
doi:10.6342/NTU201800854

國立臺灣大學電機資訊學院電子工程學研究所

博士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

精準六自由度物體姿態之估測與追蹤

Accurate 6DoF Object Pose Estimation and Tracking

吳柏辰

Po-Chen Wu

指導教授：簡韶逸 博士

Advisor: Shao-Yi Chien, Ph.D.

 中華民國 107 年 05 月

May 2018

doi:10.6342/NTU201800854

doi:10.6342/NTU201800854

doi:10.6342/NTU201800854

doi:10.6342/NTU201800854

致謝

從簽下逕讀博班申請書的那一天起，我就開始想像並期待著這一刻的到來。

回首博班路，從最初的懵懂青澀，歷經途中的困惑茫然與奮力拼搏，到最後終於開

花結果，或許旁人甚難領略整段過程的艱辛苦楚，但我深知這本論文確實得來不易。

一路走來，除了需要倚賴自身的熱情與毅力，同時也承蒙了許多貴人的幫助與支持。

首先我想感謝我的指導教授簡韶逸老師。從大二那一年修了簡老師的交電課

後，便深深被簡老師冷面笑匠的魅力所吸引，因此在升大三時義無反顧的選修了簡

老師的專題研究，歷經十載直至今日。或許有些指導教授在面對大學生與研究生時

會呈現截然不同的態度，但這十年來簡老師給我的感覺始終如一，除了保持既有的

風趣節奏外，也總是盡心盡力幫助學生渡過每段困難與挫折。在前大半的博班生涯

中，其實自己的研究與投稿結果往往不盡如人意，但簡老師自始自終沒有半句責備，

反而四處尋找更多可用資源幫助自己渡過難關，我也才能得以在年限將至前順利

完成博士論文與通過學位口試。我感佩簡老師的從一而終，也同時替十年前的自己

感到驕傲，因為他沒有看錯人。

再來我想特別感謝我的共同指導教授楊明玄老師。明玄是簡老師在三年前某

次我和泓諭合作的研究成果被審查者狠狠洗臉後請來幫忙指點迷津的高人，同時

也是我生命中的貴人。在我們剛認識明玄時，明玄已是電腦視覺界名人堂等級的學

者，原本以為平日事務如此繁忙的大師不太可能有暇顧及他校學生，萬萬沒想到明

玄其實是個充滿熱情並且樂意幫助他人成長的親切前輩，不僅勞心費力和我們共

同釐清研究主軸、合力完成論文投稿，甚至主動幫忙我們將履歷投至各大公司申請

實習機會；即使當時自己對於國外的工作面試並不抱持著多大的自信，明玄始終是

那個站在第一線鼓勵、並以行動支持我的人。在明玄的信心加持下，我才有幸在當

年以實習生的身分加入臉書的混合實境研究部門，並得以在畢業前夕幸運拿到敝

司全職研究員的聘書。我想我上輩子肯定扶了不少老太太過馬路，今生才能有此等

福氣認識如此難得的生命貴人。

doi:10.6342/NTU201800854

接著我想好好地感謝我的兩位父母。爸爸是位偉大的男人，除了努力在外打拼

支持家計，也總是以寬大度量包容家裡兩位不時無理取鬧的女人（笑）。媽媽同樣

也是位偉大女性的代表，每天重複著上班工作、下班與爸爸一同整理家務的生活，

至今已持續三十餘年。我們家雖不富有，但爸媽總是將最好的留給了他們的子女，

並且打理好家庭與家族上的大小事宜，讓我和妹妹能夠無後顧之憂地擁抱自己的

夢想。如果有人認為我做事仔細負責，那我肯定是從爸媽那裡學來了不少東西；生

在一個充滿愛與幽默的家庭也讓我得以時常帶著微笑迎接生活上的種種挑戰。

最後，我想感謝從專題生時期便和我一起長期奮鬥至研究所畢業拿到最佳碩

論的泓諭、幫助我共同完成 OPT Dataset 的岳穎及宣逸、帶我入門多媒體研究的

Larry 學長、實驗室所有曾經給予我研究上的建議與幫助的同學及學長姐學弟妹、

臉書所有曾經參與 DodecaPen專案的同事（尤其是 Rob與 Kenrick，雖然我覺得你

們大概看不懂我在寫什麼）、所有口委老師們的不吝指教與建議分享，以及所有和

我合作過的專題生們。同時我也對專題生們感到頗為抱歉，因為許多時候我並不是

很有把握自己的想法是可行的，實際上最後也證實許多的確不太可行，這主要是我

的鍋，你們其實都非常優秀。能和大家合作是我的榮幸，也希望你們未來都能各自

擁有自己的一片天。

謹以此論文獻予我所摯愛的家人與朋友。

2018.05.24 吳柏辰

doi:10.6342/NTU201800854

中文摘要

本篇論文主要探討的問題是如何從已校準過的相機影像中穩定且可靠地計算

出目標物體相對於拍攝相機的六自由度姿態，而此六自由度姿態是由三自由度的

旋轉變量與三自由度的移動變量所組成。

雖然目前文壇上已有許多研究人員提出不同種解決此類問題的演算法，但是

由於各方在做演算法間的交互評比時所使用的測試影像序列資料往往不盡相同，

甚至在大部分情況下接近真實情況的影像序列是缺乏的，導致目前無法得到不同

類型的演算法在多種情況與條件下的客觀表現優劣分析。因此在本篇論文中，我們

提出了一個同時具備彩色與深度影像序列的大規模之物體姿態追蹤基準資料庫，

此資料庫不僅包含數種不同型態的平面與立體目標物外，也同時提供物體真實姿

態值。此外，我們也針對目前現有的演算法在此基準資料庫上做了完整的表現評估，

也分析了現有演算法效能提升手段的可能切入點。

即使多點投影演算法通常可以精準地計算出目標物體相對於拍攝相機的姿態，

此種演算法本質上需要目標物本身有足夠的纹理表徵，並且其特徵點群能成功與

相機影像中的特徵點群正確配對時才能順利計算出準確的物體姿態，這也是傳統

特徵點演算法的主要缺陷之一。因此，我們設計了一個用來估測物體姿態的二步直

接法，此演算法無論目標物的纹理表徵足與不足皆可穩定且精準地計算出其姿態。

基於此演算法，我們發展了一套能即時以六自由度追蹤被動目標筆件的系統，此系

統的準確度甚至可達亞毫米的水準，使其足以在混合實境的環境中書寫及作畫。我

們透過一系列在合成資料庫與真實資料庫上運行分析的實驗結果展現此系統在各

種狀況下所成就的高效準確的姿態追蹤結果，其精準程度甚至可比由多台相機所

組成的工業級動作捕捉系統。

doi:10.6342/NTU201800854

doi:10.6342/NTU201800854

Accurate 6DoF Object Pose Estimation and

Tracking

Po-Chen Wu

Advisor: Shao-Yi Chien

Co-Advisor: Ming-Hsuan Yang

Graduate Institute of Electronics Engineering

National Taiwan University

Taipei, Taiwan

May 2018

doi:10.6342/NTU201800854

ii

doi:10.6342/NTU201800854

doi:10.6342/NTU201800854

doi:10.6342/NTU201800854

Abstract

This dissertation is concerned with the problem of determining the six degrees

of freedom (6DoF) object poses from a calibrated camera. Given camera images

which contain the target object, we wish to estimate the position and orientation of

the target with respect to the camera accurately and robustly.

Although a variety of algorithms for this task have been proposed, it remains

difficult to evaluate existing methods in the literature as oftentimes different se-

quences are used, and no benchmark datasets close to real-world scenarios are

available. In this dissertation, we present a large-scale object pose tracking bench-

mark dataset consisting of RGB-D video sequences of 2D and 3D targets with

ground-truth information. In particular, we perform the extensive quantitative

evaluation of the state-of-the-art methods on this benchmark dataset and discuss

the potential research directions in this field.

While advanced Perspective-n-Point algorithms perform well in pose estima-

tion, the success hinges on whether feature points can be extracted and matched

correctly on target objects with rich texture. Consequently, we develop a two-step

robust direct method for 6DoF pose estimation that performs accurately on both

textured and textureless planar target objects. Based on the proposed two-step

direct approach, we present a system for real-time 6DoF tracking of a passive stylus

that achieves submillimeter accuracy, which is suitable for writing or drawing in

mixed reality applications. We demonstrate the system performance regarding

speed and accuracy on a number of synthetic and real datasets, showing that it can

be competitive with state-of-the-art multi-camera motion capture systems.

i

doi:10.6342/NTU201800854

ii

doi:10.6342/NTU201800854

Contents

Abstract i

List of Figures vii

List of Tables xix

1 Introduction 1

1.1 Object Pose Recovering . 4

1.2 Camera Pose Recovering . 5

1.3 Cameras . 7

1.4 Contributions . 9

1.5 Publications . 10

1.6 Dissertation Organization . 11

2 Problem Formulation 13

2.1 Parameterization of Rotation . 15

2.1.1 Euler Angles . 15

2.1.2 Axis–Angle Representation 17

2.1.3 Quaternions . 19

2.2 Evaluation Metrics . 22

2.2.1 Rotation & Translation Errors 22

2.2.2 3D Distance . 23

2.2.3 2D Projection . 23

iii

doi:10.6342/NTU201800854

iv

3 Related Work 25

3.1 Feature Detection and Matching 26

3.2 PnP Algorithms . 26

3.3 Kabsch Algorithm . 27

3.4 Lucas-Kanade Method . 28

3.5 Iterative Closest Point . 31

3.6 Line Search & Trust Region . 34

3.7 Object Pose Estimation Approaches 35

3.7.1 Pose Disambiguation for Planar Objects 37

3.8 Object Pose Tracking Approaches 38

3.8.1 Binary Square Fiducial Marker Tracking Solutions 39

3.8.2 Pen Tracking Paradigms 40

3.8.3 Commercial Tracking Systems 40

3.9 Benchmark Datasets . 41

4 OPT: A Benchmark Dataset for 6DoF Object Pose Tracking 45

4.1 Acquiring Images . 46

4.2 Obtaining Ground-truth Object Pose 50

4.3 Evaluation Methodology . 65

4.3.1 Evaluation Algorithms 65

4.3.2 Evaluation Metrics . 69

4.4 Evaluation Results . 69

4.4.1 Overall Performance . 69

4.4.2 Performance Analysis by Attributes 72

4.4.3 Discussion . 78

4.5 Summary . 82

5 DPE: Direct Pose Estimation for Planar Objects 85

5.1 Approximate Pose Estimation 86

5.1.1 Constructing the ε-covering Set 87

doi:10.6342/NTU201800854

v

5.1.2 Coarse-to-Fine Estimation 92

5.1.3 Approximate Error Measure 92

5.1.4 Pyramidal Implementation 93

5.2 Pose Refinement . 93

5.2.1 Determining Candidate Poses 94

5.2.2 Refining Candidate Poses 94

5.3 Experimental Results . 96

5.3.1 Synthetic Image Dataset 100

5.3.2 Visual Tracking Dataset 108

5.3.3 Object Pose Tracking Dataset 114

5.4 Summary . 121

6 DodecaPen: Accurate 6DoF Tracking of a Passive Stylus 123

6.1 Dodecahedron Design . 125

6.2 Approximate Pose Estimation 126

6.3 Inter-frame Corner Tracking . 127

6.4 Dense Pose Refinement . 128

6.5 Dodecahedron Calibration . 130

6.6 Pen-tip Calibration . 131

6.7 Experimental Results . 132

6.7.1 Synthetic Data . 133

6.7.2 Real Data . 138

6.8 Applications . 151

6.8.1 2D Drawing . 152

6.8.2 3D Drawing . 152

6.8.3 General 6DoF Object Tracking 153

6.9 Summary . 154

6.9.1 Limitations and Future Work 155

doi:10.6342/NTU201800854

vi

7 Conclusion 157

7.1 Discussion and Future Work . 159

Reference 161

doi:10.6342/NTU201800854

List of Figures

1.1 Images of 2D (left two columns) and 3D objects (right two columns)

in our benchmark dataset with 6DoF pose ground-truth notation.

The proposed benchmark dataset contains 690 color and depth

videos of various textured and geometric objects with over 100,000

frames. The recorded sequences also include image distortions for

performance evaluation in real-world scenarios. 2

1.2 Direct pose estimation for planar targets. The pose ambiguity prob-

lem occurs when the objective function has several local minima

for a given configuration, which is the primary cause of flipping

estimated poses. First row: original images. Second row: im-

ages rendered with a box model according to the ambiguous pose

obtained from proposed algorithm without refinement approach.

Third row: pose estimation results from the proposed algorithm,

which can disambiguate plausible poses effectively. 3

1.3 Our proposed system can track the 6DoF pose of (a) a calibrated

pen (the DodecaPen) from (b) a single camera with submillimeter

accuracy. We show (c) a digital 2D drawing as the visualization

of the tracking result, and compare with (d) a scan of the actual

drawing. 3

1.4 The depth data is measured from scene points to the camera plane

on where the camera is (instead of from scene points to camera

center). 9

vii

doi:10.6342/NTU201800854

viii

2.1 The perspective projection model. (O,~io,~jo, ~ko) is the object coor-

dinate system, (C,~ic,~jc, ~kc) is the camera coordinate system, xi is

a 3D point, and ui is its projection onto the image plane. 14

3.1 Two error metrics mostly employed in ICP methods. 32

3.2 The pose ambiguity can be regarded as a geometric illusion. There

appears to be more than one 3D geometrical explanation based on

the same perspective-projected marker in the camera image. . . . 37

3.3 Pose ambiguity in real cases. The images in the first column are the

original images. Images with a synthetic model rendered according

to each ambiguous pose are shown in the last two columns. . . . 38

4.1 Sequences in the proposed dataset are recorded with a Kinect V2

sensor mounted on a programmable robotic arm. Note that we

normalize the intensity of the depth image in this figure for clarity. 47

4.2 2D objects with low (Wing, Duck), normal (City, Beach), and rich

(Firework, Maple) texture. 47

4.3 3D objects with simple (Soda, Chest), normal (Ironman, House),

and complex (Bike, Jet) geometry. 47

4.4 The checkerbox is designed so that the 3D object can be changed

with four different sides. (a) The hollowed part on the bottom

plane of the checkerbox. (b) The bottom view of the base of the

3D object. This base can adhere to the checkbox with four magnet

pairs. (c) The front view, (d) left view, (e) back view, and (f) right

view of a target. 50

4.5 GUI for recording RGB-D sequences captured by Kinect V2. . . . 50

4.6 (a) Infrared image. (b) Point cloud corresponding to (a) from

one viewpoint. (c) Point cloud from one another viewpoint. The

measured distance within a dark region is larger than real cases. . 52

doi:10.6342/NTU201800854

ix

4.7 (a) Deviations between real and measured depth values. We per-

form the robust regression with Bisquare weighting. (b) Points are

sampled in the center of white blocks since the measured values

on a dark surface are less reliable [1]. 52

4.8 Original images (top row) and new mapped images (bottom row)

in the other coordinate system. 53

4.9 Ground-truth object pose annotation. (a) We first initialize a few

points with known 2D-to-3D correspondences. (b) The nearest

corner points of the initialized points are detected. (c) The other

corner points are computed with an initial pose p0 according to the

initial correspondences. (d) We later refine these points and discard

non-robust ones. (e) The final pose p is estimated according to the

remaining points. (f) The object pose in the related color image is

computed according to the estimated transformation matrix. . . . 54

4.10 The GUI of our handcrafted program for annotating the ground-

truth poses of 2D target objects (top) and 3D target objects (bottom).

To establish the 2D-to-3D correspondences before applying a PnP

algorithm, we first specify some 3D points by the corner selector

panel and then mark the corresponding 2D points on the image. . 55

4.11 Camera frames for (a) 2D and (b) 3D objects blended with masks.

The mask is generated using the corresponding pose and the 3D

models. 56

4.12 Image sequences of different motion patterns with annotated poses.

(a) Translation (Wing). (b) Zoom (Duck). (c) In-plane Rotation

(City). 57

4.13 Image sequences of different motion patterns with annotated poses.

(a) Out-of-plane Rotation (Beach). (b) Flashing Light (Firework).

(c) Moving Light (Maple). 58

doi:10.6342/NTU201800854

x

4.14 Images with wire-frame models rendered according to annotated

poses. (a) Translation (Soda). (b) Zoom (Chest). (c) In-plane

Rotation (Ironman). 59

4.15 Images with wire-frame models rendered according to annotated

poses. (a) Out-of-plane Rotation (House). (b) Flashing Light

(Bike). (c) Moving Light (Jet). 60

4.16 Images of motion pattern free motion with 2D targets. In this case,

we hold the Kinect V2 device manually. These sequences are

recorded with combining different motion patterns and speed levels. 61

4.17 Images of motion pattern free motion with 2D targets. In this case,

we hold the Kinect V2 device manually. These sequences are

recorded with combining different motion patterns and speed levels. 62

4.18 Images of motion pattern free motion with 3D targets. In this case,

we hold the Kinect V2 device manually. These sequences are

recorded with combining different motion patterns and speed levels. 63

4.19 Images of motion pattern free motion with 3D targets. In this case,

we hold the Kinect V2 device manually. These sequences are

recorded with combining different motion patterns and speed levels. 64

4.20 Synthetic frames rendered from 341 viewpoints on half of the

recursively divided icosahedron 66

4.21 Half of the recursively divided (from left to right) icosahedron. . 67

doi:10.6342/NTU201800854

xi

4.22 Model maps generated by the ORB-SLAM2 method. (a) This

map is built with synthetic frames created by rendering mesh from

341 viewpoints on half of the recursively divided icosahedron.

The green wire-frame model, blue line, and red point stand for

cameras, correlations between cameras, and detected feature point,

respectively. We refer the reader to [2] for more details. (b) To

accelerate the relocalization process, we further exploit the real

captured frames to build the model map. (c) The feature-based

model map produced by the ORB-SLAM2 method. 68

4.23 The surfel-based models: (a) Soda, (b) Chest, (c) Ironman, (d)

House, (e) Bike, and (f) Jet generated by the mapping process of

the ElasticFusion method. 68

4.24 Overall performance for 2D objects on the proposed benchmark

dataset. The AUC score for each approach is shown in the legend. 70

4.25 Overall performance for 3D objects on the proposed benchmark

dataset. The AUC score for each approach is shown in the legend. 71

4.26 Performance by attributes with different speeds for 2D objects on

the proposed benchmark dataset. Level 5 stands for the highest

speed. 74

4.27 Precision plots for 2D object (a) Translation and (b) Zoom sub-

datasets. From top to bottom: lowest speed (i.e., level 1) to highest

speed (i.e., level 5). 75

4.28 Precision plots for 2D object (a) In-plane Rotation and (b) Out-

of-plane Rotation sub-datasets. From top to bottom: lowest speed

(i.e., level 1) to highest speed (i.e., level 5). 76

4.29 Precision plots for 2D object Flashing Light, Moving Light, and

Free Motion sub-datasets. 77

doi:10.6342/NTU201800854

xii

4.30 Performance by attributes with different speeds for 3D objects on

the proposed benchmark dataset. Level 5 stands for the highest

speed. 78

4.31 Precision plots for 3D object (a) Translation and (b) Zoom sub-

datasets. From top to bottom: lowest speed (i.e., level 1) to highest

speed (i.e., level 5). 79

4.32 Precision plots for 3D object (a) In-plane Rotation and (b) Out-

of-plane Rotation sub-datasets. From top to bottom: lowest speed

(i.e., level 1) to highest speed (i.e., level 5). 80

4.33 Precision plots for 3D object Flashing Light, Moving Light, and

Free Motion sub-datasets. 81

4.34 The appearances of cubes are different with the same rotation

(which is an identity matrix in this image) at different positions.

It is challenging to effectively recover the accurate object pose

based on the raw RGB-D values if the training data is only gen-

erated at the camera frame center with different rotation matrices.

Ambiguous results may be obtained with different rotation in this

condition. For example, we may get a pose result with inaccurate

rotation for the up-right cube in this image since there exists an-

other candidate which has a more similar RGB-D appearance with

different rotation at the camera frame center. 83

5.1 Illustration of rotation angle: θx indicates the tilt angle between

the camera and the target image when the rotation is factored as

R = Rz(θzc)Rx(θx)Rz(θzt). 87

5.2 (a) 2D illustration of rotation around Zt-axis. The linear distance

(orange solid line) between points before and after applying ro-

tation is bounded by the arc length (brown dotted line). (b) 3D

illustration of rotation around Zt-axis. The linear distance between

points is a function of tilt angle θx. 90

doi:10.6342/NTU201800854

xiii

5.3 Cumulative percentage of poses whose rotation or translation errors

are under values specified in the x-axis over experiments. The

vertical dashed lines correspond to the thresholds used to detect

unsuccessfully estimated poses. There is a total of 36,277 poses

estimated by each pose estimation approach. 99

5.4 Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on

the same datasets used by [3], i.e., the proposed synthetic dataset

and the visual tracking dataset built by Gauglitz et al. [4]. 100

5.5 A synthetic test image was generated from a warping template

image according to a randomly generated pose on a randomly

chosen background image. 101

5.6 Experimental results on synthetic data under (a) Gaussian Blur

and (b) JPEG Compression conditions. 103

5.7 Experimental results on synthetic data under (a) Intensity Change

and (b) Tilt Angle conditions. 104

5.8 Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on

the proposed synthetic image dataset. There is a total of 8400

poses estimated by each pose estimation approach. 105

5.9 Pose estimation results with refinement approach (DPE) and with-

out refinement approach (APE). The average value of rotation and

translation errors are both reduced by the proposed refinement

approach. 106

doi:10.6342/NTU201800854

xiv

5.10 Results of the proposed method without refinement (w/o), refine-

ment with one candidate (w/ 1), and refinement with two candi-

dates (w/ 2). (a) The rotation errors are reduced significantly in

the ambiguous cases, but the translation errors are relatively not

because the translation terms of ambiguous poses are quite similar

in most cases. (b) The difference of pose errors before and after

applying two kinds of refinement approaches. While the proposed

refinement approach can disambiguate the object pose effectively,

approach with only one candidate pose suffers from the risk of

getting trapped into a local minimum. 107

5.11 Experimental results on the visual tracking dataset [4] under vary-

ing motion blur levels, where level 9 stands for the strongest motion

blur. 111

5.12 Estimation results by the proposed DPE method on the visual

tracking dataset [4] under different conditions. 112

5.13 Estimation results by the proposed DPE method on the visual

tracking dataset [4] under different conditions. 113

5.14 Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on the

visual tracking dataset [4]. There is a total of 6889 poses estimated

by each pose estimation approach. 114

5.15 Estimation results by the proposed DPE method on the OPT dataset

presented in Chapter 4 under different conditions. 115

5.16 Estimation results by the proposed DPE method on the OPT dataset

presented in Chapter 4 under different conditions. 116

5.17 Experimental results on the OPT dataset in motion patterns (a)

Translation and (b) Zoom with different speeds. 119

doi:10.6342/NTU201800854

xv

5.18 Experimental results on the OPT dataset in motion patterns (a)

In-plane Rotation and (b) Out-of-plane Rotation with different

speeds. 120

5.19 Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on

the OPT dataset. There is a total of 20,988 poses estimated by each

pose estimation approach. 121

6.1 System overview. In the approximate pose estimation step, we

detect the binary square fiducial markers in the input images and

estimate the 6DoF pose of the DodecaPen using the PnP algorithm.

If fewer than two markers are detected, we use the LK method to

track marker corners between frames. In the dense pose refinement

step, the pose p′ is refined by minimizing the appearance distance

between the 3D model of the DodecaPen and image pixels to get

the final pose p∗. We generate the pen-tip trajectory in the 3D

view from the computed 6DoF pose sequence and visualize the 2D

drawing by removing points where the pen tip is lifted off the page. 124

6.2 Five regular solids in 3D space. 126

6.3 The area ratio of a square marker to a triangle face is much smaller

than that to a pentagon face. 126

6.4 Photos used for dodecahedron calibration. 131

6.5 Procedures for pen-tip calibration. We press the pen tip against a

surface to keep it fixed while moving and rotating the dodecahe-

dron. In the same time, we take the pictures which are used for

pen-tip calibration. 132

6.6 We generate synthetic image sequences with 24 motion patterns of

the virtual DodecaPen for evaluation. 134

6.7 Pen-tip trajectories (01–08) generated by different approaches.

Average pen-tip errors (mm) are shown in legends. 135

doi:10.6342/NTU201800854

xvi

6.8 Pen-tip trajectories (09–16) generated by different approaches.

Average pen-tip errors (mm) are shown in legends. 136

6.9 Pen-tip trajectories (17–24) generated by different approaches.

Average pen-tip errors (mm) are shown in legends. 137

6.10 Experimental results on synthetic dataset under Shot Noise condi-

tion with different degradation levels. The standard deviation of

the Gaussian noise is set for an intensity range of 0 to 255. 139

6.11 Experimental results on synthetic dataset under Spatial Blur condi-

tion with different degradation levels. The spatial Gaussain blur

sigma is in pixels for a 1280 × 1024 image. 140

6.12 Experimental results on synthetic dataset under Camera Resolution

condition with different degradation levels. 141

6.13 Experimental results on synthetic dataset under Mask Kernel Width

condition with different degradation levels. 142

6.14 The four ground-truth drawings used for real data evaluation.

These patterns are drawn on a letter size paper (220×280 mm2). . 143

6.15 Hand-drawing results of Boba generated by different approaches.

Each image is blended with the ground-truth drawing and aug-

mented with a text box showing the mean shortest distance (in

millimeters) between the generated and ground-truth drawing. . . 144

6.16 Hand-drawing results of Thumb generated by different approaches.

Each image is blended with the ground-truth drawing and aug-

mented with a text box showing the mean shortest distance (in

millimeters) between the generated and ground-truth drawing. . . 145

6.17 Hand-drawing results of DodecaPen generated by different ap-

proaches. Each image is blended with the ground-truth drawing

and augmented with a text box showing the mean shortest distance

(in millimeters) between the generated and ground-truth drawing. . 146

doi:10.6342/NTU201800854

xvii

6.18 Hand-drawing results of UIST2017 generated by different ap-

proaches. Each image is blended with the ground-truth drawing

and augmented with a text box showing the mean shortest distance

(in millimeters) between the generated and ground-truth drawing. . 147

6.19 Experimental results on real dataset under various camera resolu-

tion conditions. 148

6.20 Experimental results on real dataset under various camera resolu-

tion conditions. 149

6.21 Experiments with OptiTrack motion capture system. Top tow: We

use 16 OptiTrack cameras. Bottom row: We add eight retroreflec-

tive markers to the DodecaPen and shown a sample frame from

the DodecaPen tracking camera. 150

6.22 Experimental results of the motion capture system with different

numbers of active cameras. The accuracy of the proposed method

is comparable to a motion capture system with 10 active cameras. 151

6.23 The DodecaPen can turn a flat surface into a digital drawing surface.152

6.24 In a VR environment, the DodecaPen can (a) draw on a midair 2D

surface or (b) emit 3D ink when the spacebar is pressed. 153

6.25 The DodecaPen can (a) double as other cylindrical objects such as

a VR wand or (b) provide general 6DoF object tracking. 154

6.26 The dodecahedron can (a) be attached to physical objects such as

a keyboard for tracking in VR or (b) be used as a simple 12-sided

VR die. 155

doi:10.6342/NTU201800854

xviii

doi:10.6342/NTU201800854

List of Tables

1.1 Four categories of camera pose recovering problem. 6

3.1 Benchmark datasets for object pose estimation. Using a pro-

grammable robotic arm, we can record images under different

motion patterns and different speed. The recorded sequences hence

contain different distortions that are crucial for performance evalu-

ation of pose tracking algorithms for real-world scenarios. 43

4.1 Evaluated motion patterns. For each speed level, there are six

sequences with 2D models and 24 sequences with 3D models (6

models × 4 sides). 49

4.2 Intrinsic parameters of the used Kinect V2. (w, h): image reso-

lution; (fx, fy): focal length; (cx, cy): principal point; (r1, r2, r3):

radial distortion coefficients; and (t1, t2): tangential distortion

coefficients. 51

4.3 Evaluated algorithms. Run time is measured in seconds. In the

code column, C: C/C++, M: Matlab, CU: CUDA. 65

4.4 AUC scores of evaluated approaches in the dynamic lighting con-

ditions and the freestyle motion conditions. 73

5.1 Bounded step size on each dimension in the pose domain for

constructing the ε-covering pose set. 91

xix

doi:10.6342/NTU201800854

xx

5.2 Average runtime (measured in seconds) for approaches on different

datasets. Although SIFT-based approach is the fastest method

among these three different schemes, its performance is quite

limited. Numbers in parentheses denote the average runtime of

the CUDA implementation of the proposed method, which can be

executed more efficiently on a GPGPU platform as it can be easily

parallelized. 98

5.3 Evaluation results for feature-based approaches and the proposed

direct methods with undistorted test images in terms of average

numbers of rotation error Er, translation error Et, and success rate

in each test condition. The best values are highlighted in bold. . . 102

5.4 Evaluation results for different pose refinement approaches on the

synthetic image dataset in the refinement analysis experiment. . . 108

5.5 Experimental results on the visual tracking dataset [4] under Un-

constrained, Panning, and Rotation conditions. The best results

(excluding the proposed direct pose tracking method) for each

condition are highlighted in bold. 109

5.6 Experimental results on the visual tracking dataset [4] under Per-

spective Distortion, Zoom, Static Lighting, and Dynamic Lighting

conditions. The best results (excluding the proposed direct pose

tracking method) for each condition are highlighted in bold. . . . 110

5.7 Experimental results on the OPT dataset under different condi-

tions. The best results (excluding the proposed direct pose tracking

method) for each condition are highlighted in bold. 118

doi:10.6342/NTU201800854

xxi

6.1 Evaluation results for different approaches (APE: approximate

pose estimation; DPR: dense pose refinement; BLS: backtracking

line search) on the synthetic dataset in terms of average rotation

error ER (°), translation error Et (mm), pen-tip error Epen (mm),

and runtimes per frame (ms). The last column shows the average

number of iterations for the DPR approach. 133

doi:10.6342/NTU201800854

xxii

doi:10.6342/NTU201800854

Chapter 1

Introduction

Determining the pose of a target object from a calibrated camera is a classical

problem in computer vision that finds numerous applications such as robotics,

augmented reality (AR), and virtual reality (VR). For the case of a rigid body,

its pose can be described by a six degrees of freedom (6DoF) transformation,

consisting of three position parameters and three orientation parameters. While

much progress has been made in the past decade, it remains a challenging task to

develop a fast and accurate pose estimation algorithm.

In general, object pose estimation refers to computing the position and orienta-

tion of a target object given a single-view image. The target object is with prior

knowledge (e.g., shape or texture) in most cases. On the contrary, object pose

tracking indicates determining the poses of an object in an ordered sequence of

camera frames. In this case, the object pose in a previous frame is already known,

and thus one can exploit this information when computing the object pose in a

current frame. Furthermore, it is also applicable to recover the object pose with

multiple views, which may achieve superior pose estimation results.

In this dissertation, we primarily discuss how to compute the pose of a target

object accurately and robustly with a single view. In particular, we propose a large-

scale object pose tracking benchmark dataset consisting of RGB-D video sequences

1

doi:10.6342/NTU201800854

2

Figure 1.1: Images of 2D (left two columns) and 3D objects (right two columns)

in our benchmark dataset with 6DoF pose ground-truth notation. The proposed

benchmark dataset contains 690 color and depth videos of various textured and

geometric objects with over 100,000 frames. The recorded sequences also include

image distortions for performance evaluation in real-world scenarios.

of 2D and 3D targets with ground-truth information, as shown in Figure 1.1.1

Furthermore, we perform the thorough quantitative evaluation of the state-of-the-art

methods on this benchmark dataset. We observe that while advanced Perspective-

n-Point (PnP) algorithms perform well in pose estimation, the success hinges on

whether feature points can be extracted and matched correctly on target objects

with rich texture. Consequently, we develop a two-step robust direct method for

6DoF pose estimation that performs accurately on both textured and textureless

planar target objects. First, the pose of a planar target object with respect to a

calibrated camera is approximately estimated by posing it as a template matching

problem. Second, each object pose is refined and disambiguated using a dense

alignment scheme, as illustrated in Figure 1.2. Based on the proposed two-step

direct method, we present a system for real-time 6DoF tracking of a passive stylus

that achieves submillimeter accuracy, which is suitable for writing or drawing

in mixed reality applications, as demonstrated in Figure 1.3. We demonstrate

1All the images in the dissertation are used under Creative Commons license.

doi:10.6342/NTU201800854

3

Figure 1.2: Direct pose estimation for planar targets. The pose ambiguity problem

occurs when the objective function has several local minima for a given configura-

tion, which is the primary cause of flipping estimated poses. First row: original

images. Second row: images rendered with a box model according to the ambigu-

ous pose obtained from proposed algorithm without refinement approach. Third

row: pose estimation results from the proposed algorithm, which can disambiguate

plausible poses effectively.

(a) DodecaPen (b) Monocular video (c) DodecaPen tracking (d) Ground-truth scan

Figure 1.3: Our proposed system can track the 6DoF pose of (a) a calibrated pen

(the DodecaPen) from (b) a single camera with submillimeter accuracy. We show

(c) a digital 2D drawing as the visualization of the tracking result, and compare

with (d) a scan of the actual drawing.

the system performance regarding speed and accuracy on a number of synthetic

and real datasets, showing that it can be competitive with state-of-the-art multi-

camera motion capture systems. We also demonstrate several applications of the

technology ranging from 2D and 3D drawing in VR to general object manipulation

and board games.

doi:10.6342/NTU201800854

4

1.1 Object Pose Recovering

In computer vision and robotics, it is a typical task to identify some specific object

in a camera image and estimate its position and orientation relative to the camera

coordinate system. We regard this process as object pose estimation if the input

data is only an image. When referring to object pose tracking, the input image

data would be an ordered sequence of camera frames instead. This type of task can

also be called outside-in tracking, where the target object is observed from outside

by the camera system. And since the object model is known before computing its

pose, it is also called model-based tracking.

An object is regarded as a rigid body if the distance between any two given

points on it remains constant in time regardless of external forces exerted on it. For

a rigid body, its position and orientation in space are defined by three components

of translation and three components of rotation, which means that it has six degrees

of freedom. In contrast, the freedom of movement of a non-rigid body (e.g., the

human hand) may be more than six. In this dissertation, we focus on recovering

the pose of an object which is a rigid body.

Existing algorithms for recovering the 6DoF pose of an object can be broadly

categorized into three main approaches:

Direct approaches [5, 3]. These approaches address the problem by finding the

best fit from numerous pre-determined candidates based on the holistic template or

appearance matching. The corresponding pose of the best candidate is considered

as the estimation result.

Feature-based approaches [6, 7, 8]. The core idea is to first establish a set of

feature correspondences between the target object and projected camera frame [9,

10]. Outliers are then removed to obtain reliable feature pairs [11], and the final

pose is computed with PnP algorithms [12, 13]. In contrast to direct methods, the

performance of feature-based methods depends on whether both features can be

extracted and matched well.

Learning-based approaches [14, 15, 16, 17]. These methods learn an abstract

doi:10.6342/NTU201800854

5

representation of an object from a set of images captured from different viewpoints,

from which the pose of the target in a new input frame is determined. While

feature-based and direct methods are more effective for textured and non-occluded

objects respectively, learning-based approaches have shown the potential to track

poses of objects with diverse textures under partial occlusion.

Real-time pose tracking can be accomplished by leveraging the information

obtained from previous frames [18, 19, 20, 21]. In addition, the pose estimation task

can be accelerated by exploiting a small search range within the camera viewpoint

or reducing the number of pose candidates. To prevent pose jittering during the

tracking process, which is indispensable especially in AR applications [22], further

pose refinement should be performed. We refer the interested readers to [23] for

more information on AR.

To evaluate existing pose estimation algorithms, many benchmark datasets

have been proposed [5, 24, 14, 15, 25, 26]. However, there are two main issues that

need to be addressed. First, while the datasets are mainly designed for single-frame

based pose estimation, most images do not contain distortions (e.g., motion blur

caused by different object or camera motions) that are crucial for performance eval-

uation for real-world scenarios. Second, the camera trajectories in most datasets are

not carefully designed (i.e., freestyle motion), which do not allow detailed analysis

for specific situations. Most importantly, it is of great interest for fields of com-

puter vision to develop an extensive benchmark dataset for thorough performance

evaluation of 6DoF pose tracking in real-world scenarios.

1.2 Camera Pose Recovering

In contrast to the 6DoF object pose, the 6DoF camera pose denotes the camera’s

position and orientation with respect to the object (or world) coordinate system.

