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Abstract

This dissertation is concerned with the problem of determining the six degrees
of freedom (6DoF) object poses from a calibrated camera. Given camera images
which contain the target object, we wish to estimate the position and orientation of
the target with respect to the camera accurately and robustly.

Although a variety of algorithms for this task have been proposed, it remains
difficult to evaluate existing methods in the literature as oftentimes different se-
quences are used, and no benchmark datasets close to real-world scenarios are
available. In this dissertation, we present a large-scale object pose tracking bench-
mark dataset consisting of RGB-D video sequences of 2D and 3D targets with
ground-truth information. In particular, we perform the extensive quantitative
evaluation of the state-of-the-art methods on this benchmark dataset and discuss
the potential research directions in this field.

While advanced Perspective-n-Point algorithms perform well in pose estima-
tion, the success hinges on whether feature points can be extracted and matched
correctly on target objects with rich texture. Consequently, we develop a two-step
robust direct method for 6DoF pose estimation that performs accurately on both
textured and textureless planar target objects. Based on the proposed two-step
direct approach, we present a system for real-time 6DoF tracking of a passive stylus
that achieves submillimeter accuracy, which is suitable for writing or drawing in
mixed reality applications. We demonstrate the system performance regarding
speed and accuracy on a number of synthetic and real datasets, showing that it can

be competitive with state-of-the-art multi-camera motion capture systems.
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Chapter 1

Introduction

Determining the pose of a target object from a calibrated camera is a classical
problem in computer vision that finds numerous applications such as robotics,
augmented reality (AR), and virtual reality (VR). For the case of a rigid body,
its pose can be described by a six degrees of freedom (6DoF) transformation,
consisting of three position parameters and three orientation parameters. While
much progress has been made in the past decade, it remains a challenging task to

develop a fast and accurate pose estimation algorithm.

In general, object pose estimation refers to computing the position and orienta-
tion of a target object given a single-view image. The target object is with prior
knowledge (e.g., shape or texture) in most cases. On the contrary, object pose
tracking indicates determining the poses of an object in an ordered sequence of
camera frames. In this case, the object pose in a previous frame is already known,
and thus one can exploit this information when computing the object pose in a
current frame. Furthermore, it is also applicable to recover the object pose with

multiple views, which may achieve superior pose estimation results.

In this dissertation, we primarily discuss how to compute the pose of a target
object accurately and robustly with a single view. In particular, we propose a large-
scale object pose tracking benchmark dataset consisting of RGB-D video sequences

1
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Figure 1.1: Images of 2D (left two columns) and 3D objects (right two columns)
in our benchmark dataset with 6DoF pose ground-truth notation. The proposed
benchmark dataset contains 690 color and depth videos of various textured and
geometric objects with over 100,000 frames. The recorded sequences also include

image distortions for performance evaluation in real-world scenarios.

of 2D and 3D targets with ground-truth information, as shown in Figure 1.1.!
Furthermore, we perform the thorough quantitative evaluation of the state-of-the-art
methods on this benchmark dataset. We observe that while advanced Perspective-
n-Point (PnP) algorithms perform well in pose estimation, the success hinges on
whether feature points can be extracted and matched correctly on target objects
with rich texture. Consequently, we develop a two-step robust direct method for
6DoF pose estimation that performs accurately on both textured and textureless
planar target objects. First, the pose of a planar target object with respect to a
calibrated camera is approximately estimated by posing it as a template matching
problem. Second, each object pose is refined and disambiguated using a dense
alignment scheme, as illustrated in Figure 1.2. Based on the proposed two-step
direct method, we present a system for real-time 6DoF tracking of a passive stylus
that achieves submillimeter accuracy, which is suitable for writing or drawing

in mixed reality applications, as demonstrated in Figure 1.3. We demonstrate

"'All the images in the dissertation are used under Creative Commons license.
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Figure 1.2: Direct pose estimation for planar targets. The pose ambiguity problem
occurs when the objective function has several local minima for a given configura-
tion, which is the primary cause of flipping estimated poses. First row: original
images. Second row: images rendered with a box model according to the ambigu-
ous pose obtained from proposed algorithm without refinement approach. Third
row: pose estimation results from the proposed algorithm, which can disambiguate

plausible poses effectively.

(a) DodecaPen (b) Monocular video (c) DodecaPen tracking (d) Ground-truth scan

Figure 1.3: Our proposed system can track the 6DoF pose of (a) a calibrated pen
(the DodecaPen) from (b) a single camera with submillimeter accuracy. We show
(c) a digital 2D drawing as the visualization of the tracking result, and compare

with (d) a scan of the actual drawing.

the system performance regarding speed and accuracy on a number of synthetic
and real datasets, showing that it can be competitive with state-of-the-art multi-
camera motion capture systems. We also demonstrate several applications of the
technology ranging from 2D and 3D drawing in VR to general object manipulation

and board games.
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1.1 Object Pose Recovering

In computer vision and robotics, it is a typical task to identify some specific object
in a camera image and estimate its position and orientation relative to the camera
coordinate system. We regard this process as object pose estimation if the input
data is only an image. When referring to object pose tracking, the input image
data would be an ordered sequence of camera frames instead. This type of task can
also be called outside-in tracking, where the target object is observed from outside
by the camera system. And since the object model is known before computing its
pose, it is also called model-based tracking.

An object is regarded as a rigid body if the distance between any two given
points on it remains constant in time regardless of external forces exerted on it. For
a rigid body, its position and orientation in space are defined by three components
of translation and three components of rotation, which means that it has six degrees
of freedom. In contrast, the freedom of movement of a non-rigid body (e.g., the
human hand) may be more than six. In this dissertation, we focus on recovering
the pose of an object which is a rigid body.

Existing algorithms for recovering the 6DoF pose of an object can be broadly
categorized into three main approaches:

Direct approaches [5, 3]. These approaches address the problem by finding the
best fit from numerous pre-determined candidates based on the holistic template or
appearance matching. The corresponding pose of the best candidate is considered
as the estimation result.

Feature-based approaches [6, 7, 8]. The core idea is to first establish a set of
feature correspondences between the target object and projected camera frame [9,
10]. Outliers are then removed to obtain reliable feature pairs [11], and the final
pose is computed with PnP algorithms [12, 13]. In contrast to direct methods, the
performance of feature-based methods depends on whether both features can be
extracted and matched well.

Learning-based approaches [14, 15, 16, 17]. These methods learn an abstract
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representation of an object from a set of images captured from different viewpoints,
from which the pose of the target in a new input frame is determined. While
feature-based and direct methods are more effective for textured and non-occluded
objects respectively, learning-based approaches have shown the potential to track
poses of objects with diverse textures under partial occlusion.

Real-time pose tracking can be accomplished by leveraging the information
obtained from previous frames [18, 19, 20, 21]. In addition, the pose estimation task
can be accelerated by exploiting a small search range within the camera viewpoint
or reducing the number of pose candidates. To prevent pose jittering during the
tracking process, which is indispensable especially in AR applications [22], further
pose refinement should be performed. We refer the interested readers to [23] for
more information on AR.

To evaluate existing pose estimation algorithms, many benchmark datasets
have been proposed [5, 24, 14, 15, 25, 26]. However, there are two main issues that
need to be addressed. First, while the datasets are mainly designed for single-frame
based pose estimation, most images do not contain distortions (e.g., motion blur
caused by different object or camera motions) that are crucial for performance eval-
uation for real-world scenarios. Second, the camera trajectories in most datasets are
not carefully designed (i.e., freestyle motion), which do not allow detailed analysis
for specific situations. Most importantly, it is of great interest for fields of com-
puter vision to develop an extensive benchmark dataset for thorough performance

evaluation of 6DoF pose tracking in real-world scenarios.

1.2 Camera Pose Recovering

In contrast to the 6DoF object pose, the 6DoF camera pose denotes the camera’s
position and orientation with respect to the object (or world) coordinate system.
Though the object pose and the camera pose merely have the inverse transformation

relationship to each other, the approaches of between object pose recovering,
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Table 1.1: Four categories of camera pose recovering problem.

With Mapping Without Mapping
Online Simultaneous Localization and Mapping (SLAM) Visual Odometry (VO)
Offline Structure from Motion (SfM) Image-based Localization (IBL)

and camera pose recovering are still quite different. In general, we exploit the
information extracted from the entire camera image to compute the camera pose.
But when determining the object pose, only a subregion of the image where the
object locates contributes to the final pose estimation result.

The task of camera pose recovering from visual data can be broadly subdivided
into four categories, according to whether or not it is processed online, and if a
map of the environment is built concurrently. We present the four types in Table 1.1
and provide the corresponding descriptions below.

Simultaneous Localization and Mapping (SLAM) [27, 28, 29]. SLAM tech-
niques build a map of an unknown environment and localize the sensor in the map
simultaneously in real-time. Among different sensor types, a camera is the most
common one as it can provide rich information about the environment that allows
robust and accurate localization and mapping. The SLAM approach which uses
a camera as the primary sensor is denoted as Visual SLAM, and it has been a hot
research topic in the last years [30, 31, 32, 33, 2].

Visual Odometry (VO) [34, 35, 36]. VO is the process of determining the location
of a camera by analyzing the associated camera images in real-time. The main
difference between VO and SLAM is that VO mainly addresses itself on local
consistency and focuses on incrementally estimating the path of the camera pose
after pose. Nevertheless, SLAM aims to achieve a globally consistent estimate of
the camera trajectory and map by realizing that a previously mapped area has been
re-visited and this information is used to reduce the drift in the estimates by loop
closure techniques [37, 38].

Structure from Motion (SfM) [39, 40, 41]. SfM approaches recovers the map of

an environment from a set of projective measurements, represented as a collection
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of 2D images, via estimation of the camera poses corresponding to these images.
And the images can be either ordered or not. The bundle adjustment methods [42],
which aim to determine the map and the camera poses simultaneously that minimize
the discrepancy between image measurements and the reconstructed model, are
usually used to solve the SfM problem [43, 44].

Image-Based Localization (IBL) [45, 46, 47]. IBL methods address the problem
of finding the camera pose from which a camera image is taken. Traditionally,
large-scale IBL has been treated as an image retrieval problem. After finding
images in a database that are most similar to the query image, the location of the
query image can be recovered with respect to them [48]. However, the localization
accuracy obtained this way cannot be very satisfactory. Recently, IBL algorithms
benefit from a 3D reconstruction of the scene produced by SfM or SLAM, which

the query images can be accurately registered to [49, 46, 50].

1.3 Cameras

In vision-based applications, camera images are the necessary data when estimating
either the object pose or the camera pose. Generally speaking, the cameras used
in the pose recovering problem can be classified into three categories, namely
monocular camera, stereo camera, and depth camera. And each pose recovering
algorithm is designed according to a specific class of cameras.

Monocular Camera. It is the most common type of camera with one lens and
a corresponding image sensor or film frame. The image sensor can be either
monochrome (i.e., grayscale) one or color (i.e., RGB, which stands for red, green,
and blue) one. Parameters of the lens and the images sensor of a camera can
be estimated by performing camera calibration [51], which is also called cam-
era resectioning or geometric camera calibration.” These parameters consist of

camera intrinsic parameters and distortion coefficients. The intrinsic parameters

2The process is different from photometric camera calibration (i.e., color mapping).
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encompass focal length, image sensor format, and principal point. In addition,
the distortion coefficients include radial distortion and tangential distortion coeffi-
cients. In most 3D computer vision tasks, camera calibration is the first step before
applying further algorithms like pose estimation and tracking. Moreover, cameras
equipped with global shutter are much more preferable than those provided with
rolling shutter because the latter can cause undesirable effects such as wobble,

skew, spatial aliasing, and temporal aliasing [52].

Stereo Camera. This type of camera has two or more lenses with a separate image
sensor for each lens. This configuration allows the camera to simulate human
binocular vision and therefore gives it the ability to capture depth information.
Consequently, a stereo camera can also be regarded as a depth camera, which
will be presented in the next paragraph. One well-known technique applied with
the images captured by a stereo camera is stereo matching [53, 54], by which the
depth information of a scene can be acquired. This is also called stereoview or
stereoscopic in computer vision. Different from doing single camera calibration
which is mentioned in the previous paragraph, we should perform stereo camera
calibration to estimate not only the intrinsic parameters and distortion coefficients

of each lens, but also the relative poses between lenses.

Depth Camera. A depth camera (or range camera) is a range imaging device
that measures the distance from the camera to points in a scene, and as shown
in Figure 1.4. The resulting image is called range image or depth image, which
has pixel values corresponding to the measured distance. If the depth camera
is accurately calibrated, then the pixel values can be given directly in physical
units, such as millimeters applied by Microsoft Kinect V1 [55] and Microsoft
Kinect V2 [56]. Depth cameras can operate according to numerous techniques,
such as stereo triangulation [57], structured light [58] (e.g., Microsoft Kinect V1),
and time-of-flight [59] (e.g., Microsoft Kinect V2). Furthermore, depth cameras
using either of the latter two techniques should be equipped with an infrared (IR)

projector and an IR camera.
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Camera

Figure 1.4: The depth data is measured from scene points to the camera plane on

where the camera is (instead of from scene points to camera center).
1.4 Contributions

In this dissertation, we propose a benchmark dataset for 6DoF object pose tracking,
which consists of 690 videos under seven varying conditions with five speeds.
It is a large-scale dataset where images are acquired from a moving camera for
performance evaluation of both 2D and 3D object pose tracking algorithms. The
proposed dataset can be used in other computer vision tasks such as 3D feature
tracking and matching as well. Furthermore, we extensively evaluate and analyze
each pose tracking method employing more than 100,000 frames including both 2D
and 3D objects. Since the advanced SLAM methods [2, 60] are able to track and
relocalize camera pose in real time, we also evaluate these approaches by adapting
them to object pose tracking scenarios. We present the extensive performance
evaluation of the state-of-the-art methods using the proposed benchmark dataset
and discuss the potential research directions in this field. The OPT datasets are
available on our project website at media.ee.ntu.edu.tw/research/OPT.

From our observation, since the performance of feature-based methods hinges
on whether or not point correspondences can be correctly established, these ap-
proaches are less effective when the target images contain less textured surfaces
or motion blurs. Therefore, we propose an efficient direct pose estimation (DPE)
algorithm for planar targets undergoing arbitrary 3D perspective transformations.

The DPE algorithm performs favorably against the state-of-the-art feature-based ap-
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proaches in terms of robustness and accuracy on both textured and textureless planar
target objects. In addition, we demonstrate the proposed pose refinement technique
not only improves the accuracy of estimated results but also alleviates the pose
ambiguity problem effectively. The source code of the DPE method and the related

datasets are available on our project website at media.ee.ntu.edu.tw/research/DPE.

Based on the pose refinement technique proposed in the DPE method, we
develop a 6DoF tracking system called DodecaPen that requires only a single
off-the-shelf camera and a passive 3D-printed fiducial with several hand-glued
binary square markers printed from a laser printer. We show that off-the-shelf fidu-
cial tracking with markers is insufficient for achieving the accuracy necessary for
digital 2D drawing. Instead, our system consists of the following components: (a) a
3D printed dodecahedron with hand-glued binary square markers mechanically de-
signed for pose estimation, (b) a one-time calibration procedure for the (imprecise)
model using bundle adjustment, (c¢) approximate pose estimation from fiducial
corners, (d) inter-frame fiducial corner tracking, and (e) dense pose refinement
by direct model-image alignment. We show that each step of the above system is
essential to robust tracking and that the combined system allows us to achieve an
absolute accuracy of 0.4 mm from a single camera, which is comparable to state-
of-the-art professional motion capture (mocap) systems. We rigorously evaluate
the performance of the proposed method when we degrade the camera (with shot
noise, spatial blur, and reduced spatial resolution). Thorough evaluation results
can be found on our project website at media.ee.ntu.edu.tw/research/DodecaPen.
We conclude with demonstrations of this accurate and easy-to-setup 6DoF status
tracking system for the application of drawing in 2D and 3D as well as object

manipulation in a virtual reality (VR) environment.

1.5 Publications

The core of the dissertation relies on the following peer-reviewed publications:

doi:10.6342/N'TU201800854


http://media.ee.ntu.edu.tw/research/DPE
http://media.ee.ntu.edu.tw/research/DodecaPen

11

* Po-Chen Wu, Yueh-Ying Lee, Hung-Yu Tseng, Hsuan-I Ho, Ming-Hsuan
Yang, and Shao-Yi Chien, “A Benchmark Dataset for 6DoF Object Pose
Tracking.” In Proceedings of the IEEE International Symposium on Mixed
and Augmented Reality (ISMAR Adjunct), 2017. [61]

e Po-Chen Wu, Hung-Yu Tseng, Ming-Hsuan Yang, and Shao-Yi Chien,
“Direct Pose Estimation for Planar Objects.” In Computer Vision and

Image Understanding, 2018. [62]

e Po-Chen Wu, Robert Wang, Kenrick Kin, Christopher Twigg, Shangchen
Han, Ming-Hsuan Yang, and Shao-Yi Chien, “DodecaPen: Accurate 6DoF
Tracking of a Passive Stylus.” In Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST), 2017. (ACM UIST
Honorable Mention Award) [63]

1.6 Dissertation Organization

We formulate the pose recovering problem in the subsequent chapter. In particular,
we introduce the vectorial parameterization of rotation and different evaluation
metrics used for pose recovering problem. In Chapter 3, we give an overview of the
related work which is relevant for the remainder of the dissertation. Furthermore,
we discuss methods of object pose recovering, and existing benchmark datasets
proposed in the literature. Afterwards, we present a large-scale object pose tracking
benchmark dataset of RGB-D video sequences for both 2D and 3D objects, as well
as extensive quantitative evaluation results of the state-of-the-art methods on this
dataset in Chapter 4. In Chapter 5, we propose a two-step direct pose estimation
algorithm for planar objects. Then, in Chapter 6, we present a system for real-time
6DoOF tracking of a passive stylus that achieves submillimeter accuracy, which is
suitable for writing or drawing in mixed reality applications. Finally, we conclude

this dissertation with discussions on future work in Chapter 7.
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Chapter 2

Problem Formulation

Given a target object O,, represented by either a plane or a dense surface model
(i.e., triangle mesh), and an observed camera image Z., the task of object pose
recovering is to determine the object pose of O, in 6DoF parameterization based on
the orientation and position of the object with respect to a calibrated camera. With
a set of reference points x; = [z;, y;, zi]T ,i=1,...,n,n > 3 in the coordinate
system of O, and a set of camera-image coordinates u; = [u;, vi]T in Z.. depicted

by Figure 2.1, the transformation between them can be formulated as:

hui
Yi
h, :K[R|t] : @2.1)
Zq
h
_1_
where
f= 0 xo Riy Rya Ris [
K=10 f, w|>R=|Rn Rn Rxs| €S0(3),t=|t, eR’, (22
0 0 1 R31 R32 R33 t,

are the intrinsic matrix of the camera, rotation matrix, and translation vector,
respectively. In (2.1), h is the scale factor representing the depth value in the
camera coordinate system. In (2.2), (fs, f,) and (zo, yo) are the focal length and
the principal point of the camera, respectively.

13
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Figure 2.1: The perspective projection model. (O, i, j’o, lZO) is the object coordi-
nate system, (C, by o EC) is the camera coordinate system, x; is a 3D point, and

u; is its projection onto the image plane.

Given the observed camera-image points 0; = [i;, @i]T, a pose estimation
algorithm needs to determine values a for pose p = (R, t) that minimize an
appropriate error function. The rotation of the pose p can be parameterized in
numerous ways [64], and will be further discussed in Section 2.1.

There are two types of error functions commonly used for pose estimation. The

first one is called reprojection error and is broadly used in the PnP algorithms:
L& n 2 (A 2
E.(p) = - > ((Uz —u;)” + (0 — v;) ) : (2.3)
i=1
The second type of error function is based on appearance distance and is primarily

used in direct methods:

Eu(p) = 13- [w) = O] 24
or
Eup) = 3 (T.(w) ~ O:(x)°, 25

where Z.(u;) is the image pixel value of Z, at u;, and O,(x;) is the texture pixel
value of O; at x;. In most cases, the pixel values are normalized in the range
[0, 1]. The error functions in (2.4) and (2.5) are the normalized Sum-of-Absolute-

Differences (SAD) and Sum-of-Squared-Difference (SSD) errors, respectively.
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2.1 Parameterization of Rotation

The general form of a rotation in R? is a 3x 3 orthogonal matrix with determinant
1. However, the matrix representation with nine elements seems redundant since it
only has a maximum of three degrees of freedom (3DoF). Actually, there are many
ways to parameterize 3DoF rotations with fewer parameters, such as Euler angles,

axis-angle representation, and quaternions.'

2.1.1 Euler Angles

The Euler angles are three angles describing a rotation in R3. Any rotation in R3
can be achieved by composing three elemental rotations (i.e., rotations about the
axes of a coordinate system), and the Euler angles can be defined by three of these
elemental rotations. Rotations about the three principle axes x-axis, y-axis, and

z-axis by angles 0, 0,, and 0, are defined as follows:

1 0 0 cost, 0 sind,
R.(0;) = |0 cosf, —sinb,|,R,(6,) = 0 1 0 |,
0 sinf, cosb, —sinf, 0 cosb,

(2.6)
cosfl, —sinf, 0

R.(0.) = |sinf, cosh, O
0 0 1

Since matrix multiplication does not commute, the order of the elemental rotations
will affect the result. For example, one might want to factor a rotation as R =
R.(0.)R,(0,)R.(6,), whose ordering is zyz. The rotation R first rotates about

the z-axis, then the y-axis, and finally x-axis. Such a sequence of rotations can be

There are still other ways to parameterize rotations, such as Rodrigues parameters, Gibbs

representation, and Cayley—Klein parameters.
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represented as the matrix product:

RH R12 ng CyCy —CySz Sy
R(0,,0,,0.) = |Ryy Ry Ros| = C2S525y + CpS,  CpCy — S35yS; —CySg| s
RSl R32 R33 —CzCz Sy + SzS: C:Sz + CySySy CyCy
(2.7)

where we use the notation ¢, = cos(6,) and s, = sin(6,) for a = x,y, 2.
Starting with Ry3, we find Ry3 = s,, so 6, = asin(R;3). Then there are three

cases to consider.

