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Figure 1: Images of 2D (top row) and 3D objects (bottom row) in our benchmark dataset with 6DoF pose ground-truth notation. The
proposed benchmark dataset contains 690 color and depth videos of various textured and geometric objects with over 100,000 frames. The
recorded sequences also contain image distortions for performance evaluation in real-world scenarios.

ABSTRACT

Accurately tracking the six degree-of-freedom pose of an object in
real scenes is an important task in computer vision and augmen-
ted reality with numerous applications. Although a variety of al-
gorithms for this task have been proposed, it remains difficult to
evaluate existing methods in the literature as oftentimes different
sequences are used and no large benchmark datasets close to real-
world scenarios are available. In this paper, we present a large ob-
ject pose tracking benchmark dataset consisting of RGB-D video
sequences of 2D and 3D targets with ground-truth information. The
videos are recorded under various lighting conditions, different mo-
tion patterns and speeds with the help of a programmable robotic
arm. We present extensive quantitative evaluation results of the
state-of-the-art methods on this benchmark dataset and discuss the
potential research directions in this field. The proposed benchmark
dataset is available online at media.ee.ntu.edu.tw/research/OPT.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Benchmarking 1.4.8 [Image Processing and Com-
puter Vision]: Scene Analysis—Tracking H.5.1 [Information In-
terfaces and Presentation]: Multimedia Information Systems—
Artificial, Augmented, and Virtual Realities

1 INTRODUCTION

In recent years, numerous methods for six degree-of-freedom (DoF)
object pose recovering have been developed and applied to a wide

*e-mail: pcwu@media.ee.ntu.edu.tw
fe-mail: yylee@media.ee.ntu.edu.tw
fe-mail: hytseng @media.ee.ntu.edu.tw
Se-mail: hiho@media.ee.ntu.edu.tw
Je-mail: mhyang @ucmerced.edu
le-mail: sychien@ntu.edu.tw

range of problems including robotic manipulation, augmented real-
ity (AR), and human-computer interaction. Existing algorithms for
recovering the 6DoF pose (i.e., rotation and translation) of an object
can be broadly categorized into three main approaches:

Direct approaches [9, 21]. These approaches address the problem
by finding the best fit from numerous candidates based on a holistic
template or appearance matching. The corresponding pose of the
best candidate is considered as the estimation result.
Feature-based approaches [5]. The core idea is to first establish
a set of feature correspondences between the target object and pro-
jected camera frame [12, 23]. Outliers are then removed to obtain
reliable feature pairs [7], and the final pose is computed with the
Perspective-n-Point (PnP) algorithms [24, 6]. In contrast to dir-
ect methods, the performance of feature-based methods depends on
whether both features can be extracted and matched well.
Learning-based approaches [20, 2, 3]. These methods learn an
abstract representation of an object from a set of images captured
from different viewpoints, from which the pose of the target in a
new input frame is determined. While feature-based and direct
methods are more effective for textured and non-occluded objects
respectively, learning-based approaches have shown the potential to
track poses of objects with diverse textures under partial occlusion.

Real-time pose tracking can be accomplished by leveraging the
information obtained from previous frames [15]. In addition, the
pose estimation task can be accelerated by exploiting a small search
range within the camera viewpoint or reducing the number of pose
candidates. To prevent pose jittering during the tracking process,
which is indispensable especially in AR applications, further pose
refinement should be performed.

To evaluate existing pose estimation algorithms, a number of
benchmark datasets have been proposed [9, 4, 20, 2, 10, 16]. How-
ever, there are two main issues that need to be addressed. First,
while the datasets are mainly designed for single-frame based pose
estimation, most images do not contain distortions (e.g., motion
blur caused by different object motions) that are crucial for per-
formance evaluation for real-world scenarios. Second, the camera
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Figure 2: Sequences are recorded with a Kinect v2 sensor mounted
on a programmable robotic arm. Note that we normalize the
intensity of the depth image in this figure for clarity.

trajectories in most datasets are not carefully designed (i.e., free-
style motion), which do not allow detailed analysis for specific situ-
ations. Most importantly, it is of great interest for fields of computer
vision and augmented reality to develop an extensive benchmark
dataset for thorough performance evaluation of 6DoF pose tracking
in real-world scenarios.

