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Takeaways

 What Is a Kalman Filter?
 Why do we need Kalman Filters?
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Introduction

» Recursive data processing algorithm

— Generates optimal estimate of desired
guantities given the set of measurements

— Optimal: For linear system and white Gaussian
errors, Kalman filter is “best” estimate based
on all previous measurements.

— Recursive: doesn’t need to store all previous
measurements and reprocess all data each
time step.



The Problem
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« System state cannot be measured directly.

* Need to estimate “optimally” from measurements.
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Conceptual Overview (/9

<

« Lost on the 1-dimensional line
* Position — x(t)
« Assume Gaussian distributed measurements
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Conceptual Overview (/9
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« Sextant Measurement at t;: Mean = z; and Variance = o,
« Optimal estimate of position is: X(t;) = z4
° . . . . 2 _ 2
Variance of error in estimate: ox(t;) = o7,
« Boat in same position at time t, - Predicted position Is z,;



Conceptual Overview (/o)
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« SO0 we have the prediction §7(t,)

* GPS Measurement at t,: Mean = z, and Variance = o,

« Need to correct the prediction due to measurement to get X(t,)
» Closer to more trusted measurement — linear interpolation?



Conceptual Overview (/o)
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« Corrected mean is the new optimal estimate of position

« New variance is smaller than either of the previous two
variances



Conceptual Overview ()

« Lessons so far:

Make prediction based on previous data: X, o

v

Take measurement: zy, o,

v

Optimal estimate (§) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1 — Kalman Gain)



Conceptual Overview (/9
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. Attime t5, boat moves with velocity d—’é =u

« Naive approach: Shift probability to the right to predict

« This would work if we knew the velocity exactly (perfect model)



Conceptual Overview (9
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« Better to assume imperfect model by adding Gaussian noise

dx
dt

 Distribution for prediction moves and spreads out

=u+w



Conceptual Overview (/o)
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 Now we take a measurement at t,
* Need to once again correct the prediction
« Same as before



Conceptual Overview (99

* Lessons learnt from conceptual overview:
— Initial conditions (8x_; and oy_1)
— Prediction (X , o)

» Use initial conditions and model (eg. constant velocity) to
make prediction

— Measurement (zy)
« Take measurement
— Correction (Xx , ox)

* Use measurement to correct prediction by ‘blending’
prediction and residual — always a case of merging only two
Gaussians

» Optimal estimate with smaller variance
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Theoretical Basis

* Process to be estimated:
Xk = AXg_q + Buy + wy Process Noise (w) with covariance Q

7 = Hxyp + vi Measurement Noise (v) with covariance R

« Kalman Filter
Predicted: &y is estimate based on measurements at previous time-steps

X = AXg_q + Buy Predicted (a priori) state estimate
Po = APy ;AT +Q Predicted (a priori) estimate covariance

Corrected: X, has additional information — the measurement at time k

Ric = X + Kz — Hio) K = PCHT(HPCHT + R)1

I — 1 KH P M 1
k ( ) k Optnnal Kalman gain
18



Blending Factor

 If we are sure about measurements:
— Measurement error covariance (R) decreases to zero

— Kincreases and weights residual more heavily than
prediction

 If we are sure about prediction
— Prediction error covariance P, decreases to zero

— K decreases and weights prediction more heavily than
residual



Theoretical Basis

Initial estimates for X,_; and Py_;

Correction (Measurement Update)

Prediction (Time Update) (1) Compute the Kalman Gain
(1) Project the state ahead K =P H'(HP HT + R)™*
Xk = AXg—1 + Bug (2) Update estimate with measurement z,
(2) Project the error covariance ahead Xk = Xy + K(zx — HXy)
P = AP, ;AT +Q (3) Update Error Covariance

P, = (1 — KH)P?
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Simple Example (/4

« Consider a truck on perfectly frictionless, infinitely long
straight roads.

— Initially the truck is stationary at position 0, but it is buffeted
this way and that by random acceleration.

— We measure the position of the truck every At seconds, but
these measurements are imprecise; we want to maintain a
model of where the truck is and what its velocity is.

— We show here how we derive the model from which we
create our Kalman filter.
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Simple Example 4

* The position and velocity of the truck are described by
the linear state space:

=[]

* We assume that between the (k—1) and k timestep the
truck undergoes a constant acceleration of a, that Is
normally distributed, with mean O and standard

deviation g,. X, = AXp_; + Wy

~N(0,Q)
X, = AX + Ga Wi !
f S A AL
1= [ ] Q=6G6To2=| % 2
AL
| 2 |




Simple Example @)

« At each time step, a noisy measurement of the true
position of the truck is made.

* Let us suppose the measurement noise vy, Is also

normally distributed, with mean O and standard
deviation o,.

Z, = Hx; + v,

H=[1 0] Vie %g’;]{)



Simple Example /s

* We know the initial starting state of the truck with perfect
precision, so we initialize

-

« And to tell the filter that we know the exact position, we give it a
Zero covariance matrix:

Pl o

 If the initial position and velocity are not known perfectly the
covariance matrix should be initialized with a suitably large
number, say L, on its diagonal.
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Extended Kalman Filter

 The basic Kalman filter is limited to a linear
assumption.

* The extended Kalman filter (EKF) is the
nonlinear version of the Kalman filter which
linearizes about an estimate of the current
mean and covariance.

Xk = Axp_q1 + Buy + wy Xk = [ (Xg—1 + ug) + wy

ik = HXk + Vi Zx = h(Xk) + Vi



Theoretical Basis

Initial estimates for X,_; and Py_;

Correction (Measurement Update)

Prediction (Time Update) _
(1) Compute the Kalman Gain
(1) Project the state ahead K=P . (1P . +R)71
X = (2) Update estimate with measurement z,
(2) Project the error covariance ahead Rk = R + K(z, — )
P = APr_qAL+Q (3) Update Error Covariance
P = (1 —KH)PF
af _ oh
~ 0x|, ~ox|._
X Xg—-1,Uk Xk
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