Casel: If 0, € (—m/2,7/2), then ¢, # 0. In this condition, §,, = atan2(— Ry3, R33)
as (—Ra3, R33) = (¢S4, ¢yC,), Where atan? is the two-argument arctangent. In

addition, 0, = atan2(—Ry3, R11) as (—Ri2, R11) = (¢y$2, ¢yc;). In summary:
Qy = asin(ng), 81« = atan2(—R23, Rgg), ‘92 = atan2(—R12, RH). (28)

Case 2: If 6, = 7/2, then s, = 1 and ¢, = 0. In this condition,

Ry Ry CySp + CpS,  CuCy — S48, sin(f, +6,) cos(0, +6,)
R31 R3o —CpCy + 848, C,S; + €S, —cos(0, +60,) sin(6, +6,)
(2.9)

Therefore, 6, + 0, = atan2(Ra;, Res). Since there is only one degree of free-
dom, the factorization is not unique. This ambiguity is known as gimbal lock in

applications. In summary:
Qy = 71'/2, 92 + €$ = atanQ(Rgl, Rgg). (210)

Case 3: If §, = —7/2, then —s, = 1 and ¢, = 0. In this condition,

Ry Ry —C,8; + CpS,  CuCy + S48, sin(@, —0,) cos(6, —06,)
Rs1 R CyCs + 538,  Cy8; — CySs cos(f, —0,) —sin(0, —0,)
@.11)

Therefore, 0, — 0, = atan2(Ra;, Rao). It has lost one of the degrees of freedom

(i.e., gimbal lock). In summary:

Qy = —71'/2, 9Z — 990 = atan2(R21, Rgg). (212)
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We note that xyz is not the only ordering. In fact, there exist twelve possible
orderings divided into two groups:
* Tait-Bryan angles (zyz, yzx, zxy, T2y, 2y, yr2),

e Proper Euler angles (zxz, zyz, yzy, 2yz, v2x, yry).

The methods of factoring a rotation according to different orderings are similar.
We refer the interested readers to [65] for more detailed information.
If an angle 6 is close to zero, i.e., # ~ 0, then we can use the approximations

sin 0 ~ 0 and cos 0 ~ 1. Therefore, when 0,, 0,0, ~ 0:

1 —0, 0,
R (0.,0,,0.) =~ | 0,0,+0, 1-0,0,0, —0,
—0,+ 0,0, 0,+6,0, 1
- (2.13)
1 -0, 9,
~ 92 1 —61 :R(Qxaeya‘gz)
-0, 0, 1

The small angle approximation R can be used in many applications requiring linear

equations. However, this approximation is no longer a rotation since R'R. # 1.

2.1.2 Axis—Angle Representation

The axis—angle representation of a rotation parameterizes a rotation R? by two
quantities: a 3D unit vector a which describes the direction of an axis of rotation,
and an angle # which indicates the magnitude of the rotation about the axis. This
axis is also called Euler axis, which comes from Euler’s rotation theorem stating
that any rotation or sequence of rotations of a rigid body in a 3D space is equivalent
to a pure rotation about a single rotation axis. The angle 6 scalar multiplied by the

unit vector a is the axis-angle vector:

r = fa, (2.14)
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which is also called rotation vector or Euler vector. The rotation occurs in the
sense prescribed by the right-hand rule (anticlockwise). Compared to Euler angles,
an Euler vector is simpler to compose and avoid the problem of gimbal lock.

Let v be a vector in R®. After begin rotated about the axis a by the angle
6, the rotated vector v can be computed according to the Rodrigues’ rotation

formula [66]:
Vv=vcosf+ (axv)sinf+a(a-v)(l—cosb). (2.15)

If we represent v as a matrix product of a rotation matrix R and the original vector

v, then R can be expressed as follows [66]:

R (,a) =1 +sinf[a], + (1 — cosf) [a]’ (2.16)

X ?

where I is the 3x3 identity matrix, and [a],, denotes the cross-product matrix

(which is also a skew-symmetric matrix) for the vector a = [a,, a,, a,] "
0 —a. ay
[, =|a 0 —a,- (2.17)
—Qy 0

The matrix equation [a], v = a x v holds for any vector v. In (2.16), [a]”, stands
for the matrix product [a], - [a],. In addition, the rotation matrix can also be

expressed in terms of the rotation vector r = [r,, 7, 7.] "

R(r)=1+ <Sir019> ], + (1_9(;089> ), 2.18)

where 6 = ||r|| is the Euclidean norm of r.

To retrieve the axis—angle representation of a rotation matrix R, we first com-

puted the angle of rotation from the trace of the rotation matrix Tr(R) [67]:

0 = acos (TI(RQ)_]) ) (2.19)
Then the rotation axis a can be calculated as follows [67]:
R3s — Ra
a= 2s11n<9 Ris — Ry | - (2.20)
Ry — Rz
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Another way to transform between rotation vectors and rotation matrices is
applying the exponential map and its inverse, the logarithm map. These two
techniques are presented in the theory of Lie groups, and we refer the interested
readers to [68] for more detailed information.

If the rotation angle is very small, i.e., § ~ 0, then we can use the approxima-

tions sinf ~ # and cosf ~ 1 — (92—2) Therefore, from (2.18):

1 —T, Ty
1 .
R(r)~I+[), + b~ =|r. 1 —n|=R{), @21
Ty T 1

which has the similar form to (2.13).

2.1.3 Quaternions

A quaternion is a 4-tuple (i.e., a vector with four components) consisting of a
complex number with three different imaginary parts, which gives a simple way to
encode the axis—angle representation.

A quaternion q is generally represented in the form:
q = qo + ¢l + ¢2j + g3k, (2.22)

where q, q1, g2, and g3 are real numbers, and i, j, and k are fundamental quaternion
units. A quaternion unit is a symbol that has no other value than itself. By analogy
with complex numbers, the term ¢1i + ¢2j + ¢sk is also called the imaginary part
(or vector part) of q, and qq is the real part (or scalar part) of q. The basic rules
for multiplication are

i?=j=k*=ijk = —1, (2.23)

which behave similarly to the square of the imaginary unit 7 of complex numbers.

From this follows:

ij=—ji=k,jk=—kj=1iki=—ik =j, (2.24)
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which behave similarly to pairwise cross products of unit vectors &, i/, and Z in the
directions of orthogonal coordinate system axes.
For two quaternions q and ¢/, their product q” = qq’, called the Hamilton

product, is determined by the products of the quaternion units:

% Qo —q¢ —¢ —ag| |9

q = a _ g 40 —43 42 Q (2.25)
¢ @ ¢ Qo —q| |
_qé’_ 43 —42 Q1 9o | qg_

It should be noted that the multiplication of quaternions is associative and dis-
tributes over vector addition, but it is not commutative. We list other quaternion

properties as follows:
* Norm: [|q|? = ¢f + ¢f + ¢ + &3,
» Conjugate quaternion: q = ¢y — 11 — ¢2j — ¢sk,
e Inverse quaternion: q~! = &,

* Unit quaternion: ||q| = 1,

e Inverse of unit quaternion: q ! = q.

Rotation through an angle of  around the unit rotation axis a = [a,, a,, a,]"
can be represented by a unit quaternion (or rotation quaternion):
9 (azitayjtazk) 0 : : 0
q = e2'\deiTaiTa :cos§+(az1+ayj+azk)81n§, (2.26)

and the detailed derivation can be found in [69]. In this case, qq, g1, ¢2, and ¢

9
2

.0 9 0
, Gz SIn 5, a, sin 5, and a_ sin 3

equal to cos 5 5

respectively. The desired rotation
can be applied to a 3D vector p by evaluating the conjugation of p by q using the

Hamilton product:

p' =apq ', (2.27)
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where p and p’ are represented by quaternions with zero real parts:
P =p.i+pi+pk, p=pit+pit+rk, (2.28)

and p’ is the new vector after the rotation. It follows that conjugation by the product
of two quaternions is the composition of conjugations by these quaternions. For
instance, if q; and q are unit quaternions, then the rotation (i.e., conjugation) by
q192 is:

Q@P(Aide) ' = AiGpd; 'd; ' = di(apd; )y (2.29)

which is the same as rotating (i.e., conjugating) p by q- and then by q;. The real
part of the result is necessarily zero. In this case, the two rotation quaternions can
also be first combined into one equivalent quaternion by the relation q' = q;qs,
where q’ corresponds to the rotation g, followed by the rotation qj.

A quaternion rotation p’ = qpq ! can also be algebraically manipulated into

a matrix rotation p’ = Rp, in which R is the rotation matrix:

B+E -G -G 200 — 29 2¢1¢3 + 2qoge

R(90,01:%,%) = | 2002 +2900s @ -3 +6E -6 20035 — 290
20193 — 2q0q2 20203 + 20001 @ — ¢ — @5+ ¢
(2.30)

When converting a rotation matrix to a quaternion, several straightforward methods
tend to be unstable when the trace of the rotation matrix is very close to zero. We
refer the interested readers to [70] for a more stable method of converting a rotation
matrix to a quaternion.

The rotation axis a and angle ¢ corresponding to a quaternion q = ¢ + ¢1i +

q2j + g3k can be extracted as follows:

(ay,ay,a,) = M 0 = 2 acos(qo), (2.31)

)
V1-d
where acos(-) is the arccosine function. Please note that when the quaternion

approaches a real quaternion (i.e., a quaternion with zero imaginary part), the axis

is not well-defined due to degeneracy.
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2.2 Evaluation Metrics

In order to evaluate the performance of between different object pose recovering
methods properly, we have to use an appropriate metric first. In fact, there have
been many metrics defined for evaluating object pose estimation and tracking
methods, which will be introduced next. In the following paragraphs, we use
p = (R,t) and p = (R,t) as the estimated pose and the ground-truth pose,

respectively,

2.2.1 Rotation & Translation Errors

The rotation error is defined as the angle of the relative rotation between the esti-
mated and ground-truth rotations. While the rotations are represented as matrices,

we can get the estimated rotation error according to (2.19):

(2.32)

E.(R) = acos (Trm‘)_l> ,

2

where AR = R™1-R = R" - R is the relative rotation matrix. In addition, if the
rotations are represented as unit quaternions (i.e., q and q), then we can efficiently

compute the rotation error as follows:
E.(q) = 2 acos (dot(q, q)), (2.33)

where dot(q,q) = qodo + ¢1G1 + ¢2G2 + ¢3Gs is the dot product of q and q. The

reason behind (2.33) is that the relative rotation is represented as follows:
Aq=q'qa=0aq = (g — @i — g2 — @3k)(Go + @i + Gj + Gsk).  (2.34)

And the rotation angle of Aq is 2 acos(dqg) according to (2.31), in which dq is
the real part of Aq and is equivalent to dot(q, q).
The translation error can be defined as either the absolute difference between

the estimated and ground-truth translations directly in physical units (e.g., meters):

Ey(t) = It — ¢, (2.35)
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or the relative difference in percentage terms:

e
]

E(t) x 100%. (2.36)

Success Rate (SR). We define a pose to be successfully estimated if its rotation
and translation errors are both under predefined thresholds. For example, Shotton
et al. [71] and Tseng et al. [3] use the thresholds of 5°&5cm and 20°&10%,
respectively. The success rate according to the metric of rotation & translation
errors 1s defined as the percentage of the successfully estimated poses. Sometimes
we also use measures of the average rotation and translation errors, and they

computed only for successfully estimated poses.

2.2.2 3D Distance

This metric is used to compute the averaged 3D distance between points trans-
formed using the estimated pose and the ground-truth pose [5]:
1 . -
Esp=— )Y |[Rx+t— (Rx+t)], (2.37)
m xeEM
where x is a 3D point of the target object model, m is the number of points on the

model, and M is the set of all 3D points of this model.

Success Rate (SR). For the metric of 3D Distance, a pose is considered to be
successfully estimated if the 3D distance error E3p is less than the product of kd,
where d is the diameter (i.e., the longest distance between vertices) of M and k
is a pre-defined threshold. In [5], Hinterstoisser et al. set the value of k to be 0.1,

which means the computed average distance is within 10% of the model diameter.

2.2.3 2D Projection

Sometimes the previous measures are not very well suited when applying visual
effects to 2D images (e.g., in AR applications). For instance, the translation

accuracy in z-axis is less critical for the visual impression than the accuracy in
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x-axis and y-axis. This metric focuses on the matching of pose estimation on 2D
images [16]:

1 ~ ~
Eop=— Y |KRx+t) — K(Rx + )], (2.38)
m xeM

where x is a 3D point of the target object model, m is the number of points on the
model, M is the set of all 3D points of this model, and K is the intrinsic matrix of

the camera as defined in (2.1).

Success Rate (SR). We say that a pose is correctly estimated if the 2D projection
error Fyp is less than a pre-defined threshold. Brachmann et al. [16] use 5px

(i.e., 5 pixels) as the threshold for the metric of 2D projection.

doi:10.6342/N'TU201800854



Chapter 3

Related Work

In this chapter, we briefly review methods related to object pose estimation and
tracking in the literature. Among these methods, the feature-based approaches are
the most common and effective ones if the target objects are full of texture. Feature-
based approaches typically run a two-stage pipeline: a) feature detection and
matching, b) geometric verification of the matched features using PnP algorithms.
Therefore, we first introduce these two techniques in the following sections. We
use PnP algorithms to estimate the pose of an object pose from a calibrated camera
given a set of n 3D points of the object and their corresponding 2D projections
in the image. In contrast, the Kabsch Algorithm is a method for computing
the relative rigid transformation between two paired sets of points in the same
coordinate space. Recently, image or point cloud alignment methods (e.g., the
Lucas-Kanade and Iterative Closest Point methods) based on optimization problems
have regained public attention for their accuracy and robustness, and they can be
utilized for not only pose tracking but pose refinement. To find a local minimum
of an objection function effectively in an optimization problem, the line search
strategy is frequently applied next to obtaining a descent direction along which the
objective function will be reduced. After introducing these elemental methods, we
finally present existing object pose estimation and tracking approaches as well as
benchmark datasets used for evaluating pose recovering algorithms.

25
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3.1 Feature Detection and Matching

Establishing feature correspondences across different images typically involves
three distinct steps. First, features with rich visual information are detected in
both images. The SIFT detector [9] leverages difference of Gaussians (DoG) to
accelerate the detection process in different scales, while the SURF [72] detector
uses a Haar wavelet approximation of the determinant of the Hessian matrix. In
addition, the KAZE detector [73], followed by the Accelerated-KAZE (AKAZE)
detector [74], uses non-linear diffusion filtering techniques [75] to build the scale
space instead of Gaussian blurring to preserve object boundaries. As these detectors
are still computationally expensive, several methods including FAST [76] and
AGAST [77] have been developed for improvement of execution speed.

Second, a feature representation based on a local patch centered at a detected
feature is constructed. Although the SIFT descriptor [9] and the SURF descrip-
tor [72] have been shown to perform robustly in numerous tasks, the incurred
computational cost is high as the feature dimensionality is high. Subsequently,
binary descriptors, such as BRIEF [78], BRISK [79], ORB [80], and FREAK [81],
are designed for improvement of execution speed.

Third, a feature point is associated with another in the other image. While a
method is expected to detect plenty of distinct features accurately in one image
and match most of them across different views of the same object, some correspon-
dences are incorrectly determined in practice, and most PnP methods do not handle
these outliers well. Outliers are typically rejected at a preliminary stage using
projective transformation models or P3P algorithms [82, 83, 84] in combination

with RANSAC-based schemes [11, 85, 86].

3.2 PnP Algorithms

Given n 3D reference points in the object-space coordinate system and their corre-

sponding 2D projections, the PnP problem aims to retrieve the rigid transformation
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of the target object with respect to the camera. In the past, iterative PnP algorithms,
e.g., LM [87] and RPP [88], determine the orientation and position of an object by
minimizing an appropriate objective function iteratively. These methods perform
well when reliable initial estimates are provided although at the expense of execu-
tion time. Recently, several non-iterative methods without requiring good initial
estimates have been proposed. The EPnP method [12] uses four virtual control
points to represent the 3D reference points and performs at the linear computational
complexity. This problem formulation and use of linearization strategies facili-
tate the PnP methods perform efficiently. Numerous approaches have since been
developed to improve the accuracy by replacing the linear formulation with poly-
nomial solvers, e.g., DLS [89], RPnP [90], UPnP [91], OPnP [13], REPPnP [92],
and CEPPnP [93]. Among these approaches, the REPPnP method integrates an
outlier rejection technique into the pose estimation pipeline, and thus its input

correspondences are not all necessary to be inliers.

3.3 Kabsch Algorithm

The Kabsch algorithm is a method for computing the optimal rotation and transla-
tion of two paired sets of points in N-dimensional space as to minimize the root
mean squared deviation (RMSD) between them [94]. For instance, given two

paired sets of 3D points x; <+ y;, one can compute the rigid transformation:

in a closed form solution. The first step is to compute the centroids of these two

point sets:
1 & 1 &
"= "=
and subtract the centroids from points:
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The next step consists of computing a covariance matrix:
n
o oT
H= inyi . (3.4)
i=1

Then we calculate the singular value decomposition (SVD) of the covariance
matrix [95]:
H=UxV'". (3.5)

Finally, we can obtain the optimal rotation and translation as follows:

100
R=V |0 1 0/U", t=y-Rx, (3.6)
00 d

where d = det(VUT) is used for correcting the rotation matrix R to ensure a

right-handed coordinate system.

3.4 Lucas-Kanade Method

The Lucas-Kanade (LK) method is a widely used differential method for tackling

the image alignment problem [96]. Its goal is to minimize the sum of squared error

between two images with respect to the geometric parameters p = [py, . .. ,pm]T
(e.g., parameters of affine, projective, or rigid transformation):

f(p) =3 (Ze (w(x,p)) — L(x))", (3.7)
where Z. is the camera image, Z; is the target image, x = [z, y}T is the pixel

location, and w is the warp mapping the pixel location x in Z; to the sub-pixel
location w(x, p) = [u(x, p),v(x,p)]" in Z,. Since this optimization problem is
non-linear because of the presence of the functions Z.(-) and Z(-), there is no
closed form solution for (3.7). Consequently, the LK method assumes that a current
estimate of the geometry parameters p is known and then iteratively solves the

optimization problem for increments to the parameters Ap:

f(Ap) =" (Z. (w(x, p. + Ap)) — T, (x))°, (3.8)

X
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where p. is the current estimate of p. Then the parameters are updated by p. <
P. + Ap until a satisfactory estimation result is met.

The LK method (which is a Gauss-Newton algorithm) is derived as follows.
The non-linear expression in (3.8) is linearized by performing a first-order Taylor
expansion of Z, (w(x, p. + Ap)) with respect to the second argument of w around
Pc:

F(Ap) = Y (T (w(x, pe)) + I (x, pe) Ap — Ti(x))” . (3.9)

X

In this expression, J(x, p.) is the 1 x m Jacobian matrix of the camera image Z..

with respect to p (in numerator-layout notation):

Ow(x,p)
op ’

P=Pc

J(x,pc) = VL (W(x, pc)) (3.10)

where VZ. (w(x,p.)) = [%, %] is the gradient of 7. evaluated at w(x, p.) =

[u(x,p.),v(x,pe)] . On the right side of (3.10), the second term is the 2 X m

Jacobian matrix of the warp w with respect to the geometry parameters p around

Pc:
Ou  Ou Ou
aW(X, p) _ Op1 Opa " Opm (3 11)
op | v oo || '
b=Pe dp1 Op2 " Opm | PTPe

Since f(Ap) in (3.9) is a quadratic form with respect to Ap, minimizing f(Ap)

is a least squares problem and has a closed form solution for Ap:
Ap=H(p.) ' Y I (x,p) (Li(x) =T (w(x,p.),  (3.12)

where H(p,.) = >, J (x,p.) ' J (x, p.) is the m x m (Gauss-Newton approxi-
mation to the) Hessian matrix. After computing an increment Ap by (3.12), the

current estimate of the parameters is updated by:
Pe < Pc + Ap. (3.13)

The steps (3.12) and (3.13) are iterated several times until the estimates of pa-
rameters converge. Typically the test for convergence is whether the norm of the

increment ||Ap|| is less than a threshold ¢, i.e., || Ap|| < e.
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The optimization problem can also be solved in an alternative way. First, we

turn (3.9) into vectorized form:

f(Ap) = |[I. + J.Ap — L|]?,

7, (w(x1,po))] [3(x1,p0)| (7,(x))]
o |Fepd)|  [Jeepd| T (3.14)
_Ic (W(xn, pa))_ _J (Xn, pe)_ _It(xn>_

To address this quadratic minimization problem, we set the derivative of f(Ap)

with respect to Ap equal to zero (in numerator-layout notation):
2J (I,+JAp—-1,) =0 — J/J.Ap=J/(I,-1,). (3.15)

The equation on the right side of (3.15) is called normal equation [97]. We can
then obtain the following closed-form solution for Ap by solving the system of

linear equations in (3.15):
Ap=H1'J/(1,-1.), H=JJ, (3.16)

which has the same result as (3.12). We refer the interested readers to [98, 99] for

more information on matrix calculus. A general form of (3.16) is:
Ap = Ji(I, - 1), (3.17)

where J! = (J 1J c) - J | is referred to as the Moore-Penrose pseudoinverse of
J.. Another way to compute the pseudoinverse is using SVD, which may be
more accurate and numerically stable. If J, = UXV' is the SVD of J,, then
JI = VXTU'. For the rectangular diagonal matrix Y, its pseudoinverse %1 can
be obtained by taking the reciprocal of each non-zero element on the diagonal,
leaving the zeros in place, and then transposing the matrix.

