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Abstract
Video-based person re-identification (Re-ID) aims at

matching the video tracklets with cropped video frames for
identifying the pedestrians under different cameras. How-
ever, there exists severe spatial and temporal misalignment
for those cropped tracklets due to the imperfect detection
and tracking results generated with obsolete methods. To
address this issue, we present a simple re-Detect and Link
(DL) module which can effectively reduce those unexpected
noise through applying the deep learning-based detection
and tracking on the cropped tracklets. Furthermore, we
introduce an improved model called Coarse-to-Fine Axial-
Attention Network (CF-AAN). Based on the typical Non-
local Network, we replace the non-local module with three
1-D position-sensitive axial attentions, in addition to our
proposed coarse-to-fine structure. With the developed CF-
AAN, compared to the original non-local operation, we can
not only significantly reduce the computation cost but also
obtain the state-of-the-art performance (91.3% in rank-
1 and 86.5% in mAP) on the large-scale MARS dataset.
Meanwhile, by simply adopting our DL module for data
alignment, to our surprise, several baseline models can
achieve better or comparable results with the current state-
of-the-arts. Besides, we discover the errors not only for the
identity labels of tracklets but also for the evaluation proto-
col for the test data of MARS. We hope that our work can
help the community for the further development of invariant
representation without the hassle of the spatial and tempo-
ral alignment and dataset noise. The code, corrected labels,
evaluation protocol, and the aligned data will be available
at https://github.com/jackie840129/CF-AAN .

1. Introduction
Person re-identification (Re-ID) aims to solve the prob-

lem of identifying pedestrians in a multi-camera surveil-
lance system. Many researches focus on the image-based
setting that identifies people with still images [19, 23, 36,
50, 46]. Recently, video-based Re-ID [10, 14, 15, 26]
has drawn significant attention since comparing continuous
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Figure 1: Video tracklet processed with our re-Detect
and Link (DL) module. (a) The tracklet is with unexpected
noise, where the frame at t = 4 is dominated by the man in
blue shirt, but the ground truth identity is the girl in white
dress. (b) The tracklet after DL is less interfered by the man.

video sequences is more practical for the real-world scenar-
ios. Besides, the appearance information with spatial and
temporal relations in a video tracklet contains more cues
for matching people under different views. The most com-
monly used methods for tackling video sequences are the
3D convolution [37] and Non-local operation [40], which
can effectively aggregate the features along the spatial and
temporal dimensions. However, in contrast to image-based
setting that the training and testing images of pedestrians are
chosen with the least noise from their belonged tracklets,
the video-based Re-ID faces more unexpected challenges
owing to the imperfect bounding box detection.

MARS [47], the largest video-based Re-ID dataset so far,
adopted traditional DPM [8] as the pedestrian detector and
applied GMMCP tracker [6] with color histogram as im-
age features, which is not robust enough for linking peo-
ple under a complicated environment with occlusion. As
Fig. 1(a) illustrated, the bounding boxes generated by the
weak detector cannot well fit the desired identity (the girl
with white dress). Recently, Gu et al. [10] proposed the
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appearance preserving module (APM) inserted before the
3D convolution to align the features along the temporal axis
based on each anchor (the center) frame of the 3D sliding
windows. Although the method achieves the state-of-the-art
performance, it still cannot resolve the problems when the
center frame contains unexpected noise, such as the fourth
frame in Fig 1(a), where the APM will align the third and
fifth frames (if the filter size along the temporal axis is 3)
according to the appearance of the man with blue T-shirt.