In this work, we propose a large-scale benchmark dataset of
RGB-D video sequences for both 2D and 3D objects with ground-
truth information, as shown in Figure 1. The proposed benchmark
dataset contains 690 color and depth videos of varying degrees of
textured and geometric objects with over 100,000 frames. These
videos are annotated with different imaging conditions (i.e., trans-
lation, forward and backward, in-plane rotation, out-of-plane rota-
tion, flashing light, moving light, and arbitrary motion) and speed
recorded with a Kinect v2 sensor mounted on a programmable ro-
botic arm. A 3D printer renders the objects in the benchmark data-
set with distinct textures. The ground-truth poses are computed
using a designed checkerboard and checkerbox for 2D and 3D ob-
jects. Due to the global-shutter infrared camera with fast shutter
speed from the Kinect v2 sensor, we can annotate the ground-truth
poses by leveraging the clear infrared images under fast motions.

The contributions of this work are summarized below:

Benchmark dataset. We design a benchmark dataset for 6DoF ob-
ject pose tracking. It consists of 690 videos under seven varying
conditions with five speeds. It is a large dataset where images are
acquired from a moving camera for performance evaluation of both
2D and 3D object pose tracking algorithms. Furthermore, the pro-
posed dataset can also be used in other computer vision tasks such
as 3D feature tracking and matching.
Performance evaluation. Each pose tracking method is extens-
ively evaluated and analyzed using more than 100,000 frames in-
cluding both 2D and 3D objects. Since the state-of-the-art simultan-
eous localization and mapping (SLAM) methods [ 14, 22] are able to
track and relocalize camera pose in real time, we also evaluate these
approaches by adapting them to object pose tracking scenarios. We
present the extensive performance evaluation of the state-of-the-art
methods using the proposed benchmark dataset.

2 RELATED WORK

Numerous datasets have been developed to evaluate algorithms in
areas related to 3D pose estimation and tracking. The dataset
presented by Lieberknecht ef al. [11] contains 40 sequences of
eight different textured 2D objects and five unconstrained motions
(e.g., zoom-in and translation). A dataset with 96 videos from six
textured planar targets and varying geometric distortions as well as
lighting conditions is constructed by Gugglitz et al. [8]. The ho-
mography transformation parameters are provided in this dataset.
Since a rolling-shutter camera is used, it may be difficult to obtain
the exact 6DoF pose from the homography parameters when the
relative motion is significant.

Hinterstoisser et al. [9] construct a dataset of 18,000 images
with 15 texture-less 3D objects, which is further extended for multi-
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Figure 3: 2D objects with low (wing, duck), normal (city, beach),
and rich (maple, firework) texture.
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Figure 4: 3D objects with simple (soda, chest), normal (ironman,

house), and complex (bike, jet) geometry.

instance 3D object detection and pose estimation [20]. Similarly,
a dataset with 20 textured and textureless objects is proposed [2]
where each one is recorded under three different lighting condi-
tions. For the above-mentioned datasets, both color and depth im-
ages are recorded using handheld Kinect v1 cameras. The target ob-
jects are attached to a planar board surrounded with fiducial mark-
ers, which provide the corresponding poses. Since markers can-
not be accurately localized in a blurry image, the recorded targets
need to be static in front of the camera, and thus these datasets do
not contain distortions that are crucial for performance evaluation
of pose tracking in real-world scenarios. The real pose is also ar-
duous to compute because of the rolling-shutter effect which will
change the appearance of markers whenever there exists some cam-
era movement. Different from using fiducial markers, the ground-
truth object poses in the datasets [16, 10] are manually labeled and
less accurate. Even the poses in [10] are further refined by the iter-
ative closest point (ICP) method, the estimates are not accurate due
to noisy measurements of depth values. The dataset proposed by
Choi and Christensen [4] consists of four synthetically generated
sequences of four models. The main drawback of this synthetic
dataset is the lack of distortions in both RGB-D images and mo-
tion blurs. We summarize the characteristics of existing benchmark
datasets for pose recovering in Table 1.

