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ABSTRACT
Object pose estimation from a camera is a well-developing
subject in computer vision. In theory, the pose can be u-
niquely determined from a calibrated camera. However, in
practice, most of the real-time pose estimation algorithms
suffer from pose ambiguity due to low accuracy of the target
object. We think that pose ambiguity—two distinct local
minima of the according error function—exist because of the
phenomenon of geometric illusion. Both of the ambiguous
poses are plausible. After obtaining the solution of two min-
ima (pose candidates), we develop a real-time algorithm for
stable pose estimation of target objects using a motion model.
In the experimental results, the proposed algorithm effectively
diminishes the effect of pose jumping and pose jittering. To
the best of our knowledge, this is the first work conducted for
solving the pose ambiguity problem with a motion model in
real-time applications.

Index Terms— Pose estimation, pose ambiguity, pose
stabilization.

1. INTRODUCTION

The objective for determining pose estimation is to calculate
the position and orientation of a target object from a calibrat-
ed camera. Augmented reality (AR) [1], wherein synthetic
objects are inserted into a real scene in real-time, is a prime
candidate system for pose estimation. After obtaining the
pose computed with some geometric information, the system
could render computer-generated images (CGI) according to
the pose on the display. ARToolkit [2], for example, is a
widely used system for use with AR applications. The target
object in AR systems is usually the planar fiducial marker,
which is frequently used for navigation and localization.

The information available for solving the pose estimation
problem is usually a set of point correspondences. They
are composed of a 3D reference point expressed in object
coordinates and its 2D projection expressed in image co-
ordinates. Using the object-space collinearity error, Lu et

Fig. 1. Illustration of pose ambiguity. It is a geometric
illusion: There appears to be more than one 3D geometrical
explanations obtained from the same perspective projected
marker on the image plane.

al. [3] derived an iterative algorithm that directly computes
orthogonal rotation matrices. Instead of using the iterative
algorithm, Ansar et al. [4] developed a framework that pro-
vided a set of linear solutions to the pose estimation problem;
the algorithm is applicable for both points and lines. These
online pose estimation works determined a unique pose for
each frame without taking the pose ambiguity problem into
consideration.

Pose ambiguity, as shown in Fig. 1, is the main cause of
pose jumping. The obtained pose would be one of the random
ambiguous poses in each frame, and this causes pose jumping.
From our experiences, several state-of-the-art pose algorithms
suffer from pose jumping. These pose ambiguity problems
have been discussed by previous works [5], [6]. Oberkampf
et al. [5] give a straightforward interpretation for the case of
orthographic projection. They developed their algorithm for
planar targets, which uses scaled orthographic projection at
each iteration step. Schweighofer et al. [6] extended to tackle
the general case of perspective projection and developed an
algorithm for obtaining a unique solution to pose estimation.
However, even with these algorithms, the problem of pose
jumping still persists occasionally. Besides, the problem of
pose jittering also bothers users due to the noisy images.

In order to reduce the effects of pose jumping, we pro-
pose an algorithm with a motion model to obtain the pose



of the target object. The motion model will get updated
through the Kalman filter [7]. The Kalman filter provides an
efficient computational means for estimating the true poses
by computing a weighted average of the measured pose and
predicted pose from the motion model. From our observation,
one of the two ambiguous poses with distinct local minima
of error function is the correct pose. Therefore, every time,
after obtaining the two ambiguous poses, the pose that is more
similar to the predicted pose is chosen. If the predicted pose
is realistic, then it is almost ensured that the chosen pose is
the correct one.

The main contributions of this work are as follows:

1. We can solve the problem of pose jumping effectively
because we obtain the proper pose from two ambiguous
poses using the motion model.

2. The effects of pose jittering will be reduced because
of the use of the Kalman filter. We can estimate the
pose that tends to be closer to the true pose than the
measured pose. The sequences of the estimated poses
would be also much smoother because the poses are
much more consistent with their previous ones.

3. This is the first work on pose estimation combined with
a motion model. Even if the target object is undetected
in some frames of long sequences, we can just use the
predicted pose using the motion model as the final pose
to prevent discontinuity in the sequence of poses.

The remainder of this article is organized as follows. First,
we describe the formulation of the pose estimation problem in
detail in Sec. 2. Then, we interpret the pose ambibuity and
show how to develop the two poses with local minima of the
according error function in Sec. 3. In Sec. 4, we describe the
details of our stable pose estimation algorithm. In Sec. 5, we
show the results of the proposed pose estimation algorithm
and compare its performance with other competitive pose
algorithms. Conclusions are drawn in Sec. 6.

