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ABSTRACT

Estimating six degrees of freedom poses of a planar object from images is an important problem with numerous applications
ranging from robotics to augmented reality. While the state-of-the-art Perspective-n-Point algorithms perform well in pose
estimation, the success hinges on whether feature points can be extracted and matched correctly on target objects with rich
texture. In this work, we propose a two-step robust direct method for six-dimensional pose estimation that performs accurately
on both textured and textureless planar target objects. First, the pose of a planar target object with respect to a calibrated
camera is approximately estimated by posing it as a template matching problem. Second, each object pose is refined and
disambiguated using a dense alignment scheme. Extensive experiments on both synthetic and real datasets demonstrate that
the proposed direct pose estimation algorithm performs favorably against state-of-the-art feature-based approaches in terms of
robustness and accuracy under varying conditions. Furthermore, we show that the proposed dense alignment scheme can also
be used for accurate pose tracking in video sequences.

1. Introduction

Determining the six degrees of freedom (6-DoF) pose of a
target object from a calibrated camera is a classical problem in
computer vision that finds numerous applications such as robot-
ics and augmented reality (AR). While much progress has been
made in the past decade, it remains a challenging task to de-
velop a fast and accurate pose estimation algorithm, especially
for planar target objects lacking textured surfaces.

Existing pose estimation methods can be broadly categorized
into two groups. The approaches in the first category are based
on features extracted from target objects with rich textures. The
core idea behind feature-based methods is to compute a set of
n correspondences between 3D points and their 2D projections
from where the relative positions and orientations between the
camera and target can be estimated. In recent years, numerous
feature detection and tracking schemes (Lowe, 2004; Bay et al.,
2008; Leutenegger et al., 2011; Rublee et al., 2011; Alahi et al.,
2012) have been developed and applied to a wide range of ap-
plications including simultaneous localization and mapping ap-
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plications (SLAM) (Klein and Murray, 2007; Lim et al., 2012;
Mur-Artal and Tardós, 2014). In order to match features ro-
bustly, variants of RANSAC algorithms (Fischler and Bolles,
1981; Chum and Matas, 2005) have been used to eliminate
outliers before object pose is estimated from a set of feature
correspondences. After this step, typically the perspective-n-
point (PnP) algorithms (Schweighofer and Pinz, 2006; Lepetit
et al., 2009; Zheng et al., 2013) are applied to the feature cor-
respondences for estimating the 6-DoF object pose. We note
that feature-based methods are less effective in pose estimation
when the tilt angle between the camera and the planar target is
large. While the affine-SIFT (ASIFT) (Yu and Morel, 2011) ap-
proach matches feature points well when there are large view-
point changes, it is computationally more expensive than others.
Since the performance of feature-based pose estimation meth-
ods hinges on whether or not point correspondences can be cor-
rectly established, these approaches are less effective when the
target images contain less textured surfaces or motion blurs.

The second category consists of direct methods that do not
depend heavily on features or textures. Since the seminal work
by Lucas and Kanade (1981), numerous algorithms for tem-
plate matching based on global, iterative, nonlinear optimiza-
tion have been proposed (Hager and Belhumeur, 1998; Shum
and Szeliski, 2001; Baker and Matthews, 2001; Malis, 2004;
Xiong and De la Torre, 2015; Lin and Lucey, 2017). As the pose
estimation problem can be formulated as the template match-
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Figure 1. Pose estimation results on synthetic images. The pose ambiguity problem occurs when the objective function has several local minima for a
given configuration, which is the primary cause of flipping estimated poses. First row: original images. Second row: images rendered with a box model
according to the ambiguous pose obtained from proposed algorithm without refinement approach. Third row: pose estimation results from the proposed
algorithm, which can disambiguate plausible poses effectively.

ing problem with the reference frame, poses can be estimated
through optimizing the parameters to account for rigid trans-
formations of observed target images (Crivellaro and Lepetit,
2014; Engel et al., 2014). However, these methods rely on ini-
tial reference parameters and may be trapped in a local min-
imum. To alleviate the limitations of nonlinear optimization
problems, non-iterative approaches (Chi et al., 2011; Korman
et al., 2017; Henriques et al., 2014) have recently been pro-
posed. Nonetheless, these template matching approaches are
limited by the misalignment problem between affine or homo-
graphy transformation in the pose space. It may result in the
additional pose error from transformation matrix decomposi-
tion while estimating the 6-DoF pose.