Since efficient deep-learning algorithms are well-
developed for object detection and tracking in the past few
years [34, 27, 2, 41], to help the community for the further
development of invariant representation without the hassle
of the spatial and temporal alignment, we revised the origi-
nal dataset with our proposed simple but effective re-Detect
and Link (DL) module. Because we cannot obtain the orig-
inal video stream containing the whole image frame, our
DL module serves as a pre-processing technique on the Re-
ID data. Given the original noisy cropped sequence, we
first apply a pretrained efficient object detector [2] to gen-
erate much tighter bounding boxes. If there are multiple
pedestrian candidates, we will link the pedestrians based
on their image features using ID-discriminative embedding
(IDE) [49]. Last, according to the aspect ratio and the posi-
tion of the bounding box, we resize and pad it to the desired
image size, as shown in Fig 1(b). Surprisingly, with only the
input data processed by our DL module first, even the C2D
baseline method [10], which only averages the features of
each image generated by 2D ResNet [11], or the normal 3D
convolution model P3D-C [32] can achieve promising re-
sults. As shown in Table 1, we conduct more experiments
on the original and the processed data using some recent
state-of-the-arts reproduced by ourselves. From the table, it
can be seen that originally the AP3D with the APM module
proposed by Gu et al. [10] (the last row) can boost about
2% in mAP compared to its P3D-C counterpart (the sec-
ond row). However, with the aligned input images gener-
ated by our DL module, it only increase 0.4% in mAP. This
shows that the state-of-the-art AP3D cannot extract more
discriminative features for Re-ID given the already aligned
data. Furthermore, we can see that the self-attention based
Non-local Network [10, 26] combined with our DL mod-
ule can achieve the new state-of-the-arts, which means the
self-attention on the less noisy data can generate more rep-
resentative Re-ID features. Thus, in the next step, we focus
on the Non-local Network but developing an efficient base-
line model which can perform comparable results.

Non-local Network achieves state-of-the-art perfor-
mance on video-based Re-ID, but its high computation
cost remains an issue for practical usage. Each feature
point along spatial and temporal dimensions needs to com-
pute its self-attention map for all other points. To re-
duce the computation while retaining the performance of

Table 1: Performance of recent state-of-the-arts reproduced
with our re-Detect and Link (DL) on MARS [47]. The score
with underline is the runner-up.

Method Original Results w/ our DL
mAP rank-1 mAP rank-1

FT-WFT [31] 82.9 88.6 83.8 90.0
P3D-C [32, 10] 83.1 88.5 85.0 91.0
C2D [10] 83.4 88.9 84.9 91.0
Non-Local [10, 26] 85.0 89.6 86.2 91.4
TCLNet [14] 85.1 89.8 85.8 90.8
AP3D [10] 85.1 90.1 85.4 91.0
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Figure 2: Illustration of the labeling errors and ambiguous
cases in MARS [47] testing set. More samples and details
can be found in Sec. 4.5.

Non-local Network on Re-ID, following the idea of axial-
attention [13, 16] and the multi-granularity (coarse-to-fine)
structure in [45], we propose the Coarse-to-Fine Axial-
Attention Network (CF-AAN). With the axial attention, we
can factorize the 3D attention operation into three 1-D
attention ones sequentially along the height-, width- and
temporal-axis. To further boost the efficiency, in con-
trast to [45] that adding the coarse-to-fine module after
the whole model backbone, we directly integrate it into
our axial-attention. We split the input tensor into multiple
scales along the channel dimension, and transform the spa-
tial dimension from coarse to fine scales. To the best of
our knowledge, we are the first to adopt axial-attention in
video-based Re-ID. Our DL+CF-AAN approach not only
achieves the state-of-the-art performance on two large-scale
datasets [47, 42], but also significantly save the computation
as compared with vanilla Non-local Network, which can be
regarded as an efficient baseline self-attention method.

In addition to the application of our DL module that can
significantly improve the performance, we also find that
there are multiple labeling errors or noises in the MARS
testing data. As shown in Fig. 2(a), the two tracklets are
labeled as different identities (ID 142 and 184) but are ac-
tually the same person. Or in Fig. 2(b), the tracklet with ID
404 in camera 2 also appears in the distractor class (ID 0),
which will make the model easily match the two tracklets
but counted as an error matching in the evaluation. There
are also some ambiguous cases that cannot be distinguished
even by human. As in Fig 2(c), the ID 318 is the man in blue
behind but the bounding boxes also contains the woman in
white (ID 322). Thus, we revise the labels in the testing
set and the original evaluation protocol. The details will be
described in Sec. 4.5. We hope that the release of our DL



processed test data on MARS can help the community to
validate their methods on a clean testing set and push the
further development of improved representation.

Our contributions can be highlighted as follows:
• We propose a re-Detect and Link module that can align

the noisy tracklet on the image level, which makes a
simple method achieving comparable performance.
• Besides the aligned data, we additionally provide re-

vised identity labels and evaluation protocol in MARS
testing set, which helps validate the new methods on a
corrected benchmark.
• A baseline Coarse-to-Fine Axial Attention Net-

work (CF-ANN) is proposed, which performs axial-
attention from coarse to fine levels, which not only re-
duces the computation cost but achieves the promising
performance.