Several optimization methods have been proposed, and a wide variety of
extensions have been made to the original formulation of the LK algorithm. These

iterative algorithms have the same structure: In each iteration, they first compute
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the increment Ap of the current parameters p. which minimize an objective
function similar to (3.8), and then update the parameters p. with Ap. According
to [100], there are mainly four different kinds of approaches. Each approach is
classified depending on: (1) the type of objective function employed (additive or
compositional) and (2) the direction of warping (forward or inverse). The canonical
LK formulation presented in the previous paragraph is regarded as the forwards
additive (FA) algorithm. In addition, there are also the forward compositional
(FC) algorithm [101], the inverse additive (IA) algorithm [102], and the inverse
compositional (IC) algorithm [103]. Different from methods employing first-
order approximation mentioned above, Benhimane and Malis [104] propose the
efficient second-order minimization (ESM) method which applies a second-order
approximation. We refer the interested readers to [100, 105] for more detailed

information about these iterative optimization algorithms and their comparisons.

3.5 Iterative Closest Point

The Iterative closest point (ICP) algorithm is a widely used approach in aligning
3D surfaces given an initial estimation of the rigid body transformation [106]. It
iteratively refines the transformation from a source point set (i.e., transformed)
to a destination point set (i.e., fixed). This approach allows integrating data from
different sources into a bigger model. In addition, it can also be used for tracking
target object poses in 3D space. The ICP method contrasts with the Kabsch
algorithm in that the former treats correspondences as variables to be estimated,
whereas the latter requires correspondences between point sets as the input data.
Pomerleau et al. [107] provide an excellent survey of the different ICP variants
during the last twenty years as well as their use cases.

In the original ICP method proposed by Besl and McKay [106], points in one
set are paired with their closest points in the other set to form correspondences.

Then a point-to-point error metric is used, where the sum of the squared distance
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destination destination destination destination

point surface point tz:)r;gre;gt surface

ny
unit
normal

X1 X1
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source X2 source X7
surface surface
(a) Point-to-point error. (b) Point-to-plane error.

Figure 3.1: Two error metrics mostly employed in ICP methods.

between corresponding points is minimized, as illustrated in Figure 3.1(a). The
process is iterated until the error (or the difference of errors in between two
consecutive iterations) becomes smaller than a predefined threshold. For each
iteration, the best rigid transformation according to the point-to-point error metric
has a closed-form solution and can be achieved by using the Kabsch algorithm
described in Section 3.3. In contrast, Chen and Medioni [108] apply the point-to-
plane error metric, in which the sum of the squared distance between points and
the tangent planes at their corresponding closest points is minimized, as illustrated
in Figure 3.1(b). Different from the point-to-point error, the point-to-plane error
is usually minimized by using non-linear least squares approaches, such as the
Gauss-Newton algorithm and the Levenberg-Marquardt method [109]. Although
each iteration of the point-to-plane ICP approach is generally slower than the
point-to-point one, the former has been proved to have better convergence rates
[110, 111]. Moreover, when the relative rotation between two surfaces is small,
the nonlinear least-squares optimization problem can even be approximated with
a linear one, so as to speed up the computation. We explain how to achieve the
linearization in the next paragraph.

When using the point-to-plane error metric, our goal is to minimize the follow-

ing objective function with respect to the rotation R and translation t:

n

FR.E) = (0] R +t-y)" (3.18)

%
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where x; is a source point, y; is a destination point, and n; is the unit normal vector
at y;. To linearize (3.18), we assume the relative rotation between the source and
destination surfaces is small and replace the original rotation R with the small

angle approximation R(r) presented in (2.21):

i ) (3.19)
=3 [ b wr] ] w0
2
:% (x; xn;)" n :—nz (yi —xi)

Similar to the vectorization operation from (3.9) to (3.14), we turn (3.19) into

vectorized form:

f(p) =1Ap —b|?,

(x1xmy)" nf n/ (y1 —x1)
A (xo xmp) nJ . r b= n, (y2 — Xz) (3.20)
t
(xp xm,)" ) 1, (Yo — Xn)|

A closed-form solution for this quadratic minimization problem can then be

achieved (by following the arithmetic operations from (3.14) to (3.17)):

r
p= = A'b, (3.21)
t
where AT is the pseudoinverse of A. Note that since ﬁ(r) may not be a valid

rotation, we should instead use the rotation R(r) described in (2.18) as the final

solution (despite the fact that it is not equal to f{(r) applied in (3.19)).
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3.6 Line Search & Trust Region

In mathematical optimization, there are two primary iterative strategies to find a
local minimum point p* of an objective function f : R™ — R. The first one is
the line search method. It first chooses a descent direction n along which f will
be reduced and then computes a step size o which determines how far the current

point p should be moved along n:
min f(p+ an). (3.22)

The descent direction n can be computed by various approaches, such as the
gradient descent algorithm (or steepest descent algorithm), Newton’s method, and
Quasi-Newton method. If the objective function f can be expressed as a sum of
squares (e.g., (3.7)), then the Gauss-Newton algorithm can also be employed to
compute n. To solve (3.22) exactly, we would derive the maximum benefit from n
by approaches such as the conjugate gradient method. However, in most cases, it
is not necessary to find the exact minimum of (3.22) in each iteration. Instead, an
inexact line search approach, such as the backtracking line search algorithm, may
be used to find an « that loosely approximates the minimum along n.

The second one is the trust region method (or restricted step method). For each
iteration, it first gather the information about the objective function f around the
current point p to construct a model function m (often a quadratic function) whose
behavior near p is similar to that of f. Then the candidate step Ap is computed by

approximately solving the following problem:
minm(p +Ap),  [|Ap[| <A, (3.23)
P

where A > 0 is referred to as the trust-region radius (since the trust region is
usually defined as a ball). The radius will be enlarged in the next iteration if the
model function m approximates the objective function f well within the trust
region. Otherwise, the radius will be contracted. The fit is evaluated by comparing

the ratio between the expected improvement from the approximation m and the
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actual improvement observed in f. Simple thresholding of the ratio is used as the
criterion for determining whether the trust region should be expanded or contracted.

A widely used trust region method is the Levenberg—Marquardt algorithm.

The line search and trust region approaches are different in the sense that
while the former firstly finds a descent direction and then a step size, the latter
chooses a step size (or the size of the trust region) first before computing the
descent direction. Both kinds of approaches are advantageous in most cases when
solving optimization problems. We refer the interested readers to [109] for more

information on mathematical optimization.

3.7 Object Pose Estimation Approaches

Although direct methods [112, 5, 3] have been shown to achieve promising results
on texture-less objects, the success is limited to objects that are not occluded.
On the other hand, even though feature-based methods [7, 8] can estimate and
track pose under partial occlusion, these approaches do not perform well on
textureless objects. For the past few years, learning-based approaches have gained
increasing attention as they perform well in various conditions. During the first
period, most learning-based methods are developed based on decision forests
[14, 15,113, 114, 16, 115], where a set of local patches are sampled from training
images. Instead of determining object pose directly, Brachmann et al. [15] train
a decision forest that stores a distribution over a set of intermediates, i.e., object
coordinates, at each leaf node. Given a test image, patches are first densely sampled
and evaluated by the decision forest to obtain the estimated object coordinates,
and then rigid transformation hypotheses between 3D-to-3D correspondences can
be computed by the Kabsch algorithm [94] presented in Section 3.3. The final
pose is determined by the minimal cost of an objective function with a RANSAC-
based scheme. This method [15] is further improved in various ways, such as:

(1) replacing the cost function with a learned alternative using a convolutional
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neural network (CNN) for better measurement of the geodesic distance on 6DoF
pose manifolds [113]; (2) refining the regressed object coordinates with the [,
regularized loss function [16]; (3) using a policy gradient approach (which is
called PoseAgent, a reinforcement learning agent) to improve pose hypotheses
directly [116]; and (4) employing a global geometry check strategy to generate

fewer but better pose hypotheses [117].

Recently, research in most pose estimation tasks has been dominated by deep
neural networks. At first, Wohlhart er al. [118] apply CNNs for direct object pose
recovering (rotation only) from holistic template images. Nonetheless, these input
images should have been cropped around target objects from original camera frames
by employing some detection techniques beforehand. In the last few years, there
have been many object detectors which can find the bounding boxes around objects
effectively and efficiently, such as Faster R-CNN [119, 120, 121, 122], YOLO [123,
124], and SSD [125]. Kehl et al. [126] accordingly detect the target objects and
estimate their 6DoF poses simultaneously through extending the SSD approach
to cover the full 6D pose space. Different from these two methods [118, 126]
which cast pose estimation into classification tasks, the PoseCNN paradigm [127]
estimate the object pose by regressing convolutional features extracted inside the
bounding box of the object to parameters of rotation and translation. In addition,
there are also algorithms which work by firstly predicting 2D projections of the 3D
points, which are either corners of the object’s bounding box [128, 129, 130] or
semantic object keypoints [131], and then the 6DoF pose can be computed from
the 2D-to-3D correspondences with a PnP algorithm. Rad ef al. [130] further
apply the transfer learning (or domain transfer) technique to learn a mapping
from the exemplary representations of real images to the exemplary representations
of synthetic images. Consequently, they can just exploit only synthetic images
when training a deep network to estimate the 6DoF object pose from a real image.
By contrast with these holistic methods, Kehl er al. [17] propose a voting-based

approach using auto-encoder descriptors of local patches for 6DoF pose hypotheses
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Figure 3.2: The pose ambiguity can be regarded as a geometric illusion. There
appears to be more than one 3D geometrical explanation based on the same

perspective-projected marker in the camera image.

generation.

Although object poses can be estimated in frames by these pose estimation
approaches, they may not suit AR applications because they are usually not accurate
enough to generate stable pose sequences. Nonetheless, one can still use these
methods to compute a rough initial pose and use this pose as the input data for

some pose tracking or refining algorithms.

3.7.1 Pose Disambiguation for Planar Objects

If the target object is a plane, then it may cause the pose ambiguity problem, as
illustrated in Figure 3.2. Pose ambiguity is related to situations where the error
function has several local minima for a given configuration, which is the leading
cause of flipping estimated poses in an image sequence [132, 133], as presented
in Figure 3.3. This problem occurs not only under orthographic projection but
also for perspective transformation, especially when the planar target object is
significantly tilted with respect to camera views. A typical approach for pose
disambiguation is first to find all possible poses which are stationary points with
local minima of a designed objective function, and then the one with smallest

objective values is considered as the estimated pose. Empirically, the number of
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Figure 3.3: Pose ambiguity in real cases. The images in the first column are
the original images. Images with a synthetic model rendered according to each

ambiguous pose are shown in the last two columns.

ambiguous poses is two in general. Schweighofer and Pinz [88] observe that two
local minima exist for cases with images of a planar target object viewed by a
perspective camera, and a method is developed to determine a unique solution
based on an iterative pose estimation method [87]. The PnP problem can be posed
as a minimization problem [13], and all the stationary points can be determined by
using the Grobner basis method [134]. In addition, given a pose solution, the other
ambiguous pose can also be generated by reflecting the first pose with respect to a
plane whose normal vector is the line-of-sight from the camera image center to the

planar target center [135].

3.8 Object Pose Tracking Approaches

Object pose tracking can be regarded as an energy minimization problem from
an initial estimate of pose parameters. To obtain an accurate pose, an energy
function should reflect the geodesic distance on the 6DoF manifold that can be
computed efficiently. An early yet comprehensive review of model-based tracking
is conducted by Lepetit and Fua [136]. One of the classical methods for object

pose tracking is the feature-based paradigm, which computes the object pose based
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on tracked natural features from frame to frame [137]. These approaches can be
further improved by adopting the particle filtering technique [24, 25]. In recent
years, pose tracking approaches combining region-based 2D segmentation, and
2D-to-3D pose estimation become more and more popular [138, 19, 139, 21]. The
pose parameters are computed based on iteratively minimizing the distance of
point correspondences between the segmented and projected contour of the target
object. Prisacariu and Reid [19] present the PWP3D method which solves the pose
recovering problem with a pixel-wise minimization scheme. Other approaches
based on the PWP3D method mainly focus on improving the segmentation results
and gradient descent search strategies [139, 21]. Since the release of the low-
cost depth device Kinect, many of the pose tracking approaches have applied the
ICP algorithm to align 3D point clouds between a CAD model and real scenes
[18, 140]. Kehl et al. [141] further propose a combined tracking approach which
leverages both the region-based method and the ICP algorithm. In addition, there
are also learning-based methods of object pose tracking. Tan et al. use random
forests to learn more robust features that better handle occlusion [142], and they
further combine this method with an optimization approach, which minimizes an
energy function to find the best transformation between the source and the target,
to improve the tracking accuracy and reduce jitter [143]. Furthermore, Garon and
Lalonde [144] leverage a deep neural network to automatically track the 6DoF
pose of an object robustly even under clutter and occlusion; Li et al. [145] propose
a deep iterative matching network for 6DoF object pose refinement, which can also

be utilized in pose tracking applications.

3.8.1 Binary Square Fiducial Marker Tracking Solutions

The 2D binary square fiducial marker is an easiest-to-construct, and maybe the most
famous 6DoF tracking solution. It has been used extensively for both recognition
and tracking. Libraries for efficient identification and localization of binary square

markers, such as ARToolKit [146], ARToolKitPlus [147], ARTag [148, 149],
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and ArUco [150, 151], have become a building block for many AR solutions.
The typical output of such a library is a sparse set of corresponded corners on
the recognized marker, which can then be used to solve for 6DoF position and

orientation by PnP algorithms presented in Section 3.2.

3.8.2 Pen Tracking Paradigms

5DoF and 6DoF tracking of pens have been an active area of research in the
computer vision and human-computer interaction communities. The IrCube [152]
and IrPen [153] trackers rely on setting up a source localization problem involving
a cluster of directed LEDs, achieving an accuracy of 10 mm in a 20x20 cm? area.
The Lumitrack approach [154] uses laser projections of coded patterns and a linear
optical sensor to track at 800 Hz with an accuracy of 5 mm. The Light chisel
system [155] consists of two LEDs inside a diffuse cylinder fiducial tracked by
stereo cameras at an accuracy of 2 mm over a 56x31x33 cm?® volume. A pen
can also be tracked from a light-field camera [156] through a lenslet array with an

accuracy of 3 mm.

3.8.3 Commercial Tracking Systems

Consumer solutions for 6DoF tracking typically combine micro-electromechanical
systems (MEMS) inertial measurement with laser positioning (e.g., HTC Vive [157]),
optical tracking (e.g., Oculus Touch [158] and PS Move [159]), or magnetic track-
ing (e.g., Razer Hydra [160]).

Motion capture is another widely used method for high-fidelity 6DoF tracking.
In a mocap system, such as OptiTrack [161], Vicon [162], and Qualisys [163],
typically a large array of strobing cameras observes a set of passive retroreflective
fiducials. Triangulation and tracking are used to obtain the absolute position and

orientation of the tracked object at better than millimeter accuracy.
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3.9 Benchmark Datasets

Numerous datasets have been developed to evaluate algorithms in areas related
to 3D pose estimation and tracking. The dataset presented by Lieberknecht ez
al. [164] contains 40 sequences of eight different textured 2D objects and five
unconstrained motions (e.g., zoom-in and translation). A dataset with 96 videos
from six textured planar targets and varying geometric distortions as well as lighting
conditions is constructed by Gugglitz et al. [4]. The homography transformation
parameters are provided in this dataset. Since a rolling-shutter camera is used, it
may be difficult to obtain the exact 6DoF pose from the homography parameters
when the relative motion is significant.

Hinterstoisser et al. [5] construct a dataset of 18,000 images with 15 texture-
less 3D objects, which is further extended for multi-instance 3D object detection
and pose estimation [14]. Similarly, a dataset with 20 textured and textureless
objects is proposed [15] where each one is recorded under three different lighting
conditions. In addition, Hodan et al. [165] propose the T-LESS dataset that
features thirty commodity electrical parts which have no significant texture. There
is also a dataset [144] consisting of sequences in which the occlusion is varied
from low to high levels. For the datasets mentioned above, both color and depth
images are recorded using handheld Kinect V1 or Kinect V2 cameras. The target
objects are attached to a planar board surrounded with fiducial markers, which
provide the corresponding poses. Since markers cannot be accurately localized
in a blurry image, the recorded targets need to be static in front of the camera,
and thus these datasets do not contain distortions that are crucial for performance
evaluation of pose tracking in real-world scenarios. The real pose is also arduous
to compute because of the rolling-shutter effect which will change the appearance
of markers whenever there exists some camera movement. Different from using
fiducial markers, the ground-truth object poses in the datasets [26, 25] are manually
labeled and less accurate. Even the poses estimated by Krull ef al. [25] and

Xiang et al. [127] are further refined by the ICP method, the estimates are not
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accurate due to noisy measurements of depth values. In contrast, Akkaladevi et
al. [166] utilize a camera tracking solution called ReconstructMe [ 167] to annotate
poses. However, the ground-truth pose accuracy depends on the camera tracking
results performed by ReconstructMe, which may not be very reliable. The dataset
proposed by Choi and Christensen [24] consists of four synthetically generated
sequences of four models. The main drawback of this synthetic dataset is the
lack of distortions in both RGB-D images and motion blurs. We summarize the
characteristics of existing benchmark datasets for pose estimation and tracking

in Table 3.1.
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Chapter 4

OPT: A Benchmark Dataset for
6DoF Object Pose Tracking

In this work, we propose a large-scale benchmark dataset of RGB-D video se-
quences for both 2D and 3D objects with ground-truth information, as shown
in Figure 1.1. The proposed benchmark dataset contains 690 color and depth
videos of varying degrees of textured and geometric objects with over 100,000
frames. These videos are annotated with different imaging conditions (i.e., Trans-
lation, Zoom, In-plane Rotation, Out-of-plane Rotation, Flashing Light, Moving
Light, and Free Motion) and speed recorded with a Kinect V2 sensor mounted
on a programmable robotic arm. A 3D printer renders the objects in the bench-
mark dataset with distinct textures. The ground-truth poses are computed using a
designed checkerboard and checkerbox for 2D and 3D objects. Due to the global-
shutter infrared camera with fast shutter speed from the Kinect V2 sensor, we can
annotate the ground-truth poses by leveraging the clear infrared images under fast
motions.

The contributions of this work are summarized below:

Benchmark dataset. We design a benchmark dataset for 6DoF object pose track-
ing. It consists of 690 videos under seven varying conditions with five speeds. It is
a large dataset where images are acquired from a moving camera for performance

45
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evaluation of both 2D and 3D object pose tracking algorithms. Furthermore, the
proposed dataset can also be used in other computer vision tasks such as 3D feature
tracking and matching.

Performance evaluation. Each pose tracking method is extensively evaluated
and analyzed using more than 100,000 frames including both 2D and 3D objects.
Since the state-of-the-art simultaneous localization and mapping (SLAM) methods
[2, 60] are able to track and relocalize camera pose in real time, we also eval-
uate these approaches by adapting them to object pose tracking scenarios. We
present the extensive performance evaluation of the state-of-the-art methods us-
ing the proposed benchmark dataset. Finally, we discuss the potential research
directions in this field. The proposed benchmark dataset is available online at
media.ee.ntu.edu.tw/research/OPT. Below we describe how we collect data and
compute the 6DoF pose of the target object with addressing the rolling-shutter

1ssues in detail.

4.1 Acquiring Images

The color, depth, and infrared images of each sequence are obtained from a
Kinect V2 sensor mounted on a programmable KUKA KR 16-2 CR robot arm,
as illustrated in Figure 4.1. The robotic arm, which has six axes and repeatability
of 0.05 mm, can be programmed to move in complex trajectories precisely. Each
2D object shown in Figure 4.2 is a printed pattern with size 133.6x133.6 mm?
surrounded by a checkerboard glued to an acrylic plate. Each 3D object shown
in Figure 4.3 is generated by a 3D printer with resolution 300450 dpi and 0.1 mm
layer thickness. The length, width, and height of 3D objects illustrated in Figure 1.1
are in the ranges of (57.0, 103.6), (57.0, 103.6), and (23.6, 109.5), respectively in
mm. We describe how the ground-truth 6DoF pose of a target object is obtained

based on the 2D checkerboard or 3D checkerbox in Section 4.2.

The object motions in the proposed benchmark dataset are (regarded as moving
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KUKA KR 16-2 CR

Depth Image Infrared Image

Figure 4.1: Sequences in the proposed dataset are recorded with a Kinect V2 sensor
mounted on a programmable robotic arm. Note that we normalize the intensity of

the depth image in this figure for clarity.

A

Low Normal Rich

Figure 4.2: 2D objects with low (Wing, Duck), normal (City, Beach), and rich

(Firework, Maple) texture.

Simple Normal Complex

Figure 4.3: 3D objects with simple (Soda, Chest), normal (Ironman, House), and

complex (Bike, Jet) geometry.
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object rather than the camera):

Translation. An object moves along a circle parallel to the camera sensor plane

with motion blur in all directions.
Zoom. An object moves forward first and then backward.

In-plane Rotation. An object rotates along an axis perpendicular to the camera
sensor plane.

Out-of-plane Rotation. An object rotates along an axis parallel to the camera
sensor plane.