In this paper, we propose a direct method to estimate the
6-DoF poses of a planar target from a calibrated camera by
measuring the similarity between the projected planar target ob-
ject image and observed 2D frame based on appearance. As
the proposed method is based on a planar object rather than a
3D model, the pose ambiguity problem as discussed in prior
arts (Oberkampf et al., 1993; Schweighofer and Pinz, 2006; Li
and Xu, 2011; Wu et al., 2014), is inevitably bound to occur.
Pose ambiguity is related to situations where the error function
has several local minima for a given configuration, which is the
main cause of flipping estimated poses in an image sequence.
Based on image observations, one of the ambiguous poses with
local minima, according to an error function, is the correct pose.
Therefore, after obtaining an initial rough pose using an approx-
imated pose estimation scheme, we determine all ambiguous
poses and refine the estimates until they converge to local min-
ima. The final pose is chosen as the one with the lowest error
among these refined ambiguous poses. We show some pose es-
timation results by the proposed method in Figure 1. Extensive
experiments are conducted to validate the proposed algorithm
in this work. In particular, we evaluate the proposed algorithm
on different types of templates with different levels of degraded
images caused by blur, intensity, tilt angle, and compression
noise. Furthermore, we evaluate the proposed algorithm on the
datasets by Gauglitz et al. (2011) and Wu et al. (2017) against
the state-of-the-art pose estimation methods.

The main contributions of this work are summarized as fol-
lows. First, we propose an efficient direct pose estimation al-
gorithm for planar targets undergoing arbitrary 3D perspective
transformations. Second, we show the proposed pose estim-
ation algorithm performs favorably against the state-of-the-art
feature-based approaches in terms of robustness and accuracy.
Third, we demonstrate the proposed pose refinement method
not only improves the accuracy of estimated results but also al-
leviates the pose ambiguity problem effectively.

Based on our prior work in Tseng et al. (2016), in this paper,
we extend and construct an image pyramid for the APE method
as described in Section 4.1, and we apply a new PR approach
based on the Lucas & Kanade (LK) algorithm as described
in Section 4.2. We show experimental results with significant
improvements regarding accuracy and efficiency compared to
the previous work in Section 5. The remainder of this paper
is organized as follows. In Section 2, we discuss related work
on object pose estimation. We formulate the pose estimation
problem in Section 3, and then describe the proposed method,
including the approximated pose estimation (APE) and pose re-
finement (PR) approaches, thoroughly in Section 4. Extensive
experimental results are presented in Section 5. We conclude
this paper with discussions on future work in Section 6.

2. Related Work

In this section, we first discuss methods for planar object 6-
DoF pose estimation in two categories, i.e., feature-based as
well as direct approaches, and then introduce techniques for
pose disambiguation.

2.1. Feature-based Methods

Establishing feature correspondences across different images
typically involves three distinct steps. First, features with rich
visual information are detected in both images. The SIFT de-
tector (Lowe, 2004) leverages difference of Gaussians (DoG)
to accelerate the detection process in different scales, while the
SURF (Bay et al., 2008) detector uses a Haar wavelet approx-
imation of the determinant of the Hessian matrix. As these de-
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tectors are computationally expensive, several methods includ-
ing FAST (Rosten and Drummond, 2006) and AGAST (Mair
et al., 2010) have been developed for improvement of exe-
cution speed. Second, a feature representation based on a
local patch centered at a detected feature is constructed. Al-
though the SIFT descriptor (Lowe, 2004) have been shown
to perform robustly in numerous tasks, the incurred computa-
tional cost is high as the feature dimensionality is high. Sub-
sequently, binary descriptors, such as BRIEF (Calonder et al.,
2010), BRISK (Leutenegger et al., 2011), ORB (Rublee et al.,
2011), and FREAK (Alahi et al., 2012), are designed for im-
provement of execution speed. Third, a feature point is as-
sociated with another in the other image. While a method is
expected to detect plenty of distinct features accurately in one
image and match most of them across different views of the
same object, some correspondences are incorrectly determined
in practice and most PnP methods do not handle these outliers
well. Outliers are typically rejected at a preliminary stage using
projective transformation models or P3P algorithms (Gao et al.,
2003; Kneip et al., 2011; Ke and Roumeliotis, 2017) in com-
bination with RANSAC-based schemes (Fischler and Bolles,
1981; Chum and Matas, 2005; Fragoso et al., 2013).

After removing outliers, PnP algorithms, e.g., LM (Lu et al.,
2000b) and RPP (Schweighofer and Pinz, 2006), can be applied
to all the remaining inlier matches by minimizing an appropri-
ate objective function. These methods perform well when re-
liable initial estimates are provided although at the expense of
execution time. Recently, several non-iterative methods without
requiring good initial estimates have been proposed. The EPnP
method (Lepetit et al., 2009) uses four virtual control points
to represent the 3D reference points and performs at the linear
computational complexity. This problem formulation and use
of linearization strategies facilitate the PnP methods perform
efficiently. Numerous approaches have since been developed to
improve the accuracy by replacing the linear formulation with
polynomial solvers, e.g., , DLS (Hesch and Roumeliotis, 2011),
RPnP (Li et al., 2012), UPnP (Kneip et al., 2014), OPnP (Zheng
et al., 2013), REPPnP (Ferraz et al., 2014b), CEPPnP (Ferraz
et al., 2014a), and IPPE Collins and Bartoli (2014).

