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Introduction

• R. T. Azuma[1] define an Augmented Reality

(AR) system to have the following properties:

1) Combines real and virtual

2) Interactive in real time

3) Registered in 3-D
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[1]   Azuma, Ronald T. "A survey of augmented reality." Presence 6.4 (1997): 355-385.



Marker-based AR

• Basic workflow of an AR application using 

fiducial marker tracking:
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Markerless AR

• Markerless augmented reality systems rely on 

natural features instead of fiducial marks.
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Features

• Also known as interesting points, salient points 

or keypoints. 

• Points that you can easily point out their 

correspondences in multiple images using only 

local information.
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Desired Properties for 

Features

• Distinctive: a single feature can be correctly 

matched with high probability.

• Invariant: invariant to scale, rotation, affine, 

illumination and noise for robust matching 

across a substantial range of affine distortion, 

viewpoint change and so on. That is, it is 

repeatable.
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Components

• Feature detection locates where they are.

• Feature description describes what they are.

• Feature matching decides whether two are the 

same one.
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Detectors & Descriptors

• Feature detector:

– DoG, SURF, FAST, AGAST, Multi-scale AGAST, etc.

• Feature descriptor:

– SIFT, SURF, BRIEF, ORB, BRISK, FREAK, etc.
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Another Markerless AR

• Complete registration with GPS, inertial sensors, 

and magnetic sensors.
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Marker-based AR
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Coordinate Systems

• The relationships among the camera screen coordinates 

(𝑥𝑐 , 𝑦𝑐), the camera coordinates (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐) and the 

marker coordinates (𝑋𝑚, 𝑌𝑚, 𝑍𝑚) can be represented as 

below:
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Markerless AR
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Detector : DoG (1/2)

• Difference of Gaussian (DoG)

– Used in Scale-Invariant Feature Transform (SIFT).

– It is a scale-invariant detector which extracts blobs in 

the image by approximating the Laplacian of 

Gaussian Lxx
2 + Lyy

2 .
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[IJCV 2004] Distinctive Image Features from Scale-Invariant Keypoints



Detector : DoG (2/2)

• Scale invariant
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[IJCV 2004] Distinctive Image Features from Scale-Invariant Keypoints



Detector: ASIFT

• Affine-SIFT (ASIFT) simulates all distortions 

caused by a variation of the camera optical axis 

direction.
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[SIAMJIS 2009] ASIFT: A New Framework for Fully Affine Invariant Image Comparison



Detector : SURF

• Speeded Up Robust Features (SURF)

– Based on the Hessian matrix

(used in Hessian detector)

– Can be evaluated very fast using integral images, 

independently of their size. 
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[ECCV 2006] SURF: Speeded Up Robust Features



Detector : FAST (1/3)

• Features from Accelerated Segment Test 

(FAST)

– The original detector classifies p as a corner if there 

exists a set of n contiguous pixels in the circle which 

are all brighter than the intensity of the candidate 

pixel Ip + t, or all darker than Ip - t.
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[ECCV 2006] Machine Learning for High-Speed Corner Detection



Detector : FAST (2/3)

• For each location on the circle x ∈ {1…16}, the pixel at 

that position relative to p (denoted by p→ x) can have 

one of three states:

• The entropy of the set 𝑃 is:

– Information gain: 
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[ECCV 2006] Machine Learning for High-Speed Corner Detection



Detector : FAST (3/3)

• Non-maximal suppression

– Segment test does not compute a corner response function.

– A score function, 𝑉 must be computed for each detected corner.
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[ECCV 2006] Machine Learning for High-Speed Corner Detection



Detector : AGAST

• Adaptive and Generic Corner Detection Based on the 

Accelerated Segment Test (AGAST)

– binary decision tree

– Using this dynamic programming technique allows us to find the 

decision tree for an optimal AST (OAST).
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[ECCV 2010] Adaptive and Generic Corner Detection Based on the Accelerated Segment Test



Detector : Multi-scale AGAST

• Scale-space interest 

point detection

– Points of interest are 

identified across both the 

image and scale 

dimensions using a 

saliency criterion.
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[ICCV 2011I] BRISK: Binary Robust Invariant Scalable Keypoints



Descriptor: SIFT

• Scale-Invariant Feature Transform (SIFT)

– Computed for normalized 16*16 image patches.
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[IJCV 2004] Distinctive Image Features from Scale-Invariant Keypoints

Image gradients Keypoint descriptor



Descriptor: SURF

• Speeded Up Robust Features (SURF)

– For each sub-region, we compute Haar wavelet 

responses at 5×5 regularly spaced sample points.