3 PROPOSED BENCHMARK DATASET
3.1 Acquiring Images

The color, depth, and infrared images of each sequence are ob-
tained from a Kinect v2 sensor mounted on a programmable KUKA
KR 16-2 CR robot arm, as illustrated in Figure 2. The robotic
arm, which has six axes and repeatability of 0.05 mm, can be pro-
grammed to move in complex trajectories precisely. Each 2D object
shown in Figure 3 is a printed pattern with size 133.6x133.6 mm?
surrounded by a checkerboard glued on an acrylic plate. Each 3D
object shown in Figure 4 is generated by a 3D printer with resolu-
tion 300x450 dpi and 0.1 mm layer thickness. The length, width,
and height of 3D objects illustrated in Figure 4 are in the ranges of
(57.0, 103.6), (57.0, 103.6), and (23.6, 109.5), respectively in mm.

The object motions in the proposed benchmark dataset are (re-
garded as moving object rather than the camera):

Translation. An object moves along a circle parallel to the camera
sensor plane with motion blur in all directions.

Forward and Backward. An object moves forward first and then
backward.

In-plane Rotation. An object rotates along an axis perpendicular
to the camera sensor plane.



Table 1: Benchmark datasets for object pose estimation. Using a programmable robotic arm, we can record images under different motion
patterns and different speed. The recorded sequences hence contain different distortions that are crucial for performance evaluation of pose
tracking algorithms for real-world scenarios. The proposed object pose dataset is also the only one where color and depth image sequences

are recorded by a Microsoft Kinect v2 sensor.

Benchmark Device Mechanism  Pose Establishment Video Clips # 2D Targets # 3D Targets # Motion # Frames
Patterns
Lieberknecht [11]| Marlin F-080C Handheld Marker-based Yes 8 - 5 48,000
Gauglitz [8] Fire-i Manually Operated Direct Alignment Yes 6 - 16 6,889
Contraption
Hinterstoisser [9] Kinect vl Handheld Marker-based No - 15 - 18,000
Tejani [20] Kinect v1 Handheld Marker-based No - 3 - 5,229
Brachmann [2] Kinect v1 Handheld Marker-based No - 20 3 10,000
Rennie [16] Kinect v1 Robotic Arm Manual No - 24 - 10,368
Krull [10] Kinect v1 Handheld ICP Yes - 3 - 1,100
Choi [4] Synthetic - Synthetic Yes - 4 - 4,000
Proposed Kinect v2 Programmable  Checkerboard- Yes 6 6 23 100,956
Robotic Arm based

Out-of-plane Rotation. An object rotates along an axis parallel to
the camera sensor plane.

Flashing Light. The light source is turned on and off repeatedly,
and the object moves slightly.

Moving Light. The light source moves and results in illumination
variations while the object moves slightly.

Free Motion. An object moves in arbitrary directions.

The objects move at five speeds in translation, forward and back-
ward, in-plane and out-of-plane rotations such that the videos are
close to real-world scenarios with different image distortions (e.g.,
motion blurs). For each 3D object, videos from four camera per-
spectives are recorded. The motion patterns are detailed in the sup-
plementary material.

3.2 Obtaining Ground-truth Object Pose

We estimate the intrinsic camera parameters using the calibration
toolbox [1]. It is worth noting that depth and infrared images, as
shown in Figure 2, are obtained from the same sensor (i.e., depth
camera). Therefore, we calibrate depth camera using infrared im-
ages. Next, we conduct an extrinsic calibration [1] resulting in
the transformation matrix 7. from the depth camera coordinate
system to color camera coordinate system. The estimated intrinsic
parameters are shown in the supplementary material.

After rectifying the images, we obtain the ground-truth pose us-
ing the camera parameters and the checkerboard (or checkerbox)
around an object as follows. The positions of a few crossed points
are initialized with known 2D-to-3D correspondences in the first
frame of each sequence and updated by the nearest corners us-
ing [19]. Other crossed points can then be obtained with an ini-
tial pose p, estimated according to the correspondences with the
OPnP method [24]. The location of each point is refined with a
sub-pixel corner detection method [1]. A point may be discarded
if it is close to another crossed point for robust pose estimation.
We compute the object pose p according to the refined points with
the OPnP method [24] again and refine p with the Newton method.
Figure 5 shows an example of object pose estimation in the first
frame of each sequence. We determine the corresponding points in
the current and following frames with the KLT tracker [13], and es-
timate poses according to these points with the scheme mentioned
above. As such, the object pose in each frame can be obtained
sequentially. The checkerboard (or checkerbox) is designed with
increasing block size from center to border. This pattern facilitates
detecting a sufficient number of corner points when the target ob-
ject is either near or far from the sensor as illustrated in Figure 1.