Flashing Light. The light source is turned on and off repeatedly, and the object
moves slightly.

Moving Light. The light source moves and results in illumination variations while
the object moves slightly.

Free Motion. An object moves in arbitrary directions.

The objects move at five speeds in Translation, Zoom, In-plane Rotation, and
Out-of-plane Rotation such that the videos are close to real-world scenarios with
different image distortions (e.g., motion blurs). For each 3D object, videos from
four camera perspectives are recorded. A square region on the bottom plane is
hollowed out to fit the base of a 3D object as shown in Figure 4.4. Table 4.1 lists
the properties of all motion patterns in the proposed dataset.

Since the Kinect V2 sensor drops frames occasionally, it may affect some
tracking approach which exploits a motion model to perform trajectory prediction
and obtain a better initial pose in the next frame. To address this issue, we develop
a method to record the RGB-D video sequences instead of using the original
recording software by Microsoft. The GUI of our recording program is shown
in Figure 4.5. This program will automatically detect if some frames are dropped
during recording and display an error message when the unfortunate happens. We
record the sequences repeatedly until all of them are complete (i.e., exact 30 fps).
We also ensure that the sequences only contain the desired motions by removing

the start and end of the sequences where the object is stationary.
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Table 4.1: Evaluated motion patterns. For each speed level, there are six sequences

with 2D models and 24 sequences with 3D models (6 models x 4 sides).

Motion Pattern ~ Model Level # Frames Avg. Rot. Vel. Avg. Trans. Vel.
[deg/s] [mm/s]
1 241 0.69428 37.916
2 83 0.79381 110.3443
D 3 52 0.88252 175.9481
4 36 1.1011 252.0285
, 5 30 1.2767 297.7782
Translation 1 174 0.69185 32.8919
2 61 0.85972 93.2347
3D 3 38 1.0905 147.2741
4 27 1.5142 199.8588
5 23 1.9685 222.9882
1 295 0.66289 28.3413
2 104 0.7268 80.7141
2D 3 65 0.73599 129.6973
4 47 0.78002 180.9885
5 38 0.83148 224.9915
Zoom 1 341 0.87975 31.6376
2 119 1.1265 90.9394
3D 3 76 1.1053 143.1166
4 55 1.1661 199.1822
5 44 1.2035 250.0844
1 209 65114 43954
2 75 18.2884 8.7469
D 3 46 30.0623 14.2698
4 35 39.8567 19.0389
In-plane 5 29 48.5156 23.6787
Rotation 1 370 3.3929 5.2248
2 127 9.9255 13.1589
3D 3 78 16.2043 20.9461
4 53 23.9756 30.522
5 41 31.1681 39.1322
1 555 3.8118 5.3987
2 189 11.2437 14.0884
D 3 116 18.3775 22.7303
4 81 26.4373 32.4912
Out-of-plane 5 63 34.1305 41.9536
Rotation 1 600 3.7498 9.2109
2 202 11.0287 24.0732
3D 3 123 18.1562 39.1878
4 85 26.3867 56.7088
5 64 35.1654 74.6798
- 2D - 161 0.61427 4.8458
Flashing Light 3 _ 154 0.63751 5.03
o 2D - 164 0.60217 47679
Moving Light  5p  _ 154 0.64017 5.0404
. 2D - 784 24.9678 127.2679
Free Motion D - 323 173.992 5.800
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(a) (b) () (d) (e) ®

Figure 4.4: The checkerbox is designed so that the 3D object can be changed with
four different sides. (a) The hollowed part on the bottom plane of the checkerbox.
(b) The bottom view of the base of the 3D object. This base can adhere to the
checkbox with four magnet pairs. (c) The front view, (d) left view, (e) back view,

and (f) right view of a target.

Figure 4.5: GUI for recording RGB-D sequences captured by Kinect V2.

4.2 Obtaining Ground-truth Object Pose

We estimate the intrinsic and extrinsic camera parameters using the calibration
toolbox [168]. It is worth noting that depth and infrared images, as shown in Fig-
ure 4.1, are obtained from the same sensor (i.e., depth camera). Therefore, we
calibrate depth camera using infrared images. The estimated intrinsic parameters

are shown in Table 4.2. Next, we conduct an extrinsic calibration [168] of the two
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Intrinsic parameters of the used Kinect V2. (w, h): image resolu-

tion; (f,, f,): focal length; (c,, ¢,): principal point; (1,72, r3): radial distortion

coefficients; and (1, t2): tangential distortion coefficients.

Camera Type Color Camera Depth Camera
Shutter Type Rolling Shutter Global Shutter
FPS (Hz) 30 30
(w, h) (1920,1080) (512,424)
(for fy) (1060.197,1060.273) (366.736,366.458)
(Ca,Cy) (965.809,561.9526) (254.026,207.470)
(ri,72,73) (0.0435,-0.0183,-0.031) (0.107,-0.297,0.114)
(t1,t2) (0.000905,0.000709) (0.0013,-0.00026)

cameras resulting in the transformation matrix:

[ 1.0000

_52.51]

—0.0053  0.0038
Rz tase 0.0053  1.0000 —0.0041 0.602

Taze = = 4.1)
0o 1 ~0.0038  0.0041  1.0000 —0.326
0 0 0 i

from the depth camera coordinate system to color camera coordinate system.

We find that the measured distance within dark regions in the depth maps are
less accurate, as illustrated in Figure 4.6. This is also discussed in [1], as the
Kinect V2 sensor uses an indirect time-of-flight system based on light modulation
to estimate depth. Since some measured points may be affected by points within
dark regions during calibration, we marginalize the unreliable measurements by
applying the robust regression with Bisquare weighting, as shown in Figure 4.7.
We also rectify the depth images according to the regression results between these
two types of images. In addition, since the transformation matrix T ;. between
the depth and camera coordinate is estimated, the depth image in the color camera

coordinate system (and vice versa) can be obtained according to T yo.. We illustrate
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() (b) ()

Figure 4.6: (a) Infrared image. (b) Point cloud corresponding to (a) from one
viewpoint. (c) Point cloud from one another viewpoint. The measured distance

within a dark region is larger than real cases.
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Figure 4.7: (a) Deviations between real and measured depth values. We perform
the robust regression with Bisquare weighting. (b) Points are sampled in the center

of white blocks since the measured values on a dark surface are less reliable [1].
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Figure 4.8: Original images (top row) and new mapped images (bottom row) in the

other coordinate system.

the mapping results between two coordinate systems in Figure 4.8.

After rectifying the images, we obtain the ground-truth pose using the camera
parameters and the checkerboard (or checkerbox) around an object as follows.
The positions of a few crossed points are initialized with known 2D-to-3D corre-
spondences in the first frame of each sequence and updated by the nearest corners
using [169]. Other crossed points can then be obtained with an initial pose pg
estimated according to the correspondences with the OPnP method [13]. The
location of each point is refined with a sub-pixel corner detection method [168].
A point may be discarded if it is close to another crossed point for robust pose
estimation. We compute the object pose p according to the refined points with
the OPnP method [13] again and refine p with the Newton method. Figure 4.9
shows an example of object pose estimation in the first frame of each sequence.
We determine the corresponding points in the current and following frames with

the KLT tracker [96], and estimate poses according to these points with the scheme
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Figure 4.9: Ground-truth object pose annotation. (a) We first initialize a few
points with known 2D-to-3D correspondences. (b) The nearest corner points of the
initialized points are detected. (c) The other corner points are computed with an
initial pose py according to the initial correspondences. (d) We later refine these
points and discard non-robust ones. (e) The final pose p is estimated according to
the remaining points. (f) The object pose in the related color image is computed

according to the estimated transformation matrix.

mentioned above. As such, the object pose in each frame can be obtained sequen-
tially. The annotation process is performed with a handcrafted program, as shown
in Figure 4.10. The checkerboard (or checkerbox) is designed with increasing
block size from center to border. This pattern facilitates detecting a sufficient
number of corner points when the target object is either near or far from the sensor
as illustrated in Figure 1.1. Because of the symmetric form, the crossed corner
points can also be better localized than the corners of fiducial markers used in
existing datasets [164, 5, 14, 15]. The exact 3D target position related to the base

is calibrated manually.
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Figure 4.10: The GUI of our handcrafted program for annotating the ground-truth
poses of 2D target objects (top) and 3D target objects (bottom). To establish the
2D-to-3D correspondences before applying a PnP algorithm, we first specify some

3D points by the corner selector panel and then mark the corresponding 2D points

on the image.
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(a) 2D Models (b) 3D Models

Figure 4.11: Camera frames for (a) 2D and (b) 3D objects blended with masks.

The mask is generated using the corresponding pose and the 3D models.

We use the infrared images to obtain the ground-truth object pose p instead of
using color images which can be distorted due to the rolling-shutter effect, as the
skewed image illustrated in Figure 4.9(f). Furthermore, the exposure time of the
infrared camera is much shorter such that infrared images contain less motion blur.
The object pose in the color images of the first and following frames are obtained
by transforming p according to the transformation matrix T 4.. As the intensity
contrast of the original infrared image is relatively low (as shown in Figure 4.1), the
images shown in Figure 4.9(a)—(e) are processed with a tone mapping algorithm
for presentation purpose. In addition, we generate the mask image related to each
frame according to the ground-truth pose, as illustrated in Figure 4.11. These
mask images are used for cropping target templates for the training purpose.
Video sequences with annotated poses of different motion patterns are shown
in Figure 4.12 to Figure 4.19. For sequences with 3D objects, we present the
annotated ground-truth pose by rendering monochrome semi-transparent wire-
frame models onto camera frames. Regarding the Flashing Light motion pattern,
the upper and lower regions of some frames have different intensity values due to

the rolling-shutter effect.
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(a) Translation (b) Zoom (¢) In-plane Rotation

Figure 4.12: Image sequences of different motion patterns with annotated poses.

(a) Translation (Wing). (b) Zoom (Duck). (c) In-plane Rotation (City).
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(a) Out-of-plane Rotation (b) Flashing Light (c) Moving Light

Figure 4.13: Image sequences of different motion patterns with annotated poses.
(a) Out-of-plane Rotation (Beach). (b) Flashing Light (Firework). (c) Moving
Light (Maple).
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(a) Translation (b) Zoom (¢) In-plane Rotation

Figure 4.14: Images with wire-frame models rendered according to annotated

poses. (a) Translation (Soda). (b) Zoom (Chest). (c) In-plane Rotation (Ironman).
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Figure 4.15: Images with wire-frame models rendered according to annotated
poses. (a) Out-of-plane Rotation (House). (b) Flashing Light (Bike). (c) Moving
Light (Jet).
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Figure 4.16: Images of motion pattern free motion with 2D targets. In this case, we

hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.
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Figure 4.17: Images of motion pattern free motion with 2D targets. In this case, we
hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.
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Figure 4.18: Images of motion pattern free motion with 3D targets. In this case, we
hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.
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Figure 4.19: Images of motion pattern free motion with 3D targets. In this case, we
hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.
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Table 4.3: Evaluated algorithms. Run time is measured in seconds. In the code

column, C: C/C++, M: Matlab, CU: CUDA.

Algorithm Description Code Run Time
SIFT [9] Feature detector C,M 5.287s
ASIFT [10] Feature detector C,M 50.995 s
OPnP [13] PnP algorithm M 0.156 s
IPPE [135] PnP algorithm M 0.044 s
DPE16 [3] Pose estimator (2D) C,M, CU 4.811s
UDP [16] Pose estimator (3D) C 9.262 s
PWP3D [19] Pose tracker (3D) C,CU 0.066 s
082 [2] SLAM approach (sparse) C 0.067 s

EF [60] SLAM approach (dense) C,CU 0.078 s

4.3 Evaluation Methodology

In this work, we evaluate pose tracking algorithms for both 2D and 3D target
objects. Table 4.3 lists the main characteristics of the algorithms being assessed.

We further explain our evaluation metrics in Section 4.3.2.

4.3.1 Evaluation Algorithms

To estimate the pose of a planar target, we look into feature-based approaches, and
evaluate algorithms with a combination of two feature detectors (i.e., SIFT [9] and
ASIFT [10]) and two PnP algorithms (i.e., OPnP [13] and IPPE [135]) for pose
estimation. Note that the IPPE approach is actually a homography decomposition
method as it takes the coefficients of a homography as inputs, whereas the homogra-
phy can be obtained from the 2D-to-3D correspondences by using the Direct Linear
Transform (DLT) [170] algorithm. Therefore, we still regard it as a PnP approach
used for planar objects. The RANSAC-based schemes [11] are then applied to
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Viewpoint: 1 LR LR LR Viewpoint: 341

Figure 4.20: Synthetic frames rendered from 341 viewpoints on half of the recur-

sively divided icosahedron

these feature-based methods to remove incorrect feature correspondences. We
implement a CUDA-based direct pose estimator, which is ten times faster than the
original DPE16 approach [3] with equivalent accuracy.

To recover 3D object poses, we evaluate two state-of-the-art approaches
(i.e., UDP [16] and PWP3D [19]) for pose estimation and pose tracking. We note
numerous camera pose trackers have been released recently that achieve real-time
performance by leveraging the reconstructed environment maps. Two state-of-
the-art approaches in this field (i.e., ORB-SLAM?2 [2] and ElasticFusion [60])
are used for evaluation. The ORB-SLAM?2 method tracks camera poses based
on sparse features, and the ElasticFusion scheme solves a minimization problem
based on intensity and depth values. These camera pose trackers are evaluated by
deactivating them within background regions of a video sequence. Foreground and
background regions are separated according to the geometric model and related
ground-truth pose, as illustrated in Figure 4.11.

For each feature-based approach (including the ORB-SLAM?2 method), the
average number of detected features in a camera frame is set to be around 3,000.

For SLAM-based approaches, we construct a 3D map of the target object for
evaluation. Each map is constructed with synthetic frames created by rendering
a mesh from 341 viewpoints on one half of a recursively divided icosahedron, as

shown in Figure 4.20. The half of recursively divided icosahedron is illustrated
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(a) 26 vertices (b) 91 vertices  (c) 196 vertices (d) 341 vertices

Figure 4.21: Half of the recursively divided (from left to right) icosahedron.

in Figure 4.21. ORB-SLAM?2 uses a set of feature points to represent its environ-
ment map and performs relocalization by feature matching from between this map
and the input camera frame. We find the relocalization process in ORB-SLAM?2
system can be further accelerated by leveraging real camera frames, and therefore
we add frames of motion pattern Out-of-plane Rotation (whose camera trajectory is
like a cross) into the mapping process, as illustrated in Figure 4.22. Consequently,
it bootstraps (i.e., estimate the object pose) in the beginning of each sequence. On
the contrary, the ElasticFusion approach builds its map with dense surfels, as shown
in Figure 4.23. It instead uses randomized ferns to perform relocalization [171].
However, it does not work well in our experiments. Therefore it needs a guided
pose in the first frame. For both SLAM approaches, all maps keep unchanged
(i.e., no points for surfels will be further added) during the tracking process. We
experimentally set the ICP weight of the joint cost function to be 0.5 for better
tracking results in the ElasticFusion approach. As the SLAM approaches are able

to deal with 2D cases, we also evaluate these methods with 2D objects.

Since the UDP method does not perform well if it is trained on synthetic images
(as discussed in [16] and confirmed in our comparative study), we select about

10% of the images from the proposed dataset as the training data for UDP.

In the PWP3D method, we set foreground and background distributions to
be unchanged (i.e., use the distributions from the first frame for all frames in the
sequence) as it can achieve better tracking results. The mask image of the first

camera frame is also used for the PWP3D scheme to set the color distribution of
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(a) (b) ©)

Figure 4.22: Model maps generated by the ORB-SLAM2 method. (a) This map is
built with synthetic frames created by rendering mesh from 341 viewpoints on half
of the recursively divided icosahedron. The green wire-frame model, blue line, and
red point stand for cameras, correlations between cameras, and detected feature
point, respectively. We refer the reader to [2] for more details. (b) To accelerate
the relocalization process, we further exploit the real captured frames to build
the model map. (c) The feature-based model map produced by the ORB-SLAM?2

method.

() (b) (© (d) (e) ®)

Figure 4.23: The surfel-based models: (a) Soda, (b) Chest, (c) Ironman, (d) House,

(e) Bike, and (f) Jet generated by the mapping process of the ElasticFusion method.

foreground and background regions.

For the iterative energy minimization schemes (i.e., PWP3D and ElasticFusion),
the ground-truth pose in the first frame is provided and object pose tracking is
performed subsequently. To fairly compare different approaches, the result of the

first frame in each video sequence is not considered.

doi:10.6342/N'TU201800854



69

4.3.2 Evaluation Metrics

Given the ground-truth rotation matrix R and translation vector t, we compute the
error of the estimated pose (R, t) by using the 3D Distance metric (2.37) presented
in Section 2.2.2. For a 2D object, we define the model points as vertices of a
bounding box, whose height is half of its side length, as illustrated in Figure 1.1.
The pose is considered to be successfully estimated if Esp is less than £d where d
is the diameter (i.e., the longest distance between vertices) of the target object and
k is a pre-defined threshold. As the precision plot has been commonly adopted to
measure the overall tracking performance recently [172], we evaluate a method by
the percentage of frames with correct estimations under different values of £ in a
precision plot. A method with a higher area under curve (AUC) scores achieves

better pose estimation results.

4.4 Evaluation Results

All the experiments are carried out on a machine with an Intel Core 17-6700K
processor, 32 GB RAM, and an NVIDIA GTX 960 GPU. The RGB-D video frame
size 1s 1920x1080. Each approach for 2D and 3D target objects is evaluated on
20,988 images and 79,968 images, respectively. The iterative energy minimization
approaches (i.e., ElasticFusion and PWP3D) tend to lose track of all frames once the
matching baseline is too wide. We thus evaluate the ElasticFusion+ and PWP3D+
methods (variants of ElasticFusion and PWP3D) by feeding the ground-truth pose
in the previous frame for re-initialization when a failure occurs which is determined

by visual inspection.

4.4.1 Overall Performance

The overall experimental results are shown in Figure 4.24 and Figure 4.25. The
maximum coefficient k defined in (2.37) is set to 0.2 in the plots, with AUC scores

ranging from O to 20.
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Figure 4.24: Overall performance for 2D objects on the proposed benchmark

dataset. The AUC score for each approach is shown in the legend.

2D objects. The average score of tracking the Wing sequence is lower than the

others since the target object contains less texture or structure. There exist many

ambiguous pose candidates that cannot be distinguished by all evaluated approaches

as the corresponding cost values are similar. In contrast, although the object in

the Duck sequence does not contain much texture, the DPE16 method is able to
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Figure 4.25: Overall performance for 3D objects on the proposed benchmark

dataset. The AUC score for each approach is shown in the legend.

estimate poses well based on the distinct contour. The feature-based schemes

outperform direct methods when a sufficient number of features can be extracted

from a target object, as shown in the other four cases.

Despite the IPPE algorithm is designed for pose estimation of planar objects,

it does not perform as well as the OPnP algorithm that is able to estimate pose
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in more general scenarios. As the FAST-based detector [76], which is used in
the ORB-SLAM2 method, is designed for efficiently detecting corner points in
an image, it does not localize features accurately. Therefore the AUC scores of
the ORB-SLAM?2 method are lower than those of SIFT-based methods in most
cases. It is worth noticing that the ORB-SLAM?2 method performs well based on
the feature-based scheme as it achieves wide baseline matching, which prevents
the tracker from getting stuck in local minimum. In contrast, the ElasticFusion
method tends to lose track of the target object when the initial pose is not accurate
since the energy minimization scheme is sensitive to perturbation caused by the

introduced distortion in this work.

3D objects. Since the tracking accuracy and area of an object within one frame are
in positive correlation, most approaches achieve better performance on tracking
the Soda, Chest, and House sequences. Similar to tracking 2D objects, methods
with energy minimization scheme do not perform well on the 3D dataset. However,
they also show the ability to refine poses under the short-baseline conditions. We
note that although the AUC scores of the ElasticFusion+ and PWP3D+ methods
seem to be higher than the other approaches, it does not mean that they outperform
others because their tasks are significantly simplified as the ground truth of the
previous pose is given when a failure occurs. As the UDP algorithm does not have
any further pose refinement scheme, the estimated pose accuracy is not as high as
the other approaches. Both PWP3D and ElasticFusion methods are prone to losing

track of the target when its appearance changes drastically.

4.4.2 Performance Analysis by Attributes

In this section, we show experimental results for each method with respect to

different lighting and movement conditions.

2D objects. We present the pose tracking results under two different lighting

conditions and freestyle condition movements in Table 4.4. As both ORB [80]
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Table 4.4: AUC scores of evaluated approaches in the dynamic lighting conditions

and the freestyle motion conditions.

Model Approach Flashing Light Moving Light Free Motion
SIFT+IPPE 14.194 13.902 13.904
SIFT+OPnP 15.380 15.183 14.408
ASIFT+IPPE 13.996 13.584 12.808
ASIFT+OPnP 15.312 14.902 13.461
» DPEI16 12.996 7.516 9.793
ORB-SLAM?2 14.879 14.128 14.986
ElasticFusion 1.974 7.479 2.948
ElasticFusion+ 16.981 18.173 18.107
UDP 5.170 7.245 3.857
PWP3D 5.084 4.907 2.890
PWP3D+ 13.071 14.434 16.041
P ORB-SLAM?2 15.906 15.987 9.104
ElasticFusion 1.444 2.005 0.278
ElasticFusion+ 14.598 12.299 10.871

and SIFT [9] are less sensitive to illumination change, the feature-based methods

perform well in sequences under lighting variations. In contrast, the DPE16

algorithm does not track object poses well under different lighting conditions as

the direct methods operate on the pixel values without extracting features that are

designed to handle illumination changes.

