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Introduction

• What is person re-identification (Re-ID)?
• Match the images of same person across multiple cameras.

• Challenge for supervised learning methods
• It is hard to annotate persons across cameras.

• Unrealistic to deploy in a real-world scenario.

• Unsupervised cross-domain learning is popular
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Query Gallery
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Unlabelled target domain
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Related Work

• Domain adaptation 
• Clustering-based method[5,6,7], which are popular and very effective.
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[5] Hehe Fan, Liang Zheng, Chenggang Yan, and Yi Yang.  “Unsupervised person re-identification: Clustering and fine-tuning”. In TOMM, 2018

Pretrain CNN with 
labelled data

Cluster the features of 
unlabelled data

Fine-tuning with pseudo 
labels



Motivation

• Problems in clustering-based Re-ID methods
• Hard positive pair → Easily be mis-clustered to different groups

• Hard negative pair → Different people with similar appearance are in the same group 
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Proposed Method

• Goal : Rectify hard samples in clustering results
• Inter-Camera Mining (ICM)→ Hard positive samples

• Part-Based Homogeneity (PBH) → Hard negative samples
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Clustered-Based Baseline Framework

• Iterative learning of clustering and CNN training
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CNN ∅
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3. Update pseudo labels

1. Extract feature

ID classification loss
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Clustered-Based Baseline Framework
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[14] Liu, Hongye, et al. "Deep relative distance learning: Tell the difference between similar vehicles." In CVPR. 2016

[15] Ergys Ristani and Carlo Tomasi. Features for multi-target multi-camera tracking and re-identification. In CVPR, 2018
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Technique 1 : Inter-Camera Mining
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CNN training

cam1             cam2

•Problem : CNN is only optimized with similar positive pairs within the same camera

• Solution : Shorten the distance of hard positive samples

Same person are grouped 
in different cluster!

cam1             cam2

Same identity
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Inter-Camera Mining

• Obtain 𝑅𝑎𝑛𝑘 𝑃 for every image 𝑃
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N-1𝑃 1 2 3 4 5 N-26 …

N-1𝑃 3 N-26 …7 8 9
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1. Rank all images in target dataset by feature distance 

2. Remove images captured by the same camera as image 𝑃

3. Select top-k samples to form 𝑅𝑎𝑛𝑘 P
k

small large
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Inter-Camera Mining

• Additionally adopt Top-K best buddies pair [18]
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3 6 𝑃 1 5 9 3 𝑃
Best buddies pair

𝑃 3 6 7 8 9

Check if 𝑷 exist in 𝑅𝑎𝑛𝑘 𝟑
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Inter-Camera Mining

• Additionally adopt Top-K best buddies pair [16]
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Technique 2: Part-Based Homogeneity

• Problem: Different people with only subtle difference are possibly grouped into 
same cluster

• Solution: Partition off hard negative samples
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CNN training

ID1             ID2

Different people are grouped 
in same cluster!
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Part-Based Homogeneity

• Define imperfect cluster
• Calculate Silhouette score [9] 

• 𝑚𝑆𝑖𝑙 𝑗 : mean Silhouette score of cluster j

• Select cluster that 𝑚𝑆𝑖𝑙 𝑗 < 𝜆
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a(i) : average distance to i
within same cluster

b(i) : average distance to i
within closest cluster

i𝑆𝑖𝑙 𝑖 =
𝑏 𝑖 − 𝑎(𝑖)

max{𝑎 𝑖 , 𝑏(𝑖)}

[9] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 1987
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Part-Based Homogeneity

• Assign new pseudo labels based on part-based features
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Proposed Framework

• Iterative learning of clustering and CNN training
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Proposed Framework

• Iterative learning of clustering and CNN training
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Experiment Setting

• Dataset
• Market-1501 [10]

• DukeMTMC-ReID [11]

• Evaluation measure
• R1 (Rank-1 accuracy) 

• mAP (mean average precision)
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[10] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person re-identification: A benchmark. In ICCV, 2015.
[11] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi. Performance measures and a data set for multi-target, multicamera tracking. In European 
Conference on Computer Vision workshop on Benchmarking Multi-Target Tracking, 2016
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Experiments

• Effectiveness of ICM and PBH
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Experiments

• Effectiveness of ICM and PBH
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Experiments

• Effectiveness of ICM and PBH
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Experiments

• Comparison with State-of-the-arts
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Clustering-based
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Conclusion
• We propose an inter-camera mining technique to mine potentially 

hard positive samples

• We propose a part-based homogeneity technique to partition off the 
imperfect clusters containing hard negative samples

• Conduct extensive experiments and achieve state-of-the-art on two 
benchmarks among existing unsupervised methods
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