Table 2: Evaluated algorithms. Run time is measured in seconds.
In the code column, C: C/C++, M: Matlab, CU: CUDA.

[ Algorithm [ Description [ Code [ Run Time l

SIFT [12] Feature detector C,M 5.287
ASIFT [23] Feature detector C,M 50.995
OPnP [24] PnP algorithm M 0.008
IPPE [6] PnP algorithm M 0.001
DPE [21] Pose estimator (2D) C,M, CU 4.811
UDP [3] Pose estimator (3D) C 9.262
PWP3D [15] Pose tracker (3D) C,CU 0.066
OS2 [14] SLAM approach (sparse) C 0.067

EF [22] SLAM approach (dense) C,CU 0.078

Because of the symmetric form, the crossed corner points can also
be better localized than the corners of fiducial markers used in ex-
isting datasets [1 1, 9, 20, 2]. The exact 3D target position related to
the base is calibrated manually.

We use the infrared images to obtain the ground-truth object
pose p instead of using color images which can be distorted due
to the rolling-shutter effect, as the skewed image illustrated in Fig-
ure 5(f). Furthermore, the exposure time of the infrared camera
is much shorter such that infrared images contain less motion blur.
The object pose in the color images of the first and following frames
are obtained by transforming p according to the transformation
matrix Tyy.. As the intensity contrast of the original infrared im-
age is relatively low (as shown in Figure 2), the images shown in
Figure 5(a)—(e) are processed with a tone mapping algorithm for
presentation purpose. Finally, we generate the mask image related
to each frame according to the ground-truth pose, as illustrated in
Figure 6. These mask images are used for cropping target templates
for the training purpose.

4 EVALUATION METHODOLOGY

In this work, we evaluate pose tracking algorithms for both 2D and
3D target objects. Table 2 lists the main characteristics of the eval-
uated algorithms. We further explain our evaluation metrics in 4.2.

4.1 Evaluated Algorithms

To estimate the pose of a planar target, we look into feature-based
approaches, and evaluate algorithms with a combination of two fea-
ture detectors [12, 23] and two PrP algorithms [24, 6] for pose es-
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Figure 5: Ground-truth object pose annotation. (a) We first initialize a few points with known 2D-to-3D correspondences. (b) The nearest

corner points of the initialized points are detected. (c) The other corner points are computed with an initial pose p according to the initial
correspondences. (d) We later refine these points and discard non-robust ones. (e) The final pose p is estimated according to the remaining
points. (f) The object pose in the related color image is computed according to the estimated transformation matrix.
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Figure 6: Camera frames for 2D (top row) and 3D (bottom row)
target objects blended with masks. The mask is generated using
the related pose and its geometric model of the target.

timation. The RANSAC-based schemes [7] are applied to these
methods to remove incorrect feature correspondences. We imple-
ment a CUDA-based direct pose estimator, which is ten times faster
than the recent method [21] with equivalent accuracy.

To recover 3D object poses, we evaluate two state-of-the-art
approaches for pose estimation and pose tracking, i.e., UDP [3]
and PWP3D [15]. We note numerous camera pose trackers have
been released recently that achieve real-time performance by lever-
aging the reconstructed environment maps. Two state-of-the-art
approaches in this field, i.e., ORB-SLAM?2 [14] and ElasticFu-
sion [22], are used for evaluation. The ORB-SLAM2 method
tracks camera poses based on sparse features, and the ElasticFu-
sion scheme solves a minimization problem based on intensity and
depth values. These camera pose trackers are evaluated by deactiv-
ating them within background regions of a video sequence. Fore-
ground and background regions are separated according to the geo-
metric model and related ground-truth pose, as illustrated in Fig-
ure 6. For SLAM-based approaches, we construct a 3D map of
the target object for evaluation. Each map is constructed with syn-
thetic frames created by rendering a mesh from 341 viewpoints
on one-half of a recursively divided icosahedron. Since the UDP
method [3] does not perform well if it is trained on synthetic im-
ages (as discussed in [3] and confirmed in our comparative study),
we select about 10% of the images from the proposed dataset as
the training data for UDP. For the iterative energy minimization
schemes (i.e., PWP3D and ElasticFusion), the ground-truth pose
in the first frame is provided and object pose tracking is performed
subsequently. The mask image of the first camera frame is also used
for the PWP3D scheme to set the color distribution of foreground
and background regions. To fairly compare different approaches,
the result of the first frame in each video sequence is not considered.
As the SLAM approaches are able to deal with 2D cases, we also
evaluate these methods with 2D objects. More details on experi-
mental settings can be found in the supplementary material.