2. Related Work
We briefly review the recent related development of

video-based person re-identification as follows.

Video-based Person Re-identification Compared to
image-based Re-ID, video-based setting contains more
frames and additional temporal information. Typically, re-
searchers aggregate the information among a tracklet with
temporal modeling or attention-based algorithms and opti-
mize the model with discriminative learning [49] or met-
ric learning [12]. For temporal modeling, McLaughlin et
al. [30] first applied Recurrent Neural Network (RNN) on
the frame-wise CNN features to allow information flowing
among different frames and obtain a sequence-level repre-
sentation. Inspired by the success of 3D Convolutional Neu-
ral Network on action recognition [4, 18], the work [21]
first adopted the 3D convolution to automatically learn the
relation from low- to high-level features along spatial and
temporal dimensions. In order to resolve the alignment
problems, Gu et al. [10] then proposed an APM module in-
serted before the 3D convolution to align the features among
each 3D filters. In contrast to treating each frame even,
some works utilized the attention mechanism that can fo-
cus on some specific regions representing the identity bet-
ter [22, 35, 5, 9, 26, 45]. Li et al. [22] proposed multiple
spatial attention modules that can focus on many important
spatial regions across different frames and the spatial fea-
tures are then aggregated by a learnable temporal attention.
Chen et al. [5] adopted a novel co-attention mechanism that
can dynamically learn the feature representation based on
the query and gallery pairs. Zhang et al. [45] explored the
attention mechanism with a global reference, which can ef-
fectively learn the attention more on the region with close
relation to the global guidance. Besides performing atten-
tion on the last layer of CNN features, Liu et al. [26] started
to aggregate the popular non-local self-attention [40] inside
the CNN backbone. Compared to those methods, our model

is based on the self-attention operation and added with com-
putation efficient structures into the model design.
Self-Attention Since the self-attention based Trans-
former [38] obtained a great success in nature language pro-
cessing, recently many works started to tackle the problems
in computer vision with self-attention [40, 1, 7, 33, 13, 39,
3, 16]. The plain type of the self-attention is the non-local
network [40] without the position encoding and multi-head
attention and was proposed to solve the problem of video
classification. Because the non-local self-attention is com-
putation demanding, axial-attention [13, 39] were proposed
to factorize the operation into multiple 1-D self-attentions,
which can extremely reduce the cost. Dosovitskiy et al. [7]
and Carion et al. [3] even integrated the whole transformer
respectively into the image classification and object detec-
tion tasks, and they all obtained comparable performance
to the methods with original CNN backbone. Our work fo-
cus on adding the efficient axial-attention module with our
proposed coarse-to-fine structure into typical CNN to learn
spatially and temporally attentive feature representation.
Dataset and Evaluation Protocol Revision In the field
of person re-identification, there is no work exploring and
revising the original imperfect data or discussing the eval-
uation protocols, labeling errors, and the ambiguous cases
in the testing set. We found that in the field of face de-
tection, there are some works investigating the noise in the
labels or the bias in evaluation protocols [29, 25, 44]. Math-
isas et al. [29] provided improved annotations of existing
face datasets and evaluation criteria that resolved the origi-
nal problems. Besides, they also showed that when properly
used, a simple vanilla baseline can reach top performance
on face detection. Lin et al. [25] and Zhang et al. [44] both
tried to remove the data with labeling errors before training
by utilizing the inherent data distributions. Compared to
our work, we adopt pretrained deep learning-based object
detector to refine the original test data that are unfit to the
target identity. With the aligned data, even a simple base-
line method can achieve outstanding performance. More-
over, we manually check the errors with the existing Re-ID
evaluation protocol and provide some revision of not only
the labels but the evaluation protocol.