The pose tracking results of 2D objects in different motion patterns and speeds

are presented in Figure 4.26. Due to fast camera speeds, the recorded images in the

translation case contain significant motion blur. As the feature-based approaches

are not able to determine useful correspondences in blurry images, these methods

do not track poses well. On the other hand, the DPE algorithm performs well with
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Figure 4.26: Performance by attributes with different speeds for 2D objects on the

proposed benchmark dataset. Level 5 stands for the highest speed.

different camera speeds as it can handle objects with less texture.

The ASIFT algorithm outperforms other feature-based approaches in the se-
quences with Out-of-plane Rotation since it is designed to account for the affine
transformation. We note the ElasticFusion method performs better at higher camera
speed. This may be attributed to the fact that the decreased frame number of high-
speed sequences also reduces the changes that iterative minimization approaches
lose track. As in-depth analysis of this issue requires different experimental setups

which are beyond the scope of this work, we will address it in future work.

The precision plots for the performance of the evaluated methods on all the

attribute subsets are shown from Figure 4.27 to Figure 4.29.
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Figure 4.27: Precision plots for 2D object (a) Translation and (b) Zoom sub-
datasets. From top to bottom: lowest speed (i.e., level 1) to highest speed (i.e., level

35).
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Figure 4.28: Precision plots for 2D object (a) In-plane Rotation and (b) Out-of-
plane Rotation sub-datasets. From top to bottom: lowest speed (i.e., level 1) to

highest speed (i.e., level 5).
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Figure 4.29: Precision plots for 2D object Flashing Light, Moving Light, and Free

Motion sub-datasets.

3D objects. Since we only change the visible light in the experiments mentioned
above with illumination variations, the depth images are not significantly affected.
Compared to the pose tracking results of most approaches under standard ambient
lighting, the performance difference on 3D objects is not significant. In contrast,
as the PWP3D method recovers the object pose using color frames only, the pose

tracking results are worse than those under normal light.

The pose tracking results of 3D targets in different motion patterns and speeds
are shown in Figure 4.30. We note all approaches perform worse when the tar-
get object moves zoom in front of the camera. One reason is the size change
of a target object in two consecutive frames. For the ICP-based approaches,
e.g., ElasticFusion, it is difficult to align two point sets of different sizes. For the

segmentation-based approaches, e.g., PWP3D, it is crucial to set a gradient step in
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Figure 4.30: Performance by attributes with different speeds for 3D objects on the

proposed benchmark dataset. Level 5 stands for the highest speed.

the z-direction, as discussed in [21]. We also notice that the depth values captured
by Kinect V2 occasionally change significantly even under the static conditions, as
illustrated in Figure 4.7. As such, the evaluated approaches may occasionally lose
track of objects when the camera is not moving.

The precision plots for the performance of the evaluated methods on all the

attribute subsets are shown from Figure 4.31 to Figure 4.33.

4.4.3 Discussion

Based on the comparative study on the benchmark datasets, we highlight some

components that are essential for advancing the field of pose tracking on 2D and 3D
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Figure 4.31: Precision plots for 3D object (a) Translation and (b) Zoom sub-

datasets. From top to bottom: lowest speed (i.e., level 1) to highest speed (i.e., level

3).
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Figure 4.32: Precision plots for 3D object (a) In-plane Rotation and (b) Out-of-
plane Rotation sub-datasets. From top to bottom: lowest speed (i.e., level 1) to

highest speed (i.e., level 5).
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Figure 4.33: Precision plots for 3D object Flashing Light, Moving Light, and Free

Motion sub-datasets.

objects. First, approaches with wider baseline matching strategies can alleviate the
issue with losing track of objects more effectively than the gradient-descent-based
energy minimization methods. It is crucial to develop more effective schemes to
reduce the risk of getting stuck in a local minimum for methods based on energy
minimization. It will be of great interest to use multiple solutions, hierarchical

optimization, and particle filters to alleviate these issues.

Second, it is essential to equip the segmentation-based approach with a robust
foreground and background classifier for effective pose tracking. Although the
measured depth values are noisy (as shown in Figure 4.6 and 4.7), it would still
be more accessible to segment the foreground object from the background scene
even when in cluttered environment. In more challenging scenes, CNN-based

segmentation approaches [173, 174] can also be used.
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Third, more accurate pose tracking results may be achieved by using the 3D
coordinates (z, y, z) as training data rather than depth values. Although most
learning-based approaches use the raw RGB-D images as the training and test
data [118, 16], the training data is usually generated at the camera frame center
with the fixed translation vector, but with different rotation matrices. However, the
object appearances vary at different positions in a camera frame even with the same
rotation, as illustrated in Figure 4.34. It is also possible that local regions at two
different poses may be very similar in appearance. That is, the RGB-D appearance
and the pose are not in one-to-one correspondence. Thus, incorrect results may be
obtained if the object poses are estimated based on the raw RGB-D values. The
situation can be even worse if we change the camera model to another one with
different intrinsic parameters. The results from this comparative study show that
better results can be achieved by using RGB-XYZ values [2, 60] as these values
and the model pose are bijective. Furthermore, we can still use the same trained

model with a different camera for recovering the object pose.

4.5 Summary

In this work, we propose a large-scale benchmark dataset and perform thorough
performance evaluation under various conditions close to real-world scenarios.
The proposed benchmark dataset contains 690 color and depth videos with over
100,000 frames. These videos are recorded under seven different movement and
lighting conditions with five speeds. We select six 2D target planes with three
different texture levels, and six 3D target objects with three different geometric
level. The ground-truth poses are annotated by leveraging the clear infrared images
recorded by the global-shutter infrared camera with fast shutter speed from the

Kinect V2 sensor, which enables us to record sequence even under quick motions.

Based on the benchmark experiments, we discuss some tracking components

that are essential for improving the tracking performance. This large-scale perfor-
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Figure 4.34: The appearances of cubes are different with the same rotation
(which is an identity matrix in this image) at different positions. It is challenging
to effectively recover the accurate object pose based on the raw RGB-D values
if the training data is only generated at the camera frame center with different
rotation matrices. Ambiguous results may be obtained with different rotation in
this condition. For example, we may get a pose result with inaccurate rotation for
the up-right cube in this image since there exists another candidate which has a

more similar RGB-D appearance with different rotation at the camera frame center.

mance evaluation facilitates a better understanding of the state-of-the-art object
pose tracking approaches, and provide a platform for gauging new algorithms.
We note that considerable progress has recently been made to improve the state-
of-the-art methods for pose tracking [114, 115, 139, 21]. Our future work will
focus on extending the datasets (e.g., change the background to cluttered one and
adding partial occlusion) and evaluate more methods once they are made publicly

available.
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Chapter 5

DPE: Direct Pose Estimation for

Planar Objects

In this work, we propose a direct method to estimate the 6DoF poses of a planar
target from a calibrated camera by measuring the similarity between the projected
planar target object O; and observed camera image Z. based on appearance. As
the proposed method is based on a planar object rather than a 3D model, the
pose ambiguity problem as discussed in prior arts is inevitably bound to occur
[175, 88, 176, 133]. Pose ambiguity is related to situations where the error function
has several local minima for a given configuration, which is the main cause of
flipping estimated poses in an image sequence. Based on image observations, one
of the ambiguous poses with local minima, according to an error function, is the
correct pose. Therefore, after obtaining an initial rough pose using an approximate
pose estimation scheme, we determine all ambiguous poses and refine the estimates
until they converge to local minima. The final pose is chosen as the one with the
lowest error among these refined ambiguous poses. We show some pose estimation
results by the proposed method in Figure 1.2. Extensive experiments are conducted
to validate the proposed algorithm in this work. In particular, we evaluate the
proposed algorithm on different types of templates with varying levels of degraded
images caused by blur, intensity, tilt angle, and compression noise. Furthermore, we

85
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evaluate the proposed algorithm on the dataset proposed by Gauglitz et al. [4] and
our OPT dataset presented in Chapter 4 against the state-of-the-art pose estimation
methods.

The main contributions of this work are summarized as follows. First, we
propose an efficient direct pose estimation algorithm for planar targets undergoing
arbitrary 3D perspective transformations. Second, we show the proposed pose
estimation algorithm performs favorably against the state-of-the-art feature-based
approaches in terms of robustness and accuracy. Third, we demonstrate the pro-
posed pose refinement method not only improves the accuracy of estimated results
but also alleviates the pose ambiguity problem effectively. The source code and
datasets are available on our project website at media.ee.ntu.edu.tw/research/DPE.

Based on our prior study in [3], in this work, we extend and construct an
image pyramid for the APE method as described in Section 5.1, and we apply
a new PR approach based on the LK algorithm as described in Section 5.2. We
show experimental results with significant improvements regarding accuracy and

efficiency compared to the previous work in Section 5.3.

5.1 Approximate Pose Estimation

We first normalize the target image O, and the camera image Z. with pixel values
in the range [0, 1]. Let T}, be the transformation at pose p in (2.1). Assume a
reference point x; = [z;, y;, O]T in the target image is transformed separately to u;;
and u;, in the camera image with two different poses p; and p». It has been shown
by Korman et al. [177] that if any distance between u;; and u;s is smaller than a

positive value ¢, with upper bound in the Big-O notation [178]:
Vx; € Op 1 d(Tp, (x:), Tp,(x;)) = O(e), (5.1)

then the following equation holds:

|Ea1 (pl) - Ea1 (p2)| = O(€V)7 (52)
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Figure 5.1:  Illustration of rotation angle: @, indicates the tilt angle be-
tween the camera and the target image when the rotation is factored as R =

R.(0:.)R.(0:)R:(0:,).

where ) denotes the mean variation of O;, which represents the mean value over
the entire target image of the maximal difference between each pixel and any of its
neighbors. The mean variation V can be constrained by filtering ©,. In addition,
the error function E,, (-) is defined in (2.4). The main result is that the difference
between E,, (p1) and E,, (p2) is bounded in terms of €. In the proposed direct
method, we only need to consider a limited number of poses by constructing an

e-covering pose set S [179] based on (5.1) and (5.2).

5.1.1 Constructing the c-covering Set
As illustrated in Figure 5.1, in this stage, we factor the rotation as follows [65]:

R = R.(0.,)R.(0,)R.(4.,)

C2,Czy — C2S2.52, —CxCz S5, — C2.5z  SzSaz.

(5.3)
= €Sz, tC2Cs. Sz CiCuCup — S2.Sz  —SzCa |
SzSz SzCyy Cy
where we use the notation ¢, = cos(6,) and s, = sin(d,) for a = =z, 2.

Moreover, R, (-) and R..(-) are defined in (2.7). Therefore, the object pose is
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now parameterized as p = [0,,, 0., 0., t., 1y, tZ]T. These Euler angles 6, _, 0., and
0., are in the range [—180°,180°], [0°,90°], and [—180°, 180°], respectively. In
addition, the translation parameters ¢,, ¢,,, and ¢, are bounded such that the whole
target image would be within the camera image, and the bounds depend on the
camera intrinsic parameters. Furthermore, we set an upper bound for ¢, since it is
not practical to detect an extreme tiny target image in the camera image.

A pose set S is constructed such that any two consecutive poses, pi and
Pr+Apy on each dimension satisfy (5.1) in S. To construct the set, the coordinates
of x; € 7, are normalized to the range [—1, 1]. Starting with ¢,, we derive the

following equation by using (2.1) for each x;:

d<Tptz (XZ>7 Tptz-o-Atz (Xl))

- Jei faxi ? fyyi fyyz‘ ?

() - ) = 08) - ()] e
1 1

:O<@_EZ+AQ>'

To satisfy the constraint in (5.1), we use the step size with tight bound in the

Big-Theta notation [178]:

et?
At, = z .
p @<1—5t >, (5.5)

which represents that (5.4) can be bounded if we construct S using (5.5) on
dimension ¢,.
Since 6, describes the tilt angle between the camera and target image as shown

in Figure 5.1, we obtain the following equation based on ¢,:

d(Tpew (Xi)v Tpez+4\.ez (XZ)) Y, agz + 6921

:O<Q—$M%+A%)_Q—$m%)

where:

On. = fa:l'z . fxwz
b = y;sinf, +t, yisin(0, + A0,) +t. )’

g, = ( Juicoss \ [ fyyicos(tl + A0:)
’ Yi sin 91 + Zfz Y Sin(@x + A@x) + tz .

(5.7)
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In addition, to satisfy the constraint in (5.1), we set the step size when using (5.6):

Af, =0 [sin™! | t, — SIS N 0. 1. (5.8)
PR S
t,—sin(0z)

Let sz =0,, + Af.,, we obtain the following equation based on ¢, and 6,:

(T, (%:), Ty, a0, (i) = \/F203, + [2633,

< \JF203, + f2Be, (5.9)
Ab,,
=0 (tz + ksin(@ﬁ) ’

where k denotes any constant in the range of [— \/ﬁ, \/5} , and:

g, = Col — 52 Y B Cqt T 5y
o osu(s,r+e,y) +Ht, sx(szix + czéy) +t,
(5.10)
_ 5.,% + 3,y ST+ CY
Bo., =

Sz(8.,x + c,y) + T, - sx(szix + CZQy) Tt
An illustrative example of (5.10) is shown in Figure 5.2. To make (5.10) satisfy

the constraint in (5.1), we set the step size:
Af,, = 0O (e(t, + ksin(b,))), (5.11)

where larger £ means larger bounded steps for constructing S. We set k to be 0 for
Ad,, in the proposed method.

As 6., denotes 2D image rotation of the planar target, it does not influence the
bounded steps for 0. Let 0., = 0.  + A0, , we obtain the following equation

depending on the current ¢, and 6,,:

(T, (%), Ty yng, (Xi)) =/ f203. + £25%.

5 AD, (5.12)
~ 7\t + ksin(6,) )
where:
C2e® — C4S2Y  Co T — CySy1Y
Ay, — - )
e Szy +t, SzY + 1,

(5.13)

Szl + CoCelY ST+ Calry

Bo., = - :

Szy +t, Szy + 1,
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A8,
) 0 <tz + sin(Gx)>
a-
’.‘B
O Rotation around AG;,
Z-axis f
A6, .,‘
0| .
\ in(
(a) (b)

Figure 5.2: (a) 2D illustration of rotation around Z;-axis. The linear distance
(orange solid line) between points before and after applying rotation is bounded by
the arc length (brown dotted line). (b) 3D illustration of rotation around Z;-axis.

The linear distance between points is a function of tilt angle 6,,.

We can realize (5.13) in a similar way to (5.10). To make (5.13) satisfy the

constraint in (5.1), we set the step size:
Af,. = O(e(t, + ksin(d,))) = O(e(t,)), (5.14)

which £ is set to 0.
As the bounded steps for ¢, and ¢, are also influenced by horizontal distance ¢,

and tilt angle 6, only, we have:
d<TPtz (i) TpterAtz (Xl)) = \/ fg?agz + f;ﬂti

(5.15)
o2,
t, + ksin(6,)

where:
T+t T+t + At,
Q. = — ,
Tosy+t, Sey +t,
(5.16)
Yy
Pre = S;Y+t.  Spy+ts
And:
d(TPty (xi)> szy+my (Xl)) = f:%ato + nyBto
5.17
5 At, (5.17)
t, + ksin(6,) )’

doi:10.6342/N'TU201800854



91

Table 5.1: Bounded step size on each dimension in the pose domain for constructing

the e-covering pose set.

Dimension Step Size
0., O(et,)
<1 . 1 .
o, © (sm (tz +_()) er)
0., O(et,)

t, S} (5 (tz — ﬂsin(@x)))
ty © (5 (tz — ﬁsin(@x)))
t © (%)

where:

e e
Sey+t, suy+t,)

ty
(5.18)
y+t, y+t, + Aty

b, = Szy + 1, Szy + 1,

To make (5.16) and (5.18) satisty the constraint in (5.1), we set these step sizes:

At, = O (¢ (t. + ksin(6,))) = © (¢ (£ — V2sin(6,))) , (5.19)

Aty = O (e (t. + ksin(6,))) = © (¢ (t- — V2sin(6s))) - (5.20)

as k is set to —+/2 for practical consideration. Table 5.1 summarizes the bounded
step size on each dimension for the e-covering pose set.

Finally, the pose set is constructed recursively starting from ¢, based on the
bounded step shown in Table 5.1. We then determine values of ¢, based on its
bounded step which is influenced by ¢,. The remaining pose parameters 6,_, 6,,,
t5, and ¢, are determined based on each of their bounded steps, which are affected

only by ¢, and 6, and independent of each other.
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5.1.2 Coarse-to-Fine Estimation

As the parameter space is large, the computational and memory costs are pro-
hibitively high if the e-covering set is used straightforwardly for pose estimation.
In this work, we develop a coarse-to-fine approach for fast and accurate pose
estimation. The pose set S is first constructed with a coarse €. After obtaining the
best pose p, and the associated error measure F,, (py), we select the poses within

a threshold:
St ={pr | Ea(Pr) < Eu,(Ps) + L}, (5.21)

to be considered in the next step. Here the constant L is a threshold empirically

determined. Based on S;,, we create sets with finer £’:
S ={p’ | Ipr € S : (5.1) holds for p’, py and &'}, (5.22)

and repeat this process until we obtain the desired precision parameter £*. In our
implementation, the initial € is set to be 0.25 and is diminished by multiplying a
scale factor of 0.662 in each iteration. The precision parameter €* is set to meet the
condition that for each point in the target image, the maximum distance between
neighboring points in the camera image transformed by poses in the e-covering
pose set is less than 1 pixel. Empirically, £* would be around 0.01. The best pose

in the last set is considered as the approximate estimate.

5.1.3 Approximate Error Measure

If we approximate the error measure £, with random sampling only a portion
of pixels instead of computing F,, with sampling all pixels in O, according to
Hoeffding’s inequality [180], £/, is close to F,, within a precision parameter ¢ if

the number of sampling pixels m is sufficiently large:
P(|E., — E,| > 8) < 272, (5.23)

where P(-) represents the probability measure. This inequality suggests that if

m is properly selected, the approximation error between E; and £, can be
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bounded with high probability. In other words, £ is a close approximation of
E,, within the probably approximately correct (PAC) framework [181]. With this
approximation, the runtime of estimating the error measure can be significantly
reduced by inspecting only a small fraction of pixels in a target image. We
normalize the intensity term and add the chroma components to the appearance

distance measure to account for lighting variation.

5.1.4 Pyramidal Implementation

To constrain the mean variation V in (5.2), it is common to blur ©O; (and Z,.) before
carrying out the proposed approximate pose estimation method. Since a blurry
image has a texture similar to that of a lower resolution image, we construct an
image pyramid instead of directly blurring images. It is worth using a lower
resolution image for pose estimation from some perspectives. First, when we
sample pixels on a smaller image, the cache miss rate will be lower and thus reduce
memory traffic. Second, we can also sample a smaller amount of pixels in (5.23)
when using low-resolution images. Starting from the lowest resolution image,
we proceed to the next level (i.e., higher resolution image) when the distance
in (5.1) is smaller than one pixel for all transformations. Empirically, the pyramid
implementation can increase the runtime performance significantly while achieving

similar or even higher accuracy and robustness for pose estimation.

5.2 Pose Refinement

We obtain a coarse pose p' = (R/,t’) using the proposed approximate pose
estimation scheme. However, this estimate is bounded based on the distance in the
appearance space rather than the pose space. Thus the estimated and actual poses
may be significantly different even when the appearance distance is small, mainly
when the tilt angle of a target image is large. In the meanwhile, the pose ambiguity

problem is likely to occur as illustrated in Figure 1.2. As such, we propose a pose

doi:10.6342/N'TU201800854



94

refinement method to improve accuracy and address the ambiguity problem of

estimates.

5.2.1 Determining Candidate Poses

In order to address the pose ambiguity problem, we first transform four corner
points X1, X2, X3, and X4 in the target image O, to u.1, U, U.3, and u,, in the
observed camera image Z. with p’, respectively. We then compute all stationary
points of the error function (2.3) based on the Grobner basis method [134]. Only
the stationary points with the two smallest objective values in (2.3) are plausible
poses, and these two ambiguous poses p} and p), are both chosen as the candidate

poses.

5.2.2 Refining Candidate Poses

After obtaining the two candidate poses, we further refine the estimates using
a dense image alignment method which minimizes the SSD error F,, in (2.5)
(instead of the SAD error E,, in (2.4) as it is not continuously differentiable) by
the LK-based approach. For each candidate pose p., we solve the nonlinear least
squares problem using the Gauss-Newton method. To approximate how the image

changes with respect to pose, we use the first-order Taylor series as follows:

n

Ap* = argmin 1 > (Z. (u; (pe + Ap)) — Oy (x:))?

Ap N4
2 (5.24)
Y 0T,
A argmin Z Z. (u; (pe)) + o Ap — O (x;) | -
Ap =1 p P=Pc

Different from the method described in Section 5.1, here the pose p is parame-
terized as a 6D vector consisting of the 3D rotation vector (which is presented

in Section 2.1.2) and the 3D translation vector:

Ty ly
r 3 3
p= ,r=|r,| €R’ t=|t,| eR’. (5.25)
t
T, t,
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To compute Ap in each iteration, we set the first derivative of (6.3) to zero and

solve the resulting system of linear equations:

JcAp = Ot - 167

(5.26)

where O, and I are vector forms of O, (x;) and Z. (u;), respectively. In (5.26), J,.

is the Jacobian matrix of I. with respect to p at the pose p = p. and computed by

the chain rule (in the numerator-layout notation):

[ 0T (u1)
op
o1, 8Z.(uz)
J. = = ap , (5.27)
ap P=Pc
0Zc(un)
L op
0L, _ JL {au a‘u] _ {azc azc} {auaf{aﬂ 6u] (5.28)
op  Ou Lor ot du’ ov | |oxoR Or’ 0% |’ :
N xy 0000
L i S S (5.29)
ox 0 L —f;LQQ "R, ry ) .
=7 0000zxzy

where R = [R11, Ri2, Ro1, Ros, Ray, R32]T denotes the vector with elements in the

left two columns of the rotation matrix R, and

Z Ry Rip t,
X=|§| =|Ru Rxn t,
Z R31 Rso t,

is the camera-space coordinate transformed from
x = [z,y,0]".
In addition, the derivative of R with respect to
following formula [182]:
OR 1, rl, +[rx(I-R)e]l,

Ora I 1” ’

(5.30)

the object-space coordinate

r can be obtained using the

a=2x9,2, (5.31)
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where I and e; are the identity matrix and the i-th vector of the standard basis in R?,
respectively. In addition, [r], represents the cross-product matrix for the vector r

which is as defined in (2.17).