Though the object pose and the camera pose merely have the inverse transformation

relationship to each other, the approaches of between object pose recovering,

doi:10.6342/NTU201800854

6

Table 1.1: Four categories of camera pose recovering problem.

With Mapping Without Mapping

Online Simultaneous Localization and Mapping (SLAM) Visual Odometry (VO)
Offline Structure from Motion (SfM) Image-based Localization (IBL)

and camera pose recovering are still quite different. In general, we exploit the

information extracted from the entire camera image to compute the camera pose.

But when determining the object pose, only a subregion of the image where the

object locates contributes to the final pose estimation result.

The task of camera pose recovering from visual data can be broadly subdivided

into four categories, according to whether or not it is processed online, and if a

map of the environment is built concurrently. We present the four types in Table 1.1

and provide the corresponding descriptions below.

Simultaneous Localization and Mapping (SLAM) [27, 28, 29]. SLAM tech-

niques build a map of an unknown environment and localize the sensor in the map

simultaneously in real-time. Among different sensor types, a camera is the most

common one as it can provide rich information about the environment that allows

robust and accurate localization and mapping. The SLAM approach which uses

a camera as the primary sensor is denoted as Visual SLAM, and it has been a hot

research topic in the last years [30, 31, 32, 33, 2].

Visual Odometry (VO) [34, 35, 36]. VO is the process of determining the location

of a camera by analyzing the associated camera images in real-time. The main

difference between VO and SLAM is that VO mainly addresses itself on local

consistency and focuses on incrementally estimating the path of the camera pose

after pose. Nevertheless, SLAM aims to achieve a globally consistent estimate of

the camera trajectory and map by realizing that a previously mapped area has been

re-visited and this information is used to reduce the drift in the estimates by loop

closure techniques [37, 38].

Structure from Motion (SfM) [39, 40, 41]. SfM approaches recovers the map of

an environment from a set of projective measurements, represented as a collection

doi:10.6342/NTU201800854

7

of 2D images, via estimation of the camera poses corresponding to these images.

And the images can be either ordered or not. The bundle adjustment methods [42],

which aim to determine the map and the camera poses simultaneously that minimize

the discrepancy between image measurements and the reconstructed model, are

usually used to solve the SfM problem [43, 44].

Image-Based Localization (IBL) [45, 46, 47]. IBL methods address the problem

of finding the camera pose from which a camera image is taken. Traditionally,

large-scale IBL has been treated as an image retrieval problem. After finding

images in a database that are most similar to the query image, the location of the

query image can be recovered with respect to them [48]. However, the localization

accuracy obtained this way cannot be very satisfactory. Recently, IBL algorithms

benefit from a 3D reconstruction of the scene produced by SfM or SLAM, which

the query images can be accurately registered to [49, 46, 50].

1.3 Cameras

In vision-based applications, camera images are the necessary data when estimating

either the object pose or the camera pose. Generally speaking, the cameras used

in the pose recovering problem can be classified into three categories, namely

monocular camera, stereo camera, and depth camera. And each pose recovering

algorithm is designed according to a specific class of cameras.

Monocular Camera. It is the most common type of camera with one lens and

a corresponding image sensor or film frame. The image sensor can be either

monochrome (i.e., grayscale) one or color (i.e., RGB, which stands for red, green,

and blue) one. Parameters of the lens and the images sensor of a camera can

be estimated by performing camera calibration [51], which is also called cam-

era resectioning or geometric camera calibration.2 These parameters consist of

camera intrinsic parameters and distortion coefficients. The intrinsic parameters

2The process is different from photometric camera calibration (i.e., color mapping).

doi:10.6342/NTU201800854

8

encompass focal length, image sensor format, and principal point. In addition,

the distortion coefficients include radial distortion and tangential distortion coeffi-

cients. In most 3D computer vision tasks, camera calibration is the first step before

applying further algorithms like pose estimation and tracking. Moreover, cameras

equipped with global shutter are much more preferable than those provided with

rolling shutter because the latter can cause undesirable effects such as wobble,

skew, spatial aliasing, and temporal aliasing [52].

Stereo Camera. This type of camera has two or more lenses with a separate image

sensor for each lens. This configuration allows the camera to simulate human

binocular vision and therefore gives it the ability to capture depth information.

Consequently, a stereo camera can also be regarded as a depth camera, which

will be presented in the next paragraph. One well-known technique applied with

the images captured by a stereo camera is stereo matching [53, 54], by which the

depth information of a scene can be acquired. This is also called stereoview or

stereoscopic in computer vision. Different from doing single camera calibration

which is mentioned in the previous paragraph, we should perform stereo camera

calibration to estimate not only the intrinsic parameters and distortion coefficients

of each lens, but also the relative poses between lenses.

Depth Camera. A depth camera (or range camera) is a range imaging device

that measures the distance from the camera to points in a scene, and as shown

in Figure 1.4. The resulting image is called range image or depth image, which

has pixel values corresponding to the measured distance. If the depth camera

is accurately calibrated, then the pixel values can be given directly in physical

units, such as millimeters applied by Microsoft Kinect V1 [55] and Microsoft

Kinect V2 [56]. Depth cameras can operate according to numerous techniques,

such as stereo triangulation [57], structured light [58] (e.g., Microsoft Kinect V1),

and time-of-flight [59] (e.g., Microsoft Kinect V2). Furthermore, depth cameras

using either of the latter two techniques should be equipped with an infrared (IR)

projector and an IR camera.

doi:10.6342/NTU201800854

9

Camera

Depth
Depth

Figure 1.4: The depth data is measured from scene points to the camera plane on

where the camera is (instead of from scene points to camera center).

1.4 Contributions

In this dissertation, we propose a benchmark dataset for 6DoF object pose tracking,

which consists of 690 videos under seven varying conditions with five speeds.

It is a large-scale dataset where images are acquired from a moving camera for

performance evaluation of both 2D and 3D object pose tracking algorithms. The

proposed dataset can be used in other computer vision tasks such as 3D feature

tracking and matching as well. Furthermore, we extensively evaluate and analyze

each pose tracking method employing more than 100,000 frames including both 2D

and 3D objects. Since the advanced SLAM methods [2, 60] are able to track and

relocalize camera pose in real time, we also evaluate these approaches by adapting

them to object pose tracking scenarios. We present the extensive performance

evaluation of the state-of-the-art methods using the proposed benchmark dataset

and discuss the potential research directions in this field. The OPT datasets are

available on our project website at media.ee.ntu.edu.tw/research/OPT.

From our observation, since the performance of feature-based methods hinges

on whether or not point correspondences can be correctly established, these ap-

proaches are less effective when the target images contain less textured surfaces

or motion blurs. Therefore, we propose an efficient direct pose estimation (DPE)

algorithm for planar targets undergoing arbitrary 3D perspective transformations.

The DPE algorithm performs favorably against the state-of-the-art feature-based ap-

http://media.ee.ntu.edu.tw/research/OPT

doi:10.6342/NTU201800854

10

proaches in terms of robustness and accuracy on both textured and textureless planar

target objects. In addition, we demonstrate the proposed pose refinement technique

not only improves the accuracy of estimated results but also alleviates the pose

ambiguity problem effectively. The source code of the DPE method and the related

datasets are available on our project website at media.ee.ntu.edu.tw/research/DPE.

Based on the pose refinement technique proposed in the DPE method, we

develop a 6DoF tracking system called DodecaPen that requires only a single

off-the-shelf camera and a passive 3D-printed fiducial with several hand-glued

binary square markers printed from a laser printer. We show that off-the-shelf fidu-

cial tracking with markers is insufficient for achieving the accuracy necessary for

digital 2D drawing. Instead, our system consists of the following components: (a) a

3D printed dodecahedron with hand-glued binary square markers mechanically de-

signed for pose estimation, (b) a one-time calibration procedure for the (imprecise)

model using bundle adjustment, (c) approximate pose estimation from fiducial

corners, (d) inter-frame fiducial corner tracking, and (e) dense pose refinement

by direct model-image alignment. We show that each step of the above system is

essential to robust tracking and that the combined system allows us to achieve an

absolute accuracy of 0.4 mm from a single camera, which is comparable to state-

of-the-art professional motion capture (mocap) systems. We rigorously evaluate

the performance of the proposed method when we degrade the camera (with shot

noise, spatial blur, and reduced spatial resolution). Thorough evaluation results

can be found on our project website at media.ee.ntu.edu.tw/research/DodecaPen.

We conclude with demonstrations of this accurate and easy-to-setup 6DoF status

tracking system for the application of drawing in 2D and 3D as well as object

manipulation in a virtual reality (VR) environment.

1.5 Publications

The core of the dissertation relies on the following peer-reviewed publications:

http://media.ee.ntu.edu.tw/research/DPE
http://media.ee.ntu.edu.tw/research/DodecaPen

doi:10.6342/NTU201800854

11

• Po-Chen Wu, Yueh-Ying Lee, Hung-Yu Tseng, Hsuan-I Ho, Ming-Hsuan

Yang, and Shao-Yi Chien, “A Benchmark Dataset for 6DoF Object Pose

Tracking.” In Proceedings of the IEEE International Symposium on Mixed

and Augmented Reality (ISMAR Adjunct), 2017. [61]

• Po-Chen Wu, Hung-Yu Tseng, Ming-Hsuan Yang, and Shao-Yi Chien,

“Direct Pose Estimation for Planar Objects.” In Computer Vision and

Image Understanding, 2018. [62]

• Po-Chen Wu, Robert Wang, Kenrick Kin, Christopher Twigg, Shangchen

Han, Ming-Hsuan Yang, and Shao-Yi Chien, “DodecaPen: Accurate 6DoF

Tracking of a Passive Stylus.” In Proceedings of the ACM Symposium

on User Interface Software and Technology (UIST), 2017. (ACM UIST

Honorable Mention Award) [63]

1.6 Dissertation Organization

We formulate the pose recovering problem in the subsequent chapter. In particular,

we introduce the vectorial parameterization of rotation and different evaluation

metrics used for pose recovering problem. In Chapter 3, we give an overview of the

related work which is relevant for the remainder of the dissertation. Furthermore,

we discuss methods of object pose recovering, and existing benchmark datasets

proposed in the literature. Afterwards, we present a large-scale object pose tracking

benchmark dataset of RGB-D video sequences for both 2D and 3D objects, as well

as extensive quantitative evaluation results of the state-of-the-art methods on this

dataset in Chapter 4. In Chapter 5, we propose a two-step direct pose estimation

algorithm for planar objects. Then, in Chapter 6, we present a system for real-time

6DoF tracking of a passive stylus that achieves submillimeter accuracy, which is

suitable for writing or drawing in mixed reality applications. Finally, we conclude

this dissertation with discussions on future work in Chapter 7.

doi:10.6342/NTU201800854

12

doi:10.6342/NTU201800854

Chapter 2

Problem Formulation

Given a target object Ot, represented by either a plane or a dense surface model

(i.e., triangle mesh), and an observed camera image Ic, the task of object pose

recovering is to determine the object pose ofOt in 6DoF parameterization based on

the orientation and position of the object with respect to a calibrated camera. With

a set of reference points xi = [xi, yi, zi]> , i = 1, . . . , n, n ≥ 3 in the coordinate

system of Ot, and a set of camera-image coordinates ui = [ui, vi]> in Ic depicted

by Figure 2.1, the transformation between them can be formulated as:


hui

hvi

h

 = K
[
R|t

]


xi

yi

zi

1


, (2.1)

where

K =


fx 0 x0

0 fy y0

0 0 1

 , R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 ∈ SO(3), t =


tx

ty

tz

 ∈ R3, (2.2)

are the intrinsic matrix of the camera, rotation matrix, and translation vector,

respectively. In (2.1), h is the scale factor representing the depth value in the

camera coordinate system. In (2.2), (fx, fy) and (x0, y0) are the focal length and

the principal point of the camera, respectively.

13

doi:10.6342/NTU201800854

14

C

𝑘𝑘𝑜𝑜

𝚤𝚤𝑜𝑜

𝚥𝚥𝑜𝑜

Object
Coordinate
System

O

𝚤𝚤𝑐𝑐

𝚥𝚥𝑐𝑐

𝑘𝑘𝑐𝑐

𝐱𝐱𝑖𝑖: (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)

𝐮𝐮𝑖𝑖: (𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖)

Camera
Coordinate
System

𝐩𝐩 ≡ (𝐑𝐑, 𝐭𝐭)

Image Plane

Figure 2.1: The perspective projection model. (O,~io,~jo, ~ko) is the object coordi-

nate system, (C,~ic,~jc, ~kc) is the camera coordinate system, xi is a 3D point, and

ui is its projection onto the image plane.

Given the observed camera-image points ûi = [ûi, v̂i]>, a pose estimation

algorithm needs to determine values a for pose p ≡ (R, t) that minimize an

appropriate error function. The rotation of the pose p can be parameterized in

numerous ways [64], and will be further discussed in Section 2.1.

There are two types of error functions commonly used for pose estimation. The

first one is called reprojection error and is broadly used in the PnP algorithms:

Er(p) = 1
n

n∑
i=1

(
(ûi − ui)2 + (v̂i − vi)2

)
. (2.3)

The second type of error function is based on appearance distance and is primarily

used in direct methods:

Ea1(p) = 1
n

n∑
i=1
|Ic(ui)−Ot(xi)|, (2.4)

or

Ea2(p) = 1
n

n∑
i=1

(Ic(ui)−Ot(xi))2 , (2.5)

where Ic(ui) is the image pixel value of Ic at ui, and Ot(xi) is the texture pixel

value of Ot at xi. In most cases, the pixel values are normalized in the range

[0, 1]. The error functions in (2.4) and (2.5) are the normalized Sum-of-Absolute-

Differences (SAD) and Sum-of-Squared-Difference (SSD) errors, respectively.

doi:10.6342/NTU201800854

15

2.1 Parameterization of Rotation

The general form of a rotation in R3 is a 3×3 orthogonal matrix with determinant

1. However, the matrix representation with nine elements seems redundant since it

only has a maximum of three degrees of freedom (3DoF). Actually, there are many

ways to parameterize 3DoF rotations with fewer parameters, such as Euler angles,

axis-angle representation, and quaternions.1

2.1.1 Euler Angles

The Euler angles are three angles describing a rotation in R3. Any rotation in R3

can be achieved by composing three elemental rotations (i.e., rotations about the

axes of a coordinate system), and the Euler angles can be defined by three of these

elemental rotations. Rotations about the three principle axes x-axis, y-axis, and

z-axis by angles θx, θy, and θz are defined as follows:

Rx(θx) =


1 0 0

0 cos θx − sin θx
0 sin θx cos θx

 ,Ry(θy) =


cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

 ,

Rz(θz) =


cos θz − sin θz 0

sin θz cos θz 0

0 0 1

 .
(2.6)

Since matrix multiplication does not commute, the order of the elemental rotations

will affect the result. For example, one might want to factor a rotation as R =

Rx(θx)Ry(θy)Rz(θz), whose ordering is xyz. The rotation R first rotates about

the z-axis, then the y-axis, and finally x-axis. Such a sequence of rotations can be

1There are still other ways to parameterize rotations, such as Rodrigues parameters, Gibbs

representation, and Cayley–Klein parameters.

doi:10.6342/NTU201800854

16

represented as the matrix product:

R(θx, θy, θz) =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


cycz −cysz sy

czsxsy + cxsz cxcz − sxsysz −cysx
−cxczsy + sxsz czsx + cxsysz cxcy

 ,
(2.7)

where we use the notation ca = cos(θa) and sa = sin(θa) for a = x, y, z.

Starting with R13, we find R13 = sy, so θy = asin(R13). Then there are three

cases to consider.

Case 1: If θy ∈ (−π/2, π/2), then cy 6= 0. In this condition, θx = atan2(−R23, R33)

as (−R23, R33) = (cysx, cycx), where atan2 is the two-argument arctangent. In

addition, θz = atan2(−R12, R11) as (−R12, R11) = (cysz, cycz). In summary:

θy = asin(R13), θx = atan2(−R23, R33), θz = atan2(−R12, R11). (2.8)

Case 2: If θy = π/2, then sy = 1 and cy = 0. In this condition,R21 R22

R31 R32

 =

 czsx + cxsz cxcz − sxsz
−cxcz + sxsz czsx + cxsz

 =

 sin(θz + θx) cos(θz + θx)

− cos(θz + θx) sin(θz + θx)

 .
(2.9)

Therefore, θz + θx = atan2(R21, R22). Since there is only one degree of free-

dom, the factorization is not unique. This ambiguity is known as gimbal lock in

applications. In summary:

θy = π/2, θz + θx = atan2(R21, R22). (2.10)

Case 3: If θy = −π/2, then −sy = 1 and cy = 0. In this condition,R21 R22

R31 R32

 =

−czsx + cxsz cxcz + sxsz

cxcz + sxsz czsx − cxsz

 =

sin(θz − θx) cos(θz − θx)

cos(θz − θx) − sin(θz − θx)

 .
(2.11)

Therefore, θz − θx = atan2(R21, R22). It has lost one of the degrees of freedom

(i.e., gimbal lock). In summary:

θy = −π/2, θz − θx = atan2(R21, R22). (2.12)

doi:10.6342/NTU201800854

17

We note that xyz is not the only ordering. In fact, there exist twelve possible

orderings divided into two groups:

• Tait–Bryan angles (xyz, yzx, zxy, xzy, zyx, yxz),

• Proper Euler angles (zxz, xyx, yzy, zyz, xzx, yxy).

The methods of factoring a rotation according to different orderings are similar.

We refer the interested readers to [65] for more detailed information.

If an angle θ is close to zero, i.e., θ ≈ 0, then we can use the approximations

sin θ ≈ θ and cos θ ≈ 1. Therefore, when θx, θy, θz ≈ 0:

R (θx, θy, θz) ≈


1 −θz θy

θxθy + θz 1− θxθyθz −θx
−θy + θxθz θx + θyθz 1



≈


1 −θz θy

θz 1 −θx
−θy θx 1

 = R̂ (θx, θy, θz) .

(2.13)

The small angle approximation R̂ can be used in many applications requiring linear

equations. However, this approximation is no longer a rotation since R̂−1R 6= 1.

2.1.2 Axis–Angle Representation

The axis–angle representation of a rotation parameterizes a rotation R3 by two

quantities: a 3D unit vector a which describes the direction of an axis of rotation,

and an angle θ which indicates the magnitude of the rotation about the axis. This

axis is also called Euler axis, which comes from Euler’s rotation theorem stating

that any rotation or sequence of rotations of a rigid body in a 3D space is equivalent

to a pure rotation about a single rotation axis. The angle θ scalar multiplied by the

unit vector a is the axis-angle vector:

r = θa, (2.14)

doi:10.6342/NTU201800854

18

which is also called rotation vector or Euler vector. The rotation occurs in the

sense prescribed by the right-hand rule (anticlockwise). Compared to Euler angles,

an Euler vector is simpler to compose and avoid the problem of gimbal lock.

Let v be a vector in R3. After begin rotated about the axis a by the angle

θ, the rotated vector v̂ can be computed according to the Rodrigues’ rotation

formula [66]:

v̂ = v cos θ + (a × v) sin θ + a(a · v)(1− cos θ). (2.15)

If we represent v̂ as a matrix product of a rotation matrix R and the original vector

v, then R can be expressed as follows [66]:

R (θ, a) = I + sin θ [a]× + (1− cos θ) [a]2× , (2.16)

where I is the 3×3 identity matrix, and [a]× denotes the cross-product matrix

(which is also a skew-symmetric matrix) for the vector a = [ax, ay, az]>:

[a]× =


0 −az ay

az 0 −ax
−ay ax 0

 . (2.17)

The matrix equation [a]× v = a × v holds for any vector v. In (2.16), [a]2× stands

for the matrix product [a]× · [a]×. In addition, the rotation matrix can also be

expressed in terms of the rotation vector r = [rx, ry, rz]>:

R (r) = I +
(

sin θ
θ

)
[r]× +

(
1− cos θ

θ2

)
[r]2× , (2.18)

where θ = ‖r‖ is the Euclidean norm of r.

To retrieve the axis–angle representation of a rotation matrix R, we first com-

puted the angle of rotation from the trace of the rotation matrix Tr(R) [67]:

θ = acos
(

Tr(R)− 1
2

)
. (2.19)

Then the rotation axis a can be calculated as follows [67]:

a = 1
2 sin θ


R32 −R23

R13 −R31

R21 −R12

 . (2.20)

doi:10.6342/NTU201800854

19

Another way to transform between rotation vectors and rotation matrices is

applying the exponential map and its inverse, the logarithm map. These two

techniques are presented in the theory of Lie groups, and we refer the interested

readers to [68] for more detailed information.

If the rotation angle is very small, i.e., θ ≈ 0, then we can use the approxima-

tions sin θ ≈ θ and cos θ ≈ 1− (θ2

2). Therefore, from (2.18):

R (r) ≈ I + [r]× + 1
2 [r]2× ≈ I + [r]× =


1 −rz ry

rz 1 −rx
−ry rx 1

 = R̂ (r) , (2.21)

which has the similar form to (2.13).

2.1.3 Quaternions

A quaternion is a 4-tuple (i.e., a vector with four components) consisting of a

complex number with three different imaginary parts, which gives a simple way to

encode the axis–angle representation.

A quaternion q is generally represented in the form:

q = q0 + q1i + q2j + q3k, (2.22)

where q0, q1, q2, and q3 are real numbers, and i, j, and k are fundamental quaternion

units. A quaternion unit is a symbol that has no other value than itself. By analogy

with complex numbers, the term q1i + q2j + q3k is also called the imaginary part

(or vector part) of q, and q0 is the real part (or scalar part) of q. The basic rules

for multiplication are

i2 = j2 = k2 = ijk = −1, (2.23)

which behave similarly to the square of the imaginary unit i of complex numbers.

From this follows:

ij = −ji = k, jk = −kj = i,ki = −ik = j, (2.24)

doi:10.6342/NTU201800854

20

which behave similarly to pairwise cross products of unit vectors ~x, ~y, and ~z in the

directions of orthogonal coordinate system axes.

For two quaternions q and q′, their product q′′ = qq′, called the Hamilton

product, is determined by the products of the quaternion units:

q′′ ≡



q′′0

q′′1

q′′2

q′′3


=



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0





q′0

q′1

q′2

q′3


. (2.25)

It should be noted that the multiplication of quaternions is associative and dis-

tributes over vector addition, but it is not commutative. We list other quaternion

properties as follows:

• Norm: ‖q‖2 = q2
0 + q2

1 + q2
2 + q2

3 ,

• Conjugate quaternion: q̄ = q0 − q1i− q2j− q3k,

• Inverse quaternion: q−1 = q̄
|q|2 ,

• Unit quaternion: ‖q‖ = 1,

• Inverse of unit quaternion: q−1 = q̄.

Rotation through an angle of θ around the unit rotation axis a = [ax, ay, az]>

can be represented by a unit quaternion (or rotation quaternion):

q = e
θ
2 (axi+ayj+azk) = cos θ2 + (axi + ayj + azk) sin θ2 , (2.26)

and the detailed derivation can be found in [69]. In this case, q0, q1, q2, and q3

equal to cos θ
2 , ax sin θ

2 , ay sin θ
2 , and az sin θ

2 , respectively. The desired rotation

can be applied to a 3D vector p by evaluating the conjugation of p by q using the

Hamilton product:

p′ = qpq−1, (2.27)

doi:10.6342/NTU201800854

21

where p and p′ are represented by quaternions with zero real parts:

p = pxi + pyj + pzk, p′ = p′xi + p′yj + p′zk, (2.28)

and p′ is the new vector after the rotation. It follows that conjugation by the product

of two quaternions is the composition of conjugations by these quaternions. For

instance, if q1 and q2 are unit quaternions, then the rotation (i.e., conjugation) by

q1q2 is:

q1q2p(q1q2)−1 = q1q2pq−1
2 q−1

1 = q1(q2pq−1
2)q−1

1 , (2.29)

which is the same as rotating (i.e., conjugating) p by q2 and then by q1. The real

part of the result is necessarily zero. In this case, the two rotation quaternions can

also be first combined into one equivalent quaternion by the relation q′ = q1q2,

where q′ corresponds to the rotation q2 followed by the rotation q1.

A quaternion rotation p′ = qpq−1 can also be algebraically manipulated into

a matrix rotation p′ = Rp, in which R is the rotation matrix:

R (q0, q1, q2, q3) =


q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 .
(2.30)

When converting a rotation matrix to a quaternion, several straightforward methods

tend to be unstable when the trace of the rotation matrix is very close to zero. We

refer the interested readers to [70] for a more stable method of converting a rotation

matrix to a quaternion.

The rotation axis a and angle θ corresponding to a quaternion q = q0 + q1i +

q2j + q3k can be extracted as follows:

(ax, ay, az) = (q1, q2, q3)√
1− q2

0

, θ = 2 acos(q0), (2.31)

where acos(·) is the arccosine function. Please note that when the quaternion

approaches a real quaternion (i.e., a quaternion with zero imaginary part), the axis

is not well-defined due to degeneracy.

doi:10.6342/NTU201800854

22

2.2 Evaluation Metrics

In order to evaluate the performance of between different object pose recovering

methods properly, we have to use an appropriate metric first. In fact, there have

been many metrics defined for evaluating object pose estimation and tracking

methods, which will be introduced next. In the following paragraphs, we use

p ≡ (R, t) and p̃ ≡ (R̃, t̃) as the estimated pose and the ground-truth pose,

respectively,

2.2.1 Rotation & Translation Errors

The rotation error is defined as the angle of the relative rotation between the esti-

mated and ground-truth rotations. While the rotations are represented as matrices,

we can get the estimated rotation error according to (2.19):

Er(R) = acos
(

Tr(∆R)− 1
2

)
, (2.32)

where ∆R = R−1 · R̃ = R> · R̃ is the relative rotation matrix. In addition, if the

rotations are represented as unit quaternions (i.e., q and q̃), then we can efficiently

compute the rotation error as follows:

Er(q) = 2 acos (dot(q, q̃)) , (2.33)

where dot(q, q̃) = q0q̃0 + q1q̃1 + q2q̃2 + q3q̃3 is the dot product of q and q̃. The

reason behind (2.33) is that the relative rotation is represented as follows:

∆q = q−1q̃ = q̄q̃ = (q0 − q1i− q2j− q3k)(q̃0 + q̃1i + q̃2j + q̃3k). (2.34)

And the rotation angle of ∆q is 2 acos(δq0) according to (2.31), in which δq0 is

the real part of ∆q and is equivalent to dot(q, q̃).

The translation error can be defined as either the absolute difference between

the estimated and ground-truth translations directly in physical units (e.g., meters):

Et(t) = ‖t− t̃‖, (2.35)

doi:10.6342/NTU201800854

23

or the relative difference in percentage terms:

Et(t) = ‖t− t̃‖
‖t̃‖

× 100%. (2.36)

Success Rate (SR). We define a pose to be successfully estimated if its rotation

and translation errors are both under predefined thresholds. For example, Shotton

et al. [71] and Tseng et al. [3] use the thresholds of 5°&5cm and 20°&10%,

respectively. The success rate according to the metric of rotation & translation

errors is defined as the percentage of the successfully estimated poses. Sometimes

we also use measures of the average rotation and translation errors, and they

computed only for successfully estimated poses.

2.2.2 3D Distance

This metric is used to compute the averaged 3D distance between points trans-

formed using the estimated pose and the ground-truth pose [5]:

E3D = 1
m

∑
x∈M
‖Rx + t− (R̃x + t̃)‖, (2.37)

where x is a 3D point of the target object model, m is the number of points on the

model, andM is the set of all 3D points of this model.

Success Rate (SR). For the metric of 3D Distance, a pose is considered to be

successfully estimated if the 3D distance error E3D is less than the product of kd,

where d is the diameter (i.e., the longest distance between vertices) ofM and k

is a pre-defined threshold. In [5], Hinterstoisser et al. set the value of k to be 0.1,

which means the computed average distance is within 10% of the model diameter.

2.2.3 2D Projection

Sometimes the previous measures are not very well suited when applying visual

effects to 2D images (e.g., in AR applications). For instance, the translation

accuracy in z-axis is less critical for the visual impression than the accuracy in

doi:10.6342/NTU201800854

24

x-axis and y-axis. This metric focuses on the matching of pose estimation on 2D

images [16]:

E2D = 1
m

∑
x∈M
‖K(Rx + t)−K(R̃x + t̃)‖, (2.38)

where x is a 3D point of the target object model, m is the number of points on the

model,M is the set of all 3D points of this model, and K is the intrinsic matrix of

the camera as defined in (2.1).

Success Rate (SR). We say that a pose is correctly estimated if the 2D projection

error E2D is less than a pre-defined threshold. Brachmann et al. [16] use 5px

(i.e., 5 pixels) as the threshold for the metric of 2D projection.

doi:10.6342/NTU201800854

Chapter 3

Related Work

In this chapter, we briefly review methods related to object pose estimation and

tracking in the literature. Among these methods, the feature-based approaches are

the most common and effective ones if the target objects are full of texture. Feature-

based approaches typically run a two-stage pipeline: a) feature detection and

matching, b) geometric verification of the matched features using PnP algorithms.

Therefore, we first introduce these two techniques in the following sections. We

use PnP algorithms to estimate the pose of an object pose from a calibrated camera

given a set of n 3D points of the object and their corresponding 2D projections

in the image. In contrast, the Kabsch Algorithm is a method for computing

the relative rigid transformation between two paired sets of points in the same

coordinate space. Recently, image or point cloud alignment methods (e.g., the

Lucas-Kanade and Iterative Closest Point methods) based on optimization problems

have regained public attention for their accuracy and robustness, and they can be

utilized for not only pose tracking but pose refinement. To find a local minimum

of an objection function effectively in an optimization problem, the line search

strategy is frequently applied next to obtaining a descent direction along which the

objective function will be reduced. After introducing these elemental methods, we

finally present existing object pose estimation and tracking approaches as well as

benchmark datasets used for evaluating pose recovering algorithms.

25

doi:10.6342/NTU201800854

26

3.1 Feature Detection and Matching

Establishing feature correspondences across different images typically involves

three distinct steps. First, features with rich visual information are detected in

both images. The SIFT detector [9] leverages difference of Gaussians (DoG) to

accelerate the detection process in different scales, while the SURF [72] detector

uses a Haar wavelet approximation of the determinant of the Hessian matrix. In

addition, the KAZE detector [73], followed by the Accelerated-KAZE (AKAZE)

detector [74], uses non-linear diffusion filtering techniques [75] to build the scale

space instead of Gaussian blurring to preserve object boundaries. As these detectors

are still computationally expensive, several methods including FAST [76] and

AGAST [77] have been developed for improvement of execution speed.

Second, a feature representation based on a local patch centered at a detected

feature is constructed. Although the SIFT descriptor [9] and the SURF descrip-

tor [72] have been shown to perform robustly in numerous tasks, the incurred

computational cost is high as the feature dimensionality is high. Subsequently,

binary descriptors, such as BRIEF [78], BRISK [79], ORB [80], and FREAK [81],

are designed for improvement of execution speed.

Third, a feature point is associated with another in the other image. While a

method is expected to detect plenty of distinct features accurately in one image

and match most of them across different views of the same object, some correspon-

dences are incorrectly determined in practice, and most PnP methods do not handle

these outliers well. Outliers are typically rejected at a preliminary stage using

projective transformation models or P3P algorithms [82, 83, 84] in combination

with RANSAC-based schemes [11, 85, 86].

3.2 PnP Algorithms

Given n 3D reference points in the object-space coordinate system and their corre-

sponding 2D projections, the PnP problem aims to retrieve the rigid transformation

doi:10.6342/NTU201800854

27

of the target object with respect to the camera. In the past, iterative PnP algorithms,

e.g., LM [87] and RPP [88], determine the orientation and position of an object by

minimizing an appropriate objective function iteratively. These methods perform

well when reliable initial estimates are provided although at the expense of execu-

tion time. Recently, several non-iterative methods without requiring good initial

estimates have been proposed. The EPnP method [12] uses four virtual control

points to represent the 3D reference points and performs at the linear computational

complexity. This problem formulation and use of linearization strategies facili-

tate the PnP methods perform efficiently. Numerous approaches have since been

developed to improve the accuracy by replacing the linear formulation with poly-

nomial solvers, e.g., DLS [89], RPnP [90], UPnP [91], OPnP [13], REPPnP [92],

and CEPPnP [93]. Among these approaches, the REPPnP method integrates an

outlier rejection technique into the pose estimation pipeline, and thus its input

correspondences are not all necessary to be inliers.

3.3 Kabsch Algorithm

The Kabsch algorithm is a method for computing the optimal rotation and transla-

tion of two paired sets of points in N-dimensional space as to minimize the root

mean squared deviation (RMSD) between them [94]. For instance, given two

paired sets of 3D points xi ↔ yi, one can compute the rigid transformation:

yi = Rxi + t, i = 1, . . . , n, (3.1)

in a closed form solution. The first step is to compute the centroids of these two

point sets:

x̄ = 1
n

n∑
i=1

xi, ȳ = 1
n

n∑
i=1

yi, (3.2)

and subtract the centroids from points:

x̂i = xi − x̄, ŷi = yi − ȳ, i = 1, . . . , n. (3.3)

doi:10.6342/NTU201800854

28

The next step consists of computing a covariance matrix:

H =
n∑
i=1

x̂iŷ>i . (3.4)

Then we calculate the singular value decomposition (SVD) of the covariance

matrix [95]:

H = UΣV>. (3.5)

Finally, we can obtain the optimal rotation and translation as follows:

R = V


1 0 0

0 1 0

0 0 d

U>, t = ȳ−Rx̄, (3.6)

where d = det(VU>) is used for correcting the rotation matrix R to ensure a

right-handed coordinate system.

3.4 Lucas-Kanade Method

The Lucas-Kanade (LK) method is a widely used differential method for tackling

the image alignment problem [96]. Its goal is to minimize the sum of squared error

between two images with respect to the geometric parameters p = [p1, . . . , pm]>

(e.g., parameters of affine, projective, or rigid transformation):

f(p) =
∑

x
(Ic (w(x,p))− It(x))2 , (3.7)

where Ic is the camera image, It is the target image, x = [x, y]> is the pixel

location, and w is the warp mapping the pixel location x in It to the sub-pixel

location w(x,p) = [u(x,p), v(x,p)]> in Ic. Since this optimization problem is

non-linear because of the presence of the functions Ic(·) and It(·), there is no

closed form solution for (3.7). Consequently, the LK method assumes that a current

estimate of the geometry parameters p is known and then iteratively solves the

optimization problem for increments to the parameters ∆p:

f(∆p) =
∑

x
(Ic (w(x,pc + ∆p))− It (x))2 , (3.8)

doi:10.6342/NTU201800854

29

where pc is the current estimate of p. Then the parameters are updated by pc ←

pc + ∆p until a satisfactory estimation result is met.

The LK method (which is a Gauss-Newton algorithm) is derived as follows.

The non-linear expression in (3.8) is linearized by performing a first-order Taylor

expansion of Ic (w(x,pc + ∆p)) with respect to the second argument of w around

pc:

f(∆p) ≈
∑

x
(Ic (w(x,pc)) + J(x,pc)∆p− It(x))2 . (3.9)

In this expression, J(x,pc) is the 1×m Jacobian matrix of the camera image Ic
with respect to p (in numerator-layout notation):

J(x,pc) = ∇Ic (w(x,pc))
∂w(x,p)

∂p

∣∣∣∣∣
p=pc

, (3.10)

where ∇Ic (w(x,pc)) =
[
∂Ic
∂u
, ∂Ic
∂v

]
is the gradient of Ic evaluated at w(x,pc) =

[u(x,pc), v(x,pc)]>. On the right side of (3.10), the second term is the 2 × m

Jacobian matrix of the warp w with respect to the geometry parameters p around

pc:
∂w(x,p)

∂p

∣∣∣∣∣
p=pc

=

 ∂u
∂p1

∂u
∂p2

. . . ∂u
∂pm

∂v
∂p1

∂v
∂p2

. . . ∂v
∂pm

∣∣∣∣∣
p=pc

. (3.11)

Since f(∆p) in (3.9) is a quadratic form with respect to ∆p, minimizing f(∆p)

is a least squares problem and has a closed form solution for ∆p:

∆p = H (pc)−1∑
x

J (x,pc)> (It(x)− Ic (w(x,pc))) , (3.12)

where H(pc) = ∑
x J (x,pc)> J (x,pc) is the m × m (Gauss-Newton approxi-

mation to the) Hessian matrix. After computing an increment ∆p by (3.12), the

current estimate of the parameters is updated by:

pc ← pc + ∆p. (3.13)

The steps (3.12) and (3.13) are iterated several times until the estimates of pa-

rameters converge. Typically the test for convergence is whether the norm of the

increment ‖∆p‖ is less than a threshold ε, i.e., ‖∆p‖ < ε.

doi:10.6342/NTU201800854

30

The optimization problem can also be solved in an alternative way. First, we

turn (3.9) into vectorized form:

f(∆p) ≈ ‖Ic + Jc∆p− It‖2,

Ic =



Ic (w(x1,pc))

Ic (w(x2,pc))
...