3. The Proposed Method
Fig. 3 demonstrates the pipeline of our re-Detect and

Link (DL) techniques and the proposed Coarse-to-Fine Ax-
ial Attention Network (CF-AAN). Given an original imper-
fect video tracklet V with N images, V = {I1, I2, .., IN},
we first adopt our DL module to obtain the processed track-
let V ′, which is more robust and aligned. The detail of
our DL will be described in Sec. 3.1. Then, as the typ-
ical pipeline of video-based Re-ID, we sample T frames
from V ′ as the input of our CF-AAN. Our network con-
sists of a backbone CNN and multiple Coarse-to-Fine Axial
Attention (CF-AA) modules, which are separately inserted
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Figure 3: Pipeline of our DL and CF-AAN architecture. The original tracklet V is first fed into the DL module and become
the processed tracklet V ′, which will then be sampled and fed to CF-AAN. We demonstrate one CF-AA module between the
Lth and (L + 1)th CNN block. There are two scales of features and the axial-attention will perform on each of them. The
outputs will be up-sampled and concatenated to become the input of the next CNN block.

between the CNN blocks. The operations in our CF-AAN
are described in Sec. 3.2. Last, in Sec. 3.3, the video fea-
tures generated by our CF-AAN will be aggregated with the
masks created along with DL module and optimized with
the common losses for Re-ID.

3.1. Data Alignment with re-Detect and Link
With the noisy video tracklet V with N images, we se-

quentially perform our re-Detect and Link (DL) method on
each video frame and create a new processed tracklet V ′
with N frames, too. As illustrated in Fig. 4, first, all images
are padded and fed to the object detector [2] to generate can-
didate bounding boxes with the “person” class. For the first
frame, if there are multiple candidates, we will assume that
the bounding box with larger area is the desired one. Then,
similar to the feature-based real-time object tracking [41],
we extract the feature f of the cropped image I ′1 by the IDE
feature extractor trained on the original dataset [47], and
save it as the global feature fg = f1. Next, for each con-
secutive frame i, if there are multiple candidates, we will
compare each extracted feature f ji to the global feature fg
and choose the one with the smallest Euclidean distance,
where j is the index of the candidate bounding box in ith

frame. After choosing the candidate for the ith frame, the
global feature will then be updated by

fg = αfg + (1− α)fi , (1)

where α is set to 0.9 in our case.
Note that in Re-ID datasets, we cannot obtain the origi-

nal full image frame captured by cameras and perform our
DL method. Thus, after we apply object detection on the
noisy cropped image, we may obtain a new cropped identity
with only part of his/her appearance, as shown in Fig 1(b).
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Figure 4: Illustration of the re-Detect and Link module.

According to the aspect ratio and the position of the bound-
ing box in the image, if the bounding box is slim (the height
is much larger than the width) and its position is on the left
(right) of the image, we will shift it to the right (left), re-
size it based on its original aspect ratio and pad it to the
desired image size. Furthermore, we also create a mask Mi

of the output image I ′i representing whether each pixel is
the padded one or not. This mask will then be applied in
the feature aggregation of our CF-AAN, which will be de-
scribed in Sec. 3.3.
Discussion Comparing to other methods proposing an
automatically learned feature alignment mechanism inside
their backbone model [51, 10], our DL module adopts an
additional object detector to help reduce the original noise
in the data. It seems that our method requires additional
computation cost but and utilizes extra information. How-
ever, we want to point out that the goal behind our DL mod-
ule is to simulate a nowadays real-life scenario with efficient
and robust deep learning-based object detection and track-
ing before Re-ID. Thus, when it really comes to the Re-ID
phase, actually there has been no need for this additional



cost of DL module on the input tracklet. Furthermore, as
shown in the Table 1, with the aligned data, the simplest
baseline can obtain a promising Re-ID result and the orig-
inal state-of-the-art methods that specifically deal with the
problems of misalignment will not retain its competitive-
ness. We think that with the release of the data processed
by our simple alignment method, it can help the community
explore more on the attention-based methods or the meth-
ods for learning invariant feature representation.

3.2. Coarse-to-Fine Axial-Attention Network
As shown in Table 1, the existing self-attention based

Non-local Network can achieve the best result on the
aligned data. However, the efficiency is the main drawback.
We propose a simple method called Coarse-to-Fine Axial-
Attention Network that contains a coarse-to-fine mecha-
nism and a position-sensitive axial-attention which dramat-
ically reduce the computation burden but retain comparable
performance.

Self-Attention: We first introduce the typical 3D self-
attention [40] operation as follows. Given an input fea-
ture map x ∈ RCin×T×H×W with channels Cin, temporal
length T , height H , and width W , the output y at position
o = (i, j, t), yo ∈ RCout , is computed by aggregating all
the projected input as :

yo =
∑
p∈N

softmaxp(qTo kp)vp (2)

where N is the set of the whole HWT locations, and
queries qo, keys ko, and values vo are three different linear
projections of the input xo, ∀o ∈ N from dimension Cin

to intermediate Cq,k for query and key projection or Cout

for value projection. As opposed to convolution which only
captures local relations, this mechanism allows us to cap-
ture related but non-local context in the whole feature map.
Commonly, it will be inserted into multiple locations be-
tween the backbone CNN layers, and each complexity is
O(H2W 2T 2).