• dx is the Haar wavelet response in horizontal direction.

• dy is the Haar wavelet response in vertical direction.
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[ECCV 2006] SURF: Speeded Up Robust Features



Descriptor: BRIEF (1/2)
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• We define test 𝜏 on patch 𝐩 of size 𝑆 × 𝑆 as

– where 𝐩(𝐱) is the pixel intensity in a smoothed version of 𝐩 at 

𝐱 = (𝑢, 𝑣)⊤.

• Choosing a set of 𝑛𝑑 (𝑥, 𝑦)-location pairs uniquely 

defines a set of binary tests.

– We take our BRIEF descriptor to be the 

𝑛𝑑-dimensional bitstring

[ECCV 2010] BRIEF: Binary Robust Independent Elementary Features



Descriptor: BRIEF (2/2)

• Comparing strings can be done by computing 

the Hamming distance

– It can be done extremely fast on modern CPUs that 

often provide a specific instruction to perform a XOR

or bit count operation, as is the case in the latest SSE

instruction set.
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[ECCV 2010] BRIEF: Binary Robust Independent Elementary Features



Descriptor: BRISK

• Binary Robust Invariant Scalable Keypoints (BRISK)

– The BRISK sampling pattern with N = 60 points.
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[ICCV 2011] BRISK: Binary Robust Invariant Scalable Keypoints



Descriptor: FREAK

• Fast Retina Keypoint (FREAK)

– A cascade of binary strings is computed by efficiently comparing 

image intensities over a retinal sampling pattern.

Media IC & System Lab Po-Chen Wu 31

[CVPR 2012] FREAK: Fast Retina Keypoint

• retinal sampling pattern
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Outlier Removal
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Tentative Correspondences

(inliers + outliers)

Reliable Correspondences

(inliers)
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RANSAC (1/3)

• Example: line fitting
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[ACM Comm. 1981] Random Sample Consensus: A Paradigm for Model Fitting with Applications to 

Image Analysis and Automated Cartography 
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RANSAC (2/3)

• Random Sample Consensus (RANSAC)
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[ACM Comm. 1981] Random Sample Consensus: A Paradigm for Model Fitting with Applications to 

Image Analysis and Automated Cartography 

Run k times:

(1) draw n samples randomly

(2) fit parameters  with these n samples

(3) for each of other N-n points, calculate   

its distance to the fitted model, count the   

number of inlier points, c

Output  with the largest c

How many times?



RANSAC (3/3)

• How to determine 𝑘

– 𝑃: probability of success after 𝑘 trials

– 𝑝: probability of real inliers
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[ACM Comm. 1981] Random Sample Consensus: A Paradigm for Model Fitting with Applications to 

Image Analysis and Automated Cartography 

n samples are all inliers

a failure

failure after k trials for P=0.99

𝑃 = 1 − (1 − 𝑝𝑛)𝑘 𝑘 =
log(1 − 𝑃)

log(1 − 𝑝𝑛)

𝑛 𝑝 𝑘

3 0.5 35

6 0.6 97

6 0.5 293



PROSAC (1/2)
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[CVPR 2005] Matching with PROSAC – Progressive Sample Consensus

• Progressive Sample Consensus (PROSAC)

– The improvement in efficiency rests on the mild 

assumption that tentative correspondences with high 

similarity are more likely to be inliers.