A closed form solution of (5.26) is:
Ty )\ 1+T
Ap=(3]J;) I (L -1). (5.32)

As the least squares problem is nonlinear, the Gauss-Newton iteration method does
not always converge with fixed step size. We thus perform a backtracking line
search to scale the step size after each iteration of computing (5.32). We shrink

Ap by Ap < aAp until it meets the Armijo-Goldstein condition:
Eay(Pe + Ap) < Euy(pe) + ¢V Eq, (p) ' Ap, (5.33)

where VE,,(p.) is the local function gradient. We set « = 0.5 and ¢ = 10~*
empirically in this work. The candidate pose p. is refined by p. < p. + Ap until
the vector norm || Ap|| is less than a predefined threshold eap.

Finally, the pose corresponding to the smaller E,, is selected from the two
refined candidate poses. The main steps of the proposed pose estimation method
are summarized in Algorithm 1. It should be noted that we also perform the
pyramid implementation for the refinement process to increase both the accuracy

and efficiency.

5.3 Experimental Results

We evaluate the proposed algorithm for the 6DoF pose estimation problem using a
synthetic image dataset that we develop and two real image benchmark datasets. As
the color of each template in the real image benchmark datasets is slightly changed
after being generated by a printer and then viewed by a camera, we calibrate each
template in the two real image benchmark datasets before carrying out performance

evaluation.
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Algorithm 1: Direct 6DoF Pose Estimation.

Input: Target image O;, camera image Z., intrinsic parameters, and
parameters €, Eap;
Output: Estimated pose result p*;
1: Build image pyramids for O, and Z;
2: Start from images with lowest resolution;
3: Create an e-covering pose set S;
4: Find p, from S with £, according to (5.23);
5: while ¢ > ¢* do
6:  Obtain the set Sy, according to (5.21);
7:  Diminish ¢;
8: if d < 1 according to (5.1) then
9: Change to the next image resolution;
10:  end if
11:  Replace S according to (5.22);
12:  Find p, from S with E;l according to (5.23);
13: end while
14: Determine the candidate poses p; and py with py;
15: fori =1— 2do

16: Let p. = p;;

17:  repeat

18: Compute J. according to (5.27);

19: Compute Ap according to (5.32);

20: while Condition according to (5.33) is not met do
21: Ap <+ aAp

22: end while

23: Pe = Pc + Ap

24:  until ||Ap|| < eap
25:  Letp; = pe;
26: end for

27: Return the pose p* with smaller £,, from p; and ps;
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Table 5.2: Average runtime (measured in seconds) for approaches on different
datasets. Although SIFT-based approach is the fastest method among these three
different schemes, its performance is quite limited. Numbers in parentheses de-
note the average runtime of the CUDA implementation of the proposed method,

which can be executed more efficiently on a GPGPU platform as it can be easily

parallelized.
Dataset
Method
Synthetic VT OPT
SIFT 7.431 3.608 11.261
SIFT-based RANSAC 0.010 0.005 0.098
Approach IPPE/OPnP 0.001/0.009 0.001/0.008 0.001/0.008
Total 7.446 3.618 11.364
ASIFT 10.903 15.806 38.884
ASIFT-based RANSAC 0.004 0.003 0.055
Approach IPPE/OPnP 0.001/0.009 0.001/0.008 0.001/0.008
Total 10912 15.814 38.944
APE 10.549 (1.505) 17.920 (1.217)  18.545 (0.994)
DPE PR 0.571 (0.117) 0.694 (0.180) 0.214 (0.088)
Total 11.120 (1.622) 18.615(1.397) 18.759 (1.082)

All the experiments are completed using MATLAB on a machine with an Intel

Core 17-6700K 4.0 GHz processor and 32 GB RAM. In addition, we implement
the proposed direct method on an NVIDIA GTX 970 GPU using CUDA based

on [183]. Table 5.2 shows average runtime for different algorithms.

We compare the proposed algorithm with feature-based pose estimation meth-
ods. The proposed direct pose estimation (DPE) algorithm is constructed with the
approximate pose estimation (APE) and pose refinement (PR) approaches. Based
on preliminary experiments, we determine the SIFT [9] representation performs

better than other alternative features in terms of repeatability and accuracy. Similar
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Figure 5.3: Cumulative percentage of poses whose rotation or translation errors are
under values specified in the z-axis over experiments. The vertical dashed lines
correspond to the thresholds used to detect unsuccessfully estimated poses. There

is a total of 36,277 poses estimated by each pose estimation approach.

observations have also be reported in the literature [4]. As the ASIFT [10] method
is considered the state-of-the-art affine-invariant method to determine correspon-
dences under large view changes, we use both the SIFT and ASIFT representations
in the evaluation against feature-based schemes. The RANSAC-based method [11]
is then used to eliminate outliers before an object pose is estimated by a PnP algo-
rithm. It has been shown that, among the PnP algorithms [88, 12, 13, 91, 135], the
OPnP [13] and IPPE [135] algorithms achieve the state-of-the-art results in terms
of efficiency and precision for planar targets. Thus, we use these two algorithms as
the pose estimator in the feature-based methods.

Given the ground-truth rotation matrix R and translation vector t, we compute
the rotation error £, (°) of the estimated rotation matrix R in degrees according
to (2.32). The translation error E;(%) of the estimated translation vector t is
measured by the relative difference between t and t according to (2.36). We define
a pose to be successfully estimated if its both errors are under predefined thresholds.
We use 9, = 20° and §, = 10% as the thresholds on rotation error and translation
error empirically, as shown in Figure 5.3. The success rate (SR) is defined as the

percentage of the successfully estimated poses within each test condition. In the
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Figure 5.4: Cumulative percentage of poses whose rotation or translation errors
are under thresholds specified in the x-axis over experiments on the same datasets
used by [3], i.e., the proposed synthetic dataset and the visual tracking dataset built
by Gauglitz et al. [4].

following sections, the average rotation and translation errors are computed only
for successfully estimated poses.

We compare the DPE algorithm proposed in this work with the algorithm
proposed in the previous work (i.e., DPE16) [3] on the same datasets [3]. Figure 5.4
shows that the proposed DPE algorithm performs accurately and robustly against
the DPE16 method. For presentation clarify, we do not show the evaluation results

of the DPE16 method in the following sections.

5.3.1 Synthetic Image Dataset

For our experiments, we use a set of synthetic images consisting of 8400 test images
covering 21 different test conditions. Each test image is generated from warping
a template image according to the randomly generated pose with the tilt angle
in the range [0°, 75°] with a randomly chosen background image as illustrated
in Figure 5.5. The template image size is 640x480 pixels. These templates
are classified into four different classes, namely low texture, repetitive texture,

normal texture, and high texture [164] as shown from top to bottom in Figure 5.5.
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Figure 5.5: A synthetic test image was generated from a warping template image

according to a randomly generated pose on a randomly chosen background image.

Each class is represented by two targets. The background images are from the

database [184] and resized to 800x600 pixels.

Undistorted Images. The pose estimation results of the SIFT-based, ASIFT-based,
and proposed direct methods on the undistorted test images are shown in Table 5.3.
For each image, the average rotation error E,, translation error £}, and success
rate are presented. The evaluation results show that the proposed DPE method
performs accurately and robustly against feature-based approaches on various
template images. In addition, the proposed refinement approach can effectively
improve accuracy that is first estimated by the APE method.

In most cases, the feature-based approaches do not estimate pose accurately on
textureless template images or template images with feature points that are similar
to each other. Although the IPPE algorithm is designed for pose estimation of
planar objects, it does not perform as well as the OPnP algorithm that is able to

estimate pose more accurately in general scenarios.

Degraded Images. We evaluate these approaches using all templates with different
types of image degradation: (a) Gaussian Blur with kernel width of {1, 2, 3, 4, 5}
pixels, (b) JPEG Compression with the quality parameter set to {90, 80, 70, 60, 50},
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Table 5.3: Evaluation results for feature-based approaches and the proposed direct

methods with undistorted test images in terms of average numbers of rotation error

E,., translation error F;, and success rate in each test condition. The best values

are highlighted in bold.

Bump Sign

Stop Sign

< ®

Lucent

MacMini Board

Method ) E(%) SR(%) E.(°) Ey(%) SR(%) E.(°) Ey(%) SR(%) E.(°) E«(%) SR(%)
SIFT+IPPE  0.85 034 400 190 054 86.0 023 025 280 032 024 86.0
SIFT+OPnP 0.76 040 40.0 1.18 046 860 020 024 280 025 024 86.0
ASIFT+IPPE 9.70 292 20.0 296 081 940 148 043 100 165 0.51 94.0
ASIFT+OPnP 820 222 22,0 272 074 100 138 041 100 153 045 96.0

APE 1.10 033 100 144 042 100 090 047 980 256 123 94.0
DPE 039 017 100 042 024 100 0.16 0.4 100 0.6 0.12 98.0
Isetta Philadelphia

Method  E,.(°) Ei(%) SR(%) E.(°) Ei(%) SR(%) E,(°

) Ei(%) SR(%) Er(°) Ey(%) SR(%)

SIFT+IPPE  0.74
SIFT+OPnP  0.56
ASIFT+IPPE  1.59
ASIFT+OPnP 1.40
APE 1.03
DPE 0.21

0.35
0.32
0.57
0.50
0.35
0.16

92.0
92.0
100
98.0
100
100

0.56
0.55
1.29
1.26
1.63
0.21

0.40
0.43
0.34
0.35
0.49
0.11

98.0
98.0
98.0
100
100
100

1.15
1.48
2.17
1.33
1.96
0.15

0.50
0.47
0.52
0.37
0.91
0.14

30.0
30.0
52.0
52.0
100
100

0.28
0.25
1.96
1.80
1.57
0.17

0.37
0.36
0.36
0.36
0.68
0.13

96.0
96.0
90.0
94.0
98.0
100

(c) Intensity Change with pixel intensity scale factor set to {0.9,0.8,0.7,0.6,0.5},

and (d) Tilt Angle in the range of {[0°, 15°), [15°,

30°), [30°, 45°), [45°,

60°), and

[60°, 75°)}. Figure 5.6 and Figure 5.7 shows the evaluation results. The proposed

DPE algorithm performs favorably against the other feature-based methods on

blurry images. Although the translation errors of the proposed method appear

to be larger than those of feature-based methods, these errors are computed only

on successfully estimated poses. As the proposed method can estimate template
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Figure 5.6: Experimental results on synthetic data under (a) Gaussian Blur and

(b) JPEG Compression conditions.

poses successfully even under blur conditions, the errors are larger due to slightly

inaccurate pose estimates in blurry images.

All approaches are able to deal with certain levels of distortion with JPEG
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Figure 5.7: Experimental results on synthetic data under (a) Intensity Change and

(b) Tilt Angle conditions.

compression noise.

For images with intensity changes, the SIFT-based methods perform worse

than other approaches as fewer features are detected in low contrast images by the
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Figure 5.8: Cumulative percentage of poses whose rotation or translation errors
are under thresholds specified in the z-axis over experiments on the proposed
synthetic image dataset. There is a total of 8400 poses estimated by each pose

estimation approach.

SIFT detector. We note that the SIFT-based methods can still perform well under
low-intensity conditions when we adjust the feature detection threshold to extract
more features.

Although the SIFT-based approaches can detect and match features accurately
under small tilt angles, these methods frequently fail when the tilt angles are larger.
In contrast, the proposed algorithm and the ASIFT-based methods are able to
estimate 6DoF poses relatively well even the template images are perspectively
distorted in the camera images.

We show the overall evaluation results on the proposed synthetic image dataset
in Figure 5.8. Overall, the proposed direct method performs favorably against the
feature-based approaches with the success rate of 98.90%. The success rate of the

SIFT-based and ASIFT-based approaches are 49.65% and 74.26%, respectively.

Refinement Analysis. To improve pose estimation accuracy, we propose a refine-
ment method that minimizes the appearance distance between the template and
camera images using an LK-based scheme as described in Section 5.2. Figure 5.9

shows pose estimation results with and without the refinement approach on the
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Figure 5.9: Pose estimation results with refinement approach (DPE) and without
refinement approach (APE). The average value of rotation and translation errors

are both reduced by the proposed refinement approach.

synthetic dataset. The rotation and translation errors can be reduced by 1.951° and
0.670% respectively with proposed refinement scheme. Sample images rendered
with poses estimated by the proposed algorithm with and without the refinement
scheme on the synthetic image dataset are shown in Figure 1.2.

We design another experiment to demonstrate the proposed algorithm is able
to disambiguate plausible poses. A template image from the synthetic dataset is
warped according to pose p;. Two ambiguous pose, p,, and p,,, can be obtained
from p; using the functional minimization method [13]. One of the two plausible
poses p/, is randomly chosen and added with some Gaussian noise. The refinement
approach is then applied to p/, for estimating the pose of the warped template
image. Finally, we compute £, and E; of both the initial noisy pose p, and the
refined pose p, according to p,;. Thus, if the proposed refinement approach can
disambiguate the plausible pose p’,, the rotation error can be reduced significantly.
All images in the synthetic dataset are used for the experiment.

We compare the proposed refinement method with the refinement approach
with only one candidate pose in Algorithm 1, and present the results in Figure 5.10.
While the rotation errors of ambiguous poses are usually large (which causes the

pose flipping), the proposed refinement approach can disambiguate the object pose
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Figure 5.10: Results of the proposed method without refinement (w/0), refinement
with one candidate (w/ 1), and refinement with two candidates (w/ 2). (a) The
rotation errors are reduced significantly in the ambiguous cases, but the translation
errors are relatively not because the translation terms of ambiguous poses are quite
similar in most cases. (b) The difference of pose errors before and after applying
two kinds of refinement approaches. While the proposed refinement approach can
disambiguate the object pose effectively, approach with only one candidate pose

suffers from the risk of getting trapped into a local minimum.

effectively and reduce the rotation errors significantly (which result in smoother
pose estimations throughout an image sequence). Table 5.4 shows that the proposed
refinement method can help improve estimation accuracy in terms of rotation and

translation and address the pose ambiguity problem effectively.
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Table 5.4: Evaluation results for different pose refinement approaches on the

synthetic image dataset in the refinement analysis experiment.

Approach E.(°) E¢(%) SR%)

Without refinement 2235 1369  66.82
Refinement with 1 candidate pose  0.734  0.461 65.49

Refinement with 2 candidate poses 0.558 0.416  92.05

5.3.2 Visual Tracking Dataset

We analyze the performance of the proposed algorithm and state-of-the-art methods
on the visual tracking (VT) dataset [4] which contains 96 videos and 6889 frames
with 6 templates. These videos are recorded under different moving and lighting
conditions with motion-blurs. The camera image size in this dataset is 640x480
pixels. And since the templates have different primary resolutions, we resize
each template to 570x420 pixels uniformly. It is a challenging database for pose
estimation due to significant viewpoint changes, drastic illumination differences,
and noisy camera images.

The evaluation results of the proposed and feature-based methods on six tem-
plates under different conditions are shown in Table 5.5 and Table 5.6. Different
from synthetic images, the color appearance of a template image may change
significantly within a video sequence in this real image dataset. The DPE algo-
rithm performs favorably against the feature-based methods under most conditions,

especially when distinct features cannot be found on a template image.

While PnP algorithms perform well in pose estimation, the success hinges on
whether the feature can be well matched. As shown in Figure 5.11, feature-based
approaches do not perform well when motion blurs occur. Similarly, feature-based
methods do not estimate pose well on videos listed in Table 5.5 and Table 5.6 due
to motion blurs. On the other hand, the proposed algorithm can estimate poses

well under blur conditions. As motion blurs are likely to occur in AR applications,
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Table 5.6: Experimental results on the visual tracking dataset [4] under Perspective Distortion, Zoom, Static Lighting, and Dynamic

Lighting conditions. The best results (excluding the proposed direct pose tracking method) for each condition are highlighted in bold.
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Bricks Building Mission Paris Sunset Wood

Condition Method E.(°) E:(%) SR(%) E.(°) E.(%) SR(%) E-(°) E(%)SR(%) E.(°) E(%) SR(%) E-(°) Ex(%)SR(%) E.(°) E«(%) SR(%)
SIFT+IPPE 299 046 580 438 040 340 277 043 76.0 398 040 76.0 656 0.87 580 470 059 200

SIFT+OPnP 145 030 580 262 045 340 0.68 053 760 153 045 76.0 479 0.74 62.0 623 043 24.0

Perspective ASIFT+IPPE  3.01 0.25 72.0 499 043 680 374 035 80.0 3.07 034 840 496 0.64 580 3.69 075 66.0
ASIFT+OPnP 1.55 029 72.0 351 054 680 195 039 800 178 051 840 373 0.87 620 207 0.82 66.0

Distortion APE 1.81 094 56.0 097 077 92.0 135 056 86.0 0.69 042 90.0 244 232 680 1.74 134 68.0
DPE 0.89 029 56.0 0.74 051 920 081 052 86.0 043 046 90.0 147 196 780 0.56 0.86 68.0

DPT 0.72 034 939 0.71 051 100 0.84 061 959 057 068 980 161 1.63 755 062 1.13 878

SIFT+IPPE 251 053 6.00 328 034 260 401 042 100 3.09 040 100 9.75 094 60.0 423 045 40.0

SIFT+OPnP 1.15 0.38 6.00 3.14 030 280 230 040 980 273 043 100 742 091 600 283 046 420

ASIFT+IPPE 491 0.76 64.0 460 056 580 524 0.67 76.0 254 020 740 105 1.05 500 4.10 043 48.0

Zoom ASIFT+OPnP 332 0.65 64.0 395 052 580 336 048 800 1.67 036 760 647 1.18 56.0 433 0.50 54.0
APE 337 077 940 173 033 100 3.13 0.63 100 122 055 100 558 0.74 100 3.79 1.06 100

DPE 1.14 033 94.0 086 0.27 100 194 0.51 100 050 045 100 250 080 100 0.87 0.61 100

DPT 1.16 033 100 0.87 027 100 198 0.51 100 052 045 100 243 080 100 093 058 100

SIFT+IPPE 1.51 083 275 275 098 200 109 048 81.3 156 079 725 228 087 575 101 050 213

SIFT+OPnP 149 091 287 242 1.18 20.0 077 043 81.3 158 086 725 194 091 600 100 052 213

Static ASIFT+IPPE 120 081 75.0 277 088 425 143 048 100 128 0.65 100 266 173 475 1.80 058 525
ASIFT+OPnP 1.09 0.82 750 241 0.82 425 127 045 100 123 076 100 245 159 625 146 0.58 52.5

Lighting APE 175 144 71.3 090 050 100 095 0.60 100 124 0.72 100 297 359 &81.3 161 185 85.0
DPE 1.20 106 71.3 085 040 100 0.61 051 100 1.03 068 100 224 244 82.5 094 0.78 85.0

DPT 1.20 1.05 100 085 039 100 061 051 100 1.02 068 100 285 3.13 100 091 072 100

SIFT+IPPE 1.38° 041 130 181 089 170 1.16 055 780 1.12 047 380 145 0.67 440 1.08 042 280

SIFT+OPnP 1.37 043 130 159 090 170 098 0.58 770 1.13 052 380 129 070 480 1.01 043 280

Dynamic ASIFT+IPPE  1.22 036 620 281 1.10 380 153 054 100 095 048 100 331 133 470 1.79 056 480
ASIFT+OPnP 1.14 038 63.0 3.01 1.15 370 142 055 100 092 053 100 260 1.33 480 147 059 51.0

Lighting APE 1.25 071 400 1.06 0.68 980 099 0.70 100 0.65 033 84.0 326 310 720 126 131 52.0
DPE 1.00 047 40.0 120 0.65 98.0 047 052 100 0.63 041 &840 275 319 77.0 082 0.72 52.0

DPT 1.00 045 100 120 0.66 100 046 052 100 0.63 042 100 329 367 100 0.81 0.63 100
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Figure 5.11: Experimental results on the visual tracking dataset [4] under varying

motion blur levels, where level 9 stands for the strongest motion blur.

the proposed algorithm can be better applied to estimate 6DoF pose than feature-
based approaches. However, if the target object appears an extremely flat color
in a camera image, the proposed method is likely to fail because the appearance
between the template and its local patches are almost indistinguishable.

Sample pose estimation results from the proposed DPE method are shown
in Figure 5.12 and Figure 5.13, in which the success cases are represented with
rendered cyan boxes, and the failure cases are represented with rendered magenta
boxes. The cumulative percentage of estimated poses according to different trans-
lation and rotation errors are shown in Figure 5.14. Overall, the proposed direct
method performs favorably against the feature-based approaches within the success
rate of 77.76%. The success rate of the SIFT-based and ASIFT-based approaches
are 29.98% and 48.52% respectively.
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(a) Bricks (b) Building (c) Mission

Figure 5.12: Estimation results by the proposed DPE method on the visual tracking

dataset [4] under different conditions.
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_‘
(a) Paris (b) Sunset (c) Wood

Figure 5.13: Estimation results by the proposed DPE method on the visual tracking

dataset [4] under different conditions.
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Figure 5.14: Cumulative percentage of poses whose rotation or translation errors
are under thresholds specified in the x-axis over experiments on the visual tracking
dataset [4]. There is a total of 6889 poses estimated by each pose estimation

approach.