Axial-Attention: To reduce the computation of non-local
self-attention, in 2D image classification tasks, the axial-
attention has been proposed [13], they factorized the 2D
self-attention operation into two 1-D axial-attentions. When
applied to our video-based Re-ID, the 3D self-attention will
be consecutively factorized into height-axis, width-axis and
the temporal-axis. With this transformation, the complexity
can be reduced to O(H2WT + HW 2T + HWT 2). The
formulation of the axial-attention, with the height-axis as
an example, is as follows.

yo =
∑

p∈NH×1×1

softmaxp(qTo kp)vp (3)

where the location p only lies along the H axis.

Furthermore, based on the concept proposed in the
Transformer [38], many works start to encode the posi-
tional encoding into the self-attention structure [3, 1, 33].
Thus, the final method we adopt is based on the positional-
sensitive axial-attention proposed in [39], where the learn-
able positional encoding vectors depends on the query vec-
tors, key vectors and the value vectors. The formulation is
as follows with the height-axis as an example.

yo =
∑

p∈NH×1×1

softmaxp(qTo kp + qTo r
q
p−o + kTp r

k
p−o)

(vp + rvp−o) (4)

where the rqp−o, rkp−o, and rvp−o are the learned relative po-
sitional embedding. Besides, in practice, as shown in Fig 3,
we will extend the single-head attention into multi-head at-
tention to generate a mixture of affinities. To retain the
complexity, if there are M parallel single-head attentions,
in the mth head, each dimension of the qm,km, and vm

will be shrunk to Cq,v

M and Cout

M . The dimension of the
learnable positional vectors rqp−o, rkp−o and rvp−o are also
shrunk but the vectors are shared across each head. Thus,
the final output zo will be the concatenation of each head,
zo = concatm(ymo ), with the same dimension Cout. Last,
after conducting the axial-attention (AA) along the three di-
mensions, we will project the output feature from dimen-
sion Cout back to Cin and added with the input tensor x
to become a new refined tensor x′, which is formulated as
follows.

x′ = x+ Conv(AAT (AAW (AAH(x)))) (5)

Coarse-to-Fine Axial Attention: In addition to multi-
head attention that learns different structure of affinities,
we propose a Coarse-to-Fine Axial-Attention module (CF-
AA) that not only makes the self-attention learn on differ-
ent scales of the spatial dimension but further reduce the
computation. Different from [45], which can only perform
multi-scale structure on the last layer of CNN backbone
with the smallest resolution, we can apply our structure
along with the axial-attention from the mid-level stage to
high-level stage inside the backbone. As shown in Fig. 3,
we split the input tensor x with S scales along the channel
dimension and for the sth scale, we downsample the spatial
resolution to Hs ×Ws, where Hs = H

2s−1 and Ws = W
2s−1 .

Thus, if S = 2 as an example, the original input tensor x
will be split into x1 ∈ R

Cin
2 ×T×H×W with a fine scale and

x2 ∈ R
Cin
2 ×T×

H
2 ×

W
2 with a coarse scale. The split ten-

sors are then separately fed into the axial-attention and the
outputs are upsampled and concatenated along the channel
dimension in order to retain the original tensor size.

3.3. Feature Aggregation and Optimization
Our CF-AAN contains a 2D CNN backbone and several

CF-AA modules inserted between the CNN blocks. Af-



ter the last CNN layer, there will be T tensors with size
RC′×H′×W ′ . As mentioned in Sec. 3.1, because there are
some input pixels which are the padded ones without any
information, we first downsample the mask M to M ′ ac-
cording to the spatial dimension H ′ and W ′, and utilize the
mask to average-pool on the desired spatial region to gen-
erate T vectors with C ′ dimension. Then, we aggregate the
features with the typical average operation followed by a
Batch-Normalization (BN) layer [17] to create the final fea-
ture representation fV of the video tracklet. To optimize the
network, we follow the two loss combinations in BoT [28],
which consists of a batch-hard triplet loss [12] on the fea-
tures before BN and a cross-entropy loss [49] on the identity
classifier (a fully-connected layer) after the feature fV .