4.2 Evaluation Metrics

Given the ground-truth rotation matrix R and translation vector
t, we compute the error of the estimated pose (R, t) by ¢ =
avgye y |Rx+t— (Rx+1)||, where x is a 3D point of model .27 [9].
For a 2D object, we define the model points as vertices of a bound-
ing box, whose height is half of its side length, as illustrated in Fig-

ure 1. The pose is considered to be successfully estimated if e is less
than k.d where d is the diameter (i.e., the largest distance between
vertices) of .# and k, is a pre-defined threshold. We evaluate a
method by the percentage of frames with correct estimations under
different values of k. in a precision plot. A method with higher
area-under-a-curve (AUC) scores achieves better pose estimation
results.

5 [EVALUATION RESULTS

All the experiments are carried out on a machine with an Intel Core
17-6700K processor, 32 GB RAM, and a NVIDIA GTX 960 GPU.
The RGB-D video frame size is 1920x1080. Each approach for
2D and 3D target objects is evaluated on 20,988 images and 79,968
images, respectively. The iterative energy minimization approaches
(e.g., ElasticFusion and PWP3D) tend to lose track of all frames
once the matching baseline is too wide. We thus evaluate the Elast-
icFusion+ and PWP3D+ methods (variants of ElasticFusion and
PWP3D) by feeding the ground-truth pose in the previous frame
for re-initialization when a failure occurs which is determined by
visual inspection. We report the main results of the comparative
study on pose tracking in this manuscript, and present more details
in the supplementary material.

5.1 Overall Performance

The experimental results are shown in Figure 7. The maximum
coefficient k, is set to 0.2 in the plots, with AUC scores ranging
from O to 20.

2D objects. The average score of tracking the wing sequence is
lower than the others since the target object contains less texture or
structure. There exist many ambiguous pose candidates that cannot
be distinguished by all evaluated approaches as the corresponding
cost values are similar. In contrast, although the object in the duck
sequence does not contain much texture, the DPE method is able
to estimate poses well based on the distinct contour. The feature-
based schemes outperform direct methods when a sufficient number
of features can be extracted from a target object, as shown in the
other four cases.

Despite the IPPE algorithm is designed for pose estimation of
planar objects, it does not perform as well as the OPrP algorithm
that is able to estimate pose in more general scenarios. As the
FAST-based detector [17], which is used in the ORB-SLAM?2
method, is designed for efficiently detecting corner points in an im-
age, it does not localize features well. Therefore the AUC scores
of the ORB-SLAM?2 method are lower than those of SIFT-based
methods in most cases. It is worth noticing that the ORB-SLAM?2
method performs well based on the feature-based scheme as it
achieves wide baseline matching, which prevents the tracker from
getting stuck in a local minimum. In contrast, the ElasticFusion
method tends to lose track of the target object when the initial pose
is not accurate since the energy minimization scheme is sensitive to
perturbation caused by the introduced distortion in this work.
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Figure 7: Overall performance on proposed benchmark dataset. The AUC score for each approach is shown in the legend.

3D objects. Since the tracking accuracy and area of an ob-
ject within one frame are in positive correlation, most approaches
achieve better performance on tracking the soda, chest, and house
sequences. Similar to tracking 2D objects, methods with energy
minimization scheme do not perform well on the 3D dataset. How-
ever, they also show the ability to refine poses under the short-
baseline conditions. We note that although the AUC scores of the
ElasticFusion+ and PWP3D+ methods seem to be higher than the
other approaches, it does not mean that they outperform others be-
cause their tasks are significantly simplified as the ground truth of
the previous pose is given when a failure occurs. As the UDP al-
gorithm does not have any further pose refinement scheme, the es-
timated pose accuracy is not as high as the other approaches. Both
PWP3D and ElasticFusion methods are prone to losing track of the
target when its appearance changes drastically.