Ic (w(xn,pc))


, Jc =



J(x1,pc)

J(x2,pc)
...

J(xn,pc)


, It =



It(x1)

It(x2)
...

It(xn)


.

(3.14)

To address this quadratic minimization problem, we set the derivative of f(∆p)

with respect to ∆p equal to zero (in numerator-layout notation):

2J>c (Ic + Jc∆p− It)> = 0 −→ J>c Jc∆p = J>c (It − Ic). (3.15)

The equation on the right side of (3.15) is called normal equation [97]. We can

then obtain the following closed-form solution for ∆p by solving the system of

linear equations in (3.15):

∆p = H−1J>c (It − Ic), H = J>c Jc, (3.16)

which has the same result as (3.12). We refer the interested readers to [98, 99] for

more information on matrix calculus. A general form of (3.16) is:

∆p = J†c(It − Ic), (3.17)

where J†c =
(
J>c Jc

)−1
J>c is referred to as the Moore-Penrose pseudoinverse of

Jc. Another way to compute the pseudoinverse is using SVD, which may be

more accurate and numerically stable. If Jc = UΣV> is the SVD of Jc, then

J†c = VΣ†U>. For the rectangular diagonal matrix Σ, its pseudoinverse Σ† can

be obtained by taking the reciprocal of each non-zero element on the diagonal,

leaving the zeros in place, and then transposing the matrix.

Several optimization methods have been proposed, and a wide variety of

extensions have been made to the original formulation of the LK algorithm. These

iterative algorithms have the same structure: In each iteration, they first compute

doi:10.6342/NTU201800854

31

the increment ∆p of the current parameters pc which minimize an objective

function similar to (3.8), and then update the parameters pc with ∆p. According

to [100], there are mainly four different kinds of approaches. Each approach is

classified depending on: (1) the type of objective function employed (additive or

compositional) and (2) the direction of warping (forward or inverse). The canonical

LK formulation presented in the previous paragraph is regarded as the forwards

additive (FA) algorithm. In addition, there are also the forward compositional

(FC) algorithm [101], the inverse additive (IA) algorithm [102], and the inverse

compositional (IC) algorithm [103]. Different from methods employing first-

order approximation mentioned above, Benhimane and Malis [104] propose the

efficient second-order minimization (ESM) method which applies a second-order

approximation. We refer the interested readers to [100, 105] for more detailed

information about these iterative optimization algorithms and their comparisons.

3.5 Iterative Closest Point

The Iterative closest point (ICP) algorithm is a widely used approach in aligning

3D surfaces given an initial estimation of the rigid body transformation [106]. It

iteratively refines the transformation from a source point set (i.e., transformed)

to a destination point set (i.e., fixed). This approach allows integrating data from

different sources into a bigger model. In addition, it can also be used for tracking

target object poses in 3D space. The ICP method contrasts with the Kabsch

algorithm in that the former treats correspondences as variables to be estimated,

whereas the latter requires correspondences between point sets as the input data.

Pomerleau et al. [107] provide an excellent survey of the different ICP variants

during the last twenty years as well as their use cases.

In the original ICP method proposed by Besl and McKay [106], points in one

set are paired with their closest points in the other set to form correspondences.

Then a point-to-point error metric is used, where the sum of the squared distance

doi:10.6342/NTU201800854

32

𝑙𝑙1

𝑙𝑙2

𝑙𝑙3
𝐱𝐱1

source
point

destination
point
𝐲𝐲1

destination
surface

𝐱𝐱3

𝐱𝐱2

𝐲𝐲3
𝐲𝐲2

source
surface

𝑙𝑙1

𝐧𝐧1
unit

normal

𝐱𝐱1
source
point

source
surface

tangent
plane

destination
point
𝐲𝐲1

destination
surface

𝑙𝑙2

𝑙𝑙3

𝐱𝐱3

𝐲𝐲3

𝐧𝐧3

𝐱𝐱2

𝐧𝐧2

𝐲𝐲2

(a) Point-to-point error. (b) Point-to-plane error.

Figure 3.1: Two error metrics mostly employed in ICP methods.

between corresponding points is minimized, as illustrated in Figure 3.1(a). The

process is iterated until the error (or the difference of errors in between two

consecutive iterations) becomes smaller than a predefined threshold. For each

iteration, the best rigid transformation according to the point-to-point error metric

has a closed-form solution and can be achieved by using the Kabsch algorithm

described in Section 3.3. In contrast, Chen and Medioni [108] apply the point-to-

plane error metric, in which the sum of the squared distance between points and

the tangent planes at their corresponding closest points is minimized, as illustrated

in Figure 3.1(b). Different from the point-to-point error, the point-to-plane error

is usually minimized by using non-linear least squares approaches, such as the

Gauss-Newton algorithm and the Levenberg-Marquardt method [109]. Although

each iteration of the point-to-plane ICP approach is generally slower than the

point-to-point one, the former has been proved to have better convergence rates

[110, 111]. Moreover, when the relative rotation between two surfaces is small,

the nonlinear least-squares optimization problem can even be approximated with

a linear one, so as to speed up the computation. We explain how to achieve the

linearization in the next paragraph.

When using the point-to-plane error metric, our goal is to minimize the follow-

ing objective function with respect to the rotation R and translation t:

f(R, t) =
n∑
i

(
n>i (Rxi + t− yi)

)2
, (3.18)

doi:10.6342/NTU201800854

33

where xi is a source point, yi is a destination point, and ni is the unit normal vector

at yi. To linearize (3.18), we assume the relative rotation between the source and

destination surfaces is small and replace the original rotation R with the small

angle approximation R̂(r) presented in (2.21):

f
(
R̂(r), t

)
=

n∑
i

(
n>i

(
R̂(r)xi + t− yi

))2

=
n∑
i

(
n>i

(
xi + [r]× xi + t− yi

))2

=
n∑
i

(
n>i

(
xi − [xi]× r + t− yi

))2

=
n∑
i

[−n>i [xi]× n>i
] r

t

− n>i (yi − xi)


2

=
n∑
i

[(xi × ni)> n>i
] r

t

− n>i (yi − xi)


2

.

(3.19)

Similar to the vectorization operation from (3.9) to (3.14), we turn (3.19) into

vectorized form:

f (p) = ‖Ap− b‖2,

A =



(x1 × n1)> n>1
(x2 × n2)> n>2

...

(xn × nn)> n>n


, p =

r

t

 , b =



n>1 (y1 − x1)

n>2 (y2 − x2)
...

n>n (yn − xn)


.

(3.20)

A closed-form solution for this quadratic minimization problem can then be

achieved (by following the arithmetic operations from (3.14) to (3.17)):

p =

r

t

 = A†b, (3.21)

where A† is the pseudoinverse of A. Note that since R̂(r) may not be a valid

rotation, we should instead use the rotation R(r) described in (2.18) as the final

solution (despite the fact that it is not equal to R̂(r) applied in (3.19)).

doi:10.6342/NTU201800854

34

3.6 Line Search & Trust Region

In mathematical optimization, there are two primary iterative strategies to find a

local minimum point p∗ of an objective function f : Rm → R. The first one is

the line search method. It first chooses a descent direction n along which f will

be reduced and then computes a step size α which determines how far the current

point p should be moved along n:

min
α>0

f(p + αn). (3.22)

The descent direction n can be computed by various approaches, such as the

gradient descent algorithm (or steepest descent algorithm), Newton’s method, and

Quasi-Newton method. If the objective function f can be expressed as a sum of

squares (e.g., (3.7)), then the Gauss-Newton algorithm can also be employed to

compute n. To solve (3.22) exactly, we would derive the maximum benefit from n

by approaches such as the conjugate gradient method. However, in most cases, it

is not necessary to find the exact minimum of (3.22) in each iteration. Instead, an

inexact line search approach, such as the backtracking line search algorithm, may

be used to find an α that loosely approximates the minimum along n.

The second one is the trust region method (or restricted step method). For each

iteration, it first gather the information about the objective function f around the

current point p to construct a model function m (often a quadratic function) whose

behavior near p is similar to that of f . Then the candidate step ∆p is computed by

approximately solving the following problem:

min
∆p

m(p + ∆p), ‖∆p‖ ≤ ∆, (3.23)

where ∆ > 0 is referred to as the trust-region radius (since the trust region is

usually defined as a ball). The radius will be enlarged in the next iteration if the

model function m approximates the objective function f well within the trust

region. Otherwise, the radius will be contracted. The fit is evaluated by comparing

the ratio between the expected improvement from the approximation m and the

doi:10.6342/NTU201800854

35

actual improvement observed in f . Simple thresholding of the ratio is used as the

criterion for determining whether the trust region should be expanded or contracted.

A widely used trust region method is the Levenberg–Marquardt algorithm.

The line search and trust region approaches are different in the sense that

while the former firstly finds a descent direction and then a step size, the latter

chooses a step size (or the size of the trust region) first before computing the

descent direction. Both kinds of approaches are advantageous in most cases when

solving optimization problems. We refer the interested readers to [109] for more

information on mathematical optimization.

3.7 Object Pose Estimation Approaches

Although direct methods [112, 5, 3] have been shown to achieve promising results

on texture-less objects, the success is limited to objects that are not occluded.

On the other hand, even though feature-based methods [7, 8] can estimate and

track pose under partial occlusion, these approaches do not perform well on

textureless objects. For the past few years, learning-based approaches have gained

increasing attention as they perform well in various conditions. During the first

period, most learning-based methods are developed based on decision forests

[14, 15, 113, 114, 16, 115], where a set of local patches are sampled from training

images. Instead of determining object pose directly, Brachmann et al. [15] train

a decision forest that stores a distribution over a set of intermediates, i.e., object

coordinates, at each leaf node. Given a test image, patches are first densely sampled

and evaluated by the decision forest to obtain the estimated object coordinates,

and then rigid transformation hypotheses between 3D-to-3D correspondences can

be computed by the Kabsch algorithm [94] presented in Section 3.3. The final

pose is determined by the minimal cost of an objective function with a RANSAC-

based scheme. This method [15] is further improved in various ways, such as:

(1) replacing the cost function with a learned alternative using a convolutional

doi:10.6342/NTU201800854

36

neural network (CNN) for better measurement of the geodesic distance on 6DoF

pose manifolds [113]; (2) refining the regressed object coordinates with the L1

regularized loss function [16]; (3) using a policy gradient approach (which is

called PoseAgent, a reinforcement learning agent) to improve pose hypotheses

directly [116]; and (4) employing a global geometry check strategy to generate

fewer but better pose hypotheses [117].

Recently, research in most pose estimation tasks has been dominated by deep

neural networks. At first, Wohlhart et al. [118] apply CNNs for direct object pose

recovering (rotation only) from holistic template images. Nonetheless, these input

images should have been cropped around target objects from original camera frames

by employing some detection techniques beforehand. In the last few years, there

have been many object detectors which can find the bounding boxes around objects

effectively and efficiently, such as Faster R-CNN [119, 120, 121, 122], YOLO [123,

124], and SSD [125]. Kehl et al. [126] accordingly detect the target objects and

estimate their 6DoF poses simultaneously through extending the SSD approach

to cover the full 6D pose space. Different from these two methods [118, 126]

which cast pose estimation into classification tasks, the PoseCNN paradigm [127]

estimate the object pose by regressing convolutional features extracted inside the

bounding box of the object to parameters of rotation and translation. In addition,

there are also algorithms which work by firstly predicting 2D projections of the 3D

points, which are either corners of the object’s bounding box [128, 129, 130] or

semantic object keypoints [131], and then the 6DoF pose can be computed from

the 2D-to-3D correspondences with a PnP algorithm. Rad et al. [130] further

apply the transfer learning (or domain transfer) technique to learn a mapping

from the exemplary representations of real images to the exemplary representations

of synthetic images. Consequently, they can just exploit only synthetic images

when training a deep network to estimate the 6DoF object pose from a real image.

By contrast with these holistic methods, Kehl et al. [17] propose a voting-based

approach using auto-encoder descriptors of local patches for 6DoF pose hypotheses

doi:10.6342/NTU201800854

37

Figure 3.2: The pose ambiguity can be regarded as a geometric illusion. There

appears to be more than one 3D geometrical explanation based on the same

perspective-projected marker in the camera image.

generation.

Although object poses can be estimated in frames by these pose estimation

approaches, they may not suit AR applications because they are usually not accurate

enough to generate stable pose sequences. Nonetheless, one can still use these

methods to compute a rough initial pose and use this pose as the input data for

some pose tracking or refining algorithms.

3.7.1 Pose Disambiguation for Planar Objects

If the target object is a plane, then it may cause the pose ambiguity problem, as

illustrated in Figure 3.2. Pose ambiguity is related to situations where the error

function has several local minima for a given configuration, which is the leading

cause of flipping estimated poses in an image sequence [132, 133], as presented

in Figure 3.3. This problem occurs not only under orthographic projection but

also for perspective transformation, especially when the planar target object is

significantly tilted with respect to camera views. A typical approach for pose

disambiguation is first to find all possible poses which are stationary points with

local minima of a designed objective function, and then the one with smallest

objective values is considered as the estimated pose. Empirically, the number of

doi:10.6342/NTU201800854

38

Figure 3.3: Pose ambiguity in real cases. The images in the first column are

the original images. Images with a synthetic model rendered according to each

ambiguous pose are shown in the last two columns.

ambiguous poses is two in general. Schweighofer and Pinz [88] observe that two

local minima exist for cases with images of a planar target object viewed by a

perspective camera, and a method is developed to determine a unique solution

based on an iterative pose estimation method [87]. The PnP problem can be posed

as a minimization problem [13], and all the stationary points can be determined by

using the Gröbner basis method [134]. In addition, given a pose solution, the other

ambiguous pose can also be generated by reflecting the first pose with respect to a

plane whose normal vector is the line-of-sight from the camera image center to the

planar target center [135].

3.8 Object Pose Tracking Approaches

Object pose tracking can be regarded as an energy minimization problem from

an initial estimate of pose parameters. To obtain an accurate pose, an energy

function should reflect the geodesic distance on the 6DoF manifold that can be

computed efficiently. An early yet comprehensive review of model-based tracking

is conducted by Lepetit and Fua [136]. One of the classical methods for object

pose tracking is the feature-based paradigm, which computes the object pose based

doi:10.6342/NTU201800854

39

on tracked natural features from frame to frame [137]. These approaches can be

further improved by adopting the particle filtering technique [24, 25]. In recent

years, pose tracking approaches combining region-based 2D segmentation, and

2D-to-3D pose estimation become more and more popular [138, 19, 139, 21]. The

pose parameters are computed based on iteratively minimizing the distance of

point correspondences between the segmented and projected contour of the target

object. Prisacariu and Reid [19] present the PWP3D method which solves the pose

recovering problem with a pixel-wise minimization scheme. Other approaches

based on the PWP3D method mainly focus on improving the segmentation results

and gradient descent search strategies [139, 21]. Since the release of the low-

cost depth device Kinect, many of the pose tracking approaches have applied the

ICP algorithm to align 3D point clouds between a CAD model and real scenes

[18, 140]. Kehl et al. [141] further propose a combined tracking approach which

leverages both the region-based method and the ICP algorithm. In addition, there

are also learning-based methods of object pose tracking. Tan et al. use random

forests to learn more robust features that better handle occlusion [142], and they

further combine this method with an optimization approach, which minimizes an

energy function to find the best transformation between the source and the target,

to improve the tracking accuracy and reduce jitter [143]. Furthermore, Garon and

Lalonde [144] leverage a deep neural network to automatically track the 6DoF

pose of an object robustly even under clutter and occlusion; Li et al. [145] propose

a deep iterative matching network for 6DoF object pose refinement, which can also

be utilized in pose tracking applications.

3.8.1 Binary Square Fiducial Marker Tracking Solutions

The 2D binary square fiducial marker is an easiest-to-construct, and maybe the most

famous 6DoF tracking solution. It has been used extensively for both recognition

and tracking. Libraries for efficient identification and localization of binary square

markers, such as ARToolKit [146], ARToolKitPlus [147], ARTag [148, 149],

doi:10.6342/NTU201800854

40

and ArUco [150, 151], have become a building block for many AR solutions.

The typical output of such a library is a sparse set of corresponded corners on

the recognized marker, which can then be used to solve for 6DoF position and

orientation by PnP algorithms presented in Section 3.2.

3.8.2 Pen Tracking Paradigms

5DoF and 6DoF tracking of pens have been an active area of research in the

computer vision and human-computer interaction communities. The IrCube [152]

and IrPen [153] trackers rely on setting up a source localization problem involving

a cluster of directed LEDs, achieving an accuracy of 10 mm in a 20×20 cm2 area.

The Lumitrack approach [154] uses laser projections of coded patterns and a linear

optical sensor to track at 800 Hz with an accuracy of 5 mm. The Light chisel

system [155] consists of two LEDs inside a diffuse cylinder fiducial tracked by

stereo cameras at an accuracy of 2 mm over a 56×31×33 cm3 volume. A pen

can also be tracked from a light-field camera [156] through a lenslet array with an

accuracy of 3 mm.

3.8.3 Commercial Tracking Systems

Consumer solutions for 6DoF tracking typically combine micro-electromechanical

systems (MEMS) inertial measurement with laser positioning (e.g., HTC Vive [157]),

optical tracking (e.g., Oculus Touch [158] and PS Move [159]), or magnetic track-

ing (e.g., Razer Hydra [160]).

Motion capture is another widely used method for high-fidelity 6DoF tracking.

In a mocap system, such as OptiTrack [161], Vicon [162], and Qualisys [163],

typically a large array of strobing cameras observes a set of passive retroreflective

fiducials. Triangulation and tracking are used to obtain the absolute position and

orientation of the tracked object at better than millimeter accuracy.

doi:10.6342/NTU201800854

41

3.9 Benchmark Datasets

Numerous datasets have been developed to evaluate algorithms in areas related

to 3D pose estimation and tracking. The dataset presented by Lieberknecht et

al. [164] contains 40 sequences of eight different textured 2D objects and five

unconstrained motions (e.g., zoom-in and translation). A dataset with 96 videos

from six textured planar targets and varying geometric distortions as well as lighting

conditions is constructed by Gugglitz et al. [4]. The homography transformation

parameters are provided in this dataset. Since a rolling-shutter camera is used, it

may be difficult to obtain the exact 6DoF pose from the homography parameters

when the relative motion is significant.

Hinterstoisser et al. [5] construct a dataset of 18,000 images with 15 texture-

less 3D objects, which is further extended for multi-instance 3D object detection

and pose estimation [14]. Similarly, a dataset with 20 textured and textureless

objects is proposed [15] where each one is recorded under three different lighting

conditions. In addition, Hodan et al. [165] propose the T-LESS dataset that

features thirty commodity electrical parts which have no significant texture. There

is also a dataset [144] consisting of sequences in which the occlusion is varied

from low to high levels. For the datasets mentioned above, both color and depth

images are recorded using handheld Kinect V1 or Kinect V2 cameras. The target

objects are attached to a planar board surrounded with fiducial markers, which

provide the corresponding poses. Since markers cannot be accurately localized

in a blurry image, the recorded targets need to be static in front of the camera,

and thus these datasets do not contain distortions that are crucial for performance

evaluation of pose tracking in real-world scenarios. The real pose is also arduous

to compute because of the rolling-shutter effect which will change the appearance

of markers whenever there exists some camera movement. Different from using

fiducial markers, the ground-truth object poses in the datasets [26, 25] are manually

labeled and less accurate. Even the poses estimated by Krull et al. [25] and

Xiang et al. [127] are further refined by the ICP method, the estimates are not

doi:10.6342/NTU201800854

42

accurate due to noisy measurements of depth values. In contrast, Akkaladevi et

al. [166] utilize a camera tracking solution called ReconstructMe [167] to annotate

poses. However, the ground-truth pose accuracy depends on the camera tracking

results performed by ReconstructMe, which may not be very reliable. The dataset

proposed by Choi and Christensen [24] consists of four synthetically generated

sequences of four models. The main drawback of this synthetic dataset is the

lack of distortions in both RGB-D images and motion blurs. We summarize the

characteristics of existing benchmark datasets for pose estimation and tracking

in Table 3.1.

doi:10.6342/NTU201800854

43

Ta
bl

e
3.

1:
B

en
ch

m
ar

k
da

ta
se

ts
fo

ro
bj

ec
tp

os
e

es
tim

at
io

n.
U

si
ng

a
pr

og
ra

m
m

ab
le

ro
bo

tic
ar

m
,w

e
ca

n
re

co
rd

im
ag

es
un

de
rd

iff
er

en
t

m
ot

io
n

pa
tte

rn
s

an
d

di
ff

er
en

ts
pe

ed
.

T
he

re
co

rd
ed

se
qu

en
ce

s
he

nc
e

co
nt

ai
n

di
ff

er
en

td
is

to
rt

io
ns

th
at

ar
e

cr
uc

ia
lf

or
pe

rf
or

m
an

ce

ev
al

ua
tio

n
of

po
se

tr
ac

ki
ng

al
go

ri
th

m
s

fo
rr

ea
l-

w
or

ld
sc

en
ar

io
s.

B
en

hm
ar

k
D

ev
ic

e
M

ec
ha

ni
sm

Po
se

E
st

ab
lis

hm
en

t
V

id
eo

C
lip

s
#

2D
Ta

rg
et

s
#

3D
Ta

rg
et

s
#

M
ot

io
n

Pa
tte

rn
s

#
Fr

am
es

L
ie

be
rk

ne
ch

t [
16

4]
M

ar
lin

F-
08

0C
H

an
dh

el
d

M
ar

ke
r-

ba
se

d
Y

es
8

-
5

48
,0

00

G
au

gl
itz

[4
]

Fi
re

-i
M

an
ua

lly
O

pe
ra

te
d

C
on

tr
ap

tio
n

D
ir

ec
tA

lig
nm

en
t

Y
es

6
-

16
6,

88
9

H
in

te
rs

to
is

se
r[

5]
K

in
ec

tV
1

H
an

dh
el

d
M

ar
ke

r-
ba

se
d

N
o

-
15

-
18

,0
00

Te
ja

ni
[1

4]
K

in
ec

tV
1

H
an

dh
el

d
M

ar
ke

r-
ba

se
d

N
o

-
3

-
5,

22
9

B
ra

ch
m

an
n

[1
5]

K
in

ec
tV

1
H

an
dh

el
d

M
ar

ke
r-

ba
se

d
N

o
-

20
3

10
,0

00

R
en

ni
e

[2
6]

K
in

ec
tV

1
R

ob
ot

ic
A

rm
M

an
ua

l
N

o
-

24
-

10
,3

68

K
ru

ll
[2

5]
K

in
ec

tV
1

H
an

dh
el

d
IC

P
Y

es
-

3
-

1,
10

0

C
ho

i[
24

]
Sy

nt
he

tic
-

Sy
nt

he
tic

Y
es

-
4

-
4,

00
0

A
kk

al
ad

ev
i[

16
6]

Pr
im

es
en

se
C

ar
m

in
e

1.
09

H
an

dh
el

d
R

ec
on

st
ru

ct
M

e
Y

es
-

4
-

4,
00

0

H
od

an
[1

65
]

K
in

ec
tV

2
H

an
dh

el
d

M
ar

ke
r-

ba
se

d
N

o
-

30
-

49
,0

00

G
ar

on
[1

44
]

K
in

ec
tV

2
H

an
dh

el
d

M
ar

ke
r-

ba
se

d
Y

es
-

4
9

7,
50

0

X
ia

ng
[1

27
]

A
su

s
X

tio
n

Pr
o

L
iv

e
H

an
dh

el
d

IC
P

Y
es

-
21

3
13

3,
82

7

Pr
op

os
ed

K
in

ec
tV

2
Pr

og
ra

m
m

ab
le

R
ob

ot
ic

A
rm

C
he

ck
er

bo
ar

d-
ba

se
d

Y
es

6
6

23
10

0,
95

6

doi:10.6342/NTU201800854

44

doi:10.6342/NTU201800854

Chapter 4

OPT: A Benchmark Dataset for

6DoF Object Pose Tracking

In this work, we propose a large-scale benchmark dataset of RGB-D video se-

quences for both 2D and 3D objects with ground-truth information, as shown

in Figure 1.1. The proposed benchmark dataset contains 690 color and depth

videos of varying degrees of textured and geometric objects with over 100,000

frames. These videos are annotated with different imaging conditions (i.e., Trans-

lation, Zoom, In-plane Rotation, Out-of-plane Rotation, Flashing Light, Moving

Light, and Free Motion) and speed recorded with a Kinect V2 sensor mounted

on a programmable robotic arm. A 3D printer renders the objects in the bench-

mark dataset with distinct textures. The ground-truth poses are computed using a

designed checkerboard and checkerbox for 2D and 3D objects. Due to the global-

shutter infrared camera with fast shutter speed from the Kinect V2 sensor, we can

annotate the ground-truth poses by leveraging the clear infrared images under fast

motions.

The contributions of this work are summarized below:

Benchmark dataset. We design a benchmark dataset for 6DoF object pose track-

ing. It consists of 690 videos under seven varying conditions with five speeds. It is

a large dataset where images are acquired from a moving camera for performance

45

doi:10.6342/NTU201800854

46

evaluation of both 2D and 3D object pose tracking algorithms. Furthermore, the

proposed dataset can also be used in other computer vision tasks such as 3D feature

tracking and matching.

Performance evaluation. Each pose tracking method is extensively evaluated

and analyzed using more than 100,000 frames including both 2D and 3D objects.

Since the state-of-the-art simultaneous localization and mapping (SLAM) methods

[2, 60] are able to track and relocalize camera pose in real time, we also eval-

uate these approaches by adapting them to object pose tracking scenarios. We

present the extensive performance evaluation of the state-of-the-art methods us-

ing the proposed benchmark dataset. Finally, we discuss the potential research

directions in this field. The proposed benchmark dataset is available online at

media.ee.ntu.edu.tw/research/OPT. Below we describe how we collect data and

compute the 6DoF pose of the target object with addressing the rolling-shutter

issues in detail.

4.1 Acquiring Images

The color, depth, and infrared images of each sequence are obtained from a

Kinect V2 sensor mounted on a programmable KUKA KR 16-2 CR robot arm,

as illustrated in Figure 4.1. The robotic arm, which has six axes and repeatability

of 0.05 mm, can be programmed to move in complex trajectories precisely. Each

2D object shown in Figure 4.2 is a printed pattern with size 133.6×133.6 mm2

surrounded by a checkerboard glued to an acrylic plate. Each 3D object shown

in Figure 4.3 is generated by a 3D printer with resolution 300×450 dpi and 0.1 mm

layer thickness. The length, width, and height of 3D objects illustrated in Figure 1.1

are in the ranges of (57.0, 103.6), (57.0, 103.6), and (23.6, 109.5), respectively in

mm. We describe how the ground-truth 6DoF pose of a target object is obtained

based on the 2D checkerboard or 3D checkerbox in Section 4.2.

The object motions in the proposed benchmark dataset are (regarded as moving

http://media.ee.ntu.edu.tw/research/OPT

doi:10.6342/NTU201800854

47

Brightness Adjustable LED Light

Kinect v2

KUKA KR 16-2 CR

Target

Color Image

Depth Image Infrared Image

Figure 4.1: Sequences in the proposed dataset are recorded with a Kinect V2 sensor

mounted on a programmable robotic arm. Note that we normalize the intensity of

the depth image in this figure for clarity.

Low Normal Rich

Figure 4.2: 2D objects with low (Wing, Duck), normal (City, Beach), and rich

(Firework, Maple) texture.

Simple Normal Complex

Figure 4.3: 3D objects with simple (Soda, Chest), normal (Ironman, House), and

complex (Bike, Jet) geometry.

doi:10.6342/NTU201800854

48

object rather than the camera):

Translation. An object moves along a circle parallel to the camera sensor plane

with motion blur in all directions.

Zoom. An object moves forward first and then backward.

In-plane Rotation. An object rotates along an axis perpendicular to the camera

sensor plane.

Out-of-plane Rotation. An object rotates along an axis parallel to the camera

sensor plane.

Flashing Light. The light source is turned on and off repeatedly, and the object

moves slightly.

Moving Light. The light source moves and results in illumination variations while

the object moves slightly.

Free Motion. An object moves in arbitrary directions.

The objects move at five speeds in Translation, Zoom, In-plane Rotation, and

Out-of-plane Rotation such that the videos are close to real-world scenarios with

different image distortions (e.g., motion blurs). For each 3D object, videos from

four camera perspectives are recorded. A square region on the bottom plane is

hollowed out to fit the base of a 3D object as shown in Figure 4.4. Table 4.1 lists

the properties of all motion patterns in the proposed dataset.

Since the Kinect V2 sensor drops frames occasionally, it may affect some

tracking approach which exploits a motion model to perform trajectory prediction

and obtain a better initial pose in the next frame. To address this issue, we develop

a method to record the RGB-D video sequences instead of using the original

recording software by Microsoft. The GUI of our recording program is shown

in Figure 4.5. This program will automatically detect if some frames are dropped

during recording and display an error message when the unfortunate happens. We

record the sequences repeatedly until all of them are complete (i.e., exact 30 fps).

We also ensure that the sequences only contain the desired motions by removing

the start and end of the sequences where the object is stationary.

doi:10.6342/NTU201800854

49

Table 4.1: Evaluated motion patterns. For each speed level, there are six sequences

with 2D models and 24 sequences with 3D models (6 models × 4 sides).

Motion Pattern Model Level # Frames Avg. Rot. Vel.

[deg/s]

Avg. Trans. Vel.

[mm/s]

Translation

2D

1 241 0.69428 37.916
2 83 0.79381 110.3443
3 52 0.88252 175.9481
4 36 1.1011 252.0285
5 30 1.2767 297.7782

3D

1 174 0.69185 32.8919
2 61 0.85972 93.2347
3 38 1.0905 147.2741
4 27 1.5142 199.8588
5 23 1.9685 222.9882

Zoom

2D

1 295 0.66289 28.3413
2 104 0.7268 80.7141
3 65 0.73599 129.6973
4 47 0.78002 180.9885
5 38 0.83148 224.9915

3D

1 341 0.87975 31.6376
2 119 1.1265 90.9394
3 76 1.1053 143.1166
4 55 1.1661 199.1822
5 44 1.2035 250.0844

In-plane

Rotation

2D

1 209 6.5114 4.3954
2 75 18.2884 8.7469
3 46 30.0623 14.2698
4 35 39.8567 19.0389
5 29 48.5156 23.6787

3D

1 370 3.3929 5.2248
2 127 9.9255 13.1589
3 78 16.2043 20.9461
4 53 23.9756 30.522
5 41 31.1681 39.1322

Out-of-plane

Rotation

2D

1 555 3.8118 5.3987
2 189 11.2437 14.0884
3 116 18.3775 22.7303
4 81 26.4373 32.4912
5 63 34.1305 41.9536

3D

1 600 3.7498 9.2109
2 202 11.0287 24.0732
3 123 18.1562 39.1878
4 85 26.3867 56.7088
5 64 35.1654 74.6798

Flashing Light
2D - 161 0.61427 4.8458
3D - 154 0.63751 5.03

Moving Light
2D - 164 0.60217 4.7679
3D - 154 0.64017 5.0404

Free Motion
2D - 784 24.9678 127.2679
3D - 323 173.992 5.800

doi:10.6342/NTU201800854

50

(a) (b) (c) (d) (e) (f)

Figure 4.4: The checkerbox is designed so that the 3D object can be changed with

four different sides. (a) The hollowed part on the bottom plane of the checkerbox.

(b) The bottom view of the base of the 3D object. This base can adhere to the

checkbox with four magnet pairs. (c) The front view, (d) left view, (e) back view,

and (f) right view of a target.

Figure 4.5: GUI for recording RGB-D sequences captured by Kinect V2.

4.2 Obtaining Ground-truth Object Pose

We estimate the intrinsic and extrinsic camera parameters using the calibration

toolbox [168]. It is worth noting that depth and infrared images, as shown in Fig-

ure 4.1, are obtained from the same sensor (i.e., depth camera). Therefore, we

calibrate depth camera using infrared images. The estimated intrinsic parameters

are shown in Table 4.2. Next, we conduct an extrinsic calibration [168] of the two

doi:10.6342/NTU201800854

51

Table 4.2: Intrinsic parameters of the used Kinect V2. (w, h): image resolu-

tion; (fx, fy): focal length; (cx, cy): principal point; (r1, r2, r3): radial distortion

coefficients; and (t1, t2): tangential distortion coefficients.

Camera Type Color Camera Depth Camera

Shutter Type Rolling Shutter Global Shutter

FPS (Hz) 30 30

(w, h) (1920,1080) (512,424)

(fx, fy) (1060.197,1060.273) (366.736,366.458)

(cx, cy) (965.809,561.9526) (254.026,207.470)

(r1, r2, r3) (0.0435,-0.0183,-0.031) (0.107,-0.297,0.114)

(t1, t2) (0.000905,0.000709) (0.0013,-0.00026)

cameras resulting in the transformation matrix:

Td2c =

Rd2c td2c

0 1

 =



1.0000 −0.0053 0.0038 −52.51

0.0053 1.0000 −0.0041 0.602

−0.0038 0.0041 1.0000 −0.326

0 0 0 1


(4.1)

from the depth camera coordinate system to color camera coordinate system.

We find that the measured distance within dark regions in the depth maps are

less accurate, as illustrated in Figure 4.6. This is also discussed in [1], as the

Kinect V2 sensor uses an indirect time-of-flight system based on light modulation

to estimate depth. Since some measured points may be affected by points within

dark regions during calibration, we marginalize the unreliable measurements by

applying the robust regression with Bisquare weighting, as shown in Figure 4.7.

We also rectify the depth images according to the regression results between these

two types of images. In addition, since the transformation matrix Td2c between

the depth and camera coordinate is estimated, the depth image in the color camera

coordinate system (and vice versa) can be obtained according to Td2c. We illustrate

doi:10.6342/NTU201800854

52

(a) (b) (c)

Figure 4.6: (a) Infrared image. (b) Point cloud corresponding to (a) from one

viewpoint. (c) Point cloud from one another viewpoint. The measured distance

within a dark region is larger than real cases.

500 600 700 800 900 1000 1100 1200

Measured Value (mm)

300

400

500

600

700

800

900

1000

1100

1200

R
ea

l V
al

ue
 (

m
m

)

data points
y = -17.2912 + 0.98992 * x Infrared Image

Depth Image

(a) (b)

Figure 4.7: (a) Deviations between real and measured depth values. We perform

the robust regression with Bisquare weighting. (b) Points are sampled in the center

of white blocks since the measured values on a dark surface are less reliable [1].

doi:10.6342/NTU201800854

53

Figure 4.8: Original images (top row) and new mapped images (bottom row) in the

other coordinate system.

the mapping results between two coordinate systems in Figure 4.8.

After rectifying the images, we obtain the ground-truth pose using the camera

parameters and the checkerboard (or checkerbox) around an object as follows.

The positions of a few crossed points are initialized with known 2D-to-3D corre-

spondences in the first frame of each sequence and updated by the nearest corners

using [169]. Other crossed points can then be obtained with an initial pose p0

estimated according to the correspondences with the OPnP method [13]. The

location of each point is refined with a sub-pixel corner detection method [168].

A point may be discarded if it is close to another crossed point for robust pose

estimation. We compute the object pose p according to the refined points with

the OPnP method [13] again and refine p with the Newton method. Figure 4.9

shows an example of object pose estimation in the first frame of each sequence.