2.2. Direct Methods
The template matching problem has been widely studied in

computer vision, and one critical issue for pose estimation is
how to efficiently obtain accurate results while evaluating only
a subset of the possible transformations. Since the appearance
distances between a template and two sliding windows shifted
by a few pixels (e.g., one or two pixels) are usually close due
to the nature of image smoothness, Pele and Werman (2007)
exploit this property to reduce the time complexity of pattern
matching. Alexe et al. (2011) derive an upper bound of the Eu-
clidean distance (based on pixel values) according to the spatial
overlap of two windows in an image, and use it for efficient
pattern matching. Korman et al. (2017) show that 2D affine
transformations of a template can be approximated by samples
of a density function based on smoothness of a given image,
and propose a fast matching method.

To refine pose estimates, a dense image alignment approach
based on the LK algorithm (Lucas and Kanade, 1981) is pro-

posed in this work to improve accuracy. In general, direct im-
age alignment methods estimate the transformation parameters
to align a given target image to a camera image. The parameter
set which minimizes an objective function (i.e., appearance dif-
ference between a transformed target image and a camera im-
age) is regarded as the final estimated pose. The crux of the
LK-based algorithm is that an approximately linear relationship
exists between object appearance and geometric displacement.
As such a relationship is seldom exactly linear, a linearization
process is typically repeated until convergence. However, as
this process does not always converge within a fixed step size,
a line search method is performed every time when we find a
descent direction. Among existing methods, the backtracking
line search algorithm has been demonstrated to be effective for
efficient convergence with the presence of image noise (Orozco
et al., 2013).

2.3. Pose Disambiguation
The pose ambiguity problem occurs not only under ortho-

graphic projection but also for perspective transformation, es-
pecially when the target planar object is significantly tilted with
respect to camera views. A typical approach for pose disam-
biguation is first to find all possible poses which are station-
ary points with local minima of a designed objective function,
and then the one with smallest objective values is considered
as the estimated pose. Empirically, the number of ambiguous
poses is two in general. In Schweighofer and Pinz (2006), it has
been shown that two local minima exist for cases with images
of a planar target object viewed by a perspective camera, and a
method is developed to determine a unique solution based on it-
erative pose estimation (Lu et al., 2000a). The PnP problem can
be posed as a minimization problem (Zheng et al., 2013) and all
the stationary points can be determined by using the Gröbner
basis method (Kukelova et al., 2008). In addition, given a pose
solution, the other ambiguous pose can also be generated by
reflecting the first pose with respect to a plane whose normal
vector is the line-of-sight from the camera image center to the
planar target center (Collins and Bartoli, 2014).

3. Problem Formulation

Given a target image It and an observed camera image Ic
with pixel values normalized in the range [0, 1], the task is to
determine the object pose of It in six degrees of freedom para-
meterized based on the orientation and position of the target
object with respect to a calibrated camera. With a set of refer-
ence points xi = [xi, yi, 0]>, i = 1, . . . , n, n ≥ 3 in the object-
space coordinate of It, and a set of camera-image coordinates
ui = [ui, vi]> in Ic, the transformation between them can be
formulated as:huihvi

h

 =

fx 0 x0
0 fy y0
0 0 1

 [R|t]

xi
yi
0
1

 , (1)

where

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

 ∈ SO(3), t =

txty
tz

 ∈ R3, (2)
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are the rotation matrix and translation vector, respectively.
In (1), (fx, fy) and (x0, y0) are the focal length and the prin-
cipal point of the camera, respectively, and h is the scale factor
representing the depth value in the camera coordinate system.

Given the observed camera-image points ûi = [ûi, v̂i]>,
the pose estimation algorithm needs to determine values for
pose p ≡ (R, t) that minimize an appropriate error function.
The rotation of the pose p can be parameterized in numerous
ways (Grassia, 1998) including Euler angles (see Section 4.1)
and axis-angle representation (see Section 4.2).

There are two types of error functions commonly used for
pose estimation. The first one is based on projection error and
used in the PnP algorithms:

Er(p) = 1
n

n∑
i=1

(
(ûi − ui)2 + (v̂i − vi)2) . (3)

The second type of error function is based on appearance dis-
tance and used in direct methods including this work:

Ea1(p) = 1
n

n∑
i=1
|Ic(ui)− It(xi)|, (4)

or

Ea2(p) = 1
n

n∑
i=1

(Ic(ui)− It(xi))2
. (5)

The error functions in (4) and (5) are the normalized Sum-of-
Absolute-Differences (SAD) and Sum-of-Squared-Difference
(SSD) errors, respectively.

4. Proposed Algorithm

The proposed algorithm consists of two steps. First, the 6-
DoF pose of a planar target object with respect to a calibrated
camera is estimated. Second, the object pose is refined and
disambiguated.