4. Experiments
In this Section, we conduct extensive evaluation and ab-

lation studies of the proposed approach in addition to the
analysis and correction of data noise and labeling errors for
the evaluation dataset.
4.1. Datasets and Evaluation Protocol.

We evaluate the proposed method on two large-scale
datasets, MARS [47] and DukeMTMC-VideoReID [42],
abbreviated as DukeV. MARS consists of 17,503 tracks and
1,261 identities. Each track has 59 frames on average. De-
formable Part Model [8] is employed to detect pedestrians
and GMMCP [6] is used to track pedestrians. To make the
MARS dataset even more challenging, they include 3,248
distractor tracks. For DukeV, it comprises 4,832 tracks and
1,404 identities. Each track contains 168 frames on average.
Different from MARS, the detection and tracking ground
truth are manually labeled. We use the rank-1 (R1) in the
Cumulative Matching Characteristics (CMC) and the mean
Average Precision (mAP) [48] as evaluation metrics.
4.2. Implementation Details.
re-Detect and Link. Our object detector is the
YoloV4 [2] pretrained on the COCO dataset [24].
The IDE [47] model for linking the candidates is a ResNet-
50 [11]. We perform our DL module both on MARS and
DukeV dataset. However, because only the MARS dataset
is adopted with traditional detector and tracker, where the
data in DukeV is manually labeled, the processed data of
DukeV is almost the same as before.
CF-AAN. For our CF-AAN, we adopt ImageNet pre-
trained ResNet-50 [11] as our backbone. Similar to the
structure of Non-local Network [40], we insert 5 CF-AA
modules, 2 after conv3 3, conv3 4 and another 3 after
conv4 4, conv4 5, and conv4 6 respectively. In our
coarse-to-fine structure, we split the feature into four levels
(S = 4) and in each axial-attention, we set the number
of head M = 2. Thus, the total number of heads in a
coarse-to-fine axial-attention module is equals to 8, which
is similar to the original axial-attention network [39]. In
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Figure 5: Examples of video tracklets processed by our DL.

the training stage, we sample T = 6 images as an input
tracklet. Each frame in a tracklet is resized to 256 × 128
and synchronously augmented with random horizontal
flip. As for the optimizer, Adam [20] with weight decay
5 × 10−5 is adopted. We train the model for 220 epochs.
The learning rate is initialized to 10−4 and multiplied by
0.1 after every 50 epochs. In the testing stage, for each
tracklet, we split it into several 6-frame clips, and then
the feature representations for each clip are averaged to
become the final representation.

4.3. Ablation Study
In Table 2, we conduct ablation study on our proposed

re-Detect and Link (DL) module and our Course-to-Fine
Axial-Attention Network (CF-AAN). Besides the Re-ID
performance, we also calculate the computation cost of in-
ference in terms of GFLOPs. We first analyze the effective-
ness of the DL module on our baseline method (the first two
rows). Our “Baseline” method, with 24.52 GFLOPs op-
erations, contains the same ResNet-50 backbone, types of
losses and training details but without all the axial-attention
modules, which is just the average of features in each frame.
We can clearly see that with the aligned data processed by
DL, there is an obvious improvement of the performance
(1.7% in mAP). Thus, the alignment of the input video
tracklet is crucial and important for the subsequent feature
extraction. We also demonstrate some extra examples in
Fig. 5. We can see that the problems of misalignment in the
left tracklet and the multiple candidates in the right tracklet
are resolved after processed with the DL module.

Next, we compare the self-attention based methods. The
first one is Non-local Network (the 3th row), which is
with single head 3D self-attention but without the positional
encoding. Although it can improve about 1.1% in mAP
compared to the baseline, the computation also increases
(+17.213 GFLOPs), which is extremely large and almost
equal to the baseline. After replacing the operation with
axial-attention, the computation can reduce to only +0.361
GFLOPs, while the performance slightly decrease owing to
its factorized self-attentions. With the multi-head structure
(the 5th row), it can retain the computation cost but increase
the performance.



Table 2: The Ablation Study of our DL and CF-AAN. We compare the effectiveness of our DL and all the components in
CF-AAN with the computation cost (GFLOPs) and performance on MARS. Except the baseline itself, all other computation
costs are the increase comparing to the baseline method. CB : the computation cost of the baseline method.