We determine the corresponding points in the current and following frames with

the KLT tracker [96], and estimate poses according to these points with the scheme

doi:10.6342/NTU201800854

54

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Ground-truth object pose annotation. (a) We first initialize a few

points with known 2D-to-3D correspondences. (b) The nearest corner points of the

initialized points are detected. (c) The other corner points are computed with an

initial pose p0 according to the initial correspondences. (d) We later refine these

points and discard non-robust ones. (e) The final pose p is estimated according to

the remaining points. (f) The object pose in the related color image is computed

according to the estimated transformation matrix.

mentioned above. As such, the object pose in each frame can be obtained sequen-

tially. The annotation process is performed with a handcrafted program, as shown

in Figure 4.10. The checkerboard (or checkerbox) is designed with increasing

block size from center to border. This pattern facilitates detecting a sufficient

number of corner points when the target object is either near or far from the sensor

as illustrated in Figure 1.1. Because of the symmetric form, the crossed corner

points can also be better localized than the corners of fiducial markers used in

existing datasets [164, 5, 14, 15]. The exact 3D target position related to the base

is calibrated manually.

doi:10.6342/NTU201800854

55

Figure 4.10: The GUI of our handcrafted program for annotating the ground-truth

poses of 2D target objects (top) and 3D target objects (bottom). To establish the

2D-to-3D correspondences before applying a PnP algorithm, we first specify some

3D points by the corner selector panel and then mark the corresponding 2D points

on the image.

doi:10.6342/NTU201800854

56

(a) 2D Models (b) 3D Models

Figure 4.11: Camera frames for (a) 2D and (b) 3D objects blended with masks.

The mask is generated using the corresponding pose and the 3D models.

We use the infrared images to obtain the ground-truth object pose p instead of

using color images which can be distorted due to the rolling-shutter effect, as the

skewed image illustrated in Figure 4.9(f). Furthermore, the exposure time of the

infrared camera is much shorter such that infrared images contain less motion blur.

The object pose in the color images of the first and following frames are obtained

by transforming p according to the transformation matrix Td2c. As the intensity

contrast of the original infrared image is relatively low (as shown in Figure 4.1), the

images shown in Figure 4.9(a)–(e) are processed with a tone mapping algorithm

for presentation purpose. In addition, we generate the mask image related to each

frame according to the ground-truth pose, as illustrated in Figure 4.11. These

mask images are used for cropping target templates for the training purpose.

Video sequences with annotated poses of different motion patterns are shown

in Figure 4.12 to Figure 4.19. For sequences with 3D objects, we present the

annotated ground-truth pose by rendering monochrome semi-transparent wire-

frame models onto camera frames. Regarding the Flashing Light motion pattern,

the upper and lower regions of some frames have different intensity values due to

the rolling-shutter effect.

doi:10.6342/NTU201800854

57

(a) Translation (b) Zoom (c) In-plane Rotation

Figure 4.12: Image sequences of different motion patterns with annotated poses.

(a) Translation (Wing). (b) Zoom (Duck). (c) In-plane Rotation (City).

doi:10.6342/NTU201800854

58

(a) Out-of-plane Rotation (b) Flashing Light (c) Moving Light

Figure 4.13: Image sequences of different motion patterns with annotated poses.

(a) Out-of-plane Rotation (Beach). (b) Flashing Light (Firework). (c) Moving

Light (Maple).

doi:10.6342/NTU201800854

59

(a) Translation (b) Zoom (c) In-plane Rotation

Figure 4.14: Images with wire-frame models rendered according to annotated

poses. (a) Translation (Soda). (b) Zoom (Chest). (c) In-plane Rotation (Ironman).

doi:10.6342/NTU201800854

60

(a) Out-of-plane Rotation (b) Flashing Light (c) Moving Light

Figure 4.15: Images with wire-frame models rendered according to annotated

poses. (a) Out-of-plane Rotation (House). (b) Flashing Light (Bike). (c) Moving

Light (Jet).

doi:10.6342/NTU201800854

61

Figure 4.16: Images of motion pattern free motion with 2D targets. In this case, we

hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.

doi:10.6342/NTU201800854

62

Figure 4.17: Images of motion pattern free motion with 2D targets. In this case, we

hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.

doi:10.6342/NTU201800854

63

Figure 4.18: Images of motion pattern free motion with 3D targets. In this case, we

hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.

doi:10.6342/NTU201800854

64

Figure 4.19: Images of motion pattern free motion with 3D targets. In this case, we

hold the Kinect V2 device manually. These sequences are recorded with combining

different motion patterns and speed levels.

doi:10.6342/NTU201800854

65

Table 4.3: Evaluated algorithms. Run time is measured in seconds. In the code

column, C: C/C++, M: Matlab, CU: CUDA.

Algorithm Description Code Run Time

SIFT [9] Feature detector C, M 5.287 s

ASIFT [10] Feature detector C, M 50.995 s

OPnP [13] PnP algorithm M 0.156 s

IPPE [135] PnP algorithm M 0.044 s

DPE16 [3] Pose estimator (2D) C, M, CU 4.811 s

UDP [16] Pose estimator (3D) C 9.262 s

PWP3D [19] Pose tracker (3D) C, CU 0.066 s

OS2 [2] SLAM approach (sparse) C 0.067 s

EF [60] SLAM approach (dense) C, CU 0.078 s

4.3 Evaluation Methodology

In this work, we evaluate pose tracking algorithms for both 2D and 3D target

objects. Table 4.3 lists the main characteristics of the algorithms being assessed.

We further explain our evaluation metrics in Section 4.3.2.

4.3.1 Evaluation Algorithms

To estimate the pose of a planar target, we look into feature-based approaches, and

evaluate algorithms with a combination of two feature detectors (i.e., SIFT [9] and

ASIFT [10]) and two PnP algorithms (i.e., OPnP [13] and IPPE [135]) for pose

estimation. Note that the IPPE approach is actually a homography decomposition

method as it takes the coefficients of a homography as inputs, whereas the homogra-

phy can be obtained from the 2D-to-3D correspondences by using the Direct Linear

Transform (DLT) [170] algorithm. Therefore, we still regard it as a PnP approach

used for planar objects. The RANSAC-based schemes [11] are then applied to

doi:10.6342/NTU201800854

66

Viewpoint: 41 Viewpoint: 282 Viewpoint: 341Viewpoint: 1

Figure 4.20: Synthetic frames rendered from 341 viewpoints on half of the recur-

sively divided icosahedron

these feature-based methods to remove incorrect feature correspondences. We

implement a CUDA-based direct pose estimator, which is ten times faster than the

original DPE16 approach [3] with equivalent accuracy.

To recover 3D object poses, we evaluate two state-of-the-art approaches

(i.e., UDP [16] and PWP3D [19]) for pose estimation and pose tracking. We note

numerous camera pose trackers have been released recently that achieve real-time

performance by leveraging the reconstructed environment maps. Two state-of-

the-art approaches in this field (i.e., ORB-SLAM2 [2] and ElasticFusion [60])

are used for evaluation. The ORB-SLAM2 method tracks camera poses based

on sparse features, and the ElasticFusion scheme solves a minimization problem

based on intensity and depth values. These camera pose trackers are evaluated by

deactivating them within background regions of a video sequence. Foreground and

background regions are separated according to the geometric model and related

ground-truth pose, as illustrated in Figure 4.11.

For each feature-based approach (including the ORB-SLAM2 method), the

average number of detected features in a camera frame is set to be around 3,000.

For SLAM-based approaches, we construct a 3D map of the target object for

evaluation. Each map is constructed with synthetic frames created by rendering

a mesh from 341 viewpoints on one half of a recursively divided icosahedron, as

shown in Figure 4.20. The half of recursively divided icosahedron is illustrated

doi:10.6342/NTU201800854

67

(a) 26 vertices (b) 91 vertices (c) 196 vertices (d) 341 vertices

Figure 4.21: Half of the recursively divided (from left to right) icosahedron.

in Figure 4.21. ORB-SLAM2 uses a set of feature points to represent its environ-

ment map and performs relocalization by feature matching from between this map

and the input camera frame. We find the relocalization process in ORB-SLAM2

system can be further accelerated by leveraging real camera frames, and therefore

we add frames of motion pattern Out-of-plane Rotation (whose camera trajectory is

like a cross) into the mapping process, as illustrated in Figure 4.22. Consequently,

it bootstraps (i.e., estimate the object pose) in the beginning of each sequence. On

the contrary, the ElasticFusion approach builds its map with dense surfels, as shown

in Figure 4.23. It instead uses randomized ferns to perform relocalization [171].

However, it does not work well in our experiments. Therefore it needs a guided

pose in the first frame. For both SLAM approaches, all maps keep unchanged

(i.e., no points for surfels will be further added) during the tracking process. We

experimentally set the ICP weight of the joint cost function to be 0.5 for better

tracking results in the ElasticFusion approach. As the SLAM approaches are able

to deal with 2D cases, we also evaluate these methods with 2D objects.

Since the UDP method does not perform well if it is trained on synthetic images

(as discussed in [16] and confirmed in our comparative study), we select about

10% of the images from the proposed dataset as the training data for UDP.

In the PWP3D method, we set foreground and background distributions to

be unchanged (i.e., use the distributions from the first frame for all frames in the

sequence) as it can achieve better tracking results. The mask image of the first

camera frame is also used for the PWP3D scheme to set the color distribution of

doi:10.6342/NTU201800854

68

(a) (b) (c)

Figure 4.22: Model maps generated by the ORB-SLAM2 method. (a) This map is

built with synthetic frames created by rendering mesh from 341 viewpoints on half

of the recursively divided icosahedron. The green wire-frame model, blue line, and

red point stand for cameras, correlations between cameras, and detected feature

point, respectively. We refer the reader to [2] for more details. (b) To accelerate

the relocalization process, we further exploit the real captured frames to build

the model map. (c) The feature-based model map produced by the ORB-SLAM2

method.

(a) (b) (c) (d) (e) (f)

Figure 4.23: The surfel-based models: (a) Soda, (b) Chest, (c) Ironman, (d) House,

(e) Bike, and (f) Jet generated by the mapping process of the ElasticFusion method.

foreground and background regions.

For the iterative energy minimization schemes (i.e., PWP3D and ElasticFusion),

the ground-truth pose in the first frame is provided and object pose tracking is

performed subsequently. To fairly compare different approaches, the result of the

first frame in each video sequence is not considered.

doi:10.6342/NTU201800854

69

4.3.2 Evaluation Metrics

Given the ground-truth rotation matrix R̃ and translation vector t̃, we compute the

error of the estimated pose (R, t) by using the 3D Distance metric (2.37) presented

in Section 2.2.2. For a 2D object, we define the model points as vertices of a

bounding box, whose height is half of its side length, as illustrated in Figure 1.1.

The pose is considered to be successfully estimated if E3D is less than kd where d

is the diameter (i.e., the longest distance between vertices) of the target object and

k is a pre-defined threshold. As the precision plot has been commonly adopted to

measure the overall tracking performance recently [172], we evaluate a method by

the percentage of frames with correct estimations under different values of k in a

precision plot. A method with a higher area under curve (AUC) scores achieves

better pose estimation results.

4.4 Evaluation Results

All the experiments are carried out on a machine with an Intel Core i7-6700K

processor, 32 GB RAM, and an NVIDIA GTX 960 GPU. The RGB-D video frame

size is 1920×1080. Each approach for 2D and 3D target objects is evaluated on

20,988 images and 79,968 images, respectively. The iterative energy minimization

approaches (i.e., ElasticFusion and PWP3D) tend to lose track of all frames once the

matching baseline is too wide. We thus evaluate the ElasticFusion+ and PWP3D+

methods (variants of ElasticFusion and PWP3D) by feeding the ground-truth pose

in the previous frame for re-initialization when a failure occurs which is determined

by visual inspection.

4.4.1 Overall Performance

The overall experimental results are shown in Figure 4.24 and Figure 4.25. The

maximum coefficient k defined in (2.37) is set to 0.2 in the plots, with AUC scores

ranging from 0 to 20.

doi:10.6342/NTU201800854

70

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100
S

uc
ce

ss
 R

at
e

(%
)

Wing (2D)

SIFT+IPPE [0.025]
SIFT+OPnP [0.099]
ASIFT+IPPE [0.078]
ASIFT+OPnP [0.090]
DPE16 [0.025]
ORB-SLAM2 [5.862]
ElasticFusion [4.132]
ElasticFusion+ [17.523]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Duck (2D)

SIFT+IPPE [12.195]
SIFT+OPnP [13.378]
ASIFT+IPPE [12.337]
ASIFT+OPnP [14.204]
DPE16 [14.677]
ORB-SLAM2 [14.273]
ElasticFusion [3.747]
ElasticFusion+ [18.203]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

City (2D)

SIFT+IPPE [17.405]
SIFT+OPnP [18.070]
ASIFT+IPPE [16.063]
ASIFT+OPnP [16.989]
DPE16 [11.767]
ORB-SLAM2 [15.752]
ElasticFusion [4.700]
ElasticFusion+ [18.148]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Beach (2D)

SIFT+IPPE [17.298]
SIFT+OPnP [17.999]
ASIFT+IPPE [17.774]
ASIFT+OPnP [18.361]
DPE16 [15.737]
ORB-SLAM2 [15.988]
ElasticFusion [4.931]
ElasticFusion+ [17.963]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Firework (2D)

SIFT+IPPE [17.273]
SIFT+OPnP [17.999]
ASIFT+IPPE [17.332]
ASIFT+OPnP [18.251]
DPE16 [10.300]
ORB-SLAM2 [16.891]
ElasticFusion [4.072]
ElasticFusion+ [18.011]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Maple (2D)

SIFT+IPPE [17.551]
SIFT+OPnP [18.249]
ASIFT+IPPE [17.739]
ASIFT+OPnP [18.593]
DPE16 [16.091]
ORB-SLAM2 [16.875]
ElasticFusion [4.306]
ElasticFusion+ [18.043]

Figure 4.24: Overall performance for 2D objects on the proposed benchmark

dataset. The AUC score for each approach is shown in the legend.

2D objects. The average score of tracking the Wing sequence is lower than the

others since the target object contains less texture or structure. There exist many

ambiguous pose candidates that cannot be distinguished by all evaluated approaches

as the corresponding cost values are similar. In contrast, although the object in

the Duck sequence does not contain much texture, the DPE16 method is able to

doi:10.6342/NTU201800854

71

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100
S

uc
ce

ss
 R

at
e

(%
)

Soda (3D)

UDP [8.494]
PWP3D [5.870]
PWP3D+ [16.086]
ORB-SLAM2 [13.444]
ElasticFusion [1.895]
ElasticFusion+ [15.517]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Chest (3D)

UDP [6.791]
PWP3D [5.551]
PWP3D+ [16.295]
ORB-SLAM2 [15.531]
ElasticFusion [1.534]
ElasticFusion+ [15.081]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Ironman (3D)

UDP [5.250]
PWP3D [3.915]
PWP3D+ [11.351]
ORB-SLAM2 [11.198]
ElasticFusion [1.692]
ElasticFusion+ [14.556]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

House (3D)

UDP [5.974]
PWP3D [3.575]
PWP3D+ [15.169]
ORB-SLAM2 [17.283]
ElasticFusion [2.695]
ElasticFusion+ [16.035]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Bike (3D)

UDP [6.097]
PWP3D [5.358]
PWP3D+ [16.592]
ORB-SLAM2 [10.410]
ElasticFusion [1.567]
ElasticFusion+ [14.742]

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Jet (3D)

UDP [2.342]
PWP3D [5.813]
PWP3D+ [15.847]
ORB-SLAM2 [9.931]
ElasticFusion [1.858]
ElasticFusion+ [14.147]

Figure 4.25: Overall performance for 3D objects on the proposed benchmark

dataset. The AUC score for each approach is shown in the legend.

estimate poses well based on the distinct contour. The feature-based schemes

outperform direct methods when a sufficient number of features can be extracted

from a target object, as shown in the other four cases.

Despite the IPPE algorithm is designed for pose estimation of planar objects,

it does not perform as well as the OPnP algorithm that is able to estimate pose

doi:10.6342/NTU201800854

72

in more general scenarios. As the FAST-based detector [76], which is used in

the ORB-SLAM2 method, is designed for efficiently detecting corner points in

an image, it does not localize features accurately. Therefore the AUC scores of

the ORB-SLAM2 method are lower than those of SIFT-based methods in most

cases. It is worth noticing that the ORB-SLAM2 method performs well based on

the feature-based scheme as it achieves wide baseline matching, which prevents

the tracker from getting stuck in local minimum. In contrast, the ElasticFusion

method tends to lose track of the target object when the initial pose is not accurate

since the energy minimization scheme is sensitive to perturbation caused by the

introduced distortion in this work.

3D objects. Since the tracking accuracy and area of an object within one frame are

in positive correlation, most approaches achieve better performance on tracking

the Soda, Chest, and House sequences. Similar to tracking 2D objects, methods

with energy minimization scheme do not perform well on the 3D dataset. However,

they also show the ability to refine poses under the short-baseline conditions. We

note that although the AUC scores of the ElasticFusion+ and PWP3D+ methods

seem to be higher than the other approaches, it does not mean that they outperform

others because their tasks are significantly simplified as the ground truth of the

previous pose is given when a failure occurs. As the UDP algorithm does not have

any further pose refinement scheme, the estimated pose accuracy is not as high as

the other approaches. Both PWP3D and ElasticFusion methods are prone to losing

track of the target when its appearance changes drastically.

4.4.2 Performance Analysis by Attributes

In this section, we show experimental results for each method with respect to

different lighting and movement conditions.

2D objects. We present the pose tracking results under two different lighting

conditions and freestyle condition movements in Table 4.4. As both ORB [80]

doi:10.6342/NTU201800854

73

Table 4.4: AUC scores of evaluated approaches in the dynamic lighting conditions

and the freestyle motion conditions.

Model Approach Flashing Light Moving Light Free Motion

2D

SIFT+IPPE 14.194 13.902 13.904

SIFT+OPnP 15.380 15.183 14.408

ASIFT+IPPE 13.996 13.584 12.808

ASIFT+OPnP 15.312 14.902 13.461

DPE16 12.996 7.516 9.793

ORB-SLAM2 14.879 14.128 14.986

ElasticFusion 1.974 7.479 2.948

ElasticFusion+ 16.981 18.173 18.107

3D

UDP 5.170 7.245 3.857

PWP3D 5.084 4.907 2.890

PWP3D+ 13.071 14.434 16.041

ORB-SLAM2 15.906 15.987 9.104

ElasticFusion 1.444 2.005 0.278

ElasticFusion+ 14.598 12.299 10.871

and SIFT [9] are less sensitive to illumination change, the feature-based methods

perform well in sequences under lighting variations. In contrast, the DPE16

algorithm does not track object poses well under different lighting conditions as

the direct methods operate on the pixel values without extracting features that are

designed to handle illumination changes.

The pose tracking results of 2D objects in different motion patterns and speeds

are presented in Figure 4.26. Due to fast camera speeds, the recorded images in the

translation case contain significant motion blur. As the feature-based approaches

are not able to determine useful correspondences in blurry images, these methods

do not track poses well. On the other hand, the DPE algorithm performs well with

doi:10.6342/NTU201800854

74

SIFT+IPPE

SIFT+OPnP

ASIFT+IPPE

ASIFT+OPnP

DPE16

ORB-SLAM2

ElasticFusion

ElasticFusion+

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

Translation (2D)

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

Zoom (2D)

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

In-plane Rotation (2D)

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

Out-of-plane Rotation (2D)

Figure 4.26: Performance by attributes with different speeds for 2D objects on the

proposed benchmark dataset. Level 5 stands for the highest speed.

different camera speeds as it can handle objects with less texture.

The ASIFT algorithm outperforms other feature-based approaches in the se-

quences with Out-of-plane Rotation since it is designed to account for the affine

transformation. We note the ElasticFusion method performs better at higher camera

speed. This may be attributed to the fact that the decreased frame number of high-

speed sequences also reduces the changes that iterative minimization approaches

lose track. As in-depth analysis of this issue requires different experimental setups

which are beyond the scope of this work, we will address it in future work.

The precision plots for the performance of the evaluated methods on all the

attribute subsets are shown from Figure 4.27 to Figure 4.29.

doi:10.6342/NTU201800854

75

SIFT+IPPE

SIFT+OPnP

ASIFT+IPPE

ASIFT+OPnP

DPE16

ORB-SLAM2

ElasticFusion

ElasticFusion+

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

(a) Translation (b) Zoom

Figure 4.27: Precision plots for 2D object (a) Translation and (b) Zoom sub-

datasets. From top to bottom: lowest speed (i.e., level 1) to highest speed (i.e., level

5).

doi:10.6342/NTU201800854

76

SIFT+IPPE

SIFT+OPnP

ASIFT+IPPE

ASIFT+OPnP

DPE16

ORB-SLAM2

ElasticFusion

ElasticFusion+

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

(a) In-plane Rotation (b) Out-of-plane Rotation

Figure 4.28: Precision plots for 2D object (a) In-plane Rotation and (b) Out-of-

plane Rotation sub-datasets. From top to bottom: lowest speed (i.e., level 1) to

highest speed (i.e., level 5).

doi:10.6342/NTU201800854

77

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
DPE16
ORB-SLAM2
ElasticFusion
ElasticFusion+

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Flashing Light (2D)

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Moving Light (2D)

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Free Motion (2D)

Figure 4.29: Precision plots for 2D object Flashing Light, Moving Light, and Free

Motion sub-datasets.

3D objects. Since we only change the visible light in the experiments mentioned

above with illumination variations, the depth images are not significantly affected.

Compared to the pose tracking results of most approaches under standard ambient

lighting, the performance difference on 3D objects is not significant. In contrast,

as the PWP3D method recovers the object pose using color frames only, the pose

tracking results are worse than those under normal light.

The pose tracking results of 3D targets in different motion patterns and speeds

are shown in Figure 4.30. We note all approaches perform worse when the tar-

get object moves zoom in front of the camera. One reason is the size change

of a target object in two consecutive frames. For the ICP-based approaches,

e.g., ElasticFusion, it is difficult to align two point sets of different sizes. For the

segmentation-based approaches, e.g., PWP3D, it is crucial to set a gradient step in

doi:10.6342/NTU201800854

78

UDP PWP3D PWP3D+ ORB-SLAM2 ElasticFusion ElasticFusion+

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

Translation (3D)

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

Zoom (3D)

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

In-plane Rotation (3D)

1 2 3 4 5

Speed Level

0

5

10

15

20

A
re

a
U

nd
er

 C
ur

ve
 (

M
ax

 k
: 0

.2
)

Out-of-plane Rotation (3D)

Figure 4.30: Performance by attributes with different speeds for 3D objects on the

proposed benchmark dataset. Level 5 stands for the highest speed.

the z-direction, as discussed in [21]. We also notice that the depth values captured

by Kinect V2 occasionally change significantly even under the static conditions, as

illustrated in Figure 4.7. As such, the evaluated approaches may occasionally lose

track of objects when the camera is not moving.

The precision plots for the performance of the evaluated methods on all the

attribute subsets are shown from Figure 4.31 to Figure 4.33.

4.4.3 Discussion

Based on the comparative study on the benchmark datasets, we highlight some

components that are essential for advancing the field of pose tracking on 2D and 3D

doi:10.6342/NTU201800854

79

UDP PWP3D PWP3D+ ORB-SLAM2 ElasticFusion ElasticFusion+

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)
0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

(a) Translation (b) Zoom

Figure 4.31: Precision plots for 3D object (a) Translation and (b) Zoom sub-

datasets. From top to bottom: lowest speed (i.e., level 1) to highest speed (i.e., level

5).

doi:10.6342/NTU201800854

80

UDP PWP3D PWP3D+ ORB-SLAM2 ElasticFusion ElasticFusion+

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)
0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

0.05 0.1 0.15 0.2

Error Coefficient k

0

50

100

S
uc

ce
ss

 R
at

e
(%

)

(a) In-plane Rotation (b) Out-of-plane Rotation

Figure 4.32: Precision plots for 3D object (a) In-plane Rotation and (b) Out-of-

plane Rotation sub-datasets. From top to bottom: lowest speed (i.e., level 1) to

highest speed (i.e., level 5).

doi:10.6342/NTU201800854

81

UDP
PWP3D
PWP3D+
ORB-SLAM2
ElasticFusion
ElasticFusion+

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Flashing Light (3D)

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Moving Light (3D)

0.05 0.1 0.15 0.2

Error Coefficient k

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Free Motion (3D)

Figure 4.33: Precision plots for 3D object Flashing Light, Moving Light, and Free

Motion sub-datasets.

objects. First, approaches with wider baseline matching strategies can alleviate the

issue with losing track of objects more effectively than the gradient-descent-based

energy minimization methods. It is crucial to develop more effective schemes to

reduce the risk of getting stuck in a local minimum for methods based on energy

minimization. It will be of great interest to use multiple solutions, hierarchical

optimization, and particle filters to alleviate these issues.

Second, it is essential to equip the segmentation-based approach with a robust

foreground and background classifier for effective pose tracking. Although the

measured depth values are noisy (as shown in Figure 4.6 and 4.7), it would still

be more accessible to segment the foreground object from the background scene

even when in cluttered environment. In more challenging scenes, CNN-based

segmentation approaches [173, 174] can also be used.

doi:10.6342/NTU201800854

82

Third, more accurate pose tracking results may be achieved by using the 3D

coordinates (x, y, z) as training data rather than depth values. Although most

learning-based approaches use the raw RGB-D images as the training and test

data [118, 16], the training data is usually generated at the camera frame center

with the fixed translation vector, but with different rotation matrices. However, the

object appearances vary at different positions in a camera frame even with the same

rotation, as illustrated in Figure 4.34. It is also possible that local regions at two

different poses may be very similar in appearance. That is, the RGB-D appearance

and the pose are not in one-to-one correspondence. Thus, incorrect results may be

obtained if the object poses are estimated based on the raw RGB-D values. The

situation can be even worse if we change the camera model to another one with

different intrinsic parameters. The results from this comparative study show that

better results can be achieved by using RGB-XYZ values [2, 60] as these values

and the model pose are bijective. Furthermore, we can still use the same trained

model with a different camera for recovering the object pose.

4.5 Summary

In this work, we propose a large-scale benchmark dataset and perform thorough

performance evaluation under various conditions close to real-world scenarios.

The proposed benchmark dataset contains 690 color and depth videos with over

100,000 frames. These videos are recorded under seven different movement and

lighting conditions with five speeds. We select six 2D target planes with three

different texture levels, and six 3D target objects with three different geometric

level. The ground-truth poses are annotated by leveraging the clear infrared images

recorded by the global-shutter infrared camera with fast shutter speed from the

Kinect V2 sensor, which enables us to record sequence even under quick motions.

Based on the benchmark experiments, we discuss some tracking components

that are essential for improving the tracking performance. This large-scale perfor-

doi:10.6342/NTU201800854

83

Figure 4.34: The appearances of cubes are different with the same rotation

(which is an identity matrix in this image) at different positions. It is challenging

to effectively recover the accurate object pose based on the raw RGB-D values

if the training data is only generated at the camera frame center with different

rotation matrices. Ambiguous results may be obtained with different rotation in

this condition. For example, we may get a pose result with inaccurate rotation for

the up-right cube in this image since there exists another candidate which has a

more similar RGB-D appearance with different rotation at the camera frame center.

mance evaluation facilitates a better understanding of the state-of-the-art object

pose tracking approaches, and provide a platform for gauging new algorithms.

We note that considerable progress has recently been made to improve the state-

of-the-art methods for pose tracking [114, 115, 139, 21]. Our future work will

focus on extending the datasets (e.g., change the background to cluttered one and

adding partial occlusion) and evaluate more methods once they are made publicly

available.

doi:10.6342/NTU201800854

84

doi:10.6342/NTU201800854

Chapter 5

DPE: Direct Pose Estimation for

Planar Objects

In this work, we propose a direct method to estimate the 6DoF poses of a planar

target from a calibrated camera by measuring the similarity between the projected

planar target object Ot and observed camera image Ic based on appearance. As

the proposed method is based on a planar object rather than a 3D model, the

pose ambiguity problem as discussed in prior arts is inevitably bound to occur

[175, 88, 176, 133]. Pose ambiguity is related to situations where the error function

has several local minima for a given configuration, which is the main cause of

flipping estimated poses in an image sequence. Based on image observations, one

of the ambiguous poses with local minima, according to an error function, is the

correct pose. Therefore, after obtaining an initial rough pose using an approximate

pose estimation scheme, we determine all ambiguous poses and refine the estimates

until they converge to local minima. The final pose is chosen as the one with the

lowest error among these refined ambiguous poses. We show some pose estimation

results by the proposed method in Figure 1.2. Extensive experiments are conducted

to validate the proposed algorithm in this work. In particular, we evaluate the

proposed algorithm on different types of templates with varying levels of degraded

images caused by blur, intensity, tilt angle, and compression noise. Furthermore, we

85

doi:10.6342/NTU201800854

86

evaluate the proposed algorithm on the dataset proposed by Gauglitz et al. [4] and

our OPT dataset presented in Chapter 4 against the state-of-the-art pose estimation

methods.

The main contributions of this work are summarized as follows. First, we

propose an efficient direct pose estimation algorithm for planar targets undergoing

arbitrary 3D perspective transformations. Second, we show the proposed pose

estimation algorithm performs favorably against the state-of-the-art feature-based

approaches in terms of robustness and accuracy. Third, we demonstrate the pro-

posed pose refinement method not only improves the accuracy of estimated results

but also alleviates the pose ambiguity problem effectively. The source code and

datasets are available on our project website at media.ee.ntu.edu.tw/research/DPE.

Based on our prior study in [3], in this work, we extend and construct an

image pyramid for the APE method as described in Section 5.1, and we apply

a new PR approach based on the LK algorithm as described in Section 5.2. We

show experimental results with significant improvements regarding accuracy and

efficiency compared to the previous work in Section 5.3.

5.1 Approximate Pose Estimation

We first normalize the target image Ot and the camera image Ic with pixel values

in the range [0, 1]. Let Tp be the transformation at pose p in (2.1). Assume a

reference point xi = [xi, yi, 0]> in the target image is transformed separately to ui1
and ui2 in the camera image with two different poses p1 and p2. It has been shown

by Korman et al. [177] that if any distance between ui1 and ui2 is smaller than a

positive value ε, with upper bound in the Big-O notation [178]:

∀xi ∈ Ot : d(Tp1(xi), Tp2(xi)) = O(ε), (5.1)

then the following equation holds:

|Ea1(p1)− Ea1(p2)| = O(εV̄), (5.2)

http://media.ee.ntu.edu.tw/research/DPE

doi:10.6342/NTU201800854

87

𝜃𝑧𝑡

Tile Angle

𝜃𝑧𝑐

𝜃𝑥

Figure 5.1: Illustration of rotation angle: θx indicates the tilt angle be-

tween the camera and the target image when the rotation is factored as R =

Rz(θzc)Rx(θx)Rz(θzt).

where V̄ denotes the mean variation of Ot, which represents the mean value over

the entire target image of the maximal difference between each pixel and any of its

neighbors. The mean variation V̄ can be constrained by filtering Ot. In addition,

the error function Ea1(·) is defined in (2.4). The main result is that the difference

between Ea1(p1) and Ea1(p2) is bounded in terms of ε. In the proposed direct

method, we only need to consider a limited number of poses by constructing an

ε-covering pose set S [179] based on (5.1) and (5.2).

5.1.1 Constructing the ε-covering Set

As illustrated in Figure 5.1, in this stage, we factor the rotation as follows [65]:

R = Rz(θzc)Rx(θx)Rz(θzt)

=


czcczt − cxszcszt −cxcztszc − czcszt sxszc

cztszc + cxczcszt cxczcczt − szcszt −sxczc
sxszt sxczt cx

 ,
(5.3)

where we use the notation ca = cos(θa) and sa = sin(θa) for a = zc, x, zt.

Moreover, Rx(·) and Rz(·) are defined in (2.7). Therefore, the object pose is

doi:10.6342/NTU201800854

88

now parameterized as p = [θzc , θx, θzt , tx, ty, tz]
>. These Euler angles θzc , θx, and

θzt are in the range [−180°, 180°], [0°, 90°], and [−180°, 180°], respectively. In

addition, the translation parameters tx, ty, and tz are bounded such that the whole

target image would be within the camera image, and the bounds depend on the

camera intrinsic parameters. Furthermore, we set an upper bound for tz since it is

not practical to detect an extreme tiny target image in the camera image.

A pose set S is constructed such that any two consecutive poses, pk and

pk+∆pk on each dimension satisfy (5.1) in S . To construct the set, the coordinates

of xi ∈ It are normalized to the range [−1, 1]. Starting with tz, we derive the

following equation by using (2.1) for each xi:

d(Tptz (xi), Tptz+∆tz
(xi))

=

√√√√[(fxxi
tz

)
−
(

fxxi
tz + ∆tz

)]2

+
[(
fyyi
tz

)
−
(

fyyi
tz + ∆tz

)]2

= O
(1
tz
− 1
tz + ∆tz

)
.

(5.4)

To satisfy the constraint in (5.1), we use the step size with tight bound in the

Big-Theta notation [178]:

∆tz = Θ
(

εt2z
1− εtz

)
, (5.5)

which represents that (5.4) can be bounded if we construct S using (5.5) on

dimension tz.

Since θx describes the tilt angle between the camera and target image as shown

in Figure 5.1, we obtain the following equation based on tz:

d(Tpθx (xi), Tpθx+∆θx
(xi)) =

√
α2
θx

+ β2
θx

= O

(
1

tz − sin(θx + ∆θx)
− 1
tz − sin(θx)

)
,

(5.6)

where:

αθx =
(

fxxi
yi sin θx + tz

)
−
(

fxxi
yi sin(θx + ∆θx) + tz

)
,

βθx =
(
fyyi cos θx
yi sin θx + tz

)
−
(
fyyi cos(θx + ∆θx)
yi sin(θx + ∆θx) + tz

)
.

(5.7)

doi:10.6342/NTU201800854

89

In addition, to satisfy the constraint in (5.1), we set the step size when using (5.6):

∆θx = Θ
sin−1

tz − 1
ε+ 1

tz−sin(θx)

− θx
 . (5.8)

Let θz′t = θzt + ∆θzt , we obtain the following equation based on tz and θx:

d(Tpθzt
(xi), Tpθzt+∆θzt

(xi)) =
√
f 2
xα

2
θzt

+ f 2
y c

2
xβ

2
θzt

≤
√
f 2
xα

2
θzt

+ f 2
yβθ2

zt

= O

(
∆θzt

tz + k sin(θx)

)
,

(5.9)

where k denotes any constant in the range of
[
−
√

2,
√

2
]
, and:

αθzt = cztx− szty
sx(sztx+ czty) + tz

−
cz′t
x− sz′ty

sx(sz′tx+ cz′t
y) + tz

,

βθzt = sztx+ czty

sx(sztx+ czty) + tz
−

sz′t
x+ cz′t

y

sx(sz′tx+ cz′t
y) + tz

.

(5.10)

An illustrative example of (5.10) is shown in Figure 5.2. To make (5.10) satisfy

the constraint in (5.1), we set the step size:

∆θzt = Θ (ε (tz + k sin(θx))) , (5.11)

where larger k means larger bounded steps for constructing S . We set k to be 0 for

∆θzt in the proposed method.

As θzt denotes 2D image rotation of the planar target, it does not influence the

bounded steps for θzc . Let θz′c = θzc + ∆θzc , we obtain the following equation

depending on the current tz and θx:

d(Tpθzc (xi), Tpθzc+∆θzc
(xi)) =

√
f 2
xα

2
θzc

+ f 2
yβ

2
θzc

= O

(
∆θzc

tz + k sin(θx)

)
,

(5.12)

where:

αθzc = czcx− cxszcy
sxy + tz

−
cz′cx− cxsz′cy
sxy + tz

,

βθzc = szcx+ cxczcy

sxy + tz
−
sz′cx+ cxcz′cy

sxy + tz
.

(5.13)

doi:10.6342/NTU201800854

90

Rotation around
𝑍𝑡-axis

1

Δ𝜃𝑧𝑡

𝑂(Δ𝜃𝑧𝑡)

1

Δ𝜃𝑧𝑡

𝑂
Δ𝜃𝑧𝑡

𝑡𝑧 − sin 𝜃𝑥

𝑂
Δ𝜃𝑧𝑡

𝑡𝑧 + sin 𝜃𝑥

Δ𝜃𝑧𝑡

(a) (b)

Figure 5.2: (a) 2D illustration of rotation around Zt-axis. The linear distance

(orange solid line) between points before and after applying rotation is bounded by

the arc length (brown dotted line). (b) 3D illustration of rotation around Zt-axis.

The linear distance between points is a function of tilt angle θx.

We can realize (5.13) in a similar way to (5.10). To make (5.13) satisfy the

constraint in (5.1), we set the step size:

∆θzc = Θ(ε(tz + k sin(θx))) = Θ(ε(tz)), (5.14)

which k is set to 0.

As the bounded steps for tx and ty are also influenced by horizontal distance tz

and tilt angle θx only, we have:

d(Tptx (xi), Tptx+∆tx
(xi)) =

√
f 2
xα

2
tx + f 2

yβ
2
tx

= O

(
∆tx

tz + k sin(θx)

)
,

(5.15)

where:

αtx = x+ tx
sxy + tz

− x+ tx + ∆tx
sxy + tz

,

βtx = y

sxy + tz
− y

sxy + tz
.