Euclidean distance

A 1 0 1 0 1 0 1 0 1

B 1 0 1 0 1 1 0 0 1

Hamming distance



PROSAC (2/2)
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[CVPR 2005] Matching with PROSAC – Progressive Sample Consensus

• The fraction of inliers 𝜀 among top 𝑛 correspondences 

sorted by quality.
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Introduction to PnP Problem

• The aim of the Perspective-n-Point (PnP) 

problem is to determine the position and 

orientation of a camera given its:

1) intrinsic parameters

2) a set of n correspondences between 3D points and 

their 2D projections.
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Camera Model (1/2)

• Given a set of 3D coordinates of reference points 
𝐩𝑖 = (𝑋𝑚, 𝑌𝑚, 𝑍𝑚)

𝑡 , 𝑖 = 1, … , 𝑛, 𝑛 ≥ 3, expressed in 
an object-centered reference frame, the 
corresponding camera-space coordinates 𝐪𝑖 =
(𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐)

𝑡, are related by a rigid transformation 
as 𝐪𝑖 = 𝑅𝐩𝑖 + 𝐭, where
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Camera Model (2/2)

• The reference points 𝐩𝑖 are projected to the 
plane with 𝑧′ = 1, referred to as the normalized 
image plane, in the camera reference frame.

– Let the image point 𝐯𝑖 = (𝑢, 𝑣, 1)𝑡 be the projection of 
𝐩𝑖 (or 𝐪𝑖) on the normalized image plane.
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OI (1/5)

• Optimal Absolute Orientation Solution

– If 𝐪𝑖 could be reconstructed, then 𝑅 and 𝐭 in 

𝐪𝑖 = 𝑅𝐩𝑖 + 𝐭 can be obtained as a solution to the 

following least-squares problem:

– The closed form solution of 𝑅∗and 𝐭∗ would be:
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[TPAMI 2000] Fast and Globally Convergent Pose Estimation from Video Images.

𝑅∗, 𝐭∗ = argmin
𝑅,𝐭



𝑖=1

𝑛
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OI (2/5)

• We then seek to minimize the sum of the 

squared error over 𝑅 and 𝐭 :
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[TPAMI 2000] Fast and Globally Convergent Pose Estimation from Video Images.
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OI (3/5)

• Since this objective function is quadratic in 𝐭, given a 

fixed rotation 𝑅, the optimal value for 𝐭 can be computed 

in closed form as

• Given the optimal translation as a function of 𝑅 and 

defining 𝐪𝑖 𝑅 ≝ 𝑉𝑖 𝑅𝐩𝑖 + 𝐭 𝑅 , then we reformulate 

the problem
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[TPAMI 2000] Fast and Globally Convergent Pose Estimation from Video Images.
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OI (4/5)

• 𝑅 can be computed iteratively as follows:

– Assume the k-th estimate of 𝑅 is 𝑅(𝑘), 𝐭(𝑘) = 𝐭 𝑅(𝑘) , and 

𝐪𝑖
(𝑘)

= 𝑉𝑖 𝑅
(𝑘)𝐩𝑖 + 𝐭(𝑘) .

– Then

– We then compute the next estimate of 𝐭 as 𝐭(𝑘+1) = 𝐭 𝑅(𝑘+1)

– A solution 𝑅∗:
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[TPAMI 2000] Fast and Globally Convergent Pose Estimation from Video Images.
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𝑅(𝑘+1) = argmin
𝑅



𝑖=1

𝑛

𝑅𝐩𝑖 + 𝐭 − 𝐪𝑖
(𝑘) 2

𝑅∗ = argmin
𝑅



𝑖=1

𝑛

𝑅𝐩𝑖 + 𝐭 − 𝑉𝑖 𝑅
∗𝐩𝑖 + 𝐭 𝑅∗ 2

It can be proved that 𝐸 𝑅(𝑘+1) < 𝐸 𝑅(𝑘) until converging to an optimum.



