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Takeaways

• What is a Kalman Filter?

• Why do we need Kalman Filters?
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Introduction

• Recursive data processing algorithm

– Generates optimal estimate of desired 

quantities given the set of measurements

– Optimal: For linear system and white Gaussian 

errors, Kalman filter is “best” estimate based 

on all previous measurements.

– Recursive: doesn’t need to store all previous 

measurements and reprocess all data each 

time step.

Media IC & System Lab Po-Chen Wu (吳柏辰) 5



The Problem

• System state cannot be measured directly.

• Need to estimate “optimally” from measurements.
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Conceptual Overview  (1/9)

• Lost on the 1-dimensional line

• Position – x(t)

• Assume Gaussian distributed measurements
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Conceptual Overview  (2/9)

• Sextant Measurement at 𝑡1: Mean = 𝑧1 and Variance = z1

• Optimal estimate of position is: ොx(t1) = z1

• Variance of error in estimate: x
2(t1) = z1

2

• Boat in same position at time t2 - Predicted position is z1
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Conceptual Overview  (3/9)

• So we have the prediction ොy−(t2)

• GPS Measurement at t2: Mean = z2 and Variance = z2

• Need to correct the prediction due to measurement to get ොx(t2)

• Closer to more trusted measurement – linear interpolation?
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Conceptual Overview  (4/9)

• Corrected mean is the new optimal estimate of position

• New variance is smaller than either of the previous two 

variances
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Conceptual Overview  (5/9)

• Lessons so far:
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Make prediction based on previous data: ොx−, −

Take measurement: zk, z

Optimal estimate (ොy) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1  – Kalman Gain)



Conceptual Overview  (6/9)

• At time t3, boat moves with velocity 
dx

dt
= u

• Naïve approach: Shift probability to the right to predict

• This would work if we knew the velocity exactly (perfect model)
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Conceptual Overview  (7/9)

• Better to assume imperfect model by adding Gaussian noise

•
dx

dt
= u + w

• Distribution for prediction moves and spreads out
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• Now we take a measurement at t3

• Need to once again correct the prediction

• Same as before
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Conceptual Overview  (8/9)
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Corrected optimal estimate ොx(t3)

Measurement z(t3)

Prediction ොx−(t3)



• Lessons learnt from conceptual overview:

– Initial conditions (ොxk−1 and k−1)

– Prediction (ොxk
− , k

−)

• Use initial conditions and model (eg. constant velocity) to 

make prediction

– Measurement (zk)

• Take measurement

– Correction (ොxk , k)

• Use measurement to correct prediction by ‘blending’ 

prediction and residual – always a case of merging only two 

Gaussians

• Optimal estimate with smaller variance

Conceptual Overview  (9/9)
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Theoretical Basis

• Process to be estimated:

• Kalman Filter

18

Process Noise (w) with covariance Q

Measurement Noise (v) with covariance R

Predicted: ොxk
− is estimate based on measurements at previous time-steps

Corrected: ොxk has additional information – the measurement at time k

ොxk
− = Aොxk−1 + Buk

Pk
− = APk−1A

T + Q

Optimal Kalman gain

Predicted (a priori) state estimate

Predicted (a priori) estimate covariance

xk = Axk−1 + Buk +wk

zk = Hxk + vk

ොxk = ොxk
− + K(zk − Hොxk

−)

Pk = (1 − KH)Pk
−

K = Pk
−HT(HPk

−HT + R)−1



Blending Factor

• If we are sure about measurements:

– Measurement error covariance (R) decreases to zero

– K increases and weights residual more heavily than 

prediction

• If we are sure about prediction

– Prediction error covariance Pk
− decreases to zero

– K decreases and weights prediction more heavily than 

residual
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Theoretical Basis
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Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

ොxk
− = Aොxk−1 + Buk

Pk
− = APk−1A

T + Q

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

ොxk = ොxk
− + K(zk − Hොxk

−)

Pk = (1 − KH)Pk
−

K = Pk
−HT(HPk

−HT + R)−1

Initial estimates for ොxk−1 and Pk−1
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Simple Example (1/4)

• Consider a truck on perfectly frictionless, infinitely long 
straight roads.
– Initially the truck is stationary at position 0, but it is buffeted 

this way and that by random acceleration.

– We measure the position of the truck every Δt seconds, but 
these measurements are imprecise; we want to maintain a 
model of where the truck is and what its velocity is. 

– We show here how we derive the model from which we 
create our Kalman filter.
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Simple Example (2/4)

• The position and velocity of the truck are described by 

the linear state space:

𝐱𝑘 =
𝑥
ሶ𝑥

• We assume that between the (k−1) and k timestep the 

truck undergoes a constant acceleration of ak that is 

normally distributed, with mean 0 and standard 

deviation σa.
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𝐱𝑘 = 𝐀𝐱𝑘−1 + 𝐆𝑎𝑘

𝐀 =
1 Δt
0 1

, 𝐆 =
Δt2

2
Δt

𝐱𝑘 = 𝐀𝐱𝑘−1 +𝐰𝑘

𝐰𝑘~𝑁 0,𝐐

𝐐 = 𝐆𝐆T𝜎𝑎
2 =

Δt4

4

Δt3

2
Δt3

2
Δt2



Simple Example (3/4)

• At each time step, a noisy measurement of the true 

position of the truck is made.

• Let us suppose the measurement noise 𝐯𝑘 is also 

normally distributed, with mean 0 and standard 

deviation σz.
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𝐳𝑘 = 𝐇𝐱𝑘 + 𝐯𝑘

𝐇 = 𝟏 𝟎
𝐯𝑘~𝑁 0,𝐑
𝐑 = 𝜎𝑧

2



Simple Example (4/4)

• We know the initial starting state of the truck with perfect 

precision, so we initialize

• And to tell the filter that we know the exact position, we give it a 

zero covariance matrix:

• If the initial position and velocity are not known perfectly the 

covariance matrix should be initialized with a suitably large 

number, say L, on its diagonal.
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ො𝐱0 =
0
0

𝐏0 =
0 0
0 0

( 𝐏0 =
𝐿 0
0 𝐿

)
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Extended Kalman Filter

• The basic Kalman filter is limited to a linear 

assumption.

• The extended Kalman filter (EKF) is the 

nonlinear version of the Kalman filter which 

linearizes about an estimate of the current 

mean and covariance.
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xk = Axk−1 + Buk +wk

zk = Hxk + vk

xk = 𝑓(xk−1 + uk) + wk

zk = ℎ(xk) + vk



Theoretical Basis
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Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

ොxk
− = 𝑓(ොxk−1 + uk)

Pk
− = AkPk−1Ak

T + Q

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

ොxk = ොxk
− + K(zk − ℎ(ොxk

−))

Pk = (1 − KHk)Pk
−

K = Pk
−Hk

T(HkPk
−Hk

T + R)−1

Initial estimates for ොxk−1 and Pk−1

Ak = ቤ
𝜕𝑓

𝜕x
ොxk−1,uk

Hk = ቤ
𝜕ℎ

𝜕x
ොxk
−
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