(5.16)

And:

d(Tpty (xi), Tpty+∆ty
(xi)) =

√
f 2
xα

2
ty + f 2

yβ
2
ty

= O

(
∆ty

tz + k sin(θx)

)
,

(5.17)

doi:10.6342/NTU201800854

91

Table 5.1: Bounded step size on each dimension in the pose domain for constructing

the ε-covering pose set.

Dimension Step Size

θzc Θ(εtz)

θx Θ
(

sin−1
(
tz − 1

ε+ 1
tz−sin(θx)

)
− θx

)
θzt Θ(εtz)

tx Θ
(
ε
(
tz −
√

2 sin(θx)
))

ty Θ
(
ε
(
tz −
√

2 sin(θx)
))

tz Θ
(

εt2z
1−εtz

)

where:

αty = x

sxy + tz
− x

sxy + tz
,

βty = y + ty
sxy + tz

− y + ty + ∆ty
sxy + tz

.

(5.18)

To make (5.16) and (5.18) satisfy the constraint in (5.1), we set these step sizes:

∆tx = Θ (ε (tz + k sin(θx))) = Θ
(
ε
(
tz −
√

2 sin(θx)
))
, (5.19)

∆ty = Θ (ε (tz + k sin(θx))) = Θ
(
ε
(
tz −
√

2sin(θx)
))
. (5.20)

as k is set to −
√

2 for practical consideration. Table 5.1 summarizes the bounded

step size on each dimension for the ε-covering pose set.

Finally, the pose set is constructed recursively starting from tz based on the

bounded step shown in Table 5.1. We then determine values of θx based on its

bounded step which is influenced by tz. The remaining pose parameters θzc , θzt ,

tx, and ty are determined based on each of their bounded steps, which are affected

only by tz and θx and independent of each other.

doi:10.6342/NTU201800854

92

5.1.2 Coarse-to-Fine Estimation

As the parameter space is large, the computational and memory costs are pro-

hibitively high if the ε-covering set is used straightforwardly for pose estimation.

In this work, we develop a coarse-to-fine approach for fast and accurate pose

estimation. The pose set S is first constructed with a coarse ε. After obtaining the

best pose pb and the associated error measure Ea1(pb), we select the poses within

a threshold:

SL = {pL | Ea1(pL) < Ea1(pb) + L} , (5.21)

to be considered in the next step. Here the constant L is a threshold empirically

determined. Based on SL, we create sets with finer ε′:

S ′ = {p′ | ∃pL ∈ SL : (5.1) holds for p′,pL and ε′} , (5.22)

and repeat this process until we obtain the desired precision parameter ε∗. In our

implementation, the initial ε is set to be 0.25 and is diminished by multiplying a

scale factor of 0.662 in each iteration. The precision parameter ε∗ is set to meet the

condition that for each point in the target image, the maximum distance between

neighboring points in the camera image transformed by poses in the ε-covering

pose set is less than 1 pixel. Empirically, ε∗ would be around 0.01. The best pose

in the last set is considered as the approximate estimate.

5.1.3 Approximate Error Measure

If we approximate the error measure E ′a1 with random sampling only a portion

of pixels instead of computing Ea1 with sampling all pixels in Ot, according to

Hoeffding’s inequality [180], E ′a1 is close to Ea1 within a precision parameter δ if

the number of sampling pixels m is sufficiently large:

P (|E ′a1 − Ea1| > δ) ≤ 2e−2δ2m, (5.23)

where P (·) represents the probability measure. This inequality suggests that if

m is properly selected, the approximation error between E ′a1 and Ea1 can be

doi:10.6342/NTU201800854

93

bounded with high probability. In other words, E ′a1 is a close approximation of

Ea1 within the probably approximately correct (PAC) framework [181]. With this

approximation, the runtime of estimating the error measure can be significantly

reduced by inspecting only a small fraction of pixels in a target image. We

normalize the intensity term and add the chroma components to the appearance

distance measure to account for lighting variation.

5.1.4 Pyramidal Implementation

To constrain the mean variation V̄ in (5.2), it is common to blur Ot (and Ic) before

carrying out the proposed approximate pose estimation method. Since a blurry

image has a texture similar to that of a lower resolution image, we construct an

image pyramid instead of directly blurring images. It is worth using a lower

resolution image for pose estimation from some perspectives. First, when we

sample pixels on a smaller image, the cache miss rate will be lower and thus reduce

memory traffic. Second, we can also sample a smaller amount of pixels in (5.23)

when using low-resolution images. Starting from the lowest resolution image,

we proceed to the next level (i.e., higher resolution image) when the distance

in (5.1) is smaller than one pixel for all transformations. Empirically, the pyramid

implementation can increase the runtime performance significantly while achieving

similar or even higher accuracy and robustness for pose estimation.

5.2 Pose Refinement

We obtain a coarse pose p′ ≡ (R′, t′) using the proposed approximate pose

estimation scheme. However, this estimate is bounded based on the distance in the

appearance space rather than the pose space. Thus the estimated and actual poses

may be significantly different even when the appearance distance is small, mainly

when the tilt angle of a target image is large. In the meanwhile, the pose ambiguity

problem is likely to occur as illustrated in Figure 1.2. As such, we propose a pose

doi:10.6342/NTU201800854

94

refinement method to improve accuracy and address the ambiguity problem of

estimates.

5.2.1 Determining Candidate Poses

In order to address the pose ambiguity problem, we first transform four corner

points xc1, xc2, xc3, and xc4 in the target image Ot to uc1, uc2, uc3, and uc4 in the

observed camera image Ic with p′, respectively. We then compute all stationary

points of the error function (2.3) based on the Gröbner basis method [134]. Only

the stationary points with the two smallest objective values in (2.3) are plausible

poses, and these two ambiguous poses p′1 and p′2 are both chosen as the candidate

poses.

5.2.2 Refining Candidate Poses

After obtaining the two candidate poses, we further refine the estimates using

a dense image alignment method which minimizes the SSD error Ea2 in (2.5)

(instead of the SAD error Ea1 in (2.4) as it is not continuously differentiable) by

the LK-based approach. For each candidate pose pc, we solve the nonlinear least

squares problem using the Gauss-Newton method. To approximate how the image

changes with respect to pose, we use the first-order Taylor series as follows:

∆p∗ = argmin
∆p

1
n

n∑
i=1

(Ic (ui (pc + ∆p))−Ot (xi))2

≈ argmin
∆p

n∑
i=1

Ic (ui (pc)) + ∂Ic
∂p

∣∣∣∣∣
p=pc

∆p−Ot (xi)
2

.

(5.24)

Different from the method described in Section 5.1, here the pose p is parame-

terized as a 6D vector consisting of the 3D rotation vector (which is presented

in Section 2.1.2) and the 3D translation vector:

p =

r

t

 , r =


rx

ry

rz

 ∈ R3, t =


tx

ty

tz

 ∈ R3. (5.25)

doi:10.6342/NTU201800854

95

To compute ∆p in each iteration, we set the first derivative of (6.3) to zero and

solve the resulting system of linear equations:

Jc∆p = Ot − Ic, (5.26)

where Ot and Ic are vector forms of Ot (xi) and Ic (ui), respectively. In (5.26), Jc
is the Jacobian matrix of Ic with respect to p at the pose p = pc and computed by

the chain rule (in the numerator-layout notation):

Jc = ∂Ic
∂p

∣∣∣∣∣
p=pc

=



∂Ic(u1)
∂p

∂Ic(u2)
∂p
...

∂Ic(un)
∂p


, (5.27)

∂Ic
∂p

= ∂Ic
∂u

[
∂u
∂r ,

∂u
∂t

]
=
[
∂Ic
∂u
, ∂Ic
∂v

] [
∂u
∂x̂

∂x̂
∂R̂

∂R̂
∂r ,

∂u
∂x̂

]
, (5.28)

∂u
∂x̂

=

fxẑ 0 −fxx̂
ẑ2

0 fy
ẑ
−fy ŷ

ẑ2

 , ∂x̂
∂R̂

=


x y 0 0 0 0

0 0 x y 0 0

0 0 0 0 x y

 , (5.29)

where R̂ = [R11, R12, R21, R22, R31, R32]> denotes the vector with elements in the

left two columns of the rotation matrix R, and

x̂ =


x̂

ŷ

ẑ

 =


R11 R12 tx

R21 R22 ty

R31 R32 tz




x

y

1

 , (5.30)

is the camera-space coordinate transformed from the object-space coordinate

x = [x, y, 0]>.

In addition, the derivative of R̂ with respect to r can be obtained using the

following formula [182]:

∂R
∂ra

=
ra [r]× + [r× (I−R) ei]×

‖r‖2 R, a = x, y, z, (5.31)

doi:10.6342/NTU201800854

96

where I and ei are the identity matrix and the i-th vector of the standard basis in R3,

respectively. In addition, [r]× represents the cross-product matrix for the vector r

which is as defined in (2.17).

A closed form solution of (5.26) is:

∆p =
(
J>c Jc

)−1
J>c (It − Ic) . (5.32)

As the least squares problem is nonlinear, the Gauss-Newton iteration method does

not always converge with fixed step size. We thus perform a backtracking line

search to scale the step size after each iteration of computing (5.32). We shrink

∆p by ∆p← α∆p until it meets the Armijo-Goldstein condition:

Ea2(pc + ∆p) ≤ Ea2(pc) + c∇Ea2(pc)>∆p, (5.33)

where ∇Ea2(pc) is the local function gradient. We set α = 0.5 and c = 10−4

empirically in this work. The candidate pose pc is refined by pc ← pc + ∆p until

the vector norm ‖∆p‖ is less than a predefined threshold ε∆p.

Finally, the pose corresponding to the smaller Ea2 is selected from the two

refined candidate poses. The main steps of the proposed pose estimation method

are summarized in Algorithm 1. It should be noted that we also perform the

pyramid implementation for the refinement process to increase both the accuracy

and efficiency.

5.3 Experimental Results

We evaluate the proposed algorithm for the 6DoF pose estimation problem using a

synthetic image dataset that we develop and two real image benchmark datasets. As

the color of each template in the real image benchmark datasets is slightly changed

after being generated by a printer and then viewed by a camera, we calibrate each

template in the two real image benchmark datasets before carrying out performance

evaluation.

doi:10.6342/NTU201800854

97

Algorithm 1: Direct 6DoF Pose Estimation.
Input: Target image Ot, camera image Ic, intrinsic parameters, and

parameters ε∗, ε∆p;

Output: Estimated pose result p∗;

1: Build image pyramids for Ot and Ic;

2: Start from images with lowest resolution;

3: Create an ε-covering pose set S;

4: Find pb from S with E ′a1 according to (5.23);

5: while ε > ε∗ do

6: Obtain the set SL according to (5.21);

7: Diminish ε;

8: if d < 1 according to (5.1) then

9: Change to the next image resolution;

10: end if

11: Replace S according to (5.22);

12: Find pb from S with E ′a1 according to (5.23);

13: end while

14: Determine the candidate poses p1 and p2 with pb;

15: for i = 1→ 2 do

16: Let pc = pi;

17: repeat

18: Compute Jc according to (5.27);

19: Compute ∆p according to (5.32);

20: while Condition according to (5.33) is not met do

21: ∆p← α∆p

22: end while

23: pc ← pc + ∆p

24: until ‖∆p‖ < ε∆p

25: Let pi = pc;

26: end for

27: Return the pose p∗ with smaller Ea2 from p1 and p2;

doi:10.6342/NTU201800854

98

Table 5.2: Average runtime (measured in seconds) for approaches on different

datasets. Although SIFT-based approach is the fastest method among these three

different schemes, its performance is quite limited. Numbers in parentheses de-

note the average runtime of the CUDA implementation of the proposed method,

which can be executed more efficiently on a GPGPU platform as it can be easily

parallelized.

Method
Dataset

Synthetic VT OPT

SIFT-based

Approach

SIFT 7.431 3.608 11.261

RANSAC 0.010 0.005 0.098

IPPE/OPnP 0.001/0.009 0.001/0.008 0.001/0.008

Total 7.446 3.618 11.364

ASIFT-based

Approach

ASIFT 10.903 15.806 38.884

RANSAC 0.004 0.003 0.055

IPPE/OPnP 0.001/0.009 0.001/0.008 0.001/0.008

Total 10.912 15.814 38.944

DPE

APE 10.549 (1.505) 17.920 (1.217) 18.545 (0.994)

PR 0.571 (0.117) 0.694 (0.180) 0.214 (0.088)

Total 11.120 (1.622) 18.615 (1.397) 18.759 (1.082)

All the experiments are completed using MATLAB on a machine with an Intel

Core i7-6700K 4.0 GHz processor and 32 GB RAM. In addition, we implement

the proposed direct method on an NVIDIA GTX 970 GPU using CUDA based

on [183]. Table 5.2 shows average runtime for different algorithms.

We compare the proposed algorithm with feature-based pose estimation meth-

ods. The proposed direct pose estimation (DPE) algorithm is constructed with the

approximate pose estimation (APE) and pose refinement (PR) approaches. Based

on preliminary experiments, we determine the SIFT [9] representation performs

better than other alternative features in terms of repeatability and accuracy. Similar

doi:10.6342/NTU201800854

99

0 20 40 60 80 100

Rotation Error (Degree)

0

20

40

60

80

100
C

um
ul

at
iv

e
P

er
ce

nt
ag

e
(%

)

 r = 20°

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE

0 10 20 30 40 50

Translation Error (%)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

 t = 10%

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE

Figure 5.3: Cumulative percentage of poses whose rotation or translation errors are

under values specified in the x-axis over experiments. The vertical dashed lines

correspond to the thresholds used to detect unsuccessfully estimated poses. There

is a total of 36,277 poses estimated by each pose estimation approach.

observations have also be reported in the literature [4]. As the ASIFT [10] method

is considered the state-of-the-art affine-invariant method to determine correspon-

dences under large view changes, we use both the SIFT and ASIFT representations

in the evaluation against feature-based schemes. The RANSAC-based method [11]

is then used to eliminate outliers before an object pose is estimated by a PnP algo-

rithm. It has been shown that, among the PnP algorithms [88, 12, 13, 91, 135], the

OPnP [13] and IPPE [135] algorithms achieve the state-of-the-art results in terms

of efficiency and precision for planar targets. Thus, we use these two algorithms as

the pose estimator in the feature-based methods.

Given the ground-truth rotation matrix R̃ and translation vector t̃, we compute

the rotation error Er(°) of the estimated rotation matrix R in degrees according

to (2.32). The translation error Et(%) of the estimated translation vector t is

measured by the relative difference between t̃ and t according to (2.36). We define

a pose to be successfully estimated if its both errors are under predefined thresholds.

We use δr = 20° and δt = 10% as the thresholds on rotation error and translation

error empirically, as shown in Figure 5.3. The success rate (SR) is defined as the

percentage of the successfully estimated poses within each test condition. In the

doi:10.6342/NTU201800854

100

0 5 10 15 20

Rotation Error (Degree)

0

20

40

60

80

100
C

um
ul

at
iv

e
P

er
ce

nt
ag

e
(%

)

DPE (Synthetic)
DPE16 (Synthetic)
DPE (VT)
DPE16 (VT)

0 2 4 6 8 10

Translation Error (%)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

DPE (Synthetic)
DPE16 (Synthetic)
DPE (VT)
DPE16 (VT)

Figure 5.4: Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on the same datasets

used by [3], i.e., the proposed synthetic dataset and the visual tracking dataset built

by Gauglitz et al. [4].

following sections, the average rotation and translation errors are computed only

for successfully estimated poses.

We compare the DPE algorithm proposed in this work with the algorithm

proposed in the previous work (i.e., DPE16) [3] on the same datasets [3]. Figure 5.4

shows that the proposed DPE algorithm performs accurately and robustly against

the DPE16 method. For presentation clarify, we do not show the evaluation results

of the DPE16 method in the following sections.

5.3.1 Synthetic Image Dataset

For our experiments, we use a set of synthetic images consisting of 8400 test images

covering 21 different test conditions. Each test image is generated from warping

a template image according to the randomly generated pose with the tilt angle

in the range [0°, 75°] with a randomly chosen background image as illustrated

in Figure 5.5. The template image size is 640×480 pixels. These templates

are classified into four different classes, namely low texture, repetitive texture,

normal texture, and high texture [164] as shown from top to bottom in Figure 5.5.

doi:10.6342/NTU201800854

101

Background ImagesTemplates Test Images

Figure 5.5: A synthetic test image was generated from a warping template image

according to a randomly generated pose on a randomly chosen background image.

Each class is represented by two targets. The background images are from the

database [184] and resized to 800×600 pixels.

Undistorted Images. The pose estimation results of the SIFT-based, ASIFT-based,

and proposed direct methods on the undistorted test images are shown in Table 5.3.

For each image, the average rotation error Er, translation error Et, and success

rate are presented. The evaluation results show that the proposed DPE method

performs accurately and robustly against feature-based approaches on various

template images. In addition, the proposed refinement approach can effectively

improve accuracy that is first estimated by the APE method.

In most cases, the feature-based approaches do not estimate pose accurately on

textureless template images or template images with feature points that are similar

to each other. Although the IPPE algorithm is designed for pose estimation of

planar objects, it does not perform as well as the OPnP algorithm that is able to

estimate pose more accurately in general scenarios.

Degraded Images. We evaluate these approaches using all templates with different

types of image degradation: (a) Gaussian Blur with kernel width of {1, 2, 3, 4, 5}

pixels, (b) JPEG Compression with the quality parameter set to {90, 80, 70, 60, 50},

doi:10.6342/NTU201800854

102

Table 5.3: Evaluation results for feature-based approaches and the proposed direct

methods with undistorted test images in terms of average numbers of rotation error

Er, translation error Et, and success rate in each test condition. The best values

are highlighted in bold.

Bump Sign Stop Sign Lucent MacMini Board

Method Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%)

SIFT+IPPE 0.85 0.34 40.0 1.90 0.54 86.0 0.23 0.25 28.0 0.32 0.24 86.0

SIFT+OPnP 0.76 0.40 40.0 1.18 0.46 86.0 0.20 0.24 28.0 0.25 0.24 86.0

ASIFT+IPPE 9.70 2.92 20.0 2.96 0.81 94.0 1.48 0.43 100 1.65 0.51 94.0

ASIFT+OPnP 8.20 2.22 22.0 2.72 0.74 100 1.38 0.41 100 1.53 0.45 96.0

APE 1.10 0.33 100 1.44 0.42 100 0.90 0.47 98.0 2.56 1.23 94.0

DPE 0.39 0.17 100 0.42 0.24 100 0.16 0.14 100 0.16 0.12 98.0

Isetta Philadelphia Grass Wall

Method Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%)

SIFT+IPPE 0.74 0.35 92.0 0.56 0.40 98.0 1.15 0.50 30.0 0.28 0.37 96.0

SIFT+OPnP 0.56 0.32 92.0 0.55 0.43 98.0 1.48 0.47 30.0 0.25 0.36 96.0

ASIFT+IPPE 1.59 0.57 100 1.29 0.34 98.0 2.17 0.52 52.0 1.96 0.36 90.0

ASIFT+OPnP 1.40 0.50 98.0 1.26 0.35 100 1.33 0.37 52.0 1.80 0.36 94.0

APE 1.03 0.35 100 1.63 0.49 100 1.96 0.91 100 1.57 0.68 98.0

DPE 0.21 0.16 100 0.21 0.11 100 0.15 0.14 100 0.17 0.13 100

(c) Intensity Change with pixel intensity scale factor set to {0.9,0.8,0.7,0.6,0.5},

and (d) Tilt Angle in the range of {[0°, 15°), [15°, 30°), [30°, 45°), [45°, 60°), and

[60°, 75°)}. Figure 5.6 and Figure 5.7 shows the evaluation results. The proposed

DPE algorithm performs favorably against the other feature-based methods on

blurry images. Although the translation errors of the proposed method appear

to be larger than those of feature-based methods, these errors are computed only

on successfully estimated poses. As the proposed method can estimate template

doi:10.6342/NTU201800854

103

SIFT+IPPE SIFT+OPnP ASIFT+IPPE ASIFT+OPnP APE DPE

1 2 3 4 5

Distortion Level

0

2

4

6

8

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Distortion Level

0

0.5

1

1.5

2

2.5

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Distortion Level

0

0.5

1

1.5

2

2.5

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Distortion Level

0

0.2

0.4

0.6

0.8

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Distortion Level

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

1 2 3 4 5

Distortion Level

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

(a) Gaussian Blur (b) JPEG Compression

Figure 5.6: Experimental results on synthetic data under (a) Gaussian Blur and

(b) JPEG Compression conditions.

poses successfully even under blur conditions, the errors are larger due to slightly

inaccurate pose estimates in blurry images.

All approaches are able to deal with certain levels of distortion with JPEG

doi:10.6342/NTU201800854

104

SIFT+IPPE SIFT+OPnP ASIFT+IPPE ASIFT+OPnP APE DPE

1 2 3 4 5

Distortion Level

0

0.5

1

1.5

2

2.5

3

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Distortion Level

0

1

2

3

4

5

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Distortion Level

0

0.2

0.4

0.6

0.8

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Distortion Level

0

0.2

0.4

0.6

0.8

1

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Distortion Level

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

1 2 3 4 5

Distortion Level

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

(a) Intensity Change (b) Tilt Angle

Figure 5.7: Experimental results on synthetic data under (a) Intensity Change and

(b) Tilt Angle conditions.

compression noise.

For images with intensity changes, the SIFT-based methods perform worse

than other approaches as fewer features are detected in low contrast images by the

doi:10.6342/NTU201800854

105

0 5 10 15 20

Rotation Error (Degree)

0

20

40

60

80

100
C

um
ul

at
iv

e
P

er
ce

nt
ag

e
(%

)

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE

0 2 4 6 8 10

Translation Error (%)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE

Figure 5.8: Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on the proposed

synthetic image dataset. There is a total of 8400 poses estimated by each pose

estimation approach.

SIFT detector. We note that the SIFT-based methods can still perform well under

low-intensity conditions when we adjust the feature detection threshold to extract

more features.

Although the SIFT-based approaches can detect and match features accurately

under small tilt angles, these methods frequently fail when the tilt angles are larger.

In contrast, the proposed algorithm and the ASIFT-based methods are able to

estimate 6DoF poses relatively well even the template images are perspectively

distorted in the camera images.

We show the overall evaluation results on the proposed synthetic image dataset

in Figure 5.8. Overall, the proposed direct method performs favorably against the

feature-based approaches with the success rate of 98.90%. The success rate of the

SIFT-based and ASIFT-based approaches are 49.65% and 74.26%, respectively.

Refinement Analysis. To improve pose estimation accuracy, we propose a refine-

ment method that minimizes the appearance distance between the template and

camera images using an LK-based scheme as described in Section 5.2. Figure 5.9

shows pose estimation results with and without the refinement approach on the

doi:10.6342/NTU201800854

106

0.1 0.2 0.4 0.8 1.6 3.2 6.4 13 26 51 102

Rotation Error (Degree)

0

10

20

30

40

50

60
P

er
ce

nt
ag

e
of

 P
os

es
 (

%
)

APE
DPE

0.1 0.2 0.4 0.8 1.6 3.2 6.4 13 26 51 102

Translation Error (%)

0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
 P

os
es

 (
%

)

APE
DPE

Figure 5.9: Pose estimation results with refinement approach (DPE) and without

refinement approach (APE). The average value of rotation and translation errors

are both reduced by the proposed refinement approach.

synthetic dataset. The rotation and translation errors can be reduced by 1.951° and

0.670% respectively with proposed refinement scheme. Sample images rendered

with poses estimated by the proposed algorithm with and without the refinement

scheme on the synthetic image dataset are shown in Figure 1.2.

We design another experiment to demonstrate the proposed algorithm is able

to disambiguate plausible poses. A template image from the synthetic dataset is

warped according to pose pt. Two ambiguous pose, pa1 and pa2 , can be obtained

from pt using the functional minimization method [13]. One of the two plausible

poses p′a is randomly chosen and added with some Gaussian noise. The refinement

approach is then applied to p′a for estimating the pose of the warped template

image. Finally, we compute Er and Et of both the initial noisy pose p′a and the

refined pose pr according to pt. Thus, if the proposed refinement approach can

disambiguate the plausible pose p′a, the rotation error can be reduced significantly.

All images in the synthetic dataset are used for the experiment.

We compare the proposed refinement method with the refinement approach

with only one candidate pose in Algorithm 1, and present the results in Figure 5.10.

While the rotation errors of ambiguous poses are usually large (which causes the

pose flipping), the proposed refinement approach can disambiguate the object pose

doi:10.6342/NTU201800854

107

0.1 0.2 0.4 0.8 1.6 3.2 6.4 13 26 51 102

Rotation Error (Degree)

0

10

20

30

40

50

60

70
P

er
ce

nt
ag

e
of

 P
os

es
 (

%
)

w/o
w/ 1
w/ 2

0.1 0.2 0.4 0.8 1.6 3.2 6.4 13 26 51 102

Translation Error (%)

0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 P

os
es

 (
%

)

w/o
w/ 1
w/ 2

(a) Distribution of errors

-51 -13 -3.2 -0.8 -0.2 0.2 0.8 3.2 13 51

Rotation Improvement (Degree)

0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 P

os
es

 (
%

)

Refinement with 1 Candidate Pose
Refinement with 2 Candidate Poses

-51 -13 -3.2 -0.8 -0.2 0.2 0.8 3.2 13 51

Translation Improvement (%)

0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 P

os
es

 (
%

)

Refinement with 1 Candidate Pose
Refinement with 2 Candidate Poses

(b) Improvements

Figure 5.10: Results of the proposed method without refinement (w/o), refinement

with one candidate (w/ 1), and refinement with two candidates (w/ 2). (a) The

rotation errors are reduced significantly in the ambiguous cases, but the translation

errors are relatively not because the translation terms of ambiguous poses are quite

similar in most cases. (b) The difference of pose errors before and after applying

two kinds of refinement approaches. While the proposed refinement approach can

disambiguate the object pose effectively, approach with only one candidate pose

suffers from the risk of getting trapped into a local minimum.

effectively and reduce the rotation errors significantly (which result in smoother

pose estimations throughout an image sequence). Table 5.4 shows that the proposed

refinement method can help improve estimation accuracy in terms of rotation and

translation and address the pose ambiguity problem effectively.

doi:10.6342/NTU201800854

108

Table 5.4: Evaluation results for different pose refinement approaches on the

synthetic image dataset in the refinement analysis experiment.

Approach Er(°) Et(%) SR(%)

Without refinement 2.235 1.369 66.82

Refinement with 1 candidate pose 0.734 0.461 65.49

Refinement with 2 candidate poses 0.558 0.416 92.05

5.3.2 Visual Tracking Dataset

We analyze the performance of the proposed algorithm and state-of-the-art methods

on the visual tracking (VT) dataset [4] which contains 96 videos and 6889 frames

with 6 templates. These videos are recorded under different moving and lighting

conditions with motion-blurs. The camera image size in this dataset is 640×480

pixels. And since the templates have different primary resolutions, we resize

each template to 570×420 pixels uniformly. It is a challenging database for pose

estimation due to significant viewpoint changes, drastic illumination differences,

and noisy camera images.

The evaluation results of the proposed and feature-based methods on six tem-

plates under different conditions are shown in Table 5.5 and Table 5.6. Different

from synthetic images, the color appearance of a template image may change

significantly within a video sequence in this real image dataset. The DPE algo-

rithm performs favorably against the feature-based methods under most conditions,

especially when distinct features cannot be found on a template image.

While PnP algorithms perform well in pose estimation, the success hinges on

whether the feature can be well matched. As shown in Figure 5.11, feature-based

approaches do not perform well when motion blurs occur. Similarly, feature-based

methods do not estimate pose well on videos listed in Table 5.5 and Table 5.6 due

to motion blurs. On the other hand, the proposed algorithm can estimate poses

well under blur conditions. As motion blurs are likely to occur in AR applications,

doi:10.6342/NTU201800854

109

Ta
bl

e
5.

5:
E

xp
er

im
en

ta
lr

es
ul

ts
on

th
e

vi
su

al
tr

ac
ki

ng
da

ta
se

t[
4]

un
de

rU
nc

on
st

ra
in

ed
,P

an
ni

ng
,a

nd
R

ot
at

io
n

co
nd

iti
on

s.
T

he
be

st

re
su

lts
(e

xc
lu

di
ng

th
e

pr
op

os
ed

di
re

ct
po

se
tr

ac
ki

ng
m

et
ho

d)
fo

re
ac

h
co

nd
iti

on
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

B
ri

ck
s

B
ui

ld
in

g
M

is
si

on
Pa

ri
s

Su
ns

et
W

oo
d

C
on

di
tio

n
M

et
ho

d
E

r
(°

)
E

t
(%

)S
R

(%
)

E
r
(°

)
E

t
(%

)S
R

(%
)

E
r
(°

)
E

t
(%

)S
R

(%
)

E
r
(°

)
E

t
(%

)S
R

(%
)

E
r
(°

)
E

t
(%

)S
R

(%
)

E
r
(°

)
E

t
(%

)S
R

(%
)

U
nc

on
st

ra
in

ed

SI
FT

+I
PP

E
2.

98
1.

07
0.

40
2.

60
0.

89
6.

60
1.

64
0.

72
60

.6
1.

61
0.

66
44

.0
3.

22
1.

32
26

.6
2.

04
0.

53
5.

00
SI

FT
+O

Pn
P

2.
37

0.
98

0.
40

2.
60

0.
88

6.
80

1.
48

0.
73

61
.6

1.
44

0.
65

43
.8

2.
81

1.
43

28
.4

1.
43

0.
41

5.
00

A
SI

FT
+I

PP
E

2.
67

1.
05

37
.0

2.
80

0.
92

31
.4

3.
03

1.
11

58
.0

1.
57

0.
72

91
.0

3.
40

2.
10

44
.4

2.
54

1.
03

33
.0

A
SI

FT
+O

Pn
P

1.
92

0.
93

37
.6

2.
48

0.
88

31
.4

2.
35

0.
91

57
.4

1.
31

0.
85

91
.0

3.
03

2.
11

46
.0

2.
20

1.
01

34
.8

A
PE

2.
12

1.
45

52
.0

1.
11

0.
92

88
.0

1.
57

1.
14

98
.0

0.
75

0.
76

99
.0

4.
24

3.
89

43
.4

1.
41

2.
24

53
.0

D
PE

1.
00

0.
72

52
.0

0.
93

0.
66

88
.4

1.
17

0.
70

98
.2

0.
47

0.
54

99
.8

3.
49

4.
12

46
.8

0.
67

1.
53

56
.0

D
PT

1.
11

0.
94

90
.2

1.
23

0.
81

92
.2

1.
17

0.
70

98
.4

0.
81

0.
65

96
.0

3.
69

4.
46

49
.9

0.
88

1.
43

91
.2

Pa
nn

in
g

SI
FT

+I
PP

E
–

–
0.

00
1.

29
0.

55
10

.0
2.

18
0.

65
96

.0
3.

34
1.

04
40

.0
5.

49
0.

75
20

.0
–

–
0.

00
SI

FT
+O

Pn
P

–
–

0.
00

0.
81

0.
54

10
.0

2.
39

0.
61

10
0

4.
45

1.
12

50
.0

6.
79

1.
27

24
.0

–
–

0.
00

A
SI

FT
+I

PP
E

5.
91

1.
52

80
.0

7.
89

0.
98

2.
00

4.
95

1.
15

82
.0

5.
85

0.
91

44
.0

13
.8

2.
56

10
.0

9.
94

1.
42

4.
00

A
SI

FT
+O

Pn
P

5.
80

1.
40

80
.0

19
.2

5.
59

2.
00

4.
95

0.
98

88
.0

5.
93

1.
16

62
.0

15
.5

3.
34

10
.0

16
.0

2.
02

4.
00

A
PE

4.
27

0.
50

96
.0

1.
56

1.
08

10
0

1.
79

0.
96

10
0

3.
94

1.
05

74
.0

4.
53

0.
56

10
0

6.
03

1.
24

56
.0

D
PE

1.
04

0.
29

96
.0

0.
38

0.
63

10
0

0.
90

0.
89

10
0

1.
52

0.
97

86
.0

2.
75

0.
68

10
0

1.
05

0.
93

60
.0

D
PT

1.
64

0.
36

95
.9

0.
38

0.
64

10
0

0.
95

0.
89

10
0

1.
51

0.
98

10
0

2.
68

0.
71

10
0

1.
33

0.
92

79
.6

R
ot

at
io

n

SI
FT

+I
PP

E
1.

65
0.

34
44

.0
2.

79
0.

50
56

.0
1.

17
0.

42
10

0
1.

71
0.

37
98

.0
5.

97
0.

57
74

.0
3.

76
0.

40
62

.0
SI

FT
+O

Pn
P

1.
74

0.
37

46
.0

2.
69

0.
52

56
.0

1.
05

0.
41

10
0

1.
61

0.
33

10
0

5.
61

0.
66

84
.0

2.
51

0.
39

70
.0

A
SI

FT
+I

PP
E

2.
83

0.
39

10
0

6.
15

1.
24

76
.0

2.
35

0.
36

10
0

1.
35

0.
33

10
0

6.
68

0.
91

72
.0

3.
39

0.
47

94
.0

A
SI

FT
+O

Pn
P

1.
78

0.
39

10
0

5.
09

1.
11

74
.0

1.
66

0.
37

10
0

1.
23

0.
36

10
0

5.
69

0.
90

78
.0

2.
88

0.
49

98
.0

A
PE

1.
20

0.
25

10
0

2.
00

0.
66

10
0

1.
11

0.
42

10
0

0.
71

0.
25

10
0

2.
18

0.
66

10
0

1.
64

0.
66

10
0

D
PE

0.
84

0.
24

10
0

1.
50

0.
59

10
0

0.
31

0.
46

10
0

0.
56

0.
29

10
0

0.
90

0.
52

10
0

0.
98

0.
55

10
0

D
PT

0.
84

0.
24

10
0

1.
50

0.
59

10
0

0.
32

0.
46

10
0

0.
55

0.
29

10
0

0.
88

0.
51

10
0

0.
99

0.
54

10
0

doi:10.6342/NTU201800854

110

Table
5.6:E

xperim
entalresults

on
the

visualtracking
dataset[4]underPerspective

D
istortion,Zoom

,Static
Lighting,and

D
ynam

ic

Lighting
conditions.T

he
bestresults

(excluding
the

proposed
directpose

tracking
m

ethod)foreach
condition

are
highlighted

in
bold.