Method w/ our DL Self-attention Module #GFLOPs MARS
Self-attention # of heads Posi. Encoding # of scales mAP R-1

Baseline 8 8 8 8 8 24.520 (CB) 83.4 87.7
4 8 8 8 8 85.1 89.7

Non-local 4 3D self-attention 1 8 1 CB+17.213 86.2 91.4

Axial-based

4 Axial-attention 1 8 1 CB+0.361 86.0 91.1
4 Axial-attention 8 8 1 CB+0.361 86.2 91.2
4 Axial-attention 8 Sinusoidal 1 CB+0.377 86.0 91.1
4 Axial-attention 8 Relative 1 CB+0.424 86.4 91.2
4 Axial-attention 8 Relative 2 CB+0.245 86.4 91.3
4 Axial-attention 8 Relative 4 CB+0.126 86.5 91.3

We then apply two types of positional encoding to ex-
plore their effectiveness. The first one is the sinusoidal en-
coding (the 6th row) which is the same as the experiments
in [1] and the learnable relative positional embedding (the
7th row) proposed in [39]. We can see that there is no sig-
nificant influence of all kinds of positional encoding but the
relative and learnable characteristics are the best for Re-ID,
which can achieve 86.4% in mAP. Last, in the last two rows,
we demonstrate the benefits brought by our coarse-to-fine
structure. We can see that, because the spatial dimensions
decrease in the coarser scale, the total operations also de-
crease. When the number of scales is 4, the operation can
increases only 0.126 GFLOPs compared with the baseline,
which is only about 1% of those in Non-local Network. Fur-
thermore, owing to the coarse-to-fine structure that makes
the self-attention learn on different scales, the performance
even increases to 86.5% in mAP on MARS dataset. The
CF-AAN with four scales is our final model performing the
video-based Re-ID.

4.4. Comparison with State-of-the-art Approaches
We compare recent state-of-the-art approaches with our

methods on MARS and DukeV datasets in Table 3. We can
see that in the past, the methods that globally perform at-
tention mechanism on the last CNN features are the main-
stream for dealing with video tracklet [22, 35, 5, 9]. How-
ever, the noise and unaligned appearance between frames
make it hard to learn a robust attention score. In an-
other way, TCLNet [14] conduct the attention frame by
frame, which is less interfered by the alignment problems.
AP3D [10] is the recent work that adopts 3D convolution
with a feature alignment module inserted between 3D CNN
blocks. We can see that once reducing this unaligned prob-
lem, a 3D CNN can achieve the best results (in R-1). The
MG-RAFA [45] is also the attention-based method, but they
adopt the multi-granularity (multi-scales) structure on the
output of the CNN features, where the features will then be
fed to their global attention methods. This structure obtains

Table 3: Comparison with state-of-the-arts (%). The
score with underline is the runner-up.

Method MARS DukeV
mAP R-1 mAP R-1

DRSA (CVPR18)[22] 65.8 82.3 - -
EUG (CVPR18)[43] 67.4 80.8 78.3 83.6
DuATM (CVPR18)[35] 67.7 81.2 - -
TKP (ICCV19)[22] 73.3 84.0 91.7 94.0
M3D (AAAI19)[21] 74.1 84.4 - -
Snippet (CVPR18)[5] 76.1 86.3 - -
STA (AAAI19)[9] 80.8 86.3 94.9 96.2
VRSTC (CVPR19)[15] 82.3 88.5 93.5 95.0
NVAN (BMVC19)[26] 82.8 90.0 94.9 96.3
FT-WFT (AAAI20)[31] 82.9 88.6 - -
TCLNet (ECCV20)[14] 85.1 89.8 96.2 96.9
AP3D (ECCV20)[10] 85.1 90.1 95.6 96.3
MG-RAFA (CVPR20)[45] 85.9 88.8 - -
DL+CF-AAN (Ours) 86.5 91.3 96.2 96.7

the best results in mAP. Our method consists of a simple
but effective pre-processing DL module followed by an ex-
tremely efficient CF-AAN. Different from [45], our coarse-
to-fine structure is inserted with the axial-attention module
between the backbone CNN blocks. We can see that our
methods achieve promising performance, which outperform
AP3D [10] 1.4% in mAP and 1.2% in R-1 on the MARS
dataset. Although the data in DukeV are manually labeled,
our model still can retain comparable performance. Thus,
in summary, with almost no extra computation cost com-
pared to the baseline, where conducting the DL module is
also effortless in real-life scenario, we are the state-of-the-
art in terms of the popular mAP metric for the video-based
person Re-ID task.
4.5. Label Cleaning and New Evaluation Protocols