4.1. Approximate Pose Estimation
Let Tp be the transformation at pose p in (1). Assume a

reference point xi in a target image is transformed separately
to ui1 and ui2 in a camera image with two different poses p1
and p2. It has been shown (Korman et al., 2017) that if any
distance between ui1 and ui2 is smaller than a positive value ε,
with upper bound in the Big-O notation (Cormen et al., 2009),

∀xi ∈ It : d(Tp1(xi), Tp2(xi)) = O(ε), (6)

then the following equation holds

|Ea1(p1)− Ea1(p2)| = O(εV̄), (7)

where V̄ denotes the mean variation of It, which represents the
mean value over the entire target image of the maximal differ-
ence between each pixel and any of its neighbors. The mean
variation V̄ can be constrained by filtering It. The main result
is that the difference betweenEa1(p1) andEa1(p2) is bounded
in terms of ε. In the proposed direct method, we only need to
consider a limited number of poses by constructing a ε-covering
pose set S (Wikipedia, 2018) based on (6) and (7).

Figure 2. Illustration of rota-
tion angle: θx indicates the
tilt angle between the camera
and the target image when the
rotation is factored as R =
Rz(θzc )Rx(θx)Rz(θzt ).

𝜃𝑧𝑡

Tile Angle

𝜃𝑧𝑐

𝜃𝑥

Constructing the ε-Covering Set. By factoring the rotation
as R = Rz(θzc)Rx(θx)Rz(θzt) (Eberly, 2008) as shown
in Figure 2, the pose then can be parameterized as p =
[θzc , θx, θzt , tx, ty, tz]>. These Euler angles θzc , θx, and θzt
are in the range [−180°, 180°], [0°, 90°], and [−180°, 180°], re-
spectively. In addition, the translation parameters tx, ty , and tz
are bounded such that the whole target image would be within
the camera image, and the bounds depend on the camera in-
trinsic parameters. Furthermore, we set an upper bound for tz
since it is not practical to detect an extreme tiny target image
in the camera image. A pose set S is constructed such that any
two consecutive poses, pk and pk + ∆pk on each dimension
satisfy (6) in S. To construct the set, the coordinates of xi ∈ It
are normalized to the range [−1, 1]. Starting with tz , we derive
the following equation by using (1) for each xi:

d(Tptz (xi), Tptz+∆tz
(xi))

=
√

[(fxxi
tz

)− ( fxxi
tz + ∆tz

)]2 + [(fyyi
tz

)− ( fyyi
tz + ∆tz

)]2

= O( 1
tz
− 1
tz + ∆tz

).

(8)

To satisfy the constraint in (6), we use the step size with tight
bound in the Big-Theta notation (Cormen et al., 2009):

∆tz = Θ( εt2z
1− εtz

), (9)

which means that (8) can be bounded if we construct S using (9)
on dimension tz .

Since θx describes the tilt angle between camera and target
image as shown in Figure 2, we obtain the following equation
based on tz:

d(Tpθx (xi), Tpθx+∆θx
(xi))

=
√
d2

ui
+ d2

vi

= O( 1
tz − sin(θx + ∆θx) −

1
tz − sin(θx) ),

(10)

for each xi, where

dui = ( fxxi
yi sin θx + tz

)− ( fxxi
yi sin(θx + ∆θx) + tz

),

dvi = ( fyyi cos θx
yi sin θx + tz

)− ( fyyi cos(θx + ∆θx)
yi sin(θx + ∆θx) + tz

).
(11)

In addition, to satisfy the constraint in (6), we set the step size
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Table 1. Bounded step size on each dimension in the pose domain for con-
structing the ε-covering pose set.

Dimension Step Size

θzc Θ(εtz)
θx Θ(sin−1(tz − 1

ε+ 1
tz−sin(θx)

)− θx)
θzt Θ(εtz)
tx Θ(ε(tz −

√
2 sin(θx)))

ty Θ(ε(tz −
√

2 sin(θx)))
tz Θ( εt2z

1−εtz )

when using (10):

∆θx = Θ(sin−1(tz −
1

ε+ 1
tz−sin(θx)

)− θx). (12)

Similarly, we derive the steps for the other dimensions based on
tz and θx. Table 1 summarizes the bounded step size on each
dimension for the ε-covering pose set, and the derivation details
are presented in Appendix A.

Finally, the pose set is constructed recursively starting from
tz based on the bounded step shown in Table 1. We then de-
termine values of θx based on its bounded step which is influ-
enced by tz . The remaining pose parameters θzc , θzt , tx, and
ty are determined based on each of their bounded steps, which
are afftected only by tz and θx and independent of each other.

Coarse-to-Fine Estimation. As the parameter space is large,
the computational and memory costs are prohibitively high if
the ε-covering set is used straightforwardly for pose estimation.
In this work, we develop a coarse-to-fine approach for fast and
accurate pose estimation. The pose set S is first constructed
with a coarse ε. After obtaining the best pose pb and the as-
sociated error measure Ea1(pb), we select the poses within a
threshold:

SL = {pL | Ea1(pL) < Ea1(pb) + L}, (13)

to be considered in the next step. Here the constant L is a
threshold empirically determined. Based on SL, we create sets
with finer ε′:

S ′ = {p′ | ∃pL ∈ SL : (6) holds for p′,pL and ε′}, (14)

and repeat this process until we obtain the desired precision
parameter ε∗. In our implementation, the initial ε is set to be
0.25 and is diminished by multiplying a scale factor of 0.662
in each iteration. The precision parameter ε∗ is set to meet the
condition that for each point in the target image, the maximum
distance between neighboring points in the camera image trans-
formed by poses in the ε-covering pose set is less than 1 pixel.
Empirically, ε∗ would be around 0.01. The best pose in the last
set is considered as the approximated estimate.