OI (5/5)

• Initialization and Weak Perspective Approximation

– Where 𝑠 =
σ𝑖=1
𝑛 𝐩𝑖

′ 2

σ𝑖=1
𝑛 𝐯𝑖

′ 2

• It’s called Orthogonal Iteration (OI) algorithm.
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[TPAMI 2000] Fast and Globally Convergent Pose Estimation from Video Images.
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𝐪𝑖 ≈ 𝑠𝐯𝑖 = 𝑠𝑥𝑐 , 𝑠𝑥𝑦 , 𝑠
𝑡

ത𝐯 ≝
1

𝑛


𝑖=1

𝑛

𝐯𝑖 , 𝐯𝑖
′ = 𝐯𝑖 − ത𝐯



RPP (1/3)

• Definition of Pose Ambiguity:

– Two distinct local minima of the according error 
function (e.g., 𝐸𝑜𝑠).
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RPP (2/3)

• The cause of geometric illusions of computer 
vision is the pose ambiguity.
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RPP (3/3)

• Begin with a known pose (𝑅1, 𝐭1) got from any 
pose estimation algorithm (e.g., OI).

• Use this first guess of pose to estimate a second 
pose, which also has a minima of 𝐸𝑜𝑠.
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(𝑅1, 𝐭1)
(𝑅2, 𝐭2)



EPnP (1/3)

• Homogeneous Barycentric Coordinates

– Also known as area coordinates.

• We can write the coordinates of the n 3D points 𝐩𝑖 and 

𝐪𝑖 as a weighted sum of four virtual control points 𝐜𝑖
p

and 

𝐜𝑖
q
:
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𝐫1

𝐫2 𝐫3

λ3
𝐫 𝐫 = λ1𝐫1 + λ2𝐫2 + λ3𝐫3

λ2

λ1

𝐩𝑖 =

𝑗=1

4

𝛼𝑖𝑗𝐜𝑖
p
, with

𝑗=1

4

𝛼𝑖𝑗 = 1 𝐪𝑖 =

𝑗=1

4

𝛼𝑖𝑗𝐜𝑖
q

𝑅∗, 𝐭∗ = argmin
𝑅,𝐭



𝑖=1

𝑛

𝑅𝐜𝑖
p
+ 𝐭 − 𝐜𝑖

𝑞 2

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

=

0
0
0
1

1
0
0
1

0
1
0
1

0
0
1
1

𝛼𝑖1
𝛼𝑖2
𝛼𝑖3
𝛼𝑖4



EPnP (2/3)

• Let 𝐴 be the intrinsic matrix. We have

– The unknown parameters of this linear system are the 12 control 
point coordinates and the n projective parameters.

– From equation above, we know that ℎ𝑖 = σ𝑗=1
4 𝛼𝑖𝑗𝑧𝑗

𝑐, and we can 

get:
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∀𝑖, ℎ𝑖𝐯𝑖 = ℎ𝑖

𝑥𝑐
𝑦𝑐
1

= 𝐴𝐪𝑖 = 𝐴

𝑗=1

4

𝛼𝑖𝑗𝐜𝑖
𝑞
=

𝑓𝑥
0
0

0
𝑓𝑦
0

𝑥0
𝑦0
1



𝑗=1

4

𝛼𝑖𝑗

𝑥𝑗
𝑐

𝑦𝑗
𝑐

𝑧𝑗
𝑐



𝑗=1

4

𝛼𝑖𝑗𝑓𝑥𝑥𝑗
𝑐 + 𝛼𝑖𝑗 𝑥0 − 𝑥𝑐 𝑧𝑗

𝑐 = 0 and 

𝑗=1

4

𝛼𝑖𝑗𝑓𝑦𝑦𝑗
𝑐 + 𝛼𝑖𝑗 𝑦0 − 𝑦𝑐 𝑧𝑗

𝑐 = 0

ℎ𝑥𝑐
ℎ𝑦𝑐
ℎ
1

= 𝑃

𝑋𝑐
𝑌𝑐
𝑍𝑐
1

= 𝑃 ∙ 𝑇cm

𝑋𝑚
𝑌𝑚
𝑍𝑚
1

=

𝑠𝑥𝑓
0
0
0

0
𝑠𝑦𝑓

0
0

𝑥0
𝑦0
1
0

0
0
0
1

𝑅11
𝑅21
𝑅31
0

𝑅12
𝑅22
𝑅32
0

𝑅13
𝑅23
𝑅33
0

𝑇𝑥
𝑇𝑦
𝑇𝑧
1

𝑋𝑚
𝑌𝑚
𝑍𝑚
1



EPnP (3/3)

• Finally, we generate a linear system of the form 

– where 𝐱 = 𝐜1
𝑞𝑡
, 𝐜2

𝑞𝑡
, 𝐜3

𝑞𝑡
, 𝐜4

𝑞𝑡
𝑡

is a 12-vector made of the 

unknowns, and 𝑀 is a 2𝑛 × 12 matrix.