2. PROBLEM FORMULATION

The main problem of camera pose estimation is to find out
the six degrees of freedom, which are parameterized by the
orientation and position of the target object with respect to a
calibrated camera (with known interior parameters), as shown
in Fig. 2. Given a set of noncollinear 3D coordinates of
reference points pi = (xi, yi, zi)

t, i = 1, ..., n, n ≥ 3 ex-
pressed in object-space coordinates and a set of camera-space
coordinates qi = (x′i, y

′
i, z
′
i)

t, the transformation between
them can be formulated as

qi = Rpi + t, (1)
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Fig. 2. Coordinate systems between camera and target objects
in the pose estimation problem.

where

R =

rt1
rt2
rt3

 ∈ SO(3) and t =

txty
tz

 ∈ R(3) (2)

are a rotation matrix and a translation vector, respectively.
We introduce the normalized image plane located at z′ =

1 as the camera reference frame. In such a normalized image
plane, we define the image point vi = (ui, vi, 1)t to be the
projection of pi on it. In the idealized pinhole camera model,
vi, qi, and the center of projection are collinear. We can
express this relationship by the following equation:

ui =
rt1pi + tx
rt3pi + tz

, vi =
rt2pi + ty
rt3pi + tz

. (3)

Given the observed image points v̂i = (ûi, v̂i, 1)t, the pose
estimation algorithm has to determine values for R and t that
minimize an according error function. In our work, we use
the object-space error, as used by [3] and [6],

Eos(R, t) =

n∑
i=1

∥∥(I − V̂i)(Rpi + t)
∥∥2
, V̂i =

v̂iv̂
t
i

v̂t
iv̂i

. (4)

3. POSE AMBIGUITY INTERPRETATION

Pose ambiguity denotes situations where the error function
have several local minima for a given configuration. The
cause of pose ambiguity is the low accuracy of the reference
points extraction; low accuracy is almost inevitable in general
cases. Fig. 1. shows the illustration of pose ambiguity.

Most of recent pose estimation algorithms working in
real time suffer from pose ambiguity. Schweighofer et al.
[6] found that in the case where coplanar points pi =
(pix , piy , 0), viewed by a perspective camera, the algorithm
typically delivers two distinct minima according to Eis and
Eos. We derive the two poses with the minima of Eos by the
method mentioned in [6].
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3.1. Derivation of Poses With Local Minima

We begin with a known pose (R1, t1) obtained from any pose
estimation algorithm; the iterative algorithm proposed by [3]
had been used in our work. Then, use this first guess of the
pose to estimate a second pose, which also has a minimum of
Eos.

Assume reference points pi, which are measured in the
image as v̂i such that

v̂i ≈ vi ∝ R1pi + t1. (5)

Multiply both sides of (5) withRt to get a transformed system
such that Rtt1 = [0 0 ‖t1‖]t (see Fig. 3). Let

ṽi = Rtv̂i, R̃ = RtR1, t̃ = Rtt1, (6)

and the pose (R̃, t̃) minimizes

Eos(R̃, t̃) =

n∑
i=1

∥∥(I − Ṽi)(R̃pi + t̃)
∥∥2
. (7)

Here, we introduce a rotation matrix R̃z to let (7) be

Eos(R̃, t̃) =

n∑
i=1

∥∥∥∥∥∥(I − Ṽi)(R̃ R̃zR̃
−1
z︸ ︷︷ ︸

I

pi + t̃)

∥∥∥∥∥∥
2

, (8)

where the rotation matrix R̃−1
z rotates the planar model pi

only about its z-axis. The rotation matrix R̃R̃z can be broken
down into the product of three rotation matrices R̃R̃z =
Rz(γ̃1)Ry(β̃1)Rx(α̃1), where Ri(φ) describes a rotation of
φ degrees about axis i. By selecting R̃z such that α̃1 = 0, we
obtain another transformed system

ṽi ≈ Rz(γ̃)Ry(β̃)p̃i + t̃ (9)

with the corresponding error function

Eos(β̃, γ̃, t̃) =

n∑
i=1

∥∥(I − Ṽi)(Rz(γ̃)Ry(β̃)p̃i + t̃)
∥∥2
.

(10)
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Fig. 4. Object-space errors Eos from a sequence video with a
planar target. The pose that has the lower error Eos (the dark
plot) is the final pose in each frame.