Note that the proposed pose refinement approach can also be regarded as a
direct pose tracking (DPT) algorithm. The evaluation results of the DPT method
on the VT dataset are shown in Table 5.5, Table 5.6, Figure 5.11, and Figure 5.14.
If the DPT method loses track of the object pose (namely the rotation or translation
error is larger than the pre-defined threshold, i.e., ¢, and J;), we reset the initial
object pose in the current frame as the object pose in the previous frame. Overall,
the proposed DPT method can track object poses well. The DPT algorithm can
be integrated with the DPE method for more robust performance with specific

re-initialization schemes (e.g., periodic restarts).

5.3.3 Object Pose Tracking Dataset

We evaluate the proposed algorithm and feature-based methods on the object pose
tracking (OPT) benchmark dataset presented in Chapter 4. For 2D objects, it
contains 138 videos with 20,988 frames. Sample images rendered according to
the pose estimated by the proposed DPE method on this OPT dataset are shown

in Figure 5.15 and Figure 5.16, where the success cases are represented with
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(c) City

Figure 5.15: Estimation results by the proposed DPE method on the OPT dataset

presented in Chapter 4 under different conditions.
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m [

(a) Beach (b) Firework

Figure 5.16: Estimation results by the proposed DPE method on the OPT dataset

presented in Chapter 4 under different conditions.
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rendered cyan boxes, and the failure cases are represented with rendered magenta
boxes. We note that videos in the OPT dataset are recorded under four designed
motion patterns and five camera speeds controlled by a programmable robotic
arm. Furthermore, these videos contain two different lighting conditions and a
free-motion case. The frame size in this dataset is 1920x 1080 pixels, and we

resize each template to 300x 300 pixels.

The pose tracking results of all evaluated algorithms under Flashing Light,
Moving Light, and Free Motion conditions with six templates and different texture
levels are shown in Table 5.7. Similar to the results in Section 5.3.1 and Sec-
tion 5.3.2, feature-based methods do not perform well on the template images with
less texture or structure. In contrast, the proposed DPE method is able to track
object poses well except the Wing image. When a template image does not contain
sufficient structural information, the proposed direct method may estimate erro-
neous poses which cover only parts of the template image, as shown in the failure
cases in Figure 5.15 and Figure 5.16. The proposed method does not perform well
on images when drastic color distortion occurs, e.g., under Moving Light condition,

as the appearance distance metric is less effective in such scenarios.

The pose tracking results of the template images in different motion patterns
and speed are shown in Figure 5.17 and Figure 5.18. Since the images in the
Translation condition are more blurry than those in other motion patterns at higher
speed, the plot trends of the evaluation results under this condition are similar to
those under the Gaussian Blur conditions in Figure 5.6. In contrast, the other three
motion patterns do not result in blurry images at the highest speed, the performance
of all approaches under conditions at different speeds are similar. As all the
evaluated approaches are scale and rotation invariant, they all perform favorably
on template images with the Zoom and In-plane Rotation patterns. However, the
success rates of SIFT-based methods are lower in the Out-of-plane Rotation motion

pattern as they are not invariant under perspective distortion.

We evaluate the proposed DPT algorithm on the OPT dataset to analyze the
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118

Table 5.7: Experimental results on the OPT dataset under different conditions. The best results (excluding the proposed direct pose

tracking method) for each condition are highlighted in bold.
Wing Duck

Firework

City

~Maple

Condition Method  E,(°) Ey(%) SR(%) E,(°) E¢(%) SR(%) E,(°) Ey(%) SR(%) En(°) Ey(%) SR(%) E,(°) Ei(%) SR(%) E,(°) E(%) SR(%)
SIFT+IPPE 10,6 296 1.24 699 043 100 211 020 100 280 0.16 100 180 0.15 100 1.63 0.12 100
SIFT+OPnP 142 233 932 594 033 100 0.86 0.10 994 083 0.09 100 023 0.07 100 035 0.08 100

ASIFT+IPPE  14.6 327 435 636 050 100 3.01 028 100 179 0.19 100 273 025 100 243 022 100
Flashing Light ~ ASIFT+OPnP 17.5 284 3./1 358 034 100 147 0.16 100 0388 0.18 100 091 0.6 100 135 0.12 100

APE 104 151 360 212 022 100 195 056 100 128 028 100 200 034 100 198 041 100
DPE 832 152 422 072 0.05 100 1.08 0.19 100 050 0.09 994 038 004 100 050 0.05 981
DPT 646 172 86.3 076 0.05 994 1.16 0.17 100 047 009 100 043 005 100 056 0.05 975

SIFT+IPPE 17.8 0.69 0.6/ 754 0.63 945 252 022 100 260 0.15 100 164 0.13 100 187 0.15 100
SIFT+OPnP 152 275 854 595 050 945 1.02 011 100 0.69 0.09 100 0.22 0.07 100 0.55 0.09 100
ASIFT+IPPE 156 297 183 7.13 0.61 100 471 041 994 174 020 100 268 027 100 242 020 100
Moving Light ~ ASIFT+OPnP 194 038 0.6/ 5.10 046 100 273 029 994 0.84 015 100 030 0.18 100 098 0.12 100

APE 11.3 498 274 424 037 994 543 071 555 3.64 035 750 326 054 951 6.09 103 622
DPE 841 438 451 214 012 100 234 0.18 567 151 0.09 774 071 0.04 945 320 032 598
DPT 922 192 644 196 0.11 100 259 0.19 988 142 0.10 994 0.76 005 100 4.08 037 822

SIFT+IPPE 755 395 115 580 059 932 1.00 028 100 061 042 999 138 039 100 0.73 039 100

SIFT+OPnP  9.81 287 204 3.68 057 968 077 027 100 061 041 100 1.09 038 100 0.72 038 100

ASIFT+IPPE  11.6 2.54 038 7.89 1.18 90.6 243 039 994 095 053 999 178 039 987 145 049 964

Free Motion ASIFT+OPnP 114 538 115 653 090 967 2.03 036 99.7 091 052 100 155 036 99.7 139 049 99.9

APE 6.14 516 56.1 273 031 987 135 066 100 153 086 837 179 055 100 3.18 198 983
DPE 484 441 59.7 116 023 987 060 018 100 054 027 971 1.05 030 100 0.65 0.34 99.1
DPT 452 314 695 088 018 100 055 022 100 049 026 996 102 030 100 058 026 100
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Figure 5.17: Experimental results on the OPT dataset in motion patterns (a)

Translation and (b) Zoom with different speeds.

tracking performance using the same experimental setting as that described in Sec-
tion 5.3.2, Figure 5.17, Figure 5.18, and Table 5.7 show that the DPT algorithm

can track object poses well on most template images except one. As discussed
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Figure 5.18: Experimental results on the OPT dataset in motion patterns (a)

In-plane Rotation and (b) Out-of-plane Rotation with different speeds.

above, the proposed DPT method does not work well on images, e.g., Wing, with-
out sufficient structure for pose estimation based on appearance. The curves of

cumulative percentages of poses estimated by the evaluated algorithms on the OPT
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Figure 5.19: Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on the OPT dataset.

There is a total of 20,988 poses estimated by each pose estimation approach.

dataset are shown in Figure 5.19. Overall, the proposed direct method performs
favorably against feature-based approaches with a success rate of 91.27%. The
success rates of the SIFT-based and ASIFT-based approaches are 79.46% and
82.74%, respectively.

5.4 Summary

In this work, we propose a robust direct method for 6DoF pose estimation based
on two main steps. First, the pose of a planar target with respect to a calibrated
camera is approximately estimated using an efficient coarse-to-fine scheme. Next,
we use the LK-based method to further refine and disambiguate the object pose.
Extensive experimental evaluations on both synthetic image and real image datasets
demonstrate the proposed algorithm performs favorably against two state-of-the-art
feature-based pose estimation approaches in terms of robustness and accuracy under
several varying conditions. We have also implemented the proposed algorithm on

a GPGPU platform as the algorithm can be easily parallelized.
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Chapter 6

DodecaPen: Accurate 6DoF

Tracking of a Passive Stylus

In this work, we explore a simpler hardware setup that uses a minimal amount of
electronics to achieve high accuracy tracking. We propose a system that requires
only a single off-the-shelf camera and a passive 3D-printed fiducial with several
hand-glued binary square markers printed from a laser printer, as shown in Fig-
ure 1.3. Our proposed system has the distinct advantage of ease-of-construction and
setup over electronically instrumented solutions. Because there are no electronics
(including LEDs) on the stylus, threading wires or charging batteries are not a
concern. Neither lasers nor active illumination is required. The only requirements
are the use of a 2D office printer, a 3D printer, some glue, and a global shutter
camera. Because we need only a single camera, it can be mounted casually on
a tripod placed on the user’s desk, without concern for re-calibration of multiple
cameras. Despite these constraints, we achieve an accuracy of 0.4 mm at 60Hz over
a 30x40 cm? working area, which is comparable to state-of-the-art professional

motion capture (mocap) systems.

The overview of the proposed system is illustrated in Figure 6.1. Given a target
object O, (the DodecaPen in this work) represented by a dense surface model
(triangle mesh) and a camera image Z, the task is to determine the 6DoF object

123
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Proposed 6DoF Pose Tracking System

Inter-frame Corner Tracking (ICT)
LR * Pyramidal Lucas-Kanade marker
corner tracking

" ¢ PnP algorithm to get the initial L
pose p’ A
\ \ No _

Camera DodecaPen

Marker Intensity
Normalization

Yes
Digital 2D Drawing
* Marker Mipmaps _S_U3mu MR « »
immxma Mipmaps

Approximate Pose Estimation (APE) Dense Pose Refinement (DPR)

e Marker Detection ¢ Minimize appearance distance with Gauss oA () 070 ens om)

* Minimize reprojection error with PnP Newton and backtracking line search (BLS) . .

algorithm to get the initial pose p’ to get the final pose p* Output Pen-tip Trajectory

Input Frames

* Marker & mask mipmaps (Based on DodecaPen Poses)

Figure 6.1: System overview. In the approximate pose estimation step, we detect the binary square fiducial markers in the input images
and estimate the 6DoF pose of the DodecaPen using the PnP algorithm. If fewer than two markers are detected, we use the LK method
to track marker corners between frames. In the dense pose refinement step, the pose p’ is refined by minimizing the appearance distance
between the 3D model of the DodecaPen and image pixels to get the final pose p*. We generate the pen-tip trajectory in the 3D view

from the computed 6DoF pose sequence and visualize the 2D drawing by removing points where the pen tip is lifted off the page.
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pose p of O relative to the camera. Let x; = [z, ;, 2] |, i = 1,...,nyn > 3 be
a set of reference points in the local object-space of Oy, and let u; = [u;, vi]T be
the corresponding 2D image-space coordinates of Z.. The relationship between
them can be obtained using camera projection formulated in (2.2). In this study,
the pose p is formulated as a 6D vector consisting of the 3D rotation vector and

the 3D translation vector (which is presented in Section 2.1.2):

Tz ta
r 3 3
p= ,r=1r,| €ER t=|¢,| €R (6.1)
t
/rZ tZ

The proposed 6DoF pose tracking system primarily comprises two phases: approx-
imate pose estimation (APE) and dense pose refinement (DPR), Once we have
computed the 6DoF pose of the dodecahedron, we can recover the pen-tip trajectory
and use it to reconstruct the drawing. We rigorously evaluate the performance of
the proposed system when we degrade the camera (with shot noise, spatial blur,
and reduced spatial resolution). We conclude with demonstrations of this accurate
and easy-to-setup 6DoF tracking system for the application of drawing in 2D and

3D as well as object manipulation in a VR environment.

6.1 Dodecahedron Design

Although binary square fiducial markers are commonly attached to cubes [149,
185], pose recovery can fail when only a single marker is visible due to an ambiguity
in the PnP problem [3]. By substituting a dodecahedron as the tracked object, we
ensure that at least two planes are visible in most cases, eliminating the ambiguity.
Despite the fact that there are still other regular solids (or Platonic solids), as
shown in Figure 6.2, the area ratio of a square marker to a triangle face for the
other three (i.e., tetrahedron, octahedron, and icosahedron) would be too small
for the proposed system to track decently, as illustrated in Figure 6.3. Moreover,

for a tetrahedron, its faces captured by a tracking system may be too few as well.
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Tetrahedron Cube Octahedron Dodecahedron  Icosahedron

Figure 6.2: Five regular solids in 3D space.

a @B

Figure 6.3: The area ratio of a square marker to a triangle face is much smaller

than that to a pentagon face.

Consequently, the dodecahedron seems to be the best fit for our system.

We use an off-the-shelf 3D printer to create our trackable dodecahedron. Each
edge of the resulting dodecahedron is 12.9 mm in length, while the markers glued
on its surface have edges of length 10.8 mm and are printed with a laser printer.
Each marker is generated with the ArUco library [151] and is encoded as a 6x6

grid where the external cells are set as black.

6.2 Approximate Pose Estimation

We first use the binary square fiducial marker detector provided in the ArUco
library [150] to detect markers in input images. This gives us an image-space
position and orientation of each marker on the dodecahedron. We use these to
recover the 6DoF dodecahedron pose p by minimizing the reprojection error
formulated in (2.3). This is a standard PnP problem, which we minimize using the

Levenberg-Marquardt method [186]. To accelerate the marker detection process,
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we use a constant acceleration motion model to predict the dodecahedron pose
and constrain ArUco’s search region for the fiducial markers if the pose was
successfully recovered in the frame. The predicted pose p; in the current frame ¢ is

computed with the information from the last frame ¢t — 1:

« ) 1.
P: =Pi—1 + Pt—1 + ipt—lu (6.2)

where p and p are the pose velocity and acceleration between frames, respectively.
The search region for the current frame is set to be four times the area of the

dodecahedron in the last frame to account for fast motion.

6.3 Inter-frame Corner Tracking

We occasionally find that the APE method fails due to motion blur or because
most of the markers are strongly tilted relative to the camera. Because PnP cannot
work reliably in the case where we detect fewer than two markers, we apply the
inter-frame corner tracking (ICT) scheme to generate more constraints for PnP. We
use the pyramidal LK optical flow tracker [187] to track the corners of the markers

from frame to frame.

Square markers can be challenging for optical flow algorithms because different
corners have a very similar appearance, and thus the pyramidal LK implementation
frequently finds incorrect correspondences. Therefore, we perform the tracking
in two rounds. In the first round, we track each visible marker separately in the
camera frame and compute the velocity vectors of each marker by differencing with
the previous frame. We reject markers whose velocity is further than three standard
deviations from the mean. We then initialize the marker corner tracker using the
trusted predictions from the first round and run the tracking for the four corners of
each remaining marker a second time with similar outlier removal strategy. The

resulting motion tracks are much more reliable.
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6.4 Dense Pose Refinement

Unfortunately, the initial pose p’ computed using PnP is too jittery to use in
tracking the pen tip. We can substantially improve the pose accuracy using a dense
alignment, which minimizes the appearance distance £, between the image Z. and
the object O, pixels across all of the visible marker points, as formulated in (2.5).
We solve this nonlinear least squares problem using Gauss-Newton iteration; to
approximate how the image changes with respect to pose, we approximate it using

a first-order Taylor series as follows:

n

Ap* = argmin - 3" (Z. (w; (p' + Ap)) — O, (x,))’

Ap Mo
L - 2 (6.3)
/A argmin — Z. (u; (p) + == Ap — O (x; )
%pn§(< )G A t<0

To solve for Ap in each iteration, we set the first derivative of (6.3) equal to zero,

and solve the resulting system of linear equations:
J.Ap =0; -1, (6.4)

where O, and I, are vector forms of O, (x;) and Z, (u;), respectively, and J. is the
Jacobian matrix of I, with respect to p and is computed by the chain rule (in the

numerator-layout notation):

[ 0T, (uy)
op
aIC 8IC(UQ)
J. = 3 = op , (6.5)
p P=Pc .
9T.(u,)
L Jp
0L, _ OI. {au au] _ [azc azc} [auafcaﬁ au] 6.6)
op du |or ot du’ dv | |9%x R Or ’ 9x |’ )

R zyz000000
@—%0_% 0% _ 000 000 (6.7
8}2_ Ony_Mjaﬁ— Ty z 5 .
* 000000zy=

52

doi:10.6342/N'TU201800854



129

where R = [th ng, ng, Rgl, R22, R23, Rgl, R32, R33]T denotes the vector with

elements of the rotation matrix R, and:

x
z Rin Rix Rz t,
” Yy
X=|y| = |Ra Roa Raz t, ; (6.8)

z

™

Rs1 Ry Rsz t,

1

is the camera-space coordinate transformed from the object-space coordinate
T
x = [z,y,2] .
In addition, the derivative of R with respect to r can be obtained using the
following formula [182]:

OR  7r.lr], +[rx(I-R)ej
Ora x|

“R, a=u19,2, (6.9)

where I and e; are the identity matrix and the i-th vector of the standard basis in R?,
respectively. In addition, [r], represents the cross-product matrix for the vector r
which is as defined in (2.17).

A closed form solution of (6.4) is:
Ap=(313.) 3] (1 -1). (6.10)

Another way for getting Ap is to use the QR decomposition to solve (6.4), which
would take more time to compute but are more numerically stable as well.
Because our least squares problem is nonlinear, Gauss-Newton iteration does
not always converge with fixed step size. We thus perform a backtracking line
search to scale the step size after each iteration of solving (6.4). We shrink Ap by

Ap < aAp until it meets the Armijo-Goldstein condition below:
Eq,(p + Ap) < Ey,(p) + ¢VE4(p)' Ap, (6.11)

where VE,,(p) is the local function gradient. We set a = 0.5 and ¢ = 10™*
empirically.
To ensure intensity invariance and to minimize the residual between the model

and image, we normalize the intensity first before solving the dense alignment
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problem above. We observe that the primary variation in intensity is due to the
normal direction of each plane (and marker) as shown in Figure 6.1. Therefore we
normalize the intensity per local marker.

To avoid aliasing effects, we also need to ensure that the model fiducial markers
are resampled to be the same size they appear in the image. We generate a mipmap
of the binary square fiducial markers ahead of time to enable efficient sampling of
the model points at approximately the same scale as the image.

There are large portions of the square marker that do not significantly contribute

to the error term, notably in regions of uniform intensity where VZ.(u;) = 0 and

oL, _

thus, op

0. We take advantage of this by selectively masking out flat regions
ahead of time on our marker as shown in Figure 6.1, dropping regions where
VO, (x;) = 0 and hence VZ.(u;) is likely to be zero as well. The white and
black colors of the masks in Figure 6.1 represent the active and non-active regions,
respectively. The gray color of the final masked markers represent the non-active
regions. We show that we can significantly accelerate the algorithm without

compromising tracking quality using this masking technique.

6.5 Dodecahedron Calibration

While square markers are easy to print and glue on to the dodecahedron, the manual
nature of this process necessarily results in the model error, leading to inaccurate
pose tracking results, as we show in Section 6.7. We perform dodecahedron
calibration (DC) to determine the precise pose of each marker with respect to the
dodecahedron p;. We first take several dodecahedron photos (24 in this work, as
shown in Figure 6.4) and apply a one-time offline bundle adjustment, by minimizing

the following cost function:

{pmpk} ZZZ uz p]7pk)) - Ot (Xi>)27 (6'12)

with respect to both marker poses p; and dodecahedron poses with respect to the

camera py. Because the problem is ill-posed, we fix one of the marker poses and
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Figure 6.4: Photos used for dodecahedron calibration.

adjust other marker and dodecahedron poses simultaneously using Gauss-Newton
iteration, similarly to how we solved (6.4) in Section 6.4. We initialize the marker
poses p; to their ideal positions on the dodecahedron, and we initialize the camera

poses px with the APE approach.

6.6 Pen-tip Calibration

To recover a drawing, we need to know the position of the pen tip. Since the
pen tip is a ball, we calibrate the position of the sphere center ¢ = |7, e, 2] "
with respect to the coordinate frame of the dodecahedron. Given the 6DoF pose
of the dodecahedron, we can get the world position of the pen tip (i.e., the ball
center) ¢’ = [z}, y., 2.] " = Rec + t, where (R, t) is the pose of the dodecahedron.
Finally, we can check if the distance between the pen-tip sphere center and the
paper surface is less than the radius of the pen ball at runtime to determine if the
pen is drawing.

To calibrate the position of the pen tip c, we press the pen tip against a surface to

keep it fixed, while moving the dodecahedron, as depicted in Figure 6.5. We track
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Figure 6.5: Procedures for pen-tip calibration. We press the pen tip against a
surface to keep it fixed while moving and rotating the dodecahedron. In the same

time, we take the pictures which are used for pen-tip calibration.

the dodecahedron to obtain a number of its poses (Ry, tx), where k& € [1, m]. Since

the pen-tip center is fixed in world space, we can write the equation Ry, ¢ + t;, =

m(m—1)

Ry, ¢+ ty, forall k; and k. From m poses, we can obtain ——

linear equations,

which can be solved to obtain the least squares estimate of the pen-tip position c.