Approximate Error Measure. If we approximate the error
measure E′a1

with random sampling only a portion of pixels in-
stead of computing Ea1 with sampling all pixels in It, accord-
ing to Hoeffding’s inequality (Abu-Mostafa et al., 2012), E′a1

is close to Ea1 within a precision parameter δ if the number of
sampling pixels m is sufficiently large:

P (|E′a1
− Ea1 | > δ) ≤ 2e−2δ2m, (15)

where P (·) represents the probability measure. This inequal-
ity suggests that if m is properly selected, the approximation
error between E′a1

and Ea1 can be bounded with high probabil-
ity. In other words, E′a1

is a close approximation of Ea1 within
the probably approximately correct (PAC) framework (Kearns
and Vazirani, 1994). With this approximation, the runtime of
estimating the error measure can be significantly reduced by in-
specting only a small fraction of pixels in a target image. We
normalize the intensity term and add the chroma components
to the appearance distance measure to account for lighting vari-
ation.

Pyramidal Implementation. To constrain the mean variation
V̄ in (7), it is common to blur It (and Ic) before carrying out the
proposed approximated pose estimation method. Since a blurry
image has a texture similar to that of a lower resolution image,
we construct an image pyramid instead of directly blurring im-
ages. It is worth using a lower resolution image for pose estima-
tion from some perspectives. First, when we sample pixels on a
smaller image, the cache miss rate will be lower and thus reduce
memory traffic. Second, we can also sample a smaller amount
of pixels in (15) when using low-resolution images. Starting
from the lowest resolution image, we proceed to the next level
(i.e., higher resolution image) when the distance in (6) is smal-
ler than one pixel for all transformations. Empirically, the pyr-
amid implementation can increase the runtime performance sig-
nificantly while achieving similar or even higher accuracy and
robustness for pose estimation.

4.2. Pose Refinement
We obtain a coarse pose p′ ≡ (R′, t′) using the proposed

approximate pose estimation scheme. However, this estimate is
bounded based on the distance in the appearance space rather
than the pose space. Thus the estimated and actual poses may
be significantly different even when the appearance distance is
small, particularly when the tilt angle of a target image is large.
In the meanwhile, the pose ambiguity problem is likely to occur
as illustrated in Figure 1. As such, we propose a pose refine-
ment method to improve accuracy and address the ambiguity
problem of estimates.

Determining Candidate Poses. In order to address the pose
ambiguity problem, we first transform four corner points xc1,
xc2, xc3, and xc4 in the target image It to uc1, uc2, uc3, and
uc4 in the observed camera image Ic with p′, respectively.
We then compute all stationary points of the error function (3)
based on the Gröbner basis method (Kukelova et al., 2008).
Only the stationary points with the two smallest objective val-
ues in (3) are plausible poses, and these two ambiguous poses
p′1 and p′2 are both chosen as the candidate poses.

Refining Candidate Poses. After obtaining the two candidate
poses, we further refine the estimates using a dense image align-
ment method which minimizes the SSD error in (5) (instead of
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the SAD error in (4) as it is not continuously differentiable) by
the LK-based approach. For each candidate pose pc, we solve
the nonlinear least squares problem using the Gauss-Newton it-
eration method. To approximate how the image changes with
respect to pose, we use the first-order Taylor series as follows:

∆p∗ = argmin
∆p

1
n

n∑
i=1

(Ic (ui (pc + ∆p))− It (xi))2

≈ argmin
∆p

n∑
i=1

(
Ic (ui (pc)) + ∂Ic

∂p

∣∣∣∣
p=pc

∆p− It (xi)
)2

.

(16)

Different from the method described in Section 4.1, here the
pose p is parameterized as a 6D vector consisting of the 3D
axis angles of the rotation matrix and the 3D translation vector:

p =
[
r
t

]
, r =

r1
r2
r3

 ∈ R3, t =

txty
tz

 ∈ R3. (17)

To compute ∆p in each iteration, we set the first derivative
of (16) to zero and solve the resulting system of linear equa-
tions:

Jc∆p = It − Ic, (18)

where It and Ic are vector forms of It (xi) and Ic (ui), respect-
ively. In (18), Jc is the Jacobian matrix of Ic with respect to p
at the pose p = pc and computed by the chain rule (in the
numerator-layout notation):

Jc = ∂Ic
∂p

∣∣∣∣
p=pc

=


∂Ic(u1)
∂p

∂Ic(u2)
∂p
...