B
ricks

B
uilding

M
ission

Paris
Sunset

W
ood

C
ondition

M
ethod

E
r (°)

E
t (%

)SR
(%

)
E

r (°)
E

t (%
)SR

(%
)

E
r (°)

E
t (%

)SR
(%

)
E

r (°)
E

t (%
)SR

(%
)

E
r (°)

E
t (%

)SR
(%

)
E

r (°)
E

t (%
)SR

(%
)

Perspecti ve

D
istortion

SIFT
+IPPE

2.99
0.46

58.0
4.38

0.40
34.0

2.77
0.43

76.0
3.98

0.40
76.0

6.56
0.87

58.0
4.70

0.59
20.0

SIFT
+O

PnP
1.45

0.30
58.0

2.62
0.45

34.0
0.68

0.53
76.0

1.53
0.45

76.0
4.79

0.74
62.0

6.23
0.43

24.0
A

SIFT
+IPPE

3.01
0.25

72.0
4.99

0.43
68.0

3.74
0.35

80.0
3.07

0.34
84.0

4.96
0.64

58.0
3.69

0.75
66.0

A
SIFT

+O
PnP

1.55
0.29

72.0
3.51

0.54
68.0

1.95
0.39

80.0
1.78

0.51
84.0

3.73
0.87

62.0
2.07

0.82
66.0

A
PE

1.81
0.94

56.0
0.97

0.77
92.0

1.35
0.56

86.0
0.69

0.42
90.0

2.44
2.32

68.0
1.74

1.34
68.0

D
PE

0.89
0.29

56.0
0.74

0.51
92.0

0.81
0.52

86.0
0.43

0.46
90.0

1.47
1.96

78.0
0.56

0.86
68.0

D
PT

0.72
0.34

93.9
0.71

0.51
100

0.84
0.61

95.9
0.57

0.68
98.0

1.61
1.63

75.5
0.62

1.13
87.8

Z
oom

SIFT
+IPPE

2.51
0.53

6.00
3.28

0.34
26.0

4.01
0.42

100
3.09

0.40
100

9.75
0.94

60.0
4.23

0.45
40.0

SIFT
+O

PnP
1.15

0.38
6.00

3.14
0.30

28.0
2.30

0.40
98.0

2.73
0.43

100
7.42

0.91
60.0

2.83
0.46

42.0
A

SIFT
+IPPE

4.91
0.76

64.0
4.60

0.56
58.0

5.24
0.67

76.0
2.54

0.20
74.0

10.5
1.05

50.0
4.10

0.43
48.0

A
SIFT

+O
PnP

3.32
0.65

64.0
3.95

0.52
58.0

3.36
0.48

80.0
1.67

0.36
76.0

6.47
1.18

56.0
4.33

0.50
54.0

A
PE

3.37
0.77

94.0
1.73

0.33
100

3.13
0.63

100
1.22

0.55
100

5.58
0.74

100
3.79

1.06
100

D
PE

1.14
0.33

94.0
0.86

0.27
100

1.94
0.51

100
0.50

0.45
100

2.50
0.80

100
0.87

0.61
100

D
PT

1.16
0.33

100
0.87

0.27
100

1.98
0.51

100
0.52

0.45
100

2.43
0.80

100
0.93

0.58
100

Static

L
ighting

SIFT
+IPPE

1.51
0.83

27.5
2.75

0.98
20.0

1.09
0.48

81.3
1.56

0.79
72.5

2.28
0.87

57.5
1.01

0.50
21.3

SIFT
+O

PnP
1.49

0.91
28.7

2.42
1.18

20.0
0.77

0.43
81.3

1.58
0.86

72.5
1.94

0.91
60.0

1.00
0.52

21.3
A

SIFT
+IPPE

1.20
0.81

75.0
2.77

0.88
42.5

1.43
0.48

100
1.28

0.65
100

2.66
1.73

47.5
1.80

0.58
52.5

A
SIFT

+O
PnP

1.09
0.82

75.0
2.41

0.82
42.5

1.27
0.45

100
1.23

0.76
100

2.45
1.59

62.5
1.46

0.58
52.5

A
PE

1.75
1.44

71.3
0.90

0.50
100

0.95
0.60

100
1.24

0.72
100

2.97
3.59

81.3
1.61

1.85
85.0

D
PE

1.20
1.06

71.3
0.85

0.40
100

0.61
0.51

100
1.03

0.68
100

2.24
2.44

82.5
0.94

0.78
85.0

D
PT

1.20
1.05

100
0.85

0.39
100

0.61
0.51

100
1.02

0.68
100

2.85
3.13

100
0.91

0.72
100

D
ynam

ic

L
ighting

SIFT
+IPPE

1.38
0.41

13.0
1.81

0.89
17.0

1.16
0.55

78.0
1.12

0.47
38.0

1.45
0.67

44.0
1.08

0.42
28.0

SIFT
+O

PnP
1.37

0.43
13.0

1.59
0.90

17.0
0.98

0.58
77.0

1.13
0.52

38.0
1.29

0.70
48.0

1.01
0.43

28.0
A

SIFT
+IPPE

1.22
0.36

62.0
2.81

1.10
38.0

1.53
0.54

100
0.95

0.48
100

3.31
1.33

47.0
1.79

0.56
48.0

A
SIFT

+O
PnP

1.14
0.38

63.0
3.01

1.15
37.0

1.42
0.55

100
0.92

0.53
100

2.60
1.33

48.0
1.47

0.59
51.0

A
PE

1.25
0.71

40.0
1.06

0.68
98.0

0.99
0.70

100
0.65

0.33
84.0

3.26
3.10

72.0
1.26

1.31
52.0

D
PE

1.00
0.47

40.0
1.20

0.65
98.0

0.47
0.52

100
0.63

0.41
84.0

2.75
3.19

77.0
0.82

0.72
52.0

D
PT

1.00
0.45

100
1.20

0.66
100

0.46
0.52

100
0.63

0.42
100

3.29
3.67

100
0.81

0.63
100

doi:10.6342/NTU201800854

111

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE
DPT

1 2 3 4 5 6 7 8 9

Motion Blur Level

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

1 2 3 4 5 6 7 8 9

Motion Blur Level

0

5

10

15

20

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5 6 7 8 9

Motion Blur Level

0

0.5

1

1.5

2

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

Figure 5.11: Experimental results on the visual tracking dataset [4] under varying

motion blur levels, where level 9 stands for the strongest motion blur.

the proposed algorithm can be better applied to estimate 6DoF pose than feature-

based approaches. However, if the target object appears an extremely flat color

in a camera image, the proposed method is likely to fail because the appearance

between the template and its local patches are almost indistinguishable.

Sample pose estimation results from the proposed DPE method are shown

in Figure 5.12 and Figure 5.13, in which the success cases are represented with

rendered cyan boxes, and the failure cases are represented with rendered magenta

boxes. The cumulative percentage of estimated poses according to different trans-

lation and rotation errors are shown in Figure 5.14. Overall, the proposed direct

method performs favorably against the feature-based approaches within the success

rate of 77.76%. The success rate of the SIFT-based and ASIFT-based approaches

are 29.98% and 48.52% respectively.

doi:10.6342/NTU201800854

112

(a) Bricks (b) Building (c) Mission

Figure 5.12: Estimation results by the proposed DPE method on the visual tracking

dataset [4] under different conditions.

doi:10.6342/NTU201800854

113

(a) Paris (b) Sunset (c) Wood

Figure 5.13: Estimation results by the proposed DPE method on the visual tracking

dataset [4] under different conditions.

doi:10.6342/NTU201800854

114

0 5 10 15 20

Rotation Error (Degree)

0

20

40

60

80

100
C

um
ul

at
iv

e
P

er
ce

nt
ag

e
(%

)

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE
DPT

0 2 4 6 8 10

Translation Error (%)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE
DPT

Figure 5.14: Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on the visual tracking

dataset [4]. There is a total of 6889 poses estimated by each pose estimation

approach.

Note that the proposed pose refinement approach can also be regarded as a

direct pose tracking (DPT) algorithm. The evaluation results of the DPT method

on the VT dataset are shown in Table 5.5, Table 5.6, Figure 5.11, and Figure 5.14.

If the DPT method loses track of the object pose (namely the rotation or translation

error is larger than the pre-defined threshold, i.e., δr and δt), we reset the initial

object pose in the current frame as the object pose in the previous frame. Overall,

the proposed DPT method can track object poses well. The DPT algorithm can

be integrated with the DPE method for more robust performance with specific

re-initialization schemes (e.g., periodic restarts).

5.3.3 Object Pose Tracking Dataset

We evaluate the proposed algorithm and feature-based methods on the object pose

tracking (OPT) benchmark dataset presented in Chapter 4. For 2D objects, it

contains 138 videos with 20,988 frames. Sample images rendered according to

the pose estimated by the proposed DPE method on this OPT dataset are shown

in Figure 5.15 and Figure 5.16, where the success cases are represented with

doi:10.6342/NTU201800854

115

(a) Wing (b) Duck (c) City

Figure 5.15: Estimation results by the proposed DPE method on the OPT dataset

presented in Chapter 4 under different conditions.

doi:10.6342/NTU201800854

116

(a) Beach (b) Firework (c) Maple

Figure 5.16: Estimation results by the proposed DPE method on the OPT dataset

presented in Chapter 4 under different conditions.

doi:10.6342/NTU201800854

117

rendered cyan boxes, and the failure cases are represented with rendered magenta

boxes. We note that videos in the OPT dataset are recorded under four designed

motion patterns and five camera speeds controlled by a programmable robotic

arm. Furthermore, these videos contain two different lighting conditions and a

free-motion case. The frame size in this dataset is 1920×1080 pixels, and we

resize each template to 300×300 pixels.

The pose tracking results of all evaluated algorithms under Flashing Light,

Moving Light, and Free Motion conditions with six templates and different texture

levels are shown in Table 5.7. Similar to the results in Section 5.3.1 and Sec-

tion 5.3.2, feature-based methods do not perform well on the template images with

less texture or structure. In contrast, the proposed DPE method is able to track

object poses well except the Wing image. When a template image does not contain

sufficient structural information, the proposed direct method may estimate erro-

neous poses which cover only parts of the template image, as shown in the failure

cases in Figure 5.15 and Figure 5.16. The proposed method does not perform well

on images when drastic color distortion occurs, e.g., under Moving Light condition,

as the appearance distance metric is less effective in such scenarios.

The pose tracking results of the template images in different motion patterns

and speed are shown in Figure 5.17 and Figure 5.18. Since the images in the

Translation condition are more blurry than those in other motion patterns at higher

speed, the plot trends of the evaluation results under this condition are similar to

those under the Gaussian Blur conditions in Figure 5.6. In contrast, the other three

motion patterns do not result in blurry images at the highest speed, the performance

of all approaches under conditions at different speeds are similar. As all the

evaluated approaches are scale and rotation invariant, they all perform favorably

on template images with the Zoom and In-plane Rotation patterns. However, the

success rates of SIFT-based methods are lower in the Out-of-plane Rotation motion

pattern as they are not invariant under perspective distortion.

We evaluate the proposed DPT algorithm on the OPT dataset to analyze the

doi:10.6342/NTU201800854

118

Table
5.7:E

xperim
entalresults

on
the

O
PT

datasetunderdifferentconditions.T
he

bestresults
(excluding

the
proposed

directpose

tracking
m

ethod)foreach
condition

are
highlighted

in
bold.

W
ing

D
uck

C
ity

B
each

Firew
ork

M
aple

C
ondition

M
ethod

E
r (°)

E
t (%

)SR
(%

)
E

r (°)
E

t (%
)SR

(%
)

E
r (°)

E
t (%

)SR
(%

)
E

r (°)
E

t (%
)SR

(%
)

E
r (°)

E
t (%

)SR
(%

)
E

r (°)
E

t (%
)SR

(%
)

Flashing
L

ight

SIFT
+IPPE

10.6
2.96

1.24
6.99

0.43
100

2.11
0.20

100
2.80

0.16
100

1.80
0.15

100
1.63

0.12
100

SIFT
+O

PnP
14.2

2.33
9.32

5.94
0.33

100
0.86

0.10
99.4

0.83
0.09

100
0.23

0.07
100

0.35
0.08

100
A

SIFT
+IPPE

14.6
3.27

4.35
6.36

0.50
100

3.01
0.28

100
1.79

0.19
100

2.73
0.25

100
2.43

0.22
100

A
SIFT

+O
PnP

17.5
2.84

3.11
3.58

0.34
100

1.47
0.16

100
0.88

0.18
100

0.91
0.16

100
1.35

0.12
100

A
PE

10.4
1.51

36.0
2.12

0.22
100

1.95
0.56

100
1.28

0.28
100

2.00
0.34

100
1.98

0.41
100

D
PE

8.32
1.52

42.2
0.72

0.05
100

1.08
0.19

100
0.50

0.09
99.4

0.38
0.04

100
0.50

0.05
98.1

D
PT

6.46
1.72

86.3
0.76

0.05
99.4

1.16
0.17

100
0.47

0.09
100

0.43
0.05

100
0.56

0.05
97.5

M
oving

L
ight

SIFT
+IPPE

17.8
0.69

0.61
7.54

0.63
94.5

2.52
0.22

100
2.60

0.15
100

1.64
0.13

100
1.87

0.15
100

SIFT
+O

PnP
15.2

2.75
8.54

5.95
0.50

94.5
1.02

0.11
100

0.69
0.09

100
0.22

0.07
100

0.55
0.09

100
A

SIFT
+IPPE

15.6
2.97

1.83
7.13

0.61
100

4.71
0.41

99.4
1.74

0.20
100

2.68
0.27

100
2.42

0.20
100

A
SIFT

+O
PnP

19.4
0.38

0.61
5.10

0.46
100

2.73
0.29

99.4
0.84

0.15
100

0.80
0.18

100
0.98

0.12
100

A
PE

11.3
4.98

27.4
4.24

0.37
99.4

5.43
0.71

55.5
3.64

0.35
75.0

3.26
0.54

95.1
6.09

1.03
62.2

D
PE

8.41
4.38

45.1
2.14

0.12
100

2.34
0.18

56.7
1.51

0.09
77.4

0.71
0.04

94.5
3.20

0.32
59.8

D
PT

9.22
1.92

64.4
1.96

0.11
100

2.59
0.19

98.8
1.42

0.10
99.4

0.76
0.05

100
4.08

0.37
82.2

Free
M

otion

SIFT
+IPPE

7.55
3.95

1.15
5.80

0.59
93.2

1.00
0.28

100
0.61

0.42
99.9

1.38
0.39

100
0.73

0.39
100

SIFT
+O

PnP
9.81

2.87
2.04

3.68
0.57

96.8
0.77

0.27
100

0.61
0.41

100
1.09

0.38
100

0.72
0.38

100
A

SIFT
+IPPE

11.6
2.54

0.38
7.89

1.18
90.6

2.43
0.39

99.4
0.95

0.53
99.9

1.78
0.39

98.7
1.45

0.49
96.4

A
SIFT

+O
PnP

11.4
5.38

1.15
6.53

0.90
96.7

2.03
0.36

99.7
0.91

0.52
100

1.55
0.36

99.7
1.39

0.49
99.9

A
PE

6.14
5.16

56.1
2.73

0.31
98.7

1.35
0.66

100
1.53

0.86
83.7

1.79
0.55

100
3.18

1.98
98.3

D
PE

4.84
4.41

59.7
1.16

0.23
98.7

0.60
0.18

100
0.54

0.27
91.1

1.05
0.30

100
0.65

0.34
99.1

D
PT

4.52
3.14

69.5
0.88

0.18
100

0.55
0.22

100
0.49

0.26
99.6

1.02
0.30

100
0.58

0.26
100

doi:10.6342/NTU201800854

119

SIFT+IPPE SIFT+OPnP ASIFT+IPPE ASIFT+OPnP APE DPE DPT

1 2 3 4 5

Speed Level

0

2

4

6

8

10

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Speed Level

0

1

2

3

4

5

6

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Speed Level

0

0.5

1

1.5

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Speed Level

0

0.2

0.4

0.6

0.8

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Speed Level

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

1 2 3 4 5

Speed Level

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

(a) Translation (b) Zoom

Figure 5.17: Experimental results on the OPT dataset in motion patterns (a)

Translation and (b) Zoom with different speeds.

tracking performance using the same experimental setting as that described in Sec-

tion 5.3.2, Figure 5.17, Figure 5.18, and Table 5.7 show that the DPT algorithm

can track object poses well on most template images except one. As discussed

doi:10.6342/NTU201800854

120

SIFT+IPPE SIFT+OPnP ASIFT+IPPE ASIFT+OPnP APE DPE DPT

1 2 3 4 5

Speed Level

0

1

2

3

4

5

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Speed Level

0

0.5

1

1.5

2

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

1 2 3 4 5

Speed Level

0

0.2

0.4

0.6

0.8

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Speed Level

0

0.2

0.4

0.6

0.8

1

1.2

T
ra

ns
la

tio
n

E
rr

or
 (

%
)

1 2 3 4 5

Speed Level

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

1 2 3 4 5

Speed Level

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

(a) In-plane Rotation (b) Out-of-plane Rotation

Figure 5.18: Experimental results on the OPT dataset in motion patterns (a)

In-plane Rotation and (b) Out-of-plane Rotation with different speeds.

above, the proposed DPT method does not work well on images, e.g., Wing, with-

out sufficient structure for pose estimation based on appearance. The curves of

cumulative percentages of poses estimated by the evaluated algorithms on the OPT

doi:10.6342/NTU201800854

121

0 5 10 15 20

Rotation Error (Degree)

0

20

40

60

80

100
C

um
ul

at
iv

e
P

er
ce

nt
ag

e
(%

)

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE
DPT

0 2 4 6 8 10

Translation Error (%)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

SIFT+IPPE
SIFT+OPnP
ASIFT+IPPE
ASIFT+OPnP
APE
DPE
DPT

Figure 5.19: Cumulative percentage of poses whose rotation or translation errors

are under thresholds specified in the x-axis over experiments on the OPT dataset.

There is a total of 20,988 poses estimated by each pose estimation approach.

dataset are shown in Figure 5.19. Overall, the proposed direct method performs

favorably against feature-based approaches with a success rate of 91.27%. The

success rates of the SIFT-based and ASIFT-based approaches are 79.46% and

82.74%, respectively.

5.4 Summary

In this work, we propose a robust direct method for 6DoF pose estimation based

on two main steps. First, the pose of a planar target with respect to a calibrated

camera is approximately estimated using an efficient coarse-to-fine scheme. Next,

we use the LK-based method to further refine and disambiguate the object pose.

Extensive experimental evaluations on both synthetic image and real image datasets

demonstrate the proposed algorithm performs favorably against two state-of-the-art

feature-based pose estimation approaches in terms of robustness and accuracy under

several varying conditions. We have also implemented the proposed algorithm on

a GPGPU platform as the algorithm can be easily parallelized.

doi:10.6342/NTU201800854

122

doi:10.6342/NTU201800854

Chapter 6

DodecaPen: Accurate 6DoF

Tracking of a Passive Stylus

In this work, we explore a simpler hardware setup that uses a minimal amount of

electronics to achieve high accuracy tracking. We propose a system that requires

only a single off-the-shelf camera and a passive 3D-printed fiducial with several

hand-glued binary square markers printed from a laser printer, as shown in Fig-

ure 1.3. Our proposed system has the distinct advantage of ease-of-construction and

setup over electronically instrumented solutions. Because there are no electronics

(including LEDs) on the stylus, threading wires or charging batteries are not a

concern. Neither lasers nor active illumination is required. The only requirements

are the use of a 2D office printer, a 3D printer, some glue, and a global shutter

camera. Because we need only a single camera, it can be mounted casually on

a tripod placed on the user’s desk, without concern for re-calibration of multiple

cameras. Despite these constraints, we achieve an accuracy of 0.4 mm at 60Hz over

a 30×40 cm2 working area, which is comparable to state-of-the-art professional

motion capture (mocap) systems.

The overview of the proposed system is illustrated in Figure 6.1. Given a target

object Ot (the DodecaPen in this work) represented by a dense surface model

(triangle mesh) and a camera image Ic, the task is to determine the 6DoF object

123

doi:10.6342/NTU201800854

124

Cam
era

DodecaPen

+

Input Fram
es

Approxim
ate Pose Estim

ation (APE)
•

M
arker Detection

•
M

inim
ize reprojection

error w
ith P𝑛𝑛P

algorithm
 to get the initial pose 𝐩𝐩′

Did APE
Succeed?

N
o

Inter-fram
e Corner Tracking (ICT)

•
Pyram

idal Lucas-Kanade
m

arker
corner tracking

•
P𝑛𝑛P algorithm

 to get the initial
pose 𝐩𝐩′

Yes

M
arker Intensity

N
orm

alization

Dense Pose Refinem
ent (D

PR)
•

M
inim

ize appearance distance w
ith Gauss

N
ew

ton and backtracking line search (BLS)
to get the final pose 𝐩𝐩

∗

•
M

arker &
 m

ask m
ipm

aps

Digital 2D Draw
ing

O
utput Pen-tip Trajectory

(Based on DodecaPen
Poses)

Proposed 6DoF Pose Tracking System

M
arker M

ipm
aps M

ipm
ap

M
asks

M
asked

M
ipm

aps

Figure
6.1:System

overview
.In

the
approxim

ate
pose

estim
ation

step,w
e

detectthe
binary

square
fiducialm

arkers
in

the
inputim

ages

and
estim

ate
the

6D
oF

pose
ofthe

D
odecaPen

using
the

P
nP

algorithm
.Iffew

erthan
tw

o
m

arkers
are

detected,w
e

use
the

LK
m

ethod

to
track

m
arkercorners

betw
een

fram
es.In

the
dense

pose
refinem

entstep,the
posep

′is
refined

by
m

inim
izing

the
appearance

distance

betw
een

the
3D

m
odelofthe

D
odecaPen

and
im

age
pixels

to
getthe

finalpose
p
∗.W

e
generate

the
pen-tip

trajectory
in

the
3D

view

from
the

com
puted

6D
oF

pose
sequence

and
visualize

the
2D

draw
ing

by
rem

oving
points

w
here

the
pen

tip
is

lifted
offthe

page.

doi:10.6342/NTU201800854

125

pose p of Ot relative to the camera. Let xi = [xi, yi, zi]>, i = 1, . . . , n, n ≥ 3 be

a set of reference points in the local object-space of Ot, and let ui = [ui, vi]> be

the corresponding 2D image-space coordinates of Ic. The relationship between

them can be obtained using camera projection formulated in (2.2). In this study,

the pose p is formulated as a 6D vector consisting of the 3D rotation vector and

the 3D translation vector (which is presented in Section 2.1.2):

p =

r

t

 , r =


rx

ry

rz

 ∈ R3, t =


tx

ty

tz

 ∈ R3. (6.1)

The proposed 6DoF pose tracking system primarily comprises two phases: approx-

imate pose estimation (APE) and dense pose refinement (DPR), Once we have

computed the 6DoF pose of the dodecahedron, we can recover the pen-tip trajectory

and use it to reconstruct the drawing. We rigorously evaluate the performance of

the proposed system when we degrade the camera (with shot noise, spatial blur,

and reduced spatial resolution). We conclude with demonstrations of this accurate

and easy-to-setup 6DoF tracking system for the application of drawing in 2D and

3D as well as object manipulation in a VR environment.

6.1 Dodecahedron Design

Although binary square fiducial markers are commonly attached to cubes [149,

185], pose recovery can fail when only a single marker is visible due to an ambiguity

in the PnP problem [3]. By substituting a dodecahedron as the tracked object, we

ensure that at least two planes are visible in most cases, eliminating the ambiguity.

Despite the fact that there are still other regular solids (or Platonic solids), as

shown in Figure 6.2, the area ratio of a square marker to a triangle face for the

other three (i.e., tetrahedron, octahedron, and icosahedron) would be too small

for the proposed system to track decently, as illustrated in Figure 6.3. Moreover,

for a tetrahedron, its faces captured by a tracking system may be too few as well.

doi:10.6342/NTU201800854

126

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

Figure 6.2: Five regular solids in 3D space.

Figure 6.3: The area ratio of a square marker to a triangle face is much smaller

than that to a pentagon face.

Consequently, the dodecahedron seems to be the best fit for our system.

We use an off-the-shelf 3D printer to create our trackable dodecahedron. Each

edge of the resulting dodecahedron is 12.9 mm in length, while the markers glued

on its surface have edges of length 10.8 mm and are printed with a laser printer.

Each marker is generated with the ArUco library [151] and is encoded as a 6×6

grid where the external cells are set as black.

6.2 Approximate Pose Estimation

We first use the binary square fiducial marker detector provided in the ArUco

library [150] to detect markers in input images. This gives us an image-space

position and orientation of each marker on the dodecahedron. We use these to

recover the 6DoF dodecahedron pose p by minimizing the reprojection error

formulated in (2.3). This is a standard PnP problem, which we minimize using the

Levenberg-Marquardt method [186]. To accelerate the marker detection process,

doi:10.6342/NTU201800854

127

we use a constant acceleration motion model to predict the dodecahedron pose

and constrain ArUco’s search region for the fiducial markers if the pose was

successfully recovered in the frame. The predicted pose p̂t in the current frame t is

computed with the information from the last frame t− 1:

p̂t = pt−1 + ṗt−1 + 1
2 p̈t−1, (6.2)

where ṗ and p̈ are the pose velocity and acceleration between frames, respectively.

The search region for the current frame is set to be four times the area of the

dodecahedron in the last frame to account for fast motion.

6.3 Inter-frame Corner Tracking

We occasionally find that the APE method fails due to motion blur or because

most of the markers are strongly tilted relative to the camera. Because PnP cannot

work reliably in the case where we detect fewer than two markers, we apply the

inter-frame corner tracking (ICT) scheme to generate more constraints for PnP. We

use the pyramidal LK optical flow tracker [187] to track the corners of the markers

from frame to frame.

Square markers can be challenging for optical flow algorithms because different

corners have a very similar appearance, and thus the pyramidal LK implementation

frequently finds incorrect correspondences. Therefore, we perform the tracking

in two rounds. In the first round, we track each visible marker separately in the

camera frame and compute the velocity vectors of each marker by differencing with

the previous frame. We reject markers whose velocity is further than three standard

deviations from the mean. We then initialize the marker corner tracker using the

trusted predictions from the first round and run the tracking for the four corners of

each remaining marker a second time with similar outlier removal strategy. The

resulting motion tracks are much more reliable.

doi:10.6342/NTU201800854

128

6.4 Dense Pose Refinement

Unfortunately, the initial pose p′ computed using PnP is too jittery to use in

tracking the pen tip. We can substantially improve the pose accuracy using a dense

alignment, which minimizes the appearance distanceEa2 between the image Ic and

the object Ot pixels across all of the visible marker points, as formulated in (2.5).

We solve this nonlinear least squares problem using Gauss-Newton iteration; to

approximate how the image changes with respect to pose, we approximate it using

a first-order Taylor series as follows:

∆p∗ = argmin
∆p

1
n

n∑
i=1

(Ic (ui (p′ + ∆p))−Ot (xi))2

≈ argmin
∆p

1
n

n∑
i=1

Ic (ui (p′)) + ∂Ic
∂p

∣∣∣∣∣
p=p′

∆p−Ot (xi)
2

.

(6.3)

To solve for ∆p in each iteration, we set the first derivative of (6.3) equal to zero,

and solve the resulting system of linear equations:

Jc∆p = Ot − Ic, (6.4)

where Ot and Ic are vector forms of Ot (xi) and Ic (ui), respectively, and Jc is the

Jacobian matrix of Ic with respect to p and is computed by the chain rule (in the

numerator-layout notation):

Jc = ∂Ic
∂p

∣∣∣∣∣
p=pc

=



∂Ic(u1)
∂p

∂Ic(u2)
∂p
...

∂Ic(un)
∂p


, (6.5)

∂Ic
∂p

= ∂Ic
∂u

[
∂u
∂r ,

∂u
∂t

]
=
[
∂Ic
∂u
, ∂Ic
∂v

] [
∂u
∂x̂

∂x̂
∂R̂

∂R̂
∂r ,

∂u
∂x̂

]
, (6.6)

∂u
∂x̂

=

fxẑ 0 −fxx̂
ẑ2

0 fy
ẑ
−fy ŷ

ẑ2

 , ∂x̂
∂R̂

=


x y z 0 0 0 0 0 0

0 0 0 x y z 0 0 0

0 0 0 0 0 0 x y z

 , (6.7)

doi:10.6342/NTU201800854

129

where R̂ = [R11, R12, R13, R21, R22, R23, R31, R32, R33]> denotes the vector with

elements of the rotation matrix R, and:

x̂ =


x̂

ŷ

ẑ

 =


R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz





x

y

z

1


, (6.8)

is the camera-space coordinate transformed from the object-space coordinate

x = [x, y, z]>.

In addition, the derivative of R̂ with respect to r can be obtained using the

following formula [182]:

∂R
∂ra

=
ra [r]× + [r× (I−R) ei]×

‖r‖2 R, a = x, y, z, (6.9)

where I and ei are the identity matrix and the i-th vector of the standard basis in R3,

respectively. In addition, [r]× represents the cross-product matrix for the vector r

which is as defined in (2.17).

A closed form solution of (6.4) is:

∆p =
(
J>c Jc

)−1
J>c (It − Ic) . (6.10)

Another way for getting ∆p is to use the QR decomposition to solve (6.4), which

would take more time to compute but are more numerically stable as well.

Because our least squares problem is nonlinear, Gauss-Newton iteration does

not always converge with fixed step size. We thus perform a backtracking line

search to scale the step size after each iteration of solving (6.4). We shrink ∆p by

∆p← α∆p until it meets the Armijo-Goldstein condition below:

Ea2(p + ∆p) ≤ Ea2(p) + c∇Ea2(p)>∆p, (6.11)

where ∇Ea2(p) is the local function gradient. We set α = 0.5 and c = 10−4

empirically.

To ensure intensity invariance and to minimize the residual between the model

and image, we normalize the intensity first before solving the dense alignment

doi:10.6342/NTU201800854

130

problem above. We observe that the primary variation in intensity is due to the

normal direction of each plane (and marker) as shown in Figure 6.1. Therefore we

normalize the intensity per local marker.

To avoid aliasing effects, we also need to ensure that the model fiducial markers

are resampled to be the same size they appear in the image. We generate a mipmap

of the binary square fiducial markers ahead of time to enable efficient sampling of

the model points at approximately the same scale as the image.

There are large portions of the square marker that do not significantly contribute

to the error term, notably in regions of uniform intensity where ∇Ic(ui) = 0 and

thus, ∂Ic
∂p = 0. We take advantage of this by selectively masking out flat regions

ahead of time on our marker as shown in Figure 6.1, dropping regions where

∇Ot (xi) = 0 and hence ∇Ic(ui) is likely to be zero as well. The white and

black colors of the masks in Figure 6.1 represent the active and non-active regions,

respectively. The gray color of the final masked markers represent the non-active

regions. We show that we can significantly accelerate the algorithm without

compromising tracking quality using this masking technique.

6.5 Dodecahedron Calibration

While square markers are easy to print and glue on to the dodecahedron, the manual

nature of this process necessarily results in the model error, leading to inaccurate

pose tracking results, as we show in Section 6.7. We perform dodecahedron

calibration (DC) to determine the precise pose of each marker with respect to the

dodecahedron pj . We first take several dodecahedron photos (24 in this work, as

shown in Figure 6.4) and apply a one-time offline bundle adjustment, by minimizing

the following cost function:

Ea({pj,pk}) =
∑
i

∑
j

∑
k

(Ic (ui (pj; pk))−Ot (xi))2 , (6.12)

with respect to both marker poses pj and dodecahedron poses with respect to the

camera pk. Because the problem is ill-posed, we fix one of the marker poses and

doi:10.6342/NTU201800854

131

Figure 6.4: Photos used for dodecahedron calibration.

adjust other marker and dodecahedron poses simultaneously using Gauss-Newton

iteration, similarly to how we solved (6.4) in Section 6.4. We initialize the marker

poses pj to their ideal positions on the dodecahedron, and we initialize the camera

poses pk with the APE approach.

6.6 Pen-tip Calibration

To recover a drawing, we need to know the position of the pen tip. Since the

pen tip is a ball, we calibrate the position of the sphere center c = [xc, yc, zc]>

with respect to the coordinate frame of the dodecahedron. Given the 6DoF pose

of the dodecahedron, we can get the world position of the pen tip (i.e., the ball

center) c′ = [x′c, y′c, z′c]> = Rc + t, where (R, t) is the pose of the dodecahedron.

Finally, we can check if the distance between the pen-tip sphere center and the

paper surface is less than the radius of the pen ball at runtime to determine if the

pen is drawing.

To calibrate the position of the pen tip c, we press the pen tip against a surface to

keep it fixed, while moving the dodecahedron, as depicted in Figure 6.5. We track

doi:10.6342/NTU201800854

132

1

2

k

m

Figure 6.5: Procedures for pen-tip calibration. We press the pen tip against a

surface to keep it fixed while moving and rotating the dodecahedron. In the same

time, we take the pictures which are used for pen-tip calibration.

the dodecahedron to obtain a number of its poses (Rk, tk), where k ∈ [1,m]. Since

the pen-tip center is fixed in world space, we can write the equation Rk1c + tk1 =

Rk2c+tk2 for all k1 and k2. From m poses, we can obtain m(m−1)
2 linear equations,

which can be solved to obtain the least squares estimate of the pen-tip position c.

6.7 Experimental Results

We evaluate the proposed method for the 6DoF DodecaPen pose tracking using

both synthetic and real datasets, and compare it with an OptiTrack [161] motion

caption system. Our system is run on a desktop computer with a 3.6 GHz CPU

and 32 GB RAM. We use a Point Grey Flea3 1.3 MP color camera (60 Hz, 1280×

1024) with a Fujinon 12.5 mm f/1.4 lens for an effective horizontal field of view

60 degrees.

Given the ground-truth rotation matrix R̃ and translation vector t̃, we compute

the rotational error of the estimated rotation matrix R in degrees according to (2.32).

The translation error of the estimated translation vector t is measured by the

doi:10.6342/NTU201800854

133

Table 6.1: Evaluation results for different approaches (APE: approximate pose

estimation; DPR: dense pose refinement; BLS: backtracking line search) on the

synthetic dataset in terms of average rotation error ER (°), translation error Et

(mm), pen-tip error Epen (mm), and runtimes per frame (ms). The last column

shows the average number of iterations for the DPR approach.

Approach ER Et Epen Time #Iter.

APE 0.447 5.835 5.854 1.100 –

APE+DPR 0.053 0.356 0.401 6.213 6.178

APE+DPR+BLS 0.053 0.336 0.386 6.140 3.834

`2 difference between t̃ and t defined as (2.35). The pen-tip error Epen is the

`2 difference between two pen-tip positions transformed with either (R, t) or

(R̃, t̃) in the camera coordinate system. The distance between the pen tip and the

dodecahedron center is 143 mm. The success rate (SR) is defined as the percentage

of the successfully estimated poses within each sequence.

6.7.1 Synthetic Data

We construct a synthetic dataset by generating 24 image sequences with different

motion patterns of the virtual DodecaPen, as shown in Figure 6.6. The 6DoF

DodecaPen pose sequence in each image sequence is obtained by recording poses

of a rigid body with the OptiTrack motion capture system. Each sequence consists

of 301 frames with the same resolution and intrinsics as our real camera. We

initialize each tracking algorithm with the ground-truth pose for the first frame.

