV, where Re-ID on DukeV is easier than MARS since detection are manually
annotated. The superior Re-ID performance on two benchmark datasets proves the value of
applying non-local operations for extracting a better representation of videos.

To take the computation complexity into consideration, we compare our method with ex-
isting methods that also uses attention mechanisms on the performance-computation plot in
Figure 3. We visualize mAP on MARS dataset for the performance and #FLOP for compu-
tation counts. For STA, we report three variants of their with different numbers of sampled
frames per sequence to better demonstrate their trade-off. Results show that our proposed
STE-NVAN exhibits a much better mAP-FLOP trade-off compared to current state-of-the-
arts. STAN [17] and CSACSE+OF [1] even lands outside of the plot since their mAP and
FLOP are beyond the scale of our plot. The results not only indicates the advantage of our
proposed spatial and temporal reduction techniques but also reveal the importance of con-
sidering computation complexity when design feature extractors for video sequences.

5 Conclusion
We introduce a Non-local Video Attention Network (NVAN) which incorporates multiple
non-local attention layers to extract spatial and temporal video characteristics from low to
high feature levels, which enrich the representation of videos in person re-identification. To
alleviate the computation cost, we proposed a Spatially and Temporally Efficient Non-local
Video Attention Network (STE-NVAN), which spatially reduce the non-local operation by
utilizing pedestrian part characteristics and temporally reduce the operation with hierarchical
structure. Extensive experiments are conducted to prove that our STE-NVAN is a superior
trade-off between performance and computation.
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Figure 3: Computation-performance plot of our proposed STE-NVAN and existing
methods with attention mechanisms.
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