∂Ic(un)
∂p

 , (19)

∂Ic
∂p = ∂Ic

∂u
[
∂u
∂r ,

∂u
∂t
]

=
[
∂Ic
∂u ,

∂Ic
∂v

] [
∂u
∂x̂

∂x̂
∂R̂

∂R̂
∂r ,

∂u
∂x̂

]
, (20)

∂u
∂x̂ =

[
fx
ẑ 0 − fxx̂ẑ2

0 fy
ẑ −

fy ŷ
ẑ2

]
,
∂x̂
∂R̂

=

x y 0 0 0 0
0 0 x y 0 0
0 0 0 0 x y

 , (21)

where R̂ = [R11, R12, R21, R22, R31, R32]> denotes the vec-
tor with elements in the left two columns of the rotation matrix
R, and

x̂ =

x̂ŷ
ẑ

 =

R11 R12 tx
R21 R22 ty
R31 R32 tz

xy
1

 , (22)

is the camera-space coordinate transformed from the object-
space coordinate x = [x, y, 0]>.

In addition, the derivative of R̂ with respect to r can be ob-
tained using the following formula (Gallego and Yezzi, 2015):

∂R
∂ri

=
ri [r]× + [r× (I−R) ei]×

‖r‖2
R, (23)

where I and ei are the identity matrix and the i-th vector of the
standard basis in R3, respectively. In (23), [r]× is defined by:

[r]× =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 , (24)

which represents the cross product (skew-symmetric) matrix for
the vector r.

A closed form solution of (18) is:

∆p =
(
J>c Jc

)−1 J>c (It − Ic) . (25)

As the least squares problem is nonlinear, the Gauss-Newton
iteration method does not always converge with a fixed step
size. We thus perform a backtracking line search to scale the
step size after each iteration of computing (25). We shrink ∆p
by ∆p← α∆p until it meets the Armijo-Goldstein condition:

Ea2(pc + ∆p) ≤ Ea2(pc) + c∇Ea2(pc)>∆p, (26)

where∇Ea2(pc) is the local function gradient. We set α = 0.5
and c = 10−4 empirically in this work. The candidate pose pc
is refined by pc ← pc+ ∆p until the vector norm ‖∆p‖ is less
than a predefined threshold ε∆p.

Finally, the pose corresponding to the smaller Ea2 is selec-
ted from the two refined candidate poses. The main steps of
the proposed pose estimation method are summarized in Al-
gorithm 1. It should be noted that we also perform the pyramid
implementation for the refinement process to increase both the
accuracy and efficiency.

5. Experimental Results

We evaluate the proposed algorithm for the 6-DoF pose es-
timation problem using a synthetic image dataset that we de-
velop and two real image benchmark datasets (Gauglitz et al.,
2011; Wu et al., 2017). As the color of each template in the real
image benchmark datasets is slightly changed after being gen-
erated by a printer and then viewed by a camera, we calibrate
each template in the two real image benchmark datasets before
carrying out performance evaluation.

We compare the proposed algorithm with feature-based pose
estimation methods. The proposed direct pose estimation
(DPE) algorithm is constructed with the approximated pose es-
timation (APE) and pose refinement (PR) approaches. Based
on preliminary experiments, we determine the SIFT (Lowe,
2004) representation performs better than other alternative fea-
tures in terms of repeatability and accuracy. Similar observa-
tions have also be reported in the literature (Gauglitz et al.,
2011). As the ASIFT (Yu and Morel, 2011) method is con-
sidered the state-of-the-art affine-invariant method to determ-
ine correspondences under large view changes, we use both
the SIFT and ASIFT representations in the evaluation against
feature-based schemes. The RANSAC-based method (Fischler
and Bolles, 1981) is then used to eliminate outliers before ob-
ject pose is estimated by the PnP algorithm. It has been shown
that, among the PnP algorithms (Schweighofer and Pinz, 2006;
Lepetit et al., 2009; Zheng et al., 2013; Kneip et al., 2014;
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Algorithm 1: Direct 6-DoF Pose Estimation
Input: Target image It, camera image Ic, intrinsic

parameters, and parameters ε∗, ε∆p;
Output: Estimated pose result p∗;

1: Build image pyramids for It and Ic;
2: Start from images with lowest resolution;
3: Create an ε-covering pose set S;
4: Find pb from S with E′a1

according to (15);
5: while ε > ε∗ do
6: Obtain the set SL according to (13);
7: Diminish ε;
8: if d < 1 according to (6) then
9: Change to the next image resolution;

10: end if
11: Replace S according to (14);
12: Find pb from S with E′a1

according to (15);
13: end while
14: Determine the candidate poses p1 and p2 with pb;
15: for i = 1→ 2 do
16: Let pc = pi;
17: repeat
18: Compute Jc according to (19);
19: Compute ∆p according to (25);
20: while Condition according to (26) is not met do
21: ∆p← α∆p
22: end while
23: pc ← pc + ∆p
24: until ‖∆p‖ < ε∆p
25: Let pi = pc;
26: end for
27: Return the pose p∗ with smaller Ea2 from p1 and p2;

Collins and Bartoli, 2014), the OPnP (Zheng et al., 2013) and
IPPE (Collins and Bartoli, 2014) algorithms achieve the state-
of-the-art results in terms of efficiency and precision for planar
targets. Thus, we use these two algorithms as the pose estimator
in the feature-based methods.