Table 6.1 shows that the dense pose refinement (DPR) approach can achieve

significantly better accuracy than the approximate pose estimation (APE) approach

from sparse constraints alone. With a backtracking linear search (BLS) scheme,

we can take fewer Gauss-Newton iterations during the optimization process and

also achieve more accurate results compared to not using a line search. It is also

doi:10.6342/NTU201800854

134

Figure 6.6: We generate synthetic image sequences with 24 motion patterns of the

virtual DodecaPen for evaluation.

notable that even though the pen tip is far from the dodecahedron center, the pen-tip

error is dominated by the translation error. We show all the pen-tip trajectories

generated by approaches in Figure 6.7 to Figure 6.9, and compare them with ground

truth. The trajectories generated from the APE approach alone is visibly jittery,

doi:10.6342/NTU201800854

135

200
-50

150

750

Y
-A

xi
s

(m
m

)

100

Pen-tip Trajectory 01

X-Axis (mm)

0 700

Z-Axis (mm)

50

650
50 600

APE [5.074]
APE+DPR [0.244]
APE+DPR+BLS [0.244]
Ground truth

150
-200

100

800

Y
-A

xi
s

(m
m

)

50

Pen-tip Trajectory 02

X-Axis (mm)

0 700

Z-Axis (mm)

0

600
200 500

APE [5.423]
APE+DPR [0.380]
APE+DPR+BLS [0.370]
Ground truth

200
-200

0

700

Y
-A

xi
s

(m
m

)

Pen-tip Trajectory 03

X-Axis (mm)

0

Z-Axis (mm)

-200

600

200 500

APE [4.278]
APE+DPR [0.308]
APE+DPR+BLS [0.295]
Ground truth

200
-200

0

700

Y
-A

xi
s

(m
m

)

Pen-tip Trajectory 04

X-Axis (mm)

0 650

Z-Axis (mm)

-200

600
200 550

APE [5.546]
APE+DPR [0.475]
APE+DPR+BLS [0.433]
Ground truth

200
-200

100

800

Y
-A

xi
s

(m
m

)

0

Pen-tip Trajectory 05

X-Axis (mm)

0 750

Z-Axis (mm)

-100

700
200 650

APE [6.299]
APE+DPR [0.350]
APE+DPR+BLS [0.341]
Ground truth

200
0

150

900

Y
-A

xi
s

(m
m

)

100

Pen-tip Trajectory 06

X-Axis (mm)

50 800

Z-Axis (mm)

50

700
100 600

APE [7.498]
APE+DPR [0.520]
APE+DPR+BLS [0.521]
Ground truth

200
-200

100

800

Y
-A

xi
s

(m
m

)

0

Pen-tip Trajectory 07

X-Axis (mm)

0 700

Z-Axis (mm)

-100

600
200 500

APE [5.848]
APE+DPR [0.382]
APE+DPR+BLS [0.371]
Ground truth

200
-500

100

1000

Y
-A

xi
s

(m
m

)

0

Pen-tip Trajectory 08

X-Axis (mm)

0 800

Z-Axis (mm)

-100

600
500 400

APE [6.151]
APE+DPR [0.485]
APE+DPR+BLS [0.463]
Ground truth

Figure 6.7: Pen-tip trajectories (01–08) generated by different approaches. Average

pen-tip errors (mm) are shown in legends.

doi:10.6342/NTU201800854

136

200
-200

0

1000

Y
-A

xi
s

(m
m

)
Pen-tip Trajectory 09

X-Axis (mm)

0 800

Z-Axis (mm)

-200

600
200 400

APE [5.721]
APE+DPR [0.365]
APE+DPR+BLS [0.353]
Ground truth

200
-100

150

900

Y
-A

xi
s

(m
m

)

100

Pen-tip Trajectory 10

X-Axis (mm)

0 800

Z-Axis (mm)

50

700
100 600

APE [4.867]
APE+DPR [0.373]
APE+DPR+BLS [0.370]
Ground truth

200
-50

100

1000

Y
-A

xi
s

(m
m

)

Pen-tip Trajectory 11

X-Axis (mm)

0

Z-Axis (mm)

0

800

50 600

APE [7.395]
APE+DPR [0.428]
APE+DPR+BLS [0.434]
Ground truth

150
-50

100

900

Y
-A

xi
s

(m
m

)

Pen-tip Trajectory 12

X-Axis (mm)

0 800

Z-Axis (mm)

50

700
50 600

APE [6.733]
APE+DPR [0.456]
APE+DPR+BLS [0.386]
Ground truth

200
-200

100

1000

Y
-A

xi
s

(m
m

)

0

Pen-tip Trajectory 13

X-Axis (mm)

0 800

Z-Axis (mm)

-100

600
200 400

APE [5.873]
APE+DPR [0.279]
APE+DPR+BLS [0.254]
Ground truth

200
-50

150

800

Y
-A

xi
s

(m
m

)

100

Pen-tip Trajectory 14

X-Axis (mm)

0

Z-Axis (mm)

50

700

50 600

APE [5.986]
APE+DPR [0.476]
APE+DPR+BLS [0.470]
Ground truth

150
-200

100

750

Y
-A

xi
s

(m
m

)

50

Pen-tip Trajectory 15

X-Axis (mm)

0 700

Z-Axis (mm)

0

650
200 600

APE [5.384]
APE+DPR [0.391]
APE+DPR+BLS [0.375]
Ground truth

150
-200

100

750

Y
-A

xi
s

(m
m

)

50

Pen-tip Trajectory 16

X-Axis (mm)

0 700

Z-Axis (mm)

0

650
200 600

APE [5.326]
APE+DPR [0.389]
APE+DPR+BLS [0.365]
Ground truth

Figure 6.8: Pen-tip trajectories (09–16) generated by different approaches. Average

pen-tip errors (mm) are shown in legends.

doi:10.6342/NTU201800854

137

200
-200

0

800

Y
-A

xi
s

(m
m

)
Pen-tip Trajectory 17

X-Axis (mm)

0 700

Z-Axis (mm)

-200

600
200 500

APE [4.666]
APE+DPR [0.268]
APE+DPR+BLS [0.258]
Ground truth

200
-200

100

900

Y
-A

xi
s

(m
m

)

Pen-tip Trajectory 18

X-Axis (mm)

0 800

Z-Axis (mm)

0

700
200 600

APE [6.324]
APE+DPR [0.494]
APE+DPR+BLS [0.492]
Ground truth

150
-200

100

900

Y
-A

xi
s

(m
m

)

50

Pen-tip Trajectory 19

X-Axis (mm)

0 800

Z-Axis (mm)

0

700
200 600

APE [6.200]
APE+DPR [0.437]
APE+DPR+BLS [0.418]
Ground truth

200
-200

150

1000

Y
-A

xi
s

(m
m

)
100

Pen-tip Trajectory 20

X-Axis (mm)

0 800

Z-Axis (mm)

50

600
200 400

APE [6.065]
APE+DPR [0.493]
APE+DPR+BLS [0.472]
Ground truth

200
-200

0

700

Y
-A

xi
s

(m
m

)

Pen-tip Trajectory 21

X-Axis (mm)

0

Z-Axis (mm)

-200

650

200 600

APE [5.420]
APE+DPR [0.305]
APE+DPR+BLS [0.297]
Ground truth

300
-50

200

900

Y
-A

xi
s

(m
m

)

100

Pen-tip Trajectory 22

X-Axis (mm)

0 800

Z-Axis (mm)

0

700
50 600

APE [7.525]
APE+DPR [0.553]
APE+DPR+BLS [0.561]
Ground truth

200
0

150

900

Y
-A

xi
s

(m
m

)

100

Pen-tip Trajectory 23

X-Axis (mm)

100 800

Z-Axis (mm)

50

700
200 600

APE [7.286]
APE+DPR [0.519]
APE+DPR+BLS [0.500]
Ground truth

180
-45

175

550

Y
-A

xi
s

(m
m

)

170

Pen-tip Trajectory 24

X-Axis (mm)

-40

Z-Axis (mm)

165

540

-35 530

APE [3.611]
APE+DPR [0.246]
APE+DPR+BLS [0.229]
Ground truth

Figure 6.9: Pen-tip trajectories (17–24) generated by different approaches. Average

pen-tip errors (mm) are shown in legends.

doi:10.6342/NTU201800854

138

while those generated by approaches using the DPR approach are more stable

and numerically closer to ground truth. The average number of pixels (without

considering masking) for the markers on the DodecaPen is 6136 over all of the

sequences in the synthetic dataset.

We further evaluate the proposed approaches under varying shot noise, spatial

blur, camera resolutions, and mask kernel widths to evaluate the sensitivity of the

system to the most common types of degradation to allow practitioners to evaluate

the feasibility of this system. There are several observations to note in the results.

First, when the input frames are degraded with shot noise, the tracking results

without the BLS scheme degrade more rapidly than those with it, as demonstrated

in Figure 6.10. We also find that sufficient shot noise can prevent direct alignment

from converging without the line search. The BLS scheme is particularly effective

when the small residual approximation of Gauss-Newton breaks down with noise.

Second, although the ArUco marker detector can detect markers well for

images corrupted with high shot noise, it quickly fails for spatially blurry images,

as explained in Figure 6.11. Hence, tracking success rate drops dramatically with

spatial blur. In contrast, by adding the inter-frame corner tracking (ICT) scheme,

our pose estimation can be quite robust (in terms of tracking success rate) to spatial

blur, although accuracy suffers.

Third, the proposed approach still performs favorably even with VGA resolution

sensors (i.e., 0.3 megapixels) while the execution time is reduced to 3.0 ms, as

shown in Figure 6.12.

Finally, the accuracy seems to be empirically unaffected by different sizes of

the mask kernel even when the number of valid pixels used in dense alignment

drops from 6136 to 3941, as presented in Figure 6.13.

6.7.2 Real Data

Because the DodecaPen is an actual ball-point pen, we can evaluate the accuracy

of our approach by comparing the resulting hand-drawn image and the digital 2D

doi:10.6342/NTU201800854

139

APE
APE+DPR
APE+DPR+BLS
APE+ICT+DPR+BLS

0 4 8 12 16 20 24 28 32 36 40

Standard Deviation (
noise

) of the Gaussian

0

5

10

15

20

25

E
xe

cu
tio

n
T

im
e

(m
s)

0 4 8 12 16 20 24 28 32 36 40

Standard Deviation (
noise

) of the Gaussian

0

0.05

0.1

0.15

0.2

0.25

0.3

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

0 4 8 12 16 20 24 28 32 36 40

Standard Deviation (
noise

) of the Gaussian

0

0.2

0.4

0.6

0.8

1

T
ra

ns
la

tio
n

E
rr

or
 (

m
m

)

0 4 8 12 16 20 24 28 32 36 40

Standard Deviation (
noise

) of the Gaussian

0

1

2

3

4

5

6

P
en

-t
ip

 E
rr

or
 (

m
m

)

0 4 8 12 16 20 24 28 32 36 40

Standard Deviation (
noise

) of the Gaussian

90

95

100

105

S
uc

ce
ss

 R
at

e
(%

)

0 4 8 12 16 20 24 28 32 36 40

Standard Deviation (
noise

) of the Gaussian

0

2000

4000

6000

8000

N
um

be
r

of
 V

al
id

 P
oi

nt
s

0 4 8 12 16 20 24 28 32 36 40

Standard Deviation (
noise

) of the Gaussian

0

5

10

15

20

25

N
um

be
r

of
 It

er
at

io
ns

Figure 6.10: Experimental results on synthetic dataset under Shot Noise condition

with different degradation levels. The standard deviation of the Gaussian noise is

set for an intensity range of 0 to 255.

doi:10.6342/NTU201800854

140

APE
APE+DPR
APE+DPR+BLS
APE+ICT+DPR+BLS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Standard Deviation (
blur

) of the Gaussian

0

5

10

15

20

25

30

E
xe

cu
tio

n
T

im
e

(m
s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Standard Deviation (
blur

) of the Gaussian

0

1

2

3

4

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Standard Deviation (
blur

) of the Gaussian

0

1

2

3

4

5

6

7

T
ra

ns
la

tio
n

E
rr

or
 (

m
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Standard Deviation (
blur

) of the Gaussian

0

2

4

6

8

10

12

P
en

-t
ip

 E
rr

or
 (

m
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Standard Deviation (
blur

) of the Gaussian

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Standard Deviation (
blur

) of the Gaussian

0

2000

4000

6000

8000

N
um

be
r

of
 V

al
id

 P
oi

nt
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Standard Deviation (
blur

) of the Gaussian

0

5

10

15

20

25

N
um

be
r

of
 It

er
at

io
ns

Figure 6.11: Experimental results on synthetic dataset under Spatial Blur condition

with different degradation levels. The spatial Gaussain blur sigma is in pixels for a

1280 × 1024 image.

doi:10.6342/NTU201800854

141

APE
APE+DPR
APE+DPR+BLS
APE+ICT+DPR+BLS

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

2

4

6

8

10

E
xe

cu
tio

n
T

im
e

(m
s)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

0.5

1

1.5

2

2.5

3

T
ra

ns
la

tio
n

E
rr

or
 (

m
m

)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

1

2

3

4

5

6

P
en

-t
ip

 E
rr

or
 (

m
m

)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

70

75

80

85

90

95

100

105

S
uc

ce
ss

 R
at

e
(%

)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

2000

4000

6000

8000

N
um

be
r

of
 V

al
id

 P
oi

nt
s

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

5

10

15

20

25

N
um

be
r

of
 It

er
at

io
ns

Figure 6.12: Experimental results on synthetic dataset under Camera Resolution

condition with different degradation levels.

doi:10.6342/NTU201800854

142

APE
APE+DPR
APE+DPR+BLS
APE+ICT+DPR+BLS

2 3 4 5 6 7 8 9 10 11

Kernel Width (Pixel) of the Mask

0

2

4

6

8

10

E
xe

cu
tio

n
T

im
e

(m
s)

2 3 4 5 6 7 8 9 10 11

Kernel Width (Pixel) of the Mask

0

0.1

0.2

0.3

0.4

0.5

R
ot

at
io

n
E

rr
or

 (
D

eg
re

e)

2 3 4 5 6 7 8 9 10 11

Kernel Width (Pixel) of the Mask

0

1

2

3

4

5

6

7

T
ra

ns
la

tio
n

E
rr

or
 (

m
m

)

2 3 4 5 6 7 8 9 10 11

Kernel Width (Pixel) of the Mask

0

1

2

3

4

5

6

P
en

-t
ip

 E
rr

or
 (

m
m

)

2 3 4 5 6 7 8 9 10 11

Kernel Width (Pixel) of the Mask

90

95

100

105

S
uc

ce
ss

 R
at

e
(%

)

2 3 4 5 6 7 8 9 10 11

Kernel Width (Pixel) of the Mask

0

2000

4000

6000

8000

N
um

be
r

of
 V

al
id

 P
oi

nt
s

2 3 4 5 6 7 8 9 10 11

Kernel Width (Pixel) of the Mask

0

2

4

6

8

N
um

be
r

of
 It

er
at

io
ns

Figure 6.13: Experimental results on synthetic dataset under Mask Kernel Width

condition with different degradation levels.

doi:10.6342/NTU201800854

143

(a) Boba (b) Thumb (c) DodecaPen (d) UIST2017

Figure 6.14: The four ground-truth drawings used for real data evaluation. These

patterns are drawn on a letter size paper (220×280 mm2).

drawing produced by our technique. The ground-truth image (on a letter size paper)

is obtained from a scanner, as shown in Figure 6.14, while the digital 2D drawing

is generated by the built-in plot function in MATLAB. Both images are scaled to

a resolution of 1650×1275. The maximum rotation and translation speeds of the

dodecahedron in the real dataset are around 80 degree/s and 200 mm/s, respectively.

General drawing and writing are covered within these speeds. The relative rigid

transformation between the camera and the drawing paper is resolved through

calibration.

To compare a drawing generated by the proposed system to a ground-truth

drawing, we first binarize both drawings by Otsu’s method [188] and obtain a 2D

set of drawn points from each image. Next, we overlay these two binary images

and find the nearest point in the other image for each point in both point sets

according to their coordinates. The mean distances between each point and its

nearest neighbor are regarded as the similarity metric, which is applied for our real

data evaluation.

We collect four real drawings with different shapes, and the tracking results

of our system compared to ground-truth (i.e., scanned) patterns are shown in

Figure 6.15 to Figure 6.18. The proposed method can generate drawings virtually

identical to ground truth, while results from applying the APE approach alone are

visually messy. Furthermore, without dodecahedron calibration, distortions due to

model error are clearly visible in the alignment with the ground truth. The accuracy

doi:10.6342/NTU201800854

144

APE

APE+DPR

APE+DPR+BLS

APE+ICT+DPR+BLS

APE+ICT+DPR+BLS-DC

Mocap

Figure 6.15: Hand-drawing results of Boba generated by different approaches.

Each image is blended with the ground-truth drawing and augmented with a text

box showing the mean shortest distance (in millimeters) between the generated

and ground-truth drawing.

doi:10.6342/NTU201800854

145

APE

APE+DPR

APE+DPR+BLS

APE+ICT+DPR+BLS

APE+ICT+DPR+BLS-DC

Mocap

Figure 6.16: Hand-drawing results of Thumb generated by different approaches.

Each image is blended with the ground-truth drawing and augmented with a text

box showing the mean shortest distance (in millimeters) between the generated

and ground-truth drawing.

doi:10.6342/NTU201800854

146

APE

APE+DPR

APE+DPR+BLS

APE+ICT+DPR+BLS

APE+ICT+DPR+BLS-DC

Mocap

Figure 6.17: Hand-drawing results of DodecaPen generated by different ap-

proaches. Each image is blended with the ground-truth drawing and augmented

with a text box showing the mean shortest distance (in millimeters) between the

generated and ground-truth drawing.

doi:10.6342/NTU201800854

147

APE

APE+DPR

APE+DPR+BLS

APE+ICT+DPR+BLS

APE+ICT+DPR+BLS-DC

Mocap

Figure 6.18: Hand-drawing results of UIST2017 generated by different approaches.

Each image is blended with the ground-truth drawing and augmented with a text

box showing the mean shortest distance (in millimeters) between the generated

and ground-truth drawing.

doi:10.6342/NTU201800854

148

APE
APE+DPR
APE+DPR+BLS
APE+ICT+DPR+BLS
APE+ICT+DPR+BLS-DC

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

5

10

15

20

25

30

E
xe

cu
tio

n
T

im
e

(m
s)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

0.2

0.4

0.6

0.8

1

M
ea

n
S

ho
rt

es
t D

is
ta

nc
e

(m
m

)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

5000

10000

15000

N
um

be
r

of
 V

al
id

 P
oi

nt
s

0.2 0.4 0.6 0.8 1 1.2

Input Resolution (Megapixels)

0

5

10

15

20

N
um

be
r

of
 It

er
at

io
ns

Figure 6.19: Experimental results on real dataset under various camera resolution

conditions.

and performance for various camera resolutions and mask kernel conditions are

shown in Figure 6.19 and Figure 6.20, respectively. As we have already seen

in Section 6.7.1, the proposed method can still perform well (0.5 mm accuracy)

even at VGA resolution. And masking does not seem to affect the tracking results,

which makes it possible to run the proposed system at 60Hz by choosing the

doi:10.6342/NTU201800854

149

APE
APE+DPR
APE+DPR+BLS
APE+ICT+DPR+BLS
APE+ICT+DPR+BLS-DC

2 3 4 5 6 7 8 9 10 11

Kernel Width (pixels) of the Mask

0

5

10

15

20

25

30

35

E
xe

cu
tio

n
T

im
e

(m
s)

2 3 4 5 6 7 8 9 10 11

Kernel Width (pixels) of the Mask

0

0.2

0.4

0.6

0.8

1

M
ea

n
S

ho
rt

es
t D

is
ta

nc
e

(m
m

)

2 3 4 5 6 7 8 9 10 11

Kernel Width (pixels) of the Mask

97

98

99

100

101

S
uc

ce
ss

 R
at

e
(%

)

2 3 4 5 6 7 8 9 10 11

Kernel Width (pixels) of the Mask

0

5000

10000

15000

N
um

be
r

of
 V

al
id

 P
oi

nt
s

2 3 4 5 6 7 8 9 10 11

Kernel Width (pixels) of the Mask

0

2

4

6

8

10

12

N
um

be
r

of
 It

er
at

io
ns

Figure 6.20: Experimental results on real dataset under various camera resolution

conditions.

smallest mask kernel size.

In our final comparison, we compare the drawing results generated by the

proposed DodecaPen system with those generated by a state-of-the-art motion

capture system. The motion capture system is constructed with 16 OptiTrack Prime

17 W (1.7 megapixels, 70 degrees field-of-view) cameras, as shown in Figure 6.21.

doi:10.6342/NTU201800854

150

Figure 6.21: Experiments with OptiTrack motion capture system. Top tow: We

use 16 OptiTrack cameras. Bottom row: We add eight retroreflective markers to

the DodecaPen and shown a sample frame from the DodecaPen tracking camera.

The pen is augmented with eight more retroreflective balls as markers for the

mocap system. After calibrating the mocap system, we record image sequences

from all 16 motion capture cameras (with a combined 27MP of resolution) as

well as the DodecaPen tracking camera (1.3MP) simultaneously. Because motion

capture obtains the 3D position from triangulation from multiple cameras, it is

interesting to see how accuracy degrades with fewer cameras. Since not every

camera contributes to the pose computation on the same level, we make a best

effort of selectively reducing the number of cameras in lowest priority order based

on the distance to the pen as well as the percentage of the time the markers are

blocked from that camera view. The results shown in Figure 6.22 reveal that the

proposed method is comparable to a motion capture system with 10 active cameras

doi:10.6342/NTU201800854

151

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cameras Used In the Mocap System

0

0.05

0.1

0.15

0.2

0.25
M

ea
n

S
ho

rt
es

t D
is

ta
nc

e
(p

ix
el

s)
Boba

APE+ICT+DPR+BLS
Mocap

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cameras Used In the Mocap System

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
S

ho
rt

es
t D

is
ta

nc
e

(p
ix

el
s)

Thumb

APE+ICT+DPR+BLS
Mocap

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cameras Used In the Mocap System

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
S

ho
rt

es
t D

is
ta

nc
e

(p
ix

el
s)

DodecaPen

APE+ICT+DPR+BLS
Mocap

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cameras Used In the Mocap System

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
S

ho
rt

es
t D

is
ta

nc
e

(p
ix

el
s)

UIST2017

APE+ICT+DPR+BLS
Mocap

Figure 6.22: Experimental results of the motion capture system with different

numbers of active cameras. The accuracy of the proposed method is comparable to

a motion capture system with 10 active cameras.

(17 MP). The drawing results generated by the mocap system with 16 cameras are

also shown in Figure 6.15 to Figure 6.18 and are virtually indistinguishable from

the ground truth.

6.8 Applications

The DodecaPen can provide low-cost writing and drawing capabilities to both

2D and 3D (e.g., VR) applications. We demonstrate both 2D and 3D drawing.

Although a pen is typically used for writing and drawing, the pen (via the dodeca-

hedron) can also serve as a handheld proxy for 3D objects.

doi:10.6342/NTU201800854

152

Figure 6.23: The DodecaPen can turn a flat surface into a digital drawing surface.

6.8.1 2D Drawing

Our system can turn any flat surface into a digital writing and drawing surface,

such as on a desk or whiteboard, as shown in Figure 6.23. Although the DodecaPen

requires an external camera, the pen and surface do not require any electronics

found in professional graphics tablets [189] and can digitize real graphite or ink

without a textured pattern [190]. With 3D tracking, we can utilize the space above

the writing surface and enable hover-based interactions [191] as well as multi-

layer interactions [192]. Instead of using an external camera, we could embed a

camera with a global shutter to our existing devices (e.g., monitors, laptops, mobile

devices) and create writable surfaces on the fly.

6.8.2 3D Drawing

In addition to drawing on a 2D surface in a 3D VR environment, we can use the

DodecaPen to draw 3D curves, as shown in Figure 6.24. The pen can emit 3D ink

for 3D annotation or be used as an instrument for content creation, such as a virtual

doi:10.6342/NTU201800854

153

(a) Drawing on a 2D surface (b) Drawing in 3D space

Figure 6.24: In a VR environment, the DodecaPen can (a) draw on a midair 2D

surface or (b) emit 3D ink when the spacebar is pressed.

sculpting tool [193]. For demonstration purposes, we use the spacebar to emit

3D ink, as shown in Figure 6.24(b). The DodecaPen can also be used to digitize

real 3D objects by specifying the 3D points of a surface (e.g., Ivan Sutherland’s

Volkswagen [194]) rather than scanning and then re-meshing [195].

6.8.3 General 6DoF Object Tracking

Although we focused on the specific application of tracking a pen, the dodecahe-

dron can be used as a general 6DoF tracked object. We can use the dodecahedron

to enable tangible input [196], either as a proxy for virtual 3D objects or to bring

in other physical devices into VR. The form of the pen lends itself to represent

cylindrical objects such as a VR wand or baton, as shown in Figure 6.25(a). Addi-

tionally, it can represent more general objects to be inspected for educational or

industrial (e.g., CAD models) purposes, as shown in Figure 6.25(b). Furthermore,

the proposed system can serve as a low-cost motion capture system for digital

puppetry [197].

The tracked dodecahedron can be attached to physical objects other than a pen.

doi:10.6342/NTU201800854

154

(a) Cylindrical object (b) General object

Figure 6.25: The DodecaPen can (a) double as other cylindrical objects such as a

VR wand or (b) provide general 6DoF object tracking.

In Figure 6.26(a), we attach the dodecahedron to a physical keyboard to display

in VR. The dodecahedron itself could be a tangible 12-sided VR die for use in a

board game, as shown in Figure 6.26(b).

6.9 Summary

We have demonstrated a system for sub-millimeter-accurate 6DoF tracking using a

set of readily available and easy-to-assemble components. Through design choices

around the shape and appearance of the tracking fiducial as well as careful the

application of computer vision algorithms for calibration and pose estimation, we

show that single camera pose estimation can be fast enough and robust enough for

drawing in 2D, 3D and in VR.

We have systematically validated each design decision of the system. We show

that marker corner alignment is insufficient for robust and accurate tracking. A

combination of inter-frame alignment and dense pose refinement is needed to

achieve sufficient accuracy and robustness. A straightforward application of the

Lucas and Kanade method is improved by adapting the step size with a backtrack-

doi:10.6342/NTU201800854

155

(a) DodecaKeyboard (b) DodecaDie

Figure 6.26: The dodecahedron can (a) be attached to physical objects such as a

keyboard for tracking in VR or (b) be used as a simple 12-sided VR die.

ing line search. We show empirically that the algorithm can be accelerated by

considering only the most relevant parts of the square marker for direct alignment.

We also show that the bundle adjustment calibration of the handmade dodecahedron

is essential and effective at correcting systematic errors in the model. Through

a combination of simulation and experimentation, we characterize the system’s

sensitivity to shot noise, spatial blur, and image resolution to provide practitioners

a useful guide for evaluating its applicability.

6.9.1 Limitations and Future Work

Despite the ease-of-construction and setup of our proposed system, it has some

significant drawbacks. The proposed computer vision algorithm is slow by the

standards of Lumitrack [154] or motion capture systems which can achieve a

throughput of 300-800Hz. Because the algorithm is run on a PC, it incurs the la-

tency of transferring the image to the host in addition to processing time. Although

we show graceful degradation of the algorithm accuracy with camera resolution,

the accuracy and the working volume of the system is ultimately limited by the

angular resolution of the chosen camera system and the robustness of the binary

square fiducial marker recognition software.

doi:10.6342/NTU201800854

156

Since the tracking accuracy suffers from motion blur, we need to set the

exposure time of the camera to a reasonable value for the application. From our

experiments, we find that a maximum exposure time of 4ms is good for general

writing or drawing. Therefore, if the imaging system is sufficiently sensitive to

produce bright enough images in 4ms to detect markers, our tracking system works

properly. If the input frame is too dark for the ArUco marker detector to detect

markers, our system will not work. In this case, we need to either add more light

or improve the imaging system (with a better sensor or a faster lens).

Our presented stylus contains no electronic components, but the proposed

computer vision system can easily be augmented with buttons for discrete input

and an inertial measurement unit to reduce latency and increase throughput. To

simplify the VR setup, we could attach the DodecaPen camera to the headset

instead of setting it on a desk, since the headset is also tracked. Although we

have demonstrated that only part of the binary square fiducial marker is useful

for dense alignment, we still transfer the entire image from the camera to the

host. Integrating on-camera compute or new sensing modalities such as event

cameras may further reduce latency and improve throughput. The proposed system

cannot handle occlusion because it relies on a single camera, but occlusion can

be addressed with the addition of more cameras at the cost of additional setup

complexity and calibration.

doi:10.6342/NTU201800854

Chapter 7

Conclusion

In this dissertation, we have interpreted the formulation of the 6DoF object pose

recovering problem in Chapter 2 and given a comprehensive introduction to the

related work of this topic in Chapter 3. Previous approaches have been thoroughly

analyzed and a number of new techniques have been presented in Chapter 4

to Chapter 6. The main achievements are:

• A large-scale object pose tracking benchmark dataset consisting of RGB-

D video sequences of 2D and 3D targets with ground-truth information

(Chapter 4). The videos are recorded under various lighting conditions,

different motion patterns and speeds with the help of a programmable robotic

arm.

• A novel and robust scheme to annotate the ground-truth poses by leveraging

the clear infrared images recorded by the global-shutter infrared camera

with fast shutter speed from the Kinect V2 sensor, which enables us to record

sequence even under rapid motions (Chapter 4).

• An efficient direct approach of approximate pose estimation for planar

objects which is posed as a template matching problem (Chapter 5). The

proposed method performs robustly even when the target images contain

less textured surfaces or motion blurs.

157

doi:10.6342/NTU201800854

158

• An accurate pose refinement strategy using a Lucas-Kanade dense alignment

scheme (Chapter 5,6). In this approach, the image changes with respect

to the 6DoF pose, which is parameterized as a 6D vector consisting of

the 3D rotation vector and the 3D translation vector, are approximated

using the first-order Taylor series. In addition, a backtracking line search is

performed to ensure the convergence of Gauss-Newton iteration within the

pose refinement technique.

• A practical method for planar object pose disambiguation, which find all

possible poses first and then the one with smallest appearance distance

between the camera image and the target image is considered as the estimated

pose Chapter 5.

• An accurate 6DoF pose tracking solution by leveraging both the binary square

fiducial marker toolkit and the proposed pose refinement scheme Chapter 6.

As each fiducial marker has many sharp edges and corners, it is well-suited

for providing a precise pose using dense alignment methods. In addition,

since there are large portions of the fiducial marker that do not significantly

contribute to the pose estimation procedure, we can take advantage of this by

selectively masking out flat regions ahead of time on markers. A significant

acceleration of the algorithm can be achieved without compromising tracking

quality using this masking technique.

• A one-time model calibration procedure using bundle adjustment based on

the proposed pose refinement algorithm Chapter 6. This technique can be

employed not only for a dodecahedron but also for any 3D model composed

of planes.

• Extensive experimental evaluations of the proposed method as well as previ-

ous approaches on both synthetic data and real data (Chapter 4,5,6).

• The implementation of an accurate pen-trajectory tracking solution, which

doi:10.6342/NTU201800854

159

is comparable to state-of-the-art professional motion capture systems Chap-

ter 6.

• Demonstrations of the proposed accurate and easy-to-setup 6DoF stylus

tracking system for the application of drawing in 2D and 3D as well as object

manipulation in a virtual reality environment.

7.1 Discussion and Future Work

Recently, object pose estimation has benefitted from the advent of deep learning

based approaches and the possibility of using large datasets for training such

methods, and we believe this trend will continue in the future. But because these

deep learning based approaches generally cannot give pretty accurate results,

another pose refinement procedure is preferable to use. Traditionally, the iterative

closest point algorithm is commonly applied to accomplish getting a more accurate

pose. However, since the depth image obtained by present sensors is still noisy (as

we have discussed in Section 4.2), the pose recovering results may not be entirely

satisfactory. In contrast, because the proposed pose refinement approach has been

demonstrated to improve the accuracy of the estimated pose significantly with

RGB images (which can be captured clearly by present sensors), it is suitable

for being augmented by any object pose estimation method especially when the

object is composed of planes. But one should still be careful with the appearance

consistency between the targets in the camera image and its original representation

when using the dense alignment strategy.

There are many object pose estimation and tracking datasets which use fidu-

cial markers to establish ground-truth poses. Nonetheless, as we have presented

in Chapter 6, the marker corner alignment is insufficient for robust and accurate

tracking. Therefore, the pose annotation process in the previous benchmark dataset

may not be reliable. By employing the pose tracking solution proposed in Chap-

ter 6, it is conceivable to achieve more accurate and robust pose annotation results.

doi:10.6342/NTU201800854

160

We also encourage everyone to utilize the dense pose refinement technique pro-

posed in Section 6.4 when using any fiducial marker toolkit as it can phenomenally

enhance the tracking quality with slight additional computational cost.

Pose estimation for planar objects can explicitly take advantage of depth images

as the estimated pose can, therefore, be unambiguous. The candidate poses in the

approximate pose estimation step presented in Section 5.1 can also be significantly

reduced. If there is no depth information, we can still use some temporal filtering

strategy to not only disambiguate the estimated pose but further improve the result

accuracy as well.

doi:10.6342/NTU201800854

Reference

[1] E. Lachat, H. Macher, M. Mittet, T. Landes, and P. Grussenmeyer, “First

Experiences with Kinect V2 Sensor for Close Range 3d Modelling,” The

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences (ISPRS Archives), vol. 40, no. 5, p. 93, 2015. ix, 51,

52

[2] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM

System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions

on Robotics (T-RO), vol. 33, no. 5, pp. 1255–1262, 2017. xi, 6, 9, 46, 65,

66, 68, 82

[3] H.-Y. Tseng, P.-C. Wu, M.-H. Yang, and S.-Y. Chien, “Direct 3D Pose

Estimation of a Planar Target,” in Proceedings of IEEE Winter Conference

on Applications of Computer Vision (WACV), 2016, pp. 1–9. xiii, 4, 23, 35,

65, 66, 86, 100, 125

[4] S. Gauglitz, T. Höllerer, and M. Turk, “Evaluation of Interest Point Detectors

and Feature Descriptors for Visual Tracking,” International Journal of

Computer Vision (IJCV), vol. 94, no. 3, pp. 335–360, 2011. xiii, xiv, xx, 41,

43, 86, 99, 100, 108, 109, 110, 111, 112, 113, 114

[5] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,

and N. Navab, “Model Based Training, Detection and Pose Estimation of

Texture-Less 3D Objects in Heavily Cluttered Scenes,” in Proceedings of

161

doi:10.6342/NTU201800854

162

Asian Conference on Computer Vision (ACCV), 2012, pp. 548–562. 4, 5, 23,

35, 41, 43, 54

[6] V. Lepetit, J. Pilet, and P. Fua, “Point matching as a classification problem for

fast and robust object pose estimation,” in Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), vol. 2, 2004, pp.

II–244–II–250. 4

[7] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson, “Object Recogni-

tion and Full Pose Registration from a Single Image for Robotic Manipu-

lation,” in Proceedings of IEEE International Conference on Robotics and

Automation (ICRA), 2009, pp. 48–55. 4, 35

[8] J. Tang, S. Miller, A. Singh, and P. Abbeel, “A Textured Object Recogni-

tion Pipeline for Color and Depth Image Data,” in Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), 2012, pp.

3467–3474. 4, 35

[9] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”

International Journal of Computer Vision (IJCV), vol. 60, no. 2, 2004. 4,

26, 65, 73, 98

[10] G. Yu and J.-M. Morel, “ASIFT: An Algorithm for Fully Affine Invariant

Comparison,” Image Processing On Line (IPOL), vol. 1, pp. 11–38, 2011.

4, 65, 99

[11] M. A. Fischler and R. C. Bolles, “RANdom SAmple Consensus: A Paradigm

for Model Fitting With applications to Image Analysis and Automated

Cartography,” Communications of the ACM (CACM), vol. 24, no. 6, pp.

381–395, 1981. 4, 26, 65, 99

[12] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPNP: An Accurate O(n) Solu-

tion to the PnP Problem,” International Journal of Computer Vision (IJCV),

vol. 81, no. 2, pp. 155–166, 2009. 4, 27, 99

doi:10.6342/NTU201800854

163

[13] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi, “Revisiting

the PnP Problem: A Fast, General and Optimal Solution,” in Proceedings

of IEEE International Conference on Computer Vision (ICCV), 2013, pp.

2344–2351. 4, 27, 38, 53, 65, 99, 106

[14] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-Class Hough

Forests for Object Detection and Pose Estimation,” in Proceedings of Euro-

pean Conference on Computer Vision (ECCV), 2014, pp. 462–477. 4, 5, 35,

41, 43, 54

[15] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother,

“Learning 6D Object Pose Estimation Using 3D Object Coordinates,” in

Proceedings of European Conference on Computer Vision (ECCV), 2014,

pp. 536–551. 4, 5, 35, 41, 43, 54

[16] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and C. Rother,

“Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a

Single RGB Image,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016, pp. 3364–3372. 4, 24, 35,

36, 65, 66, 67, 82

[17] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep Learning of

Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation,” in

Proceedings of European Conference on Computer Vision (ECCV), 2016,

pp. 205–220. 4, 36

[18] Y. Park, V. Lepetit, and W. Woo, “Texture-Less Object Tracking with Online

Training using An RGB-D Camera,” in Proceedings of IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), 2011, pp. 121–126.

5, 39

doi:10.6342/NTU201800854

164

[19] V. A. Prisacariu and I. D. Reid, “PWP3D: Real-Time Segmentation and

Tracking of 3D Objects,” International Journal of Computer Vision (IJCV),

vol. 98, no. 3, pp. 335–354, 2012. 5, 39, 65, 66

[20] C. Choi and H. I. Christensen, “RGB-D Object Tracking: A Particle Filter

Approach on GPU,” in Proceedings of IEEE International Conference on

Intelligent Robots and Systems (IROS), 2013, pp. 121–126. 5

[21] H. Tjaden, U. Schwanecke, and E. Schömer, “Real-Time Monocular Seg-

mentation and Pose Tracking of Multiple Objects,” in Proceedings of Euro-

pean Conference on Computer Vision (ECCV), 2016, pp. 423–438. 5, 39,

78, 83

[22] E. Marchand, H. Uchiyama, and F. Spindler, “Pose Estimation for Aug-

mented Reality: A Hands-On Survey,” IEEE Transactions on Visualization

and Computer Graphics (TVCG), vol. 22, no. 12, pp. 2633–2651, 2016. 5

[23] M. Billinghurst, A. Clark, G. Lee et al., “A Survey of Augmented Reality,”

Foundations and Trends® in Human-Computer Interaction, vol. 8, no. 2-3,

pp. 73–272, 2015. 5

[24] C. Choi and H. I. Christensen, “RGB-D Object Tracking: A Particle Filter

Approach on GPU,” in Proceedings of IEEE International Conference on

Intelligent Robots and Systems (IROS), 2013, pp. 1084–1091. 5, 39, 42, 43

[25] A. Krull, F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, and C. Rother, “6-

DOF Model Based Tracking via Object Coordinate Regression,” in Proceed-

ings of Asian Conference on Computer Vision (ACCV), 2014, pp. 384–399.

5, 39, 41, 43

[26] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza, “A Dataset for Im-

proved RGBD-based Object Detection and Pose Estimation for Warehouse

Pick-and-Place,” IEEE Robotics and Automation Letters (RA-L), vol. 1,

no. 2, pp. 1179–1185, 2016. 5, 41, 43

doi:10.6342/NTU201800854

165

[27] H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and Mapping:

Part I,” IEEE Robotics and Automation Magazine (RAM), vol. 13, no. 2, pp.