– The solution therefore belongs to the null space, or kernel, of 𝑀, 
and can found efficiently as the null eigenvectors of matrix 𝑀𝑡𝑀, 
which is of small constant (12 × 12) size. 

– Computing the product 𝑀𝑡𝑀 has O(𝑛) complexity, and is the 
most time consuming step in this method. 
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It’s first closed-form solution to the problem with O(𝑛) complexity



OPnP (1/7)

• To facilitate global optimization via polynomial system 
solving, we advocate the non-unit quaternion 
parameterization, which is free of any trigonometric 
function. 

• Letting 𝑠 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2, the rotation matrix can be 

expressed as
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𝑅 =
1

𝑠

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

2𝑏𝑐 + 2𝑎𝑑
2𝑏𝑑 − 2𝑎𝑐

2𝑏𝑐 − 2𝑎𝑑
𝑎2 − 𝑏2 + 𝑐2 − 𝑑2

2𝑐𝑑 + 2𝑎𝑏

2𝑏𝑑 + 2𝑎𝑐
2𝑐𝑑 − 2𝑎𝑏

𝑎2 − 𝑏2 − 𝑐2 − 𝑑2

𝑅 𝑎, 𝑏, 𝑐, 𝑑 = 𝑅 𝑘𝑎, 𝑘𝑏, 𝑘𝑐, 𝑘𝑑



OPnP (2/7)

• We’ve known that

• Since the absolute scale of 𝑎, 𝑏, 𝑐, 𝑑 is arbitrary, we can 
fix it by using the reciprocal of the average depth
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𝑠 ≡
1

1
𝑛
σ𝑖=1
𝑛 𝜆i

=
1

ҧ𝜆

𝐪𝑖 = 𝜆𝑖

𝑢𝑖
𝑣𝑖
1

= 𝑅𝐩𝑖 + 𝐭 , i = 1,2, … , n

𝐗’

𝐘’

𝐙’

𝐙

𝐗

𝐘

Camera

Coordinate 

System

Object

Coordinate 

System

Normalized Image Plane

𝐪𝑖: (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐)

𝐯𝑖: (𝑢, 𝑣, 1)

𝑅, 𝐭

𝑧′ = 1 𝜆𝑖



OPnP (3/7)

• So

• It is straightforward to recognize that
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(s𝜆𝑖)𝐯𝑖 = (𝑠𝑅)𝐩𝑖 + (𝑠𝐭) መ𝜆𝑖

𝑢𝑖
𝑣𝑖
1

=

𝐫1
𝑡

𝐫2
𝑡

𝐫3
𝑡

𝐩𝑖 +

Ƹ𝑡1
Ƹ𝑡2
Ƹ𝑡3

, 𝑖 = 1,2, … , 𝑛

Ƹ𝑡1
Ƹ𝑡2
Ƹ𝑡3

=
𝐭

ҧ𝜆

መ𝜆𝑖 =
𝜆𝑖
ҧ𝜆

𝐫1
𝑡

𝐫2
𝑡

𝐫3
𝑡

=
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

2𝑏𝑐 + 2𝑎𝑑
2𝑏𝑑 − 2𝑎𝑐

2𝑏𝑐 − 2𝑎𝑑
𝑎2 − 𝑏2 + 𝑐2 − 𝑑2

2𝑐𝑑 + 2𝑎𝑏

2𝑏𝑑 + 2𝑎𝑐
2𝑐𝑑 − 2𝑎𝑏

𝑎2 − 𝑏2 − 𝑐2 − 𝑑2



𝑖=1

𝑛

መ𝜆𝑖 =
σ𝑖=1
𝑛 𝜆i
ҧ𝜆

=
σ𝑖=1
𝑛 𝜆i

1
𝑛
σ𝑖=1
𝑛 𝜆i

= 𝑛
σ𝑖=1
𝑛 𝜆i

σ𝑖=1
𝑛 𝜆i

= 𝑛 and መ𝜆𝑖 = 𝐫3
𝑡𝐩𝑖 + Ƹ𝑡3, 𝑖 = 1,2, … , 𝑛



OPnP (4/7)