All the experiments are carried out using MATLAB on a
machine with an Intel Core i7-6700K 4.0 GHz processor and
32 GB RAM. In addition, we implement the proposed direct
method on an NVIDIA GTX 970 GPU using CUDA based
on Tseng et al. (2017). Table 2 shows average runtime for dif-
ferent algorithms. The source code and datasets are available
on our project website at media.ee.ntu.edu.tw/research/DPE.

Given the true rotation matrix R̃ and translation vector t̃,
we compute the rotation error of the estimated rotation mat-
rix R by Er(degree) = arccos((Tr(R> · R̃) − 1)/2), where
arccos(·) represents the inverse cosine operation in degrees and
Tr(·) is the trace of a matrix. The translation error of the estim-
ated translation vector t is measured by the relative difference
between t̃ and t defined by Et(%) = ‖t̃ − t‖/‖t̃‖ × 100. We
define a pose to be successfully estimated if its both errors are
under predefined thresholds. We use δr = 20° and δt = 10%
as the thresholds on rotation error and translation error empir-
ically, as shown in Figure 3. The success rate (SR) is defined as
the percentage of the successfully estimated poses within each
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Figure 3. Cumulative percentage of poses whose rotation or translation er-
rors are under values specified in the x-axis over experiments. The vertical
dashed lines correspond to the thresholds used to detect unsuccessfully es-
timated poses. There is a total of 36,277 poses estimated by each pose es-
timation approach.
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Figure 4. Cumulative percentage of poses whose rotation or translation
errors are under thresholds specified in the x-axis over experiments on the
same datasets used by (Tseng et al., 2016) (i.e., the synthetic dataset and
the visual tracking dataset (Gauglitz et al., 2011)).

test condition. In the following sections, the average rotation
and translation errors are computed only for successfully es-
timated poses.

We compare the DPE algorithm proposed in this
work with the algorithm proposed in the previous work
(i.e., DPE16) (Tseng et al., 2016) on the same datasets Tseng
et al. (2016). Figure 4 shows that the proposed DPE algorithm
performs accurately and robustly against the DPE16 method.
For presentation clarify, we do not show the evaluation results
of the DPE16 method in the following sections.

5.1. Synthetic Image Dataset
For our experiments we use a set of synthetic images consist-

ing of 8,400 test images covering 21 different test conditions.
Each test image is generated from warping a template image
according to the randomly generated pose with the tilt angle
in the range [0°, 75°] with a randomly chosen background im-
age as shown in Figure 5. The template image size is 640×480
pixels. These templates are classified into four different classes,
namely “Low Texture”, “Repetitive Texture”, “Normal Tex-
ture”, and “High Texture” (Lieberknecht et al., 2009) as shown
from top to bottom in Figure 5. Each class is represented by two
targets. The background images are from the database (Jegou
et al., 2008) and resized to 800×600 pixels.

Undistorted Images. The pose estimation results of the SIFT-
based, ASIFT-based, and proposed direct methods on the un-
distorted test images are shown in Table 3. For each image, the
average rotation error Er, translation error Et, and success rate

http://media.ee.ntu.edu.tw/research/DPE
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Table 2. Average runtime (measured in seconds) for approaches on different datasets. Although SIFT-based Approach is the fastest method among these
three different schemes, its performance is quite limited. Numbers in parentheses denote the average runtime of the CUDA implementation of the proposed
method, which can be executed more efficiently on a GPGPU platform as it can be easily parallelized.

Dataset
SIFT-based Approach ASIFT-based Approach DPE

SIFT RANSAC IPPE/OPnP Total ASIFT RANSAC IPPE/OPnP Total APE PR Total

Synthetic 7.431 0.010 0.001/0.009 7.446 10.903 0.004 0.001/0.009 10.912 10.549 (1.505) 0.571 (0.117) 11.120 (1.622)
VT 3.608 0.005 0.001/0.008 3.618 15.806 0.003 0.001/0.008 15.814 17.920 (1.217) 0.694 (0.180) 18.615 (1.397)

OPT 11.261 0.098 0.001/0.008 11.364 38.884 0.055 0.001/0.008 38.944 18.545 (0.994) 0.214 (0.088) 18.759 (1.082)

Table 3. Evaluation results for feature-based approaches and the proposed direct methods with undistorted test images in terms of average numbers of
rotation error Er , translation error Et, and success rate in each test condition. The best values are highlighted in bold.