5.2 Performance Analysis by Attributes

In this section, we show experimental results for each method with
respect to different lighting and movement conditions.

2D objects. We present the pose tracking results under two dif-
ferent lighting conditions and freestyle condition movements in
Table 3. As both ORB [18] and SIFT [12] are less sensitive to
illumination change, the feature-based methods perform well in se-
quences under lighting variations. In contrast, the DPE algorithm
does not track object poses well under different lighting conditions
as the direct methods operate on the pixel values without extracting
features that are designed to handle illumination changes.

The pose tracking results of target objects in different motion
patterns and speeds are shown in Figure 8. Due to fast camera
speeds, the recorded images in the translation case contain signi-
ficant motion blur. As the feature-based approaches are not able
to determine useful correspondences in blurry images, these meth-
ods do not track poses well. On the other hand, the DPE algorithm
performs well with different camera speeds as it can handle objects
with less texture.

The ASIFT algorithm outperforms other feature-based ap-
proaches in the sequences with out-of-plane rotation since it is de-

Table 3: AUC scores of evaluated approaches in the dynamic
lighting conditions and the freestyle motion conditions.

[ Approach [ Flashing Light [ Moving Light [ Free Motion
SIFT+IPPE 14.194 13.902 13.904
SIFT+OPnP 15.380 15.183 14.408
ASIFT+IPPE 13.996 13.584 12.808
ASIFT+OPnP 15.312 14.902 13.461

DPE 12.996 7.516 9.793
ORB-SLAM2 14.879 14.128 14.986
ElasticFusion 1.974 7.479 2.948
ElasticFusion+ 16.981 18.173 18.107

UDP 5.170 7.245 3.857

PWP3D 5.084 4.907 2.890
PWP3D+ 13.071 14.434 16.041
ORB-SLAM2 15.906 15.987 9.104
ElasticFusion 1.444 2.005 0.278
ElasticFusion+ 14.598 12.299 10.871

signed to account for the affine transformation. We note the Elastic-
Fusion method performs better at higher camera speed. This may be
attributed to the fact that the decreased frame number of high-speed
sequences also reduces the changes that iterative minimization ap-
proaches lose track. As in-depth analysis of this issue requires dif-
ferent experimental setups which are beyond the scope of this work,
we will address it in future work.

3D objects. Since we only change the visible light in the above-
mentioned experiments with illumination variations, the depth im-
ages are not significantly affected. Compared to the pose tracking
results of most approaches under normal light, the performance dif-
ference on 3D objects is not significant. In contrast, as the PWP3D
method recovers the object pose using color frames only, the pose
tracking results are worse than those under normal light.

We note all approaches perform worse when the target object
moves forward and backward in front of the camera. One reason
is the size change of a target object in two consecutive frames. For
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Figure 8: Performance by attributes with different speeds on proposed benchmark dataset. Level 5 stands for the fastest speed.

the ICP-based approaches, e.g., ElasticFusion, it is difficult to align
two point sets of different sizes. For the segmentation-based ap-
proaches, e.g., PWP3D, it is crucial to set a gradient step in the z-
direction.We also notice that the depth values captured by Kinect v2
occasionally change significantly even under the static conditions.
As such, the evaluated approaches may occasionally lose track of
objects when the camera is not moving.

6 CONCLUSION

In this work, we propose a large benchmark dataset and perform
thorough performance evaluation under various conditions close
to real-world scenarios. The proposed benchmark dataset con-
tains 690 color and depth videos with over 100,000 frames. These
videos are recorded under seven different movement and lighting
conditions with five speeds. We select six 2D target planes with
three different texture levels, and six 3D target objects with three
different geometric level. The ground-truth poses are annotated
by leveraging the clear infrared images recorded by the global-
shutter infrared camera with fast shutter speed from the Kinect
v2 sensor, which enables us to record sequence even under fast
motions. Based on the benchmark experiments, we discuss some
tracking components that are essential for improving the tracking
performance. This large-scale performance evaluation facilitates a
better understanding of the state-of-the-art object pose tracking ap-
proaches, and provide a platform for gauging new algorithms.
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