99–110, 2006. 6

[28] T. Bailey and H. Durrant-Whyte, “Simultaneous Localization and Mapping:

Part II,” IEEE Robotics and Automation Magazine (RAM), vol. 13, no. 3, pp.

108–117, 2006. 6

[29] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile

and Accurate Monocular SLAM System,” IEEE Transactions on Robotics

(T-RO), vol. 31, no. 5, pp. 1147–1163, 2015. 6

[30] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:

Real-Time Single Camera SLAM,” IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1052–1067, 2007. 6

[31] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR

Workspaces,” in Proceedings of IEEE International Symposium on Mixed

and Augmented Reality (ISMAR), 2007, pp. 225–234. 6

[32] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense

tracking and mapping in real-time,” in Proceedings of IEEE International

Conference on Computer Vision (ICCV), 2011, pp. 2320–2327. 6

[33] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct

Monocular SLAM,” in Proceedings of European Conference on Computer

Vision (ECCV), 2014, pp. 834–849. 6

[34] D. Nistér, O. Naroditsky, and J. Bergen, “Visual Odometry,” in Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

vol. 1, 2004, pp. 652–659. 6

doi:10.6342/NTU201800854

166

[35] D. Scaramuzza and F. Fraundorfer, “Visual Odometry [Tutorial],” IEEE

Robotics and Automation Magazine (RAM), vol. 18, no. 4, pp. 80–92, 2011.

6

[36] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-direct Monoc-

ular Visual Odometry,” in Proceedings of IEEE International Conference

on Robotics and Automation (ICRA), 2014, pp. 15–22. 6

[37] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An Overview to Visual

Odometry and Visual SLAM: Applications to Mobile Robotics,” Intelligent

Industrial Systems, vol. 1, no. 4, pp. 289–311, 2015. 6

[38] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 40,

no. 3, pp. 611–625, 2018. 6

[39] H. C. Longuet-Higgins, “A Computer Algorithm for Reconstructing a Scene

from Two Projections,” Nature, vol. 293, no. 5828, pp. 133–135, 1981. 6

[40] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz,

and R. Szeliski, “Building Rome in a Day,” Communications of the ACM

(CACM), vol. 54, no. 10, pp. 105–112, 2011. 6

[41] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer, “A Survey of Structure

from Motion,” Acta Numerica, vol. 26, pp. 305–364, 2017. 6

[42] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle Adjustment

in the Large,” in Proceedings of European Conference on Computer Vision

(ECCV), 2010, pp. 29–42. 7

[43] N. Snavely, S. M. Seitz, and R. Szeliski, “Skeletal Graphs for Efficient

Structure from Motion,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), vol. 1, 2008, p. 2. 7

doi:10.6342/NTU201800854

167

[44] M. Havlena, A. Torii, and T. Pajdla, “Efficient Structure from Motion by

Graph Optimization,” in Proceedings of European Conference on Computer

Vision (ECCV), 2010, pp. 100–113. 7

[45] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, “From Structure-from-

Motion Point Clouds to Fast Location Recognition,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp.

2599–2606. 7

[46] T. Sattler, B. Leibe, and L. Kobbelt, “Improving Image-Based Localization

by Active Correspondence Search,” in Proceedings of European Conference

on Computer Vision (ECCV), 2012, pp. 752–765. 7

[47] X. Sun, Y. Xie, P. Luo, and L. Wang, “A Dataset for Benchmarking Image-

based Localization,” in Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 7436–7444. 7

[48] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recognition,”

in Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2007, pp. 1–7. 7

[49] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo Tourism: Exploring Photo

Collections in 3D,” in ACM Transactions on Graphics (TOG), vol. 25, no. 3,

2006, pp. 835–846. 7

[50] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide Pose Estima-

tion Using 3D Point Clouds,” in Proceedings of European Conference on

Computer Vision (ECCV), 2012, pp. 15–29. 7

[51] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 22, no. 11,

pp. 1330–1334, 2000. 7

doi:10.6342/NTU201800854

168

[52] C.-K. Liang, L.-W. Chang, and H. H. Chen, “Analysis and Compensation

of Rolling Shutter Effect,” IEEE Transactions on Image Processing (TIP),

vol. 17, no. 8, pp. 1323–1330, 2008. 8

[53] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propa-

gation,” IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), vol. 25, no. 7, pp. 787–800, 2003. 8

[54] C. Shi, G. Wang, X. Yin, X. Pei, B. He, and X. Lin, “High-Accuracy Stereo

Matching Based on Adaptive Ground Control Points,” IEEE Transactions

on Image Processing (TIP), vol. 24, no. 4, pp. 1412–1423, 2015. 8

[55] Z. Zhang, “Microsoft Kinect Sensor and Its Effect,” IEEE Multimedia,

vol. 19, no. 2, pp. 4–10, 2012. 8

[56] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. El Saddik, “Evaluating and

Improving the Depth Accuracy of Kinect for Windows V2,” IEEE Sensors

Journal, vol. 15, no. 8, pp. 4275–4285, 2015. 8

[57] J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime Stereo: A

Unifying Framework for Depth from Triangulation,” in Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

vol. 2, 2003, pp. 359–366. 8

[58] D. Scharstein and R. Szeliski, “High-Accuracy Stereo Depth Maps Using

Structured Light,” in Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), vol. 1, 2003, pp. 195–202. 8

[59] S. B. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor

– System Description, Issues and Solutions,” in Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition Workshop (CVPRW),

2004, pp. 35–43. 8

doi:10.6342/NTU201800854

169

[60] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leuteneg-

ger, “ElasticFusion: Real-Time Dense SLAM and Light Source Estimation,”

International Journal of Robotics Research (IJRR), vol. 35, no. 14, pp.

1697–1716, 2016. 9, 46, 65, 66, 82

[61] P.-C. Wu, Y.-Y. Lee, H.-Y. Tseng, H.-I. Ho, M.-H. Yang, and S.-Y. Chien,

“A Benchmark Dataset for 6DoF Object Pose Tracking,” in Proceedings of

IEEE International Symposium on Mixed and Augmented Reality (ISMAR-

Adjunct), 2017, pp. 186–191. 11

[62] P.-C. Wu, H.-Y. Tseng, M.-H. Yang, and S.-Y. Chien, “Direct Pose Esti-

mation for Planar Objects,” Computer Vision and Image Understanding

(CVIU), 2018. 11

[63] P.-C. Wu, R. Wang, K. Kin, C. Twigg, S. Han, M.-H. Yang, and S.-Y. Chien,

“Dodecapen: Accurate 6dof tracking of a passive stylus,” in Proceedings of

ACM Symposium on User Interface Software and Technology (UIST), 2017,

pp. 365–374. 11

[64] F. S. Grassia, “Practical Parameterization of Rotations Using the Exponential

Map,” Journal of Graphics Tools (JGT), vol. 3, no. 3, pp. 29–48, 1998. 14

[65] D. Eberly, “Euler Angle Formulas,” Geometric Tools, LLC, Tech. Rep.,

2008. 17, 87

[66] Wikipedia contributors, “Rodrigues’ rotation formula — Wikipedia, the

free encyclopedia,” 2018, [Online; accessed 21-April-2018]. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Rodrigues rotation

formula&oldid=822424523 18

[67] ——, “Axis–angle representation — Wikipedia, the free en-

cyclopedia,” 2017, [Online; accessed 21-April-2018]. [On-

line]. Available: https://en.wikipedia.org/w/index.php?title=Axis angle

representation&oldid=806689583 18

https://en.wikipedia.org/w/index.php?title=Rodrigues_rotation_formula&oldid=822424523
https://en.wikipedia.org/w/index.php?title=Rodrigues_rotation_formula&oldid=822424523
https://en.wikipedia.org/w/index.php?title=Axis_angle_representation&oldid=806689583
https://en.wikipedia.org/w/index.php?title=Axis_angle_representation&oldid=806689583

doi:10.6342/NTU201800854

170

[68] E. Eade, “Lie Groups for 2D and 3D Transformations,” 2013, [Online;

accessed 21-April-2018]. [Online]. Available: http://ethaneade.com/lie.pdf

19

[69] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applica-

tions to Orbits, Aerospace and Virtual Reality. Princeton University Press,

2011. 20

[70] J. Van Waveren, “From quaternion to matrix and back,” Id Software, Inc,

2005. 21

[71] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon,

“Scene Coordinate Regression Forests for Camera Relocalization in RGB-

D Images,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2013, pp. 2930–2937. 23

[72] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust

Features (SURF),” Computer Vision and Image Understanding (CVIU), vol.

110, no. 3, pp. 346–359, 2008. 26

[73] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in

Proceedings of European Conference on Computer Vision (ECCV), 2012,

pp. 214–227. 26

[74] P. F. Alcantarilla, J. Nuevo, T. Solutions, and A. Bartoli, “Fast Explicit Dif-

fusion for Accelerated Features in Nonlinear Scale Spaces,” in Proceedings

of British Machine Vision Conference (BMVC), 2013. 26

[75] J. Weickert, B. T. H. Romeny, and M. A. Viergever, “Efficient And Reliable

Schemes For Nonlinear Diffusion Filtering,” IEEE Transactions on Image

Processing (TIP), vol. 7, no. 3, pp. 398–410, 1998. 26

http://ethaneade.com/lie.pdf

doi:10.6342/NTU201800854

171

[76] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner

Detection,” in Proceedings of European Conference on Computer Vision

(ECCV), 2006, pp. 430–443. 26, 72

[77] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adaptive

and Generic Corner Detection Based on the Accelerated Segment Test,” in

Proceedings of European Conference on Computer Vision (ECCV), 2010,

pp. 183–196. 26

[78] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust

Independent Elementary Features,” in Proceedings of European Conference

on Computer Vision (ECCV), 2010, pp. 778–792. 26

[79] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust Invari-

ant Scalable Keypoints,” in Proceedings of IEEE International Conference

on Computer Vision (ICCV), 2011, pp. 2548–2555. 26

[80] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An Efficient

Alternative to SIFT or SURF,” in Proceedings of IEEE International Con-

ference on Computer Vision (ICCV), 2011, pp. 2564–2571. 26, 72

[81] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast Retina Keypoint,”

in Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2012, pp. 510–517. 26

[82] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete Solution Clas-

sification for the Perspective-Three-Point Problem,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), vol. 25, no. 8, pp.

930–943, 2003. 26

[83] L. Kneip, D. Scaramuzza, and R. Siegwart, “A Novel Parametrization of

the Perspective-Three-Point Problem for a Direct Computation of Absolute

Camera Position and Orientation,” in Proceedings of IEEE Conference on

doi:10.6342/NTU201800854

172

Computer Vision and Pattern Recognition (CVPR), 2011, pp. 2969–2976.

26

[84] T. Ke and S. I. Roumeliotis, “An Efficient Algebraic Solution to the

Perspective-Three-Point Problem,” in Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 7225–7233.

26

[85] O. Chum and J. Matas, “Matching with PROSAC-PROgressive SAmple

Consensus,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2005, pp. 220–226. 26

[86] V. Fragoso, P. Sen, S. Rodriguez, and M. Turk, “EVSAC: Accelerating

Hypotheses Generation by Modeling Matching Scores with Extreme Value

Theory,” in Proceedings of IEEE International Conference on Computer

Vision (ICCV), 2013, pp. 2472–2479. 26

[87] C.-P. Lu, G. D. Hager, and E. Mjolsness, “Fast and Globally Convergent Pose

Estimation from Video Images,” IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), vol. 22, no. 6, pp. 610–622, 2000. 27, 38

[88] G. Schweighofer and A. Pinz, “Robust Pose Estimation from a Planar Target,”

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

vol. 28, no. 12, pp. 2024–2030, 2006. 27, 38, 85, 99

[89] J. A. Hesch and S. I. Roumeliotis, “A Direct Least-Squares (DLS) Method

for PnP,” in Proceedings of IEEE International Conference on Computer

Vision (ICCV), 2011, pp. 383–390. 27

[90] S. Li, C. Xu, and M. Xie, “A Robust O(n) Solution to the Perspective-n-Point

Problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), vol. 34, no. 7, pp. 1444–1450, 2012. 27

doi:10.6342/NTU201800854

173

[91] L. Kneip, H. Li, and Y. Seo, “UPnP: An Optimal O(n) Solution to the

Absolute Pose Problem with Universal Applicability,” in Proceedings of

European Conference on Computer Vision (ECCV), 2014, pp. 127–142. 27,

99

[92] L. Ferraz, X. Binefa, and F. Moreno-Noguer, “Very Fast Solution to the

PnP Problem with Algebraic Outlier Rejection,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp.

501–508. 27

[93] ——, “Leveraging Feature Uncertainty in the PnP Problem,” in Proceedings

of British Machine Vision Conference (BMVC), 2014, pp. 1–13. 27

[94] W. Kabsch, “A Solution for the Best Rotation to Relate Two Sets of Vectors,”

Acta Crystallographica, vol. 32, no. 5, pp. 922–923, 1976. 27, 35

[95] Wikipedia contributors, “Singular-value decomposition — Wikipedia,

the free encyclopedia,” 2018, [Online; accessed 26-April-

2018]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Singular-value decomposition&oldid=837622148 28

[96] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique

with an Application to Stereo Vision,” in Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI), vol. 81, 1981, pp. 674–679.

28, 53

[97] E. W. Weisstein, “Normal Equation,” 2018, from MathWorld–A Wolfram

Web Resource. [Online]. Available: http://mathworld.wolfram.com/

NormalEquation.html 30

[98] Wikipedia contributors, “Matrix calculus — Wikipedia, the free

encyclopedia,” 2018, [Online; accessed 30-April-2018]. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Matrix calculus&

oldid=838546380 30

https://en.wikipedia.org/w/index.php?title=Singular-value_decomposition&oldid=837622148
https://en.wikipedia.org/w/index.php?title=Singular-value_decomposition&oldid=837622148
http://mathworld.wolfram.com/NormalEquation.html
http://mathworld.wolfram.com/NormalEquation.html
https://en.wikipedia.org/w/index.php?title=Matrix_calculus&oldid=838546380
https://en.wikipedia.org/w/index.php?title=Matrix_calculus&oldid=838546380

doi:10.6342/NTU201800854

174

[99] K. B. Petersen, M. S. Pedersen et al., “The Matrix Cookbook,” Technical

University of Denmark, vol. 7, no. 15, p. 510, 2008. 30

[100] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Frame-

work,” International Journal of Computer Vision (IJCV), vol. 56, no. 3, pp.

221–255, 2004. 31

[101] H.-Y. Shum and R. Szeliski, “Construction of Panoramic Image Mosaics

with Global and Local Alignment,” Panoramic Vision, pp. 227–268, 2001.

31

[102] G. D. Hager and P. N. Belhumeur, “Efficient Region Tracking with Paramet-

ric Models of Geometry and Illumination,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 20, no. 10, pp. 1025–1039,

1998. 31

[103] S. Baker and I. Matthews, “Equivalence and Efficiency of Image Alignment

Algorithms,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2001, pp. 1090–1097. 31

[104] S. Benhimane and E. Malis, “Homography-based 2D Visual Tracking and

Servoing,” International Journal of Robotics Research (IJRR), vol. 26, no. 7,

pp. 661–676, 2007. 31

[105] A. Crivellaro, P. Fua, and V. Lepetit, “Dense Methods for Image Alignment

with an Application to 3D Tracking,” EPFL, Tech. Rep., 2014. 31

[106] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

vol. 14, no. 2, pp. 239–256, 1992. 31

[107] F. Pomerleau, F. Colas, R. Siegwart et al., “A Review of Point Cloud

Registration Algorithms for Mobile Robotics,” Foundations and Trends® in

Robotics, vol. 4, no. 1, pp. 1–104, 2015. 31

doi:10.6342/NTU201800854

175

[108] Y. Chen and G. Medioni, “Object ModelLing by Registration of Multiple

Range Images,” Image and Vision Computing, vol. 10, no. 3, pp. 145–155,

1992. 32

[109] J. Nocedal and S. J. Wright, “Numerical Optimization,” Springer, 2006. 32,

35

[110] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP Algorithm,”

in Proceedings of IEEE International Conference on 3-D Digital Imaging

and Modeling (3DIM), 2001, pp. 145–152. 32

[111] H. Pottmann, S. Leopoldseder, and M. Hofer, “Registration Without ICP,”

Computer Vision and Image Understanding (CVIU), vol. 95, no. 1, pp.

54–71, 2004. 32

[112] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and

V. Lepetit, “Multimodal Templates for Real-Time Detection of Texture-less

Objects in Heavily Cluttered Scenes,” in Proceedings of IEEE International

Conference on Computer Vision (ICCV), 2011, pp. 858–865. 35

[113] A. Krull, E. Brachmann, F. Michel, M. Ying Yang, S. Gumhold, and

C. Rother, “Learning Analysis-by-Synthesis for 6D Pose Estimation in

RGB-D Images,” in Proceedings of IEEE International Conference on Com-

puter Vision (ICCV), 2015, pp. 954–962. 35, 36

[114] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim, “Re-

covering 6D Object Pose and Predicting Next-Best-View in the Crowd,” in

Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2016, pp. 3583–3592. 35, 83

[115] Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto, “Fast 6D Pose

Estimation from a Monocular Image Using Hierarchical Pose Trees,” in

Proceedings of European Conference on Computer Vision (ECCV), 2016,

pp. 398–413. 35, 83

doi:10.6342/NTU201800854

176

[116] A. Krull, E. Brachmann, S. Nowozin, F. Michel, J. Shotton, and C. Rother,

“PoseAgent: Budget-Constrained 6D Object Pose Estimation via Reinforce-

ment Learning,” in Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), vol. 2, 2017. 36

[117] F. Michel, A. Kirillov, E. Brachmann, A. Krull, S. Gumhold, B. Savchyn-

skyy, and C. Rother, “Global Hypothesis Generation for 6D Object Pose

Estimation,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 462–471. 36

[118] P. Wohlhart and V. Lepetit, “Learning Descriptors for Object Recognition

and 3D Pose Estimation,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015, pp. 3109–3118. 36, 82

[119] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies

for Accurate Object Detection and Semantic Segmentation,” in Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2014, pp. 580–587. 36

[120] R. Girshick, “Fast R-CNN,” in Proceedings of IEEE International Confer-

ence on Computer Vision (ICCV), 2015, pp. 1440–1448. 36

[121] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,” IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), vol. 39, no. 6, pp.

1137–1149, 2017. 36

[122] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings

of IEEE International Conference on Computer Vision (ICCV), 2017, pp.

2980–2988. 36

[123] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once:

Unified, Real-Time Object Detection,” in Proceedings of IEEE Conference

doi:10.6342/NTU201800854

177

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

36

[124] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 6517–6525. 36

[125] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “SSD: Single Shot MultiBox Detector,” in Proceedings of European

Conference on Computer Vision (ECCV), 2016, pp. 21–37. 36

[126] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D: Making

RGB-Based 3D Detection and 6D Pose Estimation Great Again,” in Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 1521–1529. 36

[127] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A Convolu-

tional Neural Network for 6D Object Pose Estimation in Cluttered Scenes,”

in Proceedings of Robotics: Science and Systems (RSS), 2018. 36, 41, 43

[128] M. Rad and V. Lepetit, “BB8: A Scalable, Accurate, Robust to Partial

Occlusion Method for Predicting the 3D Poses of Challenging Objects

without Using Depth,” in Proceedings of IEEE International Conference on

Computer Vision (ICCV), 2017, pp. 3848–3856. 36

[129] B. Tekin, S. N. Sinha, and P. Fua, “Real-Time Seamless Single Shot 6D

Object Pose Prediction,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 36

[130] M. Rad, M. Oberweger, and V. Lepetit, “Feature Mapping for Learning Fast

and Accurate 3D Pose Inference from Synthetic Images,” in Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018. 36

doi:10.6342/NTU201800854

178

[131] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-DoF

Object Pose from Semantic Keypoints,” in Proceedings of IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2017, pp. 2011–

2018. 36

[132] P.-C. Wu, J.-H. Lai, J.-L. Wu, and S.-Y. Chien, “Stable Pose Estimation

with a Motion Model in Real-Time Application,” in Proceedings of IEEE

International Conference on Multimedia and Expo (ICME), 2012, pp. 314–

319. 37

[133] P.-C. Wu, Y.-H. Tsai, and S.-Y. Chien, “Stable Pose Tracking from a Planar

Target With an Analytical Motion Model in Real-Time Applications,” in Pro-

ceedings of IEEE International Workshop on Multimedia Signal Processing

(MMSP), 2014, pp. 1–6. 37, 85

[134] Z. Kukelova, M. Bujnak, and T. Pajdla, “Automatic Generator of Minimal

Problem Solvers,” in Proceedings of European Conference on Computer

Vision (ECCV), 2008, pp. 302–315. 38, 94

[135] T. Collins and A. Bartoli, “Infinitesimal Plane-Based Pose Estimation,”

International Journal of Computer Vision (IJCV), vol. 109, no. 3, pp. 252–

286, 2014. 38, 65, 99

[136] V. Lepetit, P. Fua et al., “Monocular Model-Based 3D Tracking of Rigid

Objects: A Survey,” Foundations and Trends® in Computer Graphics and

Vision, vol. 1, no. 1, pp. 1–89, 2005. 38

[137] Y. Park, V. Lepetit, and W. Woo, “Multiple 3D Object Tracking for Aug-

mented Reality,” in Proceedings of IEEE International Symposium on Mixed

and Augmented Reality (ISMAR), 2008, pp. 117–120. 39

[138] C. Schmaltz, B. Rosenhahn, T. Brox, and J. Weickert, “Region-Based Pose

Tracking with Occlusions Using 3D Models,” vol. 23, no. 3, pp. 557–577,

2012. 39

doi:10.6342/NTU201800854

179

[139] J. Hexner and R. R. Hagege, “2D-3D Pose Estimation of Heterogeneous Ob-

jects Using a Region Based Approach,” International Journal of Computer

Vision (IJCV), vol. 118, no. 1, pp. 95–112, 2016. 39, 83

[140] O. Korkalo and S. Kahn, “Real-Time Depth Camera Tracking with CAD

Models and ICP,” Journal of Virtual Reality and Broadcasting (JVRB),

vol. 13, no. 1, 2016. 39

[141] W. Kehl, F. Tombari, S. Ilic, and N. Navab, “Real-Time 3D Model Track-

ing in Color and Depth on a Single CPU Core,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.

745–753. 39

[142] D. J. Tan, F. Tombari, S. Ilic, and N. Navab, “A Versatile Learning-Based

3D Temporal Tracker: Scalable, Robust, Online,” in Proceedings of IEEE

International Conference on Computer Vision (ICCV), 2015, pp. 693–701.

39

[143] D. J. Tan, N. Navab, and F. Tombari, “Looking Beyond the Simple Scenarios:

Combining Learners and Optimizers in 3D Temporal Tracking,” IEEE

Transactions on Visualization and Computer Graphics (TVCG), vol. 23,

no. 11, pp. 2399–2409, 2017. 39

[144] M. Garon and J.-F. Lalonde, “Deep 6-DOF Tracking,” IEEE Transactions

on Visualization and Computer Graphics (TVCG), vol. 23, no. 11, pp. 2410–

2418, 2017. 39, 41, 43

[145] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “DeepIM: Deep Iterative

Matching for 6D Pose Estimation,” arXiv preprint arXiv:1804.00175, 2018.

39

[146] H. Kato and M. Billinghurst, “Marker Tracking and HMD Calibration for

a Video-based Augmented Reality Conferencing System,” in Proceedings

doi:10.6342/NTU201800854

180

of IEEE and ACM International Workshop on Augmented Reality (IWAR),

1999, pp. 85–94. 39

[147] D. Wagner and D. Schmalstieg, “ARToolKitPlus for Pose Tracking on Mo-

bile Devices,” in Proceedings of ComputerVisionWinterWorkshop (CVWW),

2007, pp. 139—-146. 39

[148] M. Fiala, “ARTag, a Fiducial Marker System Using Digital Techniques,” in

Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), vol. 2, 2005, pp. 590–596. 39

[149] ——, “Designing highly reliable fiducial markers,” IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), vol. 32, no. 7, pp.

1317–1324, 2010. 39, 125

[150] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marı́n-

Jiménez, “Automatic generation and detection of highly reliable fiducial

markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–

2292, 2014. 40, 126

[151] S. Garrido-Jurado, R. Munoz-Salinas, F. J. Madrid-Cuevas, and R. Medina-

Carnicer, “Generation of Fiducial Marker Dictionaries using Mixed Integer

Linear Programming,” Pattern Recognition, vol. 51, pp. 481–491, 2016. 40,

126

[152] S. Heo, J. Han, S. Choi, S. Lee, G. Lee, H.-E. Lee, S. Kim, W.-C. Bang,

D. Kim, and C. Kim, “IrCube Tracker: An Optical 6DOF Tracker based

on LED Directivity,” in Proceedings of ACM Symposium on User Interface

Software and Technology (UIST), 2011, pp. 577–586. 40

[153] J. Han, S. Heo, H.-E. Lee, and G. Lee, “The IrPen: A 6-DOF Pen for Inter-

action with Tablet Computers,” IEEE Computer Graphics and Applications

(CG&A), vol. 34, no. 3, pp. 22–29, 2014. 40

doi:10.6342/NTU201800854

181

[154] R. Xiao, C. Harrison, K. D. Willis, I. Poupyrev, and S. E. Hudson, “Lu-

mitrack: Low Cost, High Precision, High Speed Tracking with Projected

m-Sequences,” in Proceedings of ACM Symposium on User Interface Soft-

ware and Technology (UIST), 2013, pp. 3–12. 40, 155

[155] V. Bubnı́k and V. Havran, “Light Chisel: 6DOF Pen Tracking,” Computer

Graphics Forum (CGF), vol. 34, no. 2, pp. 325–336, 2015. 40

[156] J. Tompkin, S. Muff, J. McCann, H. Pfister, J. Kautz, M. Alexa, and W. Ma-

tusik, “Joint 5D Pen Input for Light Field Displays,” in Proceedings of ACM

Symposium on User Interface Software and Technology (UIST), 2015, pp.

637–647. 40

[157] HTC, HTC Vive, Accessed: 2018-05-07. [Online]. Available: https:

//www.vive.com/ 40

[158] Oculus, Oculus Touch, Accessed: 2018-05-07. [Online]. Available:

https://www.oculus.com/rift/ 40

[159] Sony, PlayStation Move Motion Controller, Accessed: 2018-05-07.

[Online]. Available: https://www.playstation.com/en-us/explore/accessories/

vr-accessories/playstation-move/ 40

[160] Razer, Razer Hydra, Accessed: 2018-05-07. [Online].

Available: https://www2.razerzone.com/au-en/gaming-controllers/

razer-hydra-portal-2-bundle 40

[161] NaturalPoint, OptiTrack, Accessed: 2018-05-07. [Online]. Available:

http://optitrack.com/ 40, 132

[162] Vicon, Vicon, Accessed: 2018-05-07. [Online]. Available: https:

//www.vicon.com/ 40

[163] Qualisys, Qualisys, Accessed: 2018-05-07. [Online]. Available: http:

//www.qualisys.com/ 40

https://www.vive.com/
https://www.vive.com/
https://www.oculus.com/rift/
https://www.playstation.com/en-us/explore/accessories/vr-accessories/playstation-move/
https://www.playstation.com/en-us/explore/accessories/vr-accessories/playstation-move/
https://www2.razerzone.com/au-en/gaming-controllers/razer-hydra-portal-2-bundle
https://www2.razerzone.com/au-en/gaming-controllers/razer-hydra-portal-2-bundle
http://optitrack.com/
https://www.vicon.com/
https://www.vicon.com/
http://www.qualisys.com/
http://www.qualisys.com/

doi:10.6342/NTU201800854

182

[164] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab, “A Dataset and

Evaluation Methodology for Template-Based Tracking Algorithms,” in

Proceedings of IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), 2009, pp. 145–151. 41, 43, 54, 100

[165] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, “T-

LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects,”

in Proceedings of IEEE Winter Conference on Applications of Computer

Vision (WACV), 2017, pp. 880–888. 41, 43

[166] S. Akkaladevi, M. Ankerl, C. Heindl, and A. Pichler, “Tracking Multiple

Rigid Symmetric and Non-symmetric Objects in Real-Time Using Depth

Data,” in Proceedings of IEEE International Conference on Robotics and

Automation (ICRA), 2016, pp. 5644–5649. 42, 43

[167] ReconstructMe, ReconstructMe, Accessed: 2018-05-07. [Online]. Available:

http://reconstructme.net 42

[168] J.-Y. Bouguet, “Camera Calibration Toolbox for Matlab,” MATLAB, 2004.

50, 53

[169] J. Shi and C. Tomasi, “Good Features to Track,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 1994, pp.

593–600. 53

[170] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,

2nd ed. Cambridge University Press, 2004. 65

[171] B. Glocker, J. Shotton, A. Criminisi, and S. Izadi, “Real-Time RGB-D Cam-

era Relocalization via Randomized Ferns for Keyframe Encoding,” IEEE

Transactions on Visualization and Computer Graphics (TVCG), vol. 21,

no. 5, pp. 571–583, 2015. 67

http://reconstructme.net

doi:10.6342/NTU201800854

183

[172] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” vol. 37, no. 9,

pp. 1834–1848, 2015. 69

[173] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic Image Segmen-

tation via Deep Parsing Network,” in Proceedings of IEEE International

Conference on Computer Vision (ICCV), 2015, pp. 1377–1385. 81

[174] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for

Semantic Segmentation,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440. 81

[175] D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative Pose Estimation

Using Coplanar Points,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 1993, pp. 626–627. 85

[176] S. Li and C. Xu, “Efficient Lookup Table Based Camera Pose Estimation

for Augmented Reality,” Computer Animation and Virtual Worlds, vol. 22,

no. 1, pp. 47–58, 2011. 85

[177] S. Korman, D. Reichman, G. Tsur, and S. Avidan, “FasT-Match: Fast Affine

Template Matching,” International Journal of Computer Vision (IJCV), vol.

121, no. 1, pp. 111–125, 2017. 86

[178] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms. MIT Press, 2009. 86, 88

[179] Wikipedia contributors, “Delone set — Wikipedia, the free encyclopedia,”

2017, [Online; accessed 8-May-2018]. [Online]. Available: https:

//en.wikipedia.org/w/index.php?title=Delone set&oldid=795315991 87

[180] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data.

AMLBook, 2012. 92

[181] M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learning

Theory. MIT Press, 1994. 93

https://en.wikipedia.org/w/index.php?title=Delone_set&oldid=795315991
https://en.wikipedia.org/w/index.php?title=Delone_set&oldid=795315991

doi:10.6342/NTU201800854

184

[182] G. Gallego and A. Yezzi, “A Compact Formula for the Derivative of a 3-D

Rotation in Exponential Coordinates,” Journal of Mathematical Imaging

and Vision (JMIV), vol. 51, no. 3, pp. 378–384, 2015. 95, 129

[183] H.-Y. Tseng, P.-C. Wu, Y.-S. Lin, and S.-Y. Chien, “D-PET: A Direct 6

DoF Pose Estimation and Tracking System on Graphics Processing Units,”

in Proceedings of IEEE International Symposium on Circuits and Systems

(ISCAS), 2017, pp. 1–4. 98

[184] H. Jegou, M. Douze, and C. Schmid, “Hamming Embedding and Weak

Geometric Consistency for Large Scale Image Search,” in Proceedings of

European Conference on Computer Vision (ECCV), 2008, pp. 304–317. 101

[185] T. Ha and W. Woo, “An Empirical Evaluation of Virtual Hand Techniques

for 3D Object Manipulation in a Tangible Augmented Reality Environment,”

in Proceedings of IEEE Symposium on 3D User Interfaces (3DUI), 2010,

pp. 91–98. 125

[186] T. Petersen, “A Comparison of 2D-3D Pose Estimation Methods,” Aalborg

University, 2008. 126

[187] J.-Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature

Tracker: Description of the Algorithm,” Intel Corporation, vol. 5, no. 1-10,

p. 4, 2001. 127

[188] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,”

Automatica, vol. 11, no. 285-296, pp. 23–27, 1975. 143

[189] Wacom, Wacom, Accessed: 2018-05-12. [Online]. Available: https:

//www.wacom.com/ 152

[190] Anoto, Anoto, Accessed: 2018-05-12. [Online]. Available: http:

//www.anoto.com/ 152

https://www.wacom.com/
https://www.wacom.com/
http://www.anoto.com/
http://www.anoto.com/

doi:10.6342/NTU201800854

185

[191] T. Grossman, K. Hinckley, P. Baudisch, M. Agrawala, and R. Balakrishnan,

“Hover Widgets: Using the Tracking State to Extend the Capabilities of

Pen-operated Devices,” in Proceedings of ACM CHI Conference on Human

Factors in Computing Systems (CHI), 2006, pp. 861–870. 152

[192] S. Subramanian, D. Aliakseyeu, and A. Lucero, “Multi-layer Interaction

for Digital Tables,” in Proceedings of ACM Symposium on User Interface

Software and Technology (UIST), 2006, pp. 269–272. 152

[193] T. A. Galyean and J. F. Hughes, “Sculpting: An Interactive Volumetric

Modeling Technique,” in ACM SIGGRAPH Computer Graphics, vol. 25,

no. 4, 1991, pp. 267–274. 153

[194] Computer History Museum, Mapping Sutherland’s Volkswagen, Ac-

cessed: 2018-05-12. [Online]. Available: http://www.computerhistory.org/

revolution/computer-graphics-music-and-art/15/206/560 153

[195] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,

“Anisotropic Polygonal Remeshing,” in ACM Transactions on Graphics

(TOG), vol. 22, no. 3, 2003, pp. 485–493. 153

[196] H. Ishii and B. Ullmer, “Tangible Bits: Towards Seamless Interfaces Be-

tween People, Bits and Atoms,” in Proceedings of ACM CHI Conference on

Human Factors in Computing Systems (CHI), 1997, pp. 234–241. 153

[197] R. Held, A. Gupta, B. Curless, and M. Agrawala, “3D Puppetry: A Kinect-

based Interface for 3D Animation,” in Proceedings of ACM Symposium on

User Interface Software and Technology (UIST), 2012, pp. 423–434. 153

http://www.computerhistory.org/revolution/computer-graphics-music-and-art/15/206/560
http://www.computerhistory.org/revolution/computer-graphics-music-and-art/15/206/560

	Abstract
	List of Figures
	List of Tables
	Introduction
	Object Pose Recovering
	Camera Pose Recovering
	Cameras
	Contributions
	Publications
	Dissertation Organization

	Problem Formulation
	Parameterization of Rotation
	Euler Angles
	Axis–Angle Representation
	Quaternions

	Evaluation Metrics
	Rotation & Translation Errors
	3D Distance
	2D Projection

	Related Work
	Feature Detection and Matching
	PnP Algorithms
	Kabsch Algorithm
	Lucas-Kanade Method
	Iterative Closest Point
	Line Search & Trust Region
	Object Pose Estimation Approaches
	Pose Disambiguation for Planar Objects

	Object Pose Tracking Approaches
	Binary Square Fiducial Marker Tracking Solutions
	Pen Tracking Paradigms
	Commercial Tracking Systems

	Benchmark Datasets

	OPT: A Benchmark Dataset for 6DoF Object Pose Tracking
	Acquiring Images
	Obtaining Ground-truth Object Pose
	Evaluation Methodology
	Evaluation Algorithms
	Evaluation Metrics

	Evaluation Results
	Overall Performance
	Performance Analysis by Attributes
	Discussion

	Summary

	DPE: Direct Pose Estimation for Planar Objects
	Approximate Pose Estimation
	Constructing the epsilon-covering Set
	Coarse-to-Fine Estimation
	Approximate Error Measure
	Pyramidal Implementation

	Pose Refinement
	Determining Candidate Poses
	Refining Candidate Poses

	Experimental Results
	Synthetic Image Dataset
	Visual Tracking Dataset
	Object Pose Tracking Dataset

	Summary

	DodecaPen: Accurate 6DoF Tracking of a Passive Stylus
	Dodecahedron Design
	Approximate Pose Estimation
	Inter-frame Corner Tracking
	Dense Pose Refinement
	Dodecahedron Calibration
	Pen-tip Calibration
	Experimental Results
	Synthetic Data
	Real Data

	Applications
	2D Drawing
	3D Drawing
	General 6DoF Object Tracking

	Summary
	Limitations and Future Work

	Conclusion
	Discussion and Future Work

	Reference

