

Problem Statement

> Unsupervised cross-domain person re-identification Given labelled source domain, perform re-ID on unlabelled target domain

Motivation

> Clustering-based method is the mainstream.

Problems in clustering-based Re-ID methods

 \succ Hard positive pair \rightarrow Easily be mis-clustered to different groups

Hard negative

 \succ Hard negative pair \rightarrow Different people with similar appearance are in the same group

Goal : Rectify hard samples in clustering results

. 🔺 🔶

We propose **two** techniques :

- 1. Inter-Camera Mining (ICM) \rightarrow rectify hard positive samples
- 2. Part-Based Homogeneity (PBH) → rectify hard negative samples

Hard Samples Rectification for Unsupervised Cross-domain Person Re-ID

Chih-Ting Liu^{*}, Man-Yu Lee^{*}, Tsai-Shien Chen, Shao-Yi Chien Graduate Institute of Electronics Engineering, National Taiwan University

Proposed method

* denotes equal contributions

2021 IEEE International Conference on Image Processing, Anchorage, Alaska, USA

(a)

) Ablation Studies				I	labelled	unlabelled		
Experimental setting	loss functions & components				$Duke \rightarrow Martket$		Market \rightarrow Duke	
	\mathcal{L}_{CE}	\mathcal{L}_{trip}	\mathcal{L}_{ICM}	PBH	R1	mAP	R1	mAP
Direct Transfer					50.1	20.9	36.2	18.3
Baseline	\checkmark	\checkmark			72.9	46.3	60.2	42.2
Baseline w/ PBH	\checkmark	\checkmark		\checkmark	74.5	47.1	63.5	44.6
Baseline w/ \mathcal{L}_{ICM}	\checkmark	\checkmark	\checkmark		83.8	63.3	73.5	54.4
HSR (Ours)	\checkmark	\checkmark	\checkmark	\checkmark	85.3	65.2	76.1	58.0

- **Direct Transfer** : testing with only pretrained model

(b) Comparison to state-of-the-arts

Methods	$Duke \rightarrow Market$		Market \rightarrow Duke		_
Methous	R1	mAP	R1	mAP	_
PUL [7]	45.5	20.5	30.0	16.4	_
CAMEL [6]	54.5	26.3	-	-	
SPGAN [3]	58.1	26.9	46.9	26.4	
HHL [4]	62.2	31.4	46.9	27.2	Clustering-based methods
MAR [19]	67.7	40.0	67.1	48.0	
PAST [8]	78.4	54.6	72.4	54.3	
SSG [9]	80.0	58.3	73.0	53.4	
pMR-SADA [20]	83.0	59.8	74.5	55.8	
GDS-H [10]	81.1	61.2	73.1	55.1	
HSR (Ours)	85.3	65.2	76.1	58.1	_

- [1] Tali Dekel, et al. Best-buddies similar-ity for robust template matching, In CVPR, 2015 [2] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 1987
- [3] Market: Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person re-identification: A benchmark. In ICCV, 2015.
- [4] Duke : E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi. Performance measures and a data set for multi-target, multicamera tracking. In European Conference on Computer Vision workshop on Benchmarking Multi-Target Tracking, 2016

Experiment Results

Baseline : iterative clustering & training with triplet loss and cross-entropy loss

Reference