As described in Sec. 1, we found some labeling errors
or ambiguous cases in the MARS dataset. Thus, we manu-
ally check the testing data of the unmatched ones in evalua-
tion and propose a new protocol which additionally address
three kinds of new situations: labeling errors, duplication in
distractor, and ambiguous identity.
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Figure 6: Three kinds of label noises in the MARS testing data.

Purely labeling errors by annotators: There are also
three kinds of labeling errors shown in Figs. 6(a)-(c). The
first one is that a tracklet may be annotated as another ex-
isting identity (6(a)). Or, there are completely two groups
of tracklets labeled as a different person but in fact with the
same identity (6(b)). Sometimes the tracklet does not be-
long to any other identities in the testing set. As Fig. 6(c)
shows, the identity 270 is the woman but the tracklet marked
with red box is the baby she holds. For those three cases,
we fix the annotation with the correct or new identity.
Duplication in Distractor Class: In the original evalua-
tion protocol of MARS [47], if a query tracklet matches a
gallery tracklet with the same identity but under the same
camera, this match will be ignored because Re-ID aims at
matching pairs across cameras. However, the “distractor
class (ID 0)” in MARS consists of not only the false posi-
tive bounding boxes created by pedestrian detector but also
some duplicated bounding boxes of the tracklets in testing
set. As shown in Fig. 6(d), the tracklet with ID 374 under
camera 2 will easily match the same tracklet in distractor
and strangely counted as an incorrect match. Thus, we re-
vise the evaluation protocol that if a tracklet matches the
other one under the same camera with its same identity or
the distractor class, they will both be ignored.
Ambiguous Identity: There are some ambiguous cases
in the dataset. As the tracklet in Fig. 6(e), the unfit bound-
ing box contains two persons (ID 485 and ID 422) from the
beginning to the end of the tracklet. With our DL, there
is only one person left but the true identity cannot be even
distinguished by human. For those cases, we will add an ad-
ditional ambiguous identity of the tracklet and in the eval-
uation process, the matches of those identities will all be
counted as the correct ones.

Similar to Table 1, we reproduce some existing methods
not only with data processed by our DL but evaluated under
our new protocols, which are shown in Table 4. Further-
more, with their released codes, we also demonstrate the
computation cost in inference time with fairly 6-frames clip
as input data in terms of GFLOPs. We can see that all meth-
ods can improve largely by 2.5% in mAP, but our CF-AAN

Table 4: Performance evaluated with/without new evalu-
ation protocols (N.E.) and the computation cost of recent
methods with DL on MARS [47].

Method (w/ our DL) w/o N.E.
(mAP)

w/ N.E.
(mAP) # GFLOPs

C2D [10] 84.9 87.5 24.520
P3D-C [32, 10] 85.0 87.5 26.030
AP3D [10] 85.4 88.2 26.369
TCLNet [14] 85.8 88.4 30.150
Non-Local [10, 26] 86.2 88.6 41.733
CF-AAN (ours) 86.5 88.9 24.646

still achieves the best result (88.9% in mAP). When regard-
ing the computation cost, those of our CF-AAN are compa-
rable to the ones of the simplest C2D baseline method and
promisingly, also lower than all existing state-of-the-arts.

5. Conclusion
In this work, we present a simple re-Detect and Link

module to further process the Re-ID datasets, which can sig-
nificantly refine the data generated with obsolete methods.
Furthermore, the proposed Coarse-to-Fine Axial-Attention
Network significantly improves the original non-local mod-
ule in terms of computational cost with three 1-D position-
sensitive axial-attentions and the proposed coarse-to-fine
structure while achieving the state-of-the-art performance.
With our refined data, we find that several baseline mod-
els can achieve comparable results with current state-of-the-
arts. In addition, we also disclose the errors not only for the
identity labels but also the evaluation protocol for the test
data of MARS. With these findings, we hope the release of
corrected data can encourage the community for the further
development of invariant representation on view, pose, il-
lumination, and other variations without the hassle of the
spatial and temporal alignment and dataset noise.
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