• Because σ𝑖=1
𝑛 መ𝜆𝑖 = 𝑛 and መ𝜆𝑖 = 𝐫3

𝑡𝐩𝑖 + Ƹ𝑡3
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Ƹ𝑡3 = 1 − 𝐫3
𝑡

1

𝑛


𝑖=1

𝑛

𝐩𝑖 = 1 − 𝐫3
𝑡ഥ𝐩

መ𝜆𝑖 = 𝐫3
𝑡𝐩𝑖 + 1 − 𝐫3

𝑡ഥ𝐩 = 1 + 𝐫3
𝑡 𝐩𝑖 − ഥ𝐩 = 1 + 𝐫3

𝑡𝐩𝑖
′

መ𝜆𝑖

𝑢𝑖
𝑣𝑖
1

=

𝐫1
𝑡

𝐫2
𝑡

𝐫3
𝑡

𝐩𝑖 +

Ƹ𝑡1
Ƹ𝑡2
Ƹ𝑡3

1 + 𝐫3
𝑡𝐩𝑖

′
𝑢𝑖
𝑣𝑖
1

=

𝐫1
𝑡

𝐫2
𝑡

𝐫3
𝑡

𝐩𝑖 +

Ƹ𝑡1
Ƹ𝑡2

1 − 𝐫3
𝑡ഥ𝐩

1 + 𝐫3
𝑡𝐩𝑖

′ 𝑢𝑖
𝑣𝑖

=
𝐫1
𝑡

𝐫2
𝑡 𝐩𝑖 +

Ƹ𝑡1
Ƹ𝑡2



OPnP (5/7)

• Due to noise, the equation below could not be 

completely satisfied in general. 

• Therefore, we directly minimize this cost function:

– Before really solving this problem, we can easily project out Ƹ𝑡1
and Ƹ𝑡2 in closed-form as follows
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min
𝑎,𝑏,𝑐,𝑑, መ𝑡1, መ𝑡2



𝑖=1

𝑛

1 + 𝐫3
𝑡𝐩𝑖

′ 𝑢𝑖 − 𝐫1
𝑡𝐩𝑖 − Ƹ𝑡1

2 +

𝑖=1

𝑛

1 + 𝐫3
𝑡𝐩𝑖

′ 𝑣𝑖 − 𝐫2
𝑡𝐩𝑖 − Ƹ𝑡2

2

1 + 𝐫3
𝑡𝐩𝑖

′ 𝑢𝑖
𝑣𝑖

=
𝐫1
𝑡

𝐫2
𝑡 𝐩𝑖 +

Ƹ𝑡1
Ƹ𝑡2
, 𝑖 = 1,2, … , 𝑛

Ƹ𝑡1 = ത𝑢 + 𝐫3
𝑡

1

𝑛


𝑖=1

𝑛

𝑢𝑖 𝐩𝑖
′ − 𝐫1

𝑡ഥ𝐩 and Ƹ𝑡2 = ҧ𝑣 + 𝐫3
𝑡

1

𝑛


𝑖=1

𝑛

𝑣𝑖 𝐩𝑖
′ − 𝐫2

𝑡ഥ𝐩

ത𝑢 ≝
1

𝑛


𝑖=1

𝑛

𝑢𝑖 ҧ𝑣 ≝
1

𝑛


𝑖=1

𝑛

𝑣𝑖



OPnP (6/7)

• Now letting 𝛂 = 1, 𝑎2, 𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑏2, 𝑏𝑐, 𝑏𝑑, 𝑐2, 𝑐𝑑, 𝑑2 𝑡 , we 
rewrite the cost function into the matrix form

– 𝑀 is a 2𝑛 × 11 matrix

• By calculating the derivative of cost function with respect 
to 𝑎, 𝑏, 𝑐, 𝑑, the first-order optimality condition reads