Because t̃ = [0 0 ‖t1‖]t, known from (6), we can rewrite (9)
as

ṽi ≈ Rz(γ̃)(Ry(β̃)p̃i + t̃) (11)

because Rz(γ̃)t̃ = t̃1. Thus, Rz(γ̃) is a rotation just around
the optical axis (z-axis) of the camera. This rotation leaves the
geometric relation between the image plane and model plane
invariant and just affects the image coordinates. Thus, we can
just fix γ̃ = γ̃1 and search for the local minima of Eos with
respect to β̃ [3], [6].

4. STABLE POSE ESTIMATION ALGORITHM
After obtaining the poses with local minima, some previous
work determined the final pose with the lowest error Eos [6],
as shown in Fig. 4. Unfortunately, the previous work still
suffers from pose ambiguity even when choosing the optimal
solution for Eos. In fact, the correct pose P̂ is not consistent
with the pose with the lowest error. From our experimental
evidence, we deemed the second pose to be the correct one
when pose jumping occurs. The results shown in Fig. 5 is
consistent with our assumption: The two poses with local
minima sometimes interchange and one of the them is correct.
Based on these observations, we develop our Stable Pose
Estimation Algorithm: In each time step, the system generates
a predicted pose P̃ according to a motion model. This motion
model simulates the orientation of the pose in real conditions
and is updated through the Kalman filter in each time step.
From two candidates, the pose that is more similar to P̃ is
chosen as the correct pose P̂ . The final pose is the weighted
average of the predicted pose P̃ and measured pose P̂ .

4.1. Motion Model

Assuming that the motion model of the pose rotation about
three axes—X, Y, and Z—is identical, we just discuss the case
of rotation about the X-axis in the remainder of this paper.
The cases of rotation about the Y-axis and Z-axis are all the
same.
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Fig. 5. Rotation angle about X-axis, Y-axis, and Z-axis of
the poses with minimum error Eos. The value will drastically
change during some frames.

To estimate the following rotation angle with a motion
model, the motion model should maintain the current angle
and angular velocity. The angle and angular velocity are
described by the linear state space xk = [x ẋ]t, where ẋ is the
angular velocity. Assume that between the (k−1) and k time
step the system undergoes a constant angular acceleration of
ak, which is normally distributed with mean 0 and deviation
σa, for ∆t seconds. From Newton’s laws of motion we
conclude that

xk = Fxk−1 + Gak, (12)

where

F =

[
1 ∆t
0 1

]
and G =

[
∆t2

2
∆t

]
. (13)

We rewrite (12) in another form

xk = Fxk−1 + wk, (14)

where

wk ∼ N(0,Q) and Q = GGtσ2
a =

[
∆t4

4
∆t3

2
∆t3

2 ∆t2

]
σ2
a.

(15)
For each time step, we obtain measurements of the rota-

tion angle about the X-axis. Let us assume that the measure-
ment noise vk is also normally distributed with mean 0 and

𝐱 𝑘 = 𝐅𝐱𝑘−1 

𝐏 𝑘 = 𝐅𝐏𝑘−1𝐅 
𝑡 + 𝐐 

𝐲𝑘 = 𝐦𝑘 −𝐇𝐱 𝑘 

𝐒𝑘 = 𝐇𝐏 𝑘𝐇
𝑡 + 𝐑 

𝐊𝑘 = 𝐏 𝑘𝐇
𝑡𝐒𝑘

−1 

𝐱𝑘 = 𝐱 𝑘 + 𝐊𝑘𝐲𝑘 
𝐏𝑘 = (𝐼 − 𝐊𝑘𝐇)𝐏 𝑘 

Predict Update 

Fig. 6. Detail operation of two phases, ”Predict” and ”Up-
date,” of the Kalman filter.
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with 𝐦𝒌 and 𝐱 𝒌 

Choose 𝐦𝒌 from 
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according to the 
similarity to 𝐱 𝒌    

Fig. 7. System flow of stable pose estimation algorithm.

standard deviation σz:

mk = Hxk + vk, (16)

where

H = [1 0] and vk ∼ N(0,R), R = vkv
t
k = σ2

z . (17)

4.2. Predict and Update through Kalman Filter

The operations of two phases of the Kalman filter, “Predict”
and “Update,” are shown in Fig. 6. Because of pose ambigui-
ty, two measurements, m̂k1 and m̂k2, of the pose are obtained
in a real condition at each time step. Assuming that the priori
state estimate x̂k is very authentic, the measurement that is
more consistent with x̂k is regarded as the only measurement
mk. After the operations of the Kalman filter, a new poste-
riori state estimate xk is obtained, which can be used in the
next recursion.