Bump Sign Stop Sign Lucent MacMini Board Isetta Philadelphia Grass Wall

Method Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%)

SIFT+IPPE 0.85 0.34 40.0 1.90 0.54 86.0 0.23 0.25 28.0 0.32 0.24 86.0 0.74 0.35 92.0 0.56 0.40 98.0 1.15 0.50 30.0 0.28 0.37 96.0

SIFT+OPnP 0.76 0.40 40.0 1.18 0.46 86.0 0.20 0.24 28.0 0.25 0.24 86.0 0.56 0.32 92.0 0.55 0.43 98.0 1.48 0.47 30.0 0.25 0.36 96.0

ASIFT+IPPE 9.70 2.92 20.0 2.96 0.81 94.0 1.48 0.43 100 1.65 0.51 94.0 1.59 0.57 100 1.29 0.34 98.0 2.17 0.52 52.0 1.96 0.36 90.0

ASIFT+OPnP 8.20 2.22 22.0 2.72 0.74 100 1.38 0.41 100 1.53 0.45 96.0 1.40 0.50 98.0 1.26 0.35 100 1.33 0.37 52.0 1.80 0.36 94.0

APE 1.10 0.33 100 1.44 0.42 100 0.90 0.47 98.0 2.56 1.23 94.0 1.03 0.35 100 1.63 0.49 100 1.96 0.91 100 1.57 0.68 98.0

DPE 0.39 0.17 100 0.42 0.24 100 0.16 0.14 100 0.16 0.12 98.0 0.21 0.16 100 0.21 0.11 100 0.15 0.14 100 0.17 0.13 100

Background ImagesTemplates Test Images

Figure 5. A synthetic test image was generated from a warping template
image according to a randomly generated pose on a randomly chosen back-
ground image.

are presented. The evaluation results show that the proposed
DPE method performs accurately and robustly against feature-
based approaches on various template images. In addition, the
proposed refinement approach can effectively improve accuracy
that is first estimated by the APE method.

In most cases, the feature-based approaches do not estimate
pose accurately on textureless template images or template im-
ages with feature points that are similar to each other. Although
the IPPE algorithm is designed for pose estimation of planar
objects, it does not perform as well as the OPnP algorithm that
is able to estimate pose more accurately in general scenarios.

Degraded Images. We evaluate these approaches using all
templates with different types of image degradation: 1) Gaus-
sian blur with kernel width of {1, 2, 3, 4, 5} pixels, 2) JPEG
compression with the quality parameter set to {90, 80, 70, 60,
50}, 3) intensity change with pixel intensity scale factor set to
{0.9,0.8,0.7,0.6,0.5}, and 4) tilt angle in the range of {[0°, 15°),
[15°, 30°), [30°, 45°), [45°, 60°), and [60°, 75°)}. Figure 6

shows the evaluation results. The proposed DPE algorithm
performs favorably against the other feature-based methods on
blurry images. Although the translation errors of the proposed
method appear to be larger than those of feature-based methods,
these errors are computed only on successfully estimated poses.
As the proposed method can estimate template poses success-
fully even under blur conditions, the errors are larger due to
slightly inaccurate pose estimates in blurry images.

All approaches are able to deal with certain levels of distor-
tion with JPEG compression noise.

For images with intensity changes, the SIFT-based meth-
ods perform worse than other approaches as fewer features
are detected in low contrast images by the SIFT detector. We
note that the SIFT-based methods can still perform well under
low-intensity conditions when we adjust the feature detection
threshold to extract more features.

Although the SIFT-based approaches can detect and match
features accurately under small tilt angles, these methods fre-
quently fail when the tilt angles are larger. In contrast, the
proposed algorithm and the ASIFT-based methods are able to
estimate 6-DoF poses relatively well even the template images
are perspectively distorted in the camera images.

We show the overall evaluation results on the proposed syn-
thetic image dataset in Figure 7. Overall, the proposed dir-
ect method performs favorably against the feature-based ap-
proaches with the success rate of 98.90%. The success rate of
the SIFT-based and ASIFT-based approaches are 49.65% and
74.26%, respectively.

Refinement Analysis. To improve pose estimation accuracy,
we propose a refinement method that minimizes the appearance
distance between the template and camera images using an LK-
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(a) Gaussian blur (b) JPEG compression (c) Intensity change (d) Tilt angle

Figure 6. Experimental results on synthetic data under varying conditions.
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Figure 7. Cumulative percentage of poses whose rotation or translation
errors are under thresholds specified in the x-axis over experiments on the
proposed synthetic image dataset. There is a total of 8,400 poses estimated
by each pose estimation approach.

based scheme as described in Section 4.2. Figure 8 shows pose
estimation results with and without the refinement approach
on the synthetic dataset. The rotation and translation errors
of estimated poses are smaller after the proposed refinement
process. The rotation and translation errors can be reduced
by 1.951° and 0.670% respectively with proposed refinement
scheme. Sample images rendered with poses estimated by the
proposed algorithm with and without the refinement scheme on
the synthetic image dataset are shown in Figure 1.

We design another experiment to demonstrate the proposed
algorithm is able to disambiguate plausible poses. A