– which is composed of four three-degree polynomials with respect 

to 𝑎, 𝑏, 𝑐, 𝑑.
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min
𝑎,𝑏,𝑐,𝑑

𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑀𝛂 2
2 = 𝛂𝑡𝑀𝑡𝑀𝛂

𝜕𝑓

𝜕𝑎
= 0,

𝜕𝑓

𝜕𝑏
= 0,

𝜕𝑓

𝜕𝑐
= 0,

𝜕𝑓

𝜕𝑑
= 0
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Grӧbner Basis Solver 



OPnP (7/7)

• Although solving multivariate polynomial 

systems is challenging in general, the multiview

geometry community has achieved much 

progress by means of the Grӧbner basis (GB) 

technique.

• Kukelova et al. [2] even developed an automatic 
generator of GB solvers, which facilitates the 
solving of polynomial systems arising from 
geometric computer vision problems.
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[2] "Automatic generator of minimal problem solvers," ECCV 2008.
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Experimental Setup
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• Our test images are a combination of template images 

and background images.

Background ImagesTemplates Test Images



Detectors and Descriptors (1/3)
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• One match will be classified into outliers if the distance 

from the location of feature detected on the test image to 

its nominal location is above a specific threshold.

• The performance of PnP algorithms depends on the 

localization accuracy of the remaining feature 

correspondences after removing outliers, so we identify 

the inlier error as an accuracy metric:

𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑟𝑎𝑡𝑒 =
#𝑜𝑢𝑡𝑙𝑖𝑒𝑟

#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑖𝑛𝑙𝑖𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 =
σ 𝑖𝑛𝑙𝑖𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑛 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒

#𝑖𝑛𝑙𝑖𝑒𝑟𝑠



Detectors and Descriptors (2/3)
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Detectors and Descriptors (3/3)
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Outlier Removal (1/2)
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• Here we identify the correct rate of the 

RANSAC-based schemes as

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑎𝑡𝑒 =
#𝑡𝑒𝑠𝑡𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑙𝑖𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

#𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠



Outlier Removal (2/2)
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PnP Algorithm (1/3)
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• Given the true rotation matrix 𝑅𝑡𝑟𝑢𝑒 and 

translation vector 𝐭𝑡𝑟𝑢𝑒

– 𝐸𝑟𝑜𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 = σ𝑖=1
3 𝑎𝑐𝑜𝑠𝑑 𝐫𝑡𝑟𝑢𝑒

𝑖 ∙ 𝐫𝑖
2

• 𝐫𝑡𝑟𝑢𝑒
𝑖 and 𝐫𝑖 are the 𝑘-th column of 𝑅𝑡𝑟𝑢𝑒 and 𝑅

• 𝑎𝑐𝑜𝑠𝑑 ∙ represent the arc-cosine operation in degrees

– 𝐸𝑡𝑟𝑎𝑛𝑠 % =
𝐭𝑡𝑟𝑢𝑒−𝐭

𝐭𝑡𝑟𝑢𝑒
× 100



PnP Algorithm (2/3)
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PnP Algorithm (3/3)
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• Computation time of RANSAC-based schemes and 

state-of-the-art PnP algorithms.

Media IC & System Lab Po-Chen Wu

Mean Cost  
(ms)

RANSAC RPP EPnP DLS RPnP OPnP EPPnP CEPPnP REPPnP

RANSAC P3P 141.59 869.45 23.55 44.45 2.36 17.64 2.00 3.45
3.00

RANSAC Proj. 42.52 873.55 31.73 37.55 2.18 19.18 2.00 3.36



Demo Video 
(ASIFT + RANSAC-P3P + OPnP )
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Outline

• Introduction

• System Overview

• Feature Detection & Matching

• Outlier Removal
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• Conclusion
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Conclusion
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• The patch-based descriptors perform consistently better 

then the binary descriptors on the correct match rate.

• RANSAC-P3P is more reliable than -Homography.

• OPnP is the most prominent with considering both the 

accuracy of the estimated pose and the computation 

time.

• The optimal solution to address the feature-based pose 

estimation problem at the current stage is the 

combination of ASIFT, RANSAC-P3P, and OPnP.
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