To guarantee that the state estimate is reliable at each time
step, we have to ensure that the state estimate is authentic at
the beginning. From our experiences, the planar target almost
faces upward under any initial condition, implying that the
rotation angle of the X-axis θx is larger than 0, as shown
in Fig. 5. Based on this assumption, we choose the first
measurement m0 with a larger θx from two candidates. If the
state estimate xk at every time step is similar to its previous
one (this is one distinguishing feature of the Kalman filter),
then all of them are reliable to some degree.

Trumen
線段
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Fig. 9. Comparison of the rotation angle about the X-axis,
Y-axis, and Z-axis of the poses.

Fig. 7 shows the processing flow of the proposed stable
pose estimation algorithm. Finally, we use the first element
of xk as the output value of the pose estimation instead.

5. EXPERIMENTAL RESULTS

In this section, we will discuss the setting of parameters and
show the results of pose estimation. Some video sequences
of markers with random rotation angles from the camera
are used as the test data. According to the marker pattern
in the database provided by [8], we determined the set of
point correspondences between the object space and image
plane as pi and v̂i in Sec.2. Then, we calculated the pose
of the planar marker from the camera with the set of point
correspondences by the proposed algorithm and other state-
of-the-art algorithms.

5.1. Parameter Settings

The state estimate and estimate covariance matrix, x0 and P0,
respectively, were initialized as follows:

x0 =

[
m0

0

]
and P0

[
L 0
0 L

]
, (18)

where L is a value determined by the variance of the initial
state. A larger L means that the initial state estimate is
very unreliable and the true value tends to be closer to the
measurement values. Here, we set L = 10 in our initial
condition.

The other parameters of the motion model in Sec.4.1 to
be determined are the deviation in the motion acceleration σa
and deviation in the measurement noise σz . A large σa means
that the model has a drastic acceleration motion, and a small
σz means that the measurements are very trustworthy. These
two parameters are chosen empirically, with σ2

a = 1000 and
σ2
z = 2. The experimental results below are generated by

these parameters.

5.2. Pose Estimation Result Comparison

We recorded some video sequences of a marker that is at a
random rotation angle from the camera. Fig. 8 shows the
pose estimation results, which are compared with the results
obtained using state-of-the-art algorithms. In every condition
and every time step, our algorithm provides a solution for
real-time pose estimation with high stability. The first row in
Fig. 8 is the original continuous video sequence with a fidu-
cial marker. The second and third raws are the pose estimation
results with CGIs of Kato et al. [2] and Schweighofer et al.
[6]. The last row shows the results obtained by our proposed
algorithm. Even with low resolution and noisy images, pose
sequences without pose jumping was derived, and it shows
a marked difference from the other sequences obtained from
other algorithms.

Fig. 9 shows the rotation angle of the marker with re-
spect to a camera. When the pose jumps during the video
sequences, the rotation angle would vary drastically. The
most obvious example is the first chart in Fig. 9. Using the
proposed algorithm, the situation of pose jumping can almost
be avoided.

Furthermore, the pose would be much more stable by
using a motion model. People would feel more comfortable
if the difference in values of the rotation angles between two
continuous frames about each axis are as small as possible.
Moreover, pose jittering implies that the difference in values
during video sequences are unsettled and sway around 0. Fig.
9 depicts the pose sequences derived by our algorithm are
much more stable with a smaller difference between frames.
We have also applied some temporal filters to the other two
methods trying to diminish the effects of pose jittering, but
the final pose would be badly affected by the ambiguous poses
nearby.



Fig. 8. Pose estimation result comparison. The first row is the continuous raw image sequence with a marker. The second and
third rows are the results obtained by other algorithms, and the forth row are the results obtained by our proposed algorithm.

6. CONCLUSION

In this work, we propose a stable pose estimation algorithm
for real-time applications. The proposed concept of motion
modeling cannot be only used with the proposed algorithm,
but with other pose estimation algorithms as well. Hence, the
effect of pose jittering can be diminished drastically. Even
the correct pose from two candidate ambiguous poses can
be predicted with the motion model, so the problem of pose
jumping can be solved effectively.

To the best of our knowledge, this is the first work com-
bining a pose estimation algorithm with a motion model.
Because several applications of pose estimation are processed
in video format, we cannot estimate the pose by considering
information from just one frame. With the implementation of
the Kalman filter, the derived pose in each time step would be
more consistent with the previous one. In addition, users of
these applications will feel more comfortable with the much
smoother pose sequences.
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