6.7 Experimental Results

We evaluate the proposed method for the 6DoF DodecaPen pose tracking using
both synthetic and real datasets, and compare it with an OptiTrack [161] motion
caption system. Our system is run on a desktop computer with a 3.6 GHz CPU
and 32 GB RAM. We use a Point Grey Flea3 1.3 MP color camera (60 Hz, 1280 x
1024) with a Fujinon 12.5 mm f/1.4 lens for an effective horizontal field of view
60 degrees.

Given the ground-truth rotation matrix R and translation vector t, we compute
the rotational error of the estimated rotation matrix R in degrees according to (2.32).

The translation error of the estimated translation vector t is measured by the
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Table 6.1: Evaluation results for different approaches (APE: approximate pose
estimation; DPR: dense pose refinement; BLS: backtracking line search) on the
synthetic dataset in terms of average rotation error F'r (°), translation error Fy
(mm), pen-tip error £, (mm), and runtimes per frame (ms). The last column

shows the average number of iterations for the DPR approach.

Approach Er Ey Epe, Time #lter.
APE 0.447 5.835 5.854 1.100 -
APE+DPR 0.053 0.356 0401 6.213 6.178

APE+DPR+BLS 0.053 0.336 0.386 6.140 3.834

¢? difference between t and t defined as (2.35). The pen-tip error F,, is the
¢? difference between two pen-tip positions transformed with either (R, t) or
(R, t) in the camera coordinate system. The distance between the pen tip and the
dodecahedron center is 143 mm. The success rate (SR) is defined as the percentage

of the successfully estimated poses within each sequence.

6.7.1 Synthetic Data

We construct a synthetic dataset by generating 24 image sequences with different
motion patterns of the virtual DodecaPen, as shown in Figure 6.6. The 6DoF
DodecaPen pose sequence in each image sequence is obtained by recording poses
of a rigid body with the OptiTrack motion capture system. Each sequence consists
of 301 frames with the same resolution and intrinsics as our real camera. We
initialize each tracking algorithm with the ground-truth pose for the first frame.
Table 6.1 shows that the dense pose refinement (DPR) approach can achieve
significantly better accuracy than the approximate pose estimation (APE) approach
from sparse constraints alone. With a backtracking linear search (BLS) scheme,
we can take fewer Gauss-Newton iterations during the optimization process and

also achieve more accurate results compared to not using a line search. It is also
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Figure 6.6: We generate synthetic image sequences with 24 motion patterns of the

virtual DodecaPen for evaluation.

notable that even though the pen tip is far from the dodecahedron center, the pen-tip
error is dominated by the translation error. We show all the pen-tip trajectories
generated by approaches in Figure 6.7 to Figure 6.9, and compare them with ground

truth. The trajectories generated from the APE approach alone is visibly jittery,
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Figure 6.7: Pen-tip trajectories (01-08) generated by different approaches. Average

pen-tip errors (mm) are shown in legends.
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Figure 6.8: Pen-tip trajectories (09-16) generated by different approaches. Average

pen-tip errors (mm) are shown in legends.
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Figure 6.9: Pen-tip trajectories (17-24) generated by different approaches. Average

pen-tip errors (mm) are shown in legends.
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while those generated by approaches using the DPR approach are more stable
and numerically closer to ground truth. The average number of pixels (without
considering masking) for the markers on the DodecaPen is 6136 over all of the
sequences in the synthetic dataset.

We further evaluate the proposed approaches under varying shot noise, spatial
blur, camera resolutions, and mask kernel widths to evaluate the sensitivity of the
system to the most common types of degradation to allow practitioners to evaluate
the feasibility of this system. There are several observations to note in the results.
First, when the input frames are degraded with shot noise, the tracking results
without the BLS scheme degrade more rapidly than those with it, as demonstrated
in Figure 6.10. We also find that sufficient shot noise can prevent direct alignment
from converging without the line search. The BLS scheme is particularly effective
when the small residual approximation of Gauss-Newton breaks down with noise.

Second, although the ArUco marker detector can detect markers well for
images corrupted with high shot noise, it quickly fails for spatially blurry images,
as explained in Figure 6.11. Hence, tracking success rate drops dramatically with
spatial blur. In contrast, by adding the inter-frame corner tracking (ICT) scheme,
our pose estimation can be quite robust (in terms of tracking success rate) to spatial
blur, although accuracy suffers.

Third, the proposed approach still performs favorably even with VGA resolution
sensors (i.e., 0.3 megapixels) while the execution time is reduced to 3.0 ms, as
shown in Figure 6.12.

Finally, the accuracy seems to be empirically unaffected by different sizes of
the mask kernel even when the number of valid pixels used in dense alignment

drops from 6136 to 3941, as presented in Figure 6.13.

6.7.2 Real Data

Because the DodecaPen is an actual ball-point pen, we can evaluate the accuracy

of our approach by comparing the resulting hand-drawn image and the digital 2D

doi:10.6342/N'TU201800854



139

25
- A
é f‘*
w /‘ i‘:*
APE E 15 ,::._:‘ B
=4~ APE+DPR 5 o 42 -
- M - APE+DPR+BLS Bl g7
«de APE+ICT+DPR+BLS o
w s

0 y | b
0 4 8 12 16 20 24 28 32 36 40
Standard Deviation (Unoise) of the Gaussian

0.3 1 ‘—
’ /
—~ 4 —~ :I
g 0.25 ‘/ 1 08! /
=) ‘ E 4
S 02 e 1 = %4
e .4 206 &
o ' L X
Soist < PO
S o1 I"‘ - E0'45--4'-“’""“"'*-----—--—--—-.—-#
IS _" . __,.._.--"-‘" c
2 o 8ol
5 o.osT"“""* ] F 02
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
Standard Deviation (‘Tnoise) of the Gaussian Standard Deviation (Unoise) of the Gaussian
e - - - - - - - 105
el S
E DT i e T T T e e
= 4r 2
o ©
£ o
T | 95 |
8* ! 3
1r W Sod -
IPUIPPRIPRRPRR S S
0 ; ; ; ; ; ; ; ; ; 90 ; ; ; ; ; ; ; ; ;
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
Standard Deviation (Unoise) of the Gaussian Standard Deviation (Unoise) of the Gaussian
8000 T T T 25
2 i - i
c 20t -6~
5 oo g PO 2oy o 6
= [ »
S 2 »°
2 4000 | 5
o P
— Q
[] o
2 [S
€ 2000 t =)
=] =z
z
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
Standard Deviation (Unoise) of the Gaussian Standard Deviation (Unoise) of the Gaussian

Figure 6.10: Experimental results on synthetic dataset under Shot Noise condition
with different degradation levels. The standard deviation of the Gaussian noise is

set for an intensity range of 0 to 255.
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Figure 6.11: Experimental results on synthetic dataset under Spatial Blur condition
with different degradation levels. The spatial Gaussain blur sigma is in pixels for a

1280 x 1024 image.
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Figure 6.12: Experimental results on synthetic dataset under Camera Resolution

condition with different degradation levels.
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(a) Boba (b) Thumb (c) DodecaPen (d) UIST2017

Figure 6.14: The four ground-truth drawings used for real data evaluation. These

patterns are drawn on a letter size paper (220 x280 mm?).

drawing produced by our technique. The ground-truth image (on a letter size paper)
is obtained from a scanner, as shown in Figure 6.14, while the digital 2D drawing
is generated by the built-in plot function in MATLAB. Both images are scaled to
a resolution of 1650x1275. The maximum rotation and translation speeds of the
dodecahedron in the real dataset are around 80 degree/s and 200 mm/s, respectively.
General drawing and writing are covered within these speeds. The relative rigid
transformation between the camera and the drawing paper is resolved through

calibration.

To compare a drawing generated by the proposed system to a ground-truth
drawing, we first binarize both drawings by Otsu’s method [188] and obtain a 2D
set of drawn points from each image. Next, we overlay these two binary images
and find the nearest point in the other image for each point in both point sets
according to their coordinates. The mean distances between each point and its
nearest neighbor are regarded as the similarity metric, which is applied for our real

data evaluation.

We collect four real drawings with different shapes, and the tracking results
of our system compared to ground-truth (i.e., scanned) patterns are shown in
Figure 6.15 to Figure 6.18. The proposed method can generate drawings virtually
identical to ground truth, while results from applying the APE approach alone are
visually messy. Furthermore, without dodecahedron calibration, distortions due to

model error are clearly visible in the alignment with the ground truth. The accuracy
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Figure 6.15: Hand-drawing results of Boba generated by different approaches.
Each image is blended with the ground-truth drawing and augmented with a text
box showing the mean shortest distance (in millimeters) between the generated

and ground-truth drawing.
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Figure 6.16: Hand-drawing results of Thumb generated by different approaches.
Each image is blended with the ground-truth drawing and augmented with a text

box showing the mean shortest distance (in millimeters) between the generated

and ground-truth drawing.
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APE+DPR APE+ICT+DPR+BLS-DC
APE+DPR+BLS Mocap

Figure 6.17: Hand-drawing results of DodecaPen generated by different ap-
proaches. Each image is blended with the ground-truth drawing and augmented
with a text box showing the mean shortest distance (in millimeters) between the

generated and ground-truth drawing.

doi:10.6342/N'TU201800854



APE
APE+DPR
APE+DPR+BLS

APE+ICT+DPR+BLS
APE+ICT+DPR+BLS-DC
Mocap

g
b

WST2017

WIST2017

147

Figure 6.18: Hand-drawing results of UIST2017 generated by different approaches.

Each image is blended with the ground-truth drawing and augmented with a text

box showing the mean shortest distance (in millimeters) between the generated

and ground-truth drawing.
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Figure 6.19: Experimental results on real dataset under various camera resolution

conditions.

and performance for various camera resolutions and mask kernel conditions are

shown in Figure 6.19 and Figure 6.20, respectively. As we have already seen

in Section 6.7.1, the proposed method can still perform well (0.5 mm accuracy)

even at VGA resolution. And masking does not seem to affect the tracking results,

which makes it possible to run the proposed system at 60Hz by choosing the
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Figure 6.20: Experimental results on real dataset under various camera resolution

conditions.

smallest mask kernel size.

In our final comparison, we compare the drawing results generated by the

proposed DodecaPen system with those generated by a state-of-the-art motion

capture system. The motion capture system is constructed with 16 OptiTrack Prime

17 W (1.7 megapixels, 70 degrees field-of-view) cameras, as shown in Figure 6.21.
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Figure 6.21: Experiments with OptiTrack motion capture system. Top tow: We

use 16 OptiTrack cameras. Bottom row: We add eight retroreflective markers to

the DodecaPen and shown a sample frame from the DodecaPen tracking camera.

The pen is augmented with eight more retroreflective balls as markers for the
mocap system. After calibrating the mocap system, we record image sequences
from all 16 motion capture cameras (with a combined 27MP of resolution) as
well as the DodecaPen tracking camera (1.3MP) simultaneously. Because motion
capture obtains the 3D position from triangulation from multiple cameras, it is
interesting to see how accuracy degrades with fewer cameras. Since not every
camera contributes to the pose computation on the same level, we make a best
effort of selectively reducing the number of cameras in lowest priority order based
on the distance to the pen as well as the percentage of the time the markers are
blocked from that camera view. The results shown in Figure 6.22 reveal that the

proposed method is comparable to a motion capture system with 10 active cameras
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Figure 6.22: Experimental results of the motion capture system with different

numbers of active cameras. The accuracy of the proposed method is comparable to

a motion capture system with 10 active cameras.

(17 MP). The drawing results generated by the mocap system with 16 cameras are
also shown in Figure 6.15 to Figure 6.18 and are virtually indistinguishable from

the ground truth.

6.8 Applications

The DodecaPen can provide low-cost writing and drawing capabilities to both
2D and 3D (e.g., VR) applications. We demonstrate both 2D and 3D drawing.
Although a pen is typically used for writing and drawing, the pen (via the dodeca-

hedron) can also serve as a handheld proxy for 3D objects.
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Figure 6.23: The DodecaPen can turn a flat surface into a digital drawing surface.

6.8.1 2D Drawing

Our system can turn any flat surface into a digital writing and drawing surface,
such as on a desk or whiteboard, as shown in Figure 6.23. Although the DodecaPen
requires an external camera, the pen and surface do not require any electronics
found in professional graphics tablets [189] and can digitize real graphite or ink
without a textured pattern [190]. With 3D tracking, we can utilize the space above
the writing surface and enable hover-based interactions [191] as well as multi-
layer interactions [192]. Instead of using an external camera, we could embed a
camera with a global shutter to our existing devices (e.g., monitors, laptops, mobile

devices) and create writable surfaces on the fly.

6.8.2 3D Drawing

In addition to drawing on a 2D surface in a 3D VR environment, we can use the
DodecaPen to draw 3D curves, as shown in Figure 6.24. The pen can emit 3D ink

for 3D annotation or be used as an instrument for content creation, such as a virtual
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(a) Drawing on a 2D surface (b) Drawing in 3D space

Figure 6.24: In a VR environment, the DodecaPen can (a) draw on a midair 2D

surface or (b) emit 3D ink when the spacebar is pressed.

sculpting tool [193]. For demonstration purposes, we use the spacebar to emit
3D ink, as shown in Figure 6.24(b). The DodecaPen can also be used to digitize
real 3D objects by specifying the 3D points of a surface (e.g., Ivan Sutherland’s

Volkswagen [194]) rather than scanning and then re-meshing [195].

6.8.3 General 6DoF Object Tracking

Although we focused on the specific application of tracking a pen, the dodecahe-
dron can be used as a general 6DoF tracked object. We can use the dodecahedron
to enable tangible input [196], either as a proxy for virtual 3D objects or to bring
in other physical devices into VR. The form of the pen lends itself to represent
cylindrical objects such as a VR wand or baton, as shown in Figure 6.25(a). Addi-
tionally, it can represent more general objects to be inspected for educational or
industrial (e.g., CAD models) purposes, as shown in Figure 6.25(b). Furthermore,
the proposed system can serve as a low-cost motion capture system for digital
puppetry [197].

The tracked dodecahedron can be attached to physical objects other than a pen.
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(a) Cylindrical object (b) General object

Figure 6.25: The DodecaPen can (a) double as other cylindrical objects such as a

VR wand or (b) provide general 6DoF object tracking.

In Figure 6.26(a), we attach the dodecahedron to a physical keyboard to display
in VR. The dodecahedron itself could be a tangible 12-sided VR die for use in a

board game, as shown in Figure 6.26(b).

6.9 Summary

We have demonstrated a system for sub-millimeter-accurate 6DoF tracking using a
set of readily available and easy-to-assemble components. Through design choices
around the shape and appearance of the tracking fiducial as well as careful the
application of computer vision algorithms for calibration and pose estimation, we
show that single camera pose estimation can be fast enough and robust enough for
drawing in 2D, 3D and in VR.

We have systematically validated each design decision of the system. We show
that marker corner alignment is insufficient for robust and accurate tracking. A
combination of inter-frame alignment and dense pose refinement is needed to
achieve sufficient accuracy and robustness. A straightforward application of the

Lucas and Kanade method is improved by adapting the step size with a backtrack-
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(a) DodecaKeyboard (b) DodecaDie

Figure 6.26: The dodecahedron can (a) be attached to physical objects such as a
keyboard for tracking in VR or (b) be used as a simple 12-sided VR die.

ing line search. We show empirically that the algorithm can be accelerated by
considering only the most relevant parts of the square marker for direct alignment.
We also show that the bundle adjustment calibration of the handmade dodecahedron
is essential and effective at correcting systematic errors in the model. Through
a combination of simulation and experimentation, we characterize the system’s
sensitivity to shot noise, spatial blur, and image resolution to provide practitioners

a useful guide for evaluating its applicability.

6.9.1 Limitations and Future Work

Despite the ease-of-construction and setup of our proposed system, it has some
significant drawbacks. The proposed computer vision algorithm is slow by the
standards of Lumitrack [154] or motion capture systems which can achieve a
throughput of 300-800Hz. Because the algorithm is run on a PC, it incurs the la-
tency of transferring the image to the host in addition to processing time. Although
we show graceful degradation of the algorithm accuracy with camera resolution,
the accuracy and the working volume of the system is ultimately limited by the
angular resolution of the chosen camera system and the robustness of the binary

square fiducial marker recognition software.
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Since the tracking accuracy suffers from motion blur, we need to set the
exposure time of the camera to a reasonable value for the application. From our
experiments, we find that a maximum exposure time of 4ms is good for general
writing or drawing. Therefore, if the imaging system is sufficiently sensitive to
produce bright enough images in 4ms to detect markers, our tracking system works
properly. If the input frame is too dark for the ArUco marker detector to detect
markers, our system will not work. In this case, we need to either add more light
or improve the imaging system (with a better sensor or a faster lens).

Our presented stylus contains no electronic components, but the proposed
computer vision system can easily be augmented with buttons for discrete input
and an inertial measurement unit to reduce latency and increase throughput. To
simplify the VR setup, we could attach the DodecaPen camera to the headset
instead of setting it on a desk, since the headset is also tracked. Although we
have demonstrated that only part of the binary square fiducial marker is useful
for dense alignment, we still transfer the entire image from the camera to the
host. Integrating on-camera compute or new sensing modalities such as event
cameras may further reduce latency and improve throughput. The proposed system
cannot handle occlusion because it relies on a single camera, but occlusion can
be addressed with the addition of more cameras at the cost of additional setup

complexity and calibration.
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Chapter 7

Conclusion

In this dissertation, we have interpreted the formulation of the 6DoF object pose
recovering problem in Chapter 2 and given a comprehensive introduction to the
related work of this topic in Chapter 3. Previous approaches have been thoroughly
analyzed and a number of new techniques have been presented in Chapter 4

to Chapter 6. The main achievements are:

* A large-scale object pose tracking benchmark dataset consisting of RGB-
D video sequences of 2D and 3D targets with ground-truth information
(Chapter 4). The videos are recorded under various lighting conditions,
different motion patterns and speeds with the help of a programmable robotic

arm.

* A novel and robust scheme to annotate the ground-truth poses by leveraging
the clear infrared images recorded by the global-shutter infrared camera
with fast shutter speed from the Kinect V2 sensor, which enables us to record

sequence even under rapid motions (Chapter 4).

* An efficient direct approach of approximate pose estimation for planar
objects which is posed as a template matching problem (Chapter 5). The
proposed method performs robustly even when the target images contain
less textured surfaces or motion blurs.

157
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* An accurate pose refinement strategy using a Lucas-Kanade dense alignment
scheme (Chapter 5,6). In this approach, the image changes with respect
to the 6DoF pose, which is parameterized as a 6D vector consisting of
the 3D rotation vector and the 3D translation vector, are approximated
using the first-order Taylor series. In addition, a backtracking line search is
performed to ensure the convergence of Gauss-Newton iteration within the

pose refinement technique.

* A practical method for planar object pose disambiguation, which find all
possible poses first and then the one with smallest appearance distance
between the camera image and the target image is considered as the estimated

pose Chapter 5.

* An accurate 6DoF pose tracking solution by leveraging both the binary square
fiducial marker toolkit and the proposed pose refinement scheme Chapter 6.
As each fiducial marker has many sharp edges and corners, it is well-suited
for providing a precise pose using dense alignment methods. In addition,
since there are large portions of the fiducial marker that do not significantly
contribute to the pose estimation procedure, we can take advantage of this by
selectively masking out flat regions ahead of time on markers. A significant
acceleration of the algorithm can be achieved without compromising tracking

quality using this masking technique.

* A one-time model calibration procedure using bundle adjustment based on
the proposed pose refinement algorithm Chapter 6. This technique can be
employed not only for a dodecahedron but also for any 3D model composed

of planes.

» Extensive experimental evaluations of the proposed method as well as previ-

ous approaches on both synthetic data and real data (Chapter 4,5,6).

* The implementation of an accurate pen-trajectory tracking solution, which
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is comparable to state-of-the-art professional motion capture systems Chap-

ter 6.

* Demonstrations of the proposed accurate and easy-to-setup 6DoF stylus
tracking system for the application of drawing in 2D and 3D as well as object

manipulation in a virtual reality environment.

7.1 Discussion and Future Work

Recently, object pose estimation has benefitted from the advent of deep learning
based approaches and the possibility of using large datasets for training such
methods, and we believe this trend will continue in the future. But because these
deep learning based approaches generally cannot give pretty accurate results,
another pose refinement procedure is preferable to use. Traditionally, the iterative
closest point algorithm is commonly applied to accomplish getting a more accurate
pose. However, since the depth image obtained by present sensors is still noisy (as
we have discussed in Section 4.2), the pose recovering results may not be entirely
satisfactory. In contrast, because the proposed pose refinement approach has been
demonstrated to improve the accuracy of the estimated pose significantly with
RGB images (which can be captured clearly by present sensors), it is suitable
for being augmented by any object pose estimation method especially when the
object is composed of planes. But one should still be careful with the appearance
consistency between the targets in the camera image and its original representation
when using the dense alignment strategy.

There are many object pose estimation and tracking datasets which use fidu-
cial markers to establish ground-truth poses. Nonetheless, as we have presented
in Chapter 6, the marker corner alignment is insufficient for robust and accurate
tracking. Therefore, the pose annotation process in the previous benchmark dataset
may not be reliable. By employing the pose tracking solution proposed in Chap-

ter O, it is conceivable to achieve more accurate and robust pose annotation results.
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We also encourage everyone to utilize the dense pose refinement technique pro-
posed in Section 6.4 when using any fiducial marker toolkit as it can phenomenally
enhance the tracking quality with slight additional computational cost.

Pose estimation for planar objects can explicitly take advantage of depth images
as the estimated pose can, therefore, be unambiguous. The candidate poses in the
approximate pose estimation step presented in Section 5.1 can also be significantly
reduced. If there is no depth information, we can still use some temporal filtering
strategy to not only disambiguate the estimated pose but further improve the result

accuracy as well.
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