

DodecaPen: Accurate 6DoF Tracking of a Passive Stylus

Po-Chen Wu^{*+}, Robert Wang⁺, Kenrick Kin⁺, Christopher Twigg⁺, Shangchen Han⁺ Ming-Hsuan Yang[‡], Shao-Yi Chien^{*}

*National Taiwan University, *Oculus Research, *UC Merced

Outline

- Introduction
- Proposed System
- Experimental Results
- Conclusion

Outline

- Introduction
- Proposed System
- Experimental Results
- Conclusion

Introduction

• Our system can track the 6DoF pose of a calibrated pen from a single camera with submillimeter accuracy.

DodecaPen: Puppy

Drawing

-DodecaPer

DodecaPen: Accurate 6DoF Tracking of a Passive Stylus

Po-Chen Wu^{*†} Robert Wang[†] Kenrick Kin[†] Christopher Twigg[†] Shangchen Han[†] Ming-Hsuan Yang[‡] Shao-Yi Chien^{*}

*Media IC & System Lab, National Taiwan University ⁺Oculus Research, Facebook Inc. [‡]Vision and Learning Lab, University of California at Merced

UIST 2017

National Taiwan University

Proposed 6DoF Pose Tracking System

Why Dodecahedron?

To prevent pose jumping (due to coplanar points)

Explanation of Pose Jumping (1/2)

National Taiwan University

Explanation of Pose Jumping (2/2)

 Multiple local minima of a cost function (due to coplanar points)

Outline

- Introduction
- Proposed System
- Experimental Results
- Conclusion

Approximate Pose Estimation (APE)

- Marker Detection
- Minimize reprojection error $E_r(\mathbf{p})$ with PnP algorithm to get the initial pose \mathbf{p}'

$$E_r(\mathbf{p}) = \frac{1}{n} \sum_{i=1}^n \left(\widehat{\mathbf{u}}_i - \mathbf{u}_i(\mathbf{x}_i; \mathbf{p}) \right)^2$$

- $\widehat{\boldsymbol{u}}$: detected point in the camera image
- \boldsymbol{x} : point on the dodecahedron
- **u**: transformed **x** point in the camera image
- **p**: pose (including rotation matrix **R** and translation vector **t**)

oculus

Inter-frame Corner Tracking (ICT)

If APE does not succeed...

- Pyramidal Lucas-Kanade marker corner tracking
- PnP algorithm to get the initial pose \mathbf{p}'

BB

Marker Intensity Normalization

• We normalize the intensity to ensure intensity invariance before minimizing the residual between the model and image.

Dense Pose Refinement (DPR)

• Minimize appearance distance $E_a(\mathbf{p})$ with Gauss Newton and backtracking line search (**BLS**) to get the final pose \mathbf{p}^*

$$E_a(\mathbf{p}) = \frac{1}{n} \sum_{i=1}^n \left(I_c(\mathbf{u}_i(\mathbf{x}_i; \mathbf{p})) - O_t(\mathbf{x}_i) \right)^2$$

- I_c : camera image
- O_t : target object
- **x**: point on the dodecahedron
- **u**: transformed **x** point in the camera frame
- **p**: pose (including rotation matrix **R** and translation vector **t**)

Mipmap Masks

Marker Mipmaps

National Taiwan University

Ve

愈

National Taiwan University

$$E_a(\mathbf{p}) = \frac{1}{n} \sum_{i=1}^n \left(I_c(\mathbf{u}_i(\mathbf{p})) - O_t(\mathbf{x}_i) \right)^2$$

15

Backtracking Line Search (BLS)

- Gauss-Newton iteration does not always converge with a fixed step size since our least squares problem is nonlinear.
- We shrink Δp by $\Delta p \leftarrow \alpha \Delta p$ until it meets the *Armijo-Goldstein condition* below:

$$E_a(\mathbf{p}' + \Delta \mathbf{p}) \le E_a(\mathbf{p}') + c \nabla E_a(\mathbf{p}')^{\mathrm{T}} \Delta \mathbf{p}$$

- $\nabla E_a(\mathbf{p}')$ is the local function gradient
- $\alpha = 0.5$, $c = 10^{-4}$

National Taiwan University

Dodecahedron Calibration (DC)

- Determine the precise pose of each marker with respect to the dodecahedron
- One-time offline bundle adjustment

$$E_a(\{\mathbf{p}_j,\mathbf{p}_k\}) = \sum_i \sum_j \sum_k \left(I_c \left(\mathbf{u}_i(\mathbf{x}_i;\mathbf{p}_j;\mathbf{p}_k) \right) - O_t(\mathbf{x}_i) \right)^2$$

- *I_c*: camera image
- *O_t*: target object
- **x**: point on the dodecahedron
- \mathbf{u} : transformed \mathbf{x} point in the camera frame
- p: dodecahedron pose

Outline

- Introduction
- Proposed System
- Experimental Results
- Conclusion

Evaluation with Synthetic Data

- We generate synthetic image sequences with 24 motion patterns of the virtual DodecaPen
 - Each sequence consists of 301 frames with the same resolution (1280*1024) and intrinsics as our real camera.

 We further evaluate the proposed approaches under varying shot noise, spatial blur, camera resolutions, and mask kernel widths.

National Taiwan University

Pen-tip Trajectories

Evaluation with Real Data

- Four real drawings
- Compare with a motion capture system
 - Constructed with 16 OptiTrack Prime 17W (1.7 megapixels, 70 degrees fieldof-view) cameras

DodecaPen VS. Mocap

• The accuracy of the proposed method is comparable to a motion capture system with 10 active cameras.

DodecaPen

• TW\$ 10,000 VS. TW\$ 1,000,000

Outline

- Introduction
- Proposed System
- Experimental Results
- Conclusion

Conclusion

- 6DoF tracking using a set of readily available and easyto-assemble components
- Sub-millimeter accurate
- Single camera pose estimation can be fast enough and robust enough for drawing in 2D, 3D and in VR

Potential AI Research Topics

General Object Pose Tracking

3rd International Workshop on Recovering 6D Object Pose Organized at ICCV 2017 - October 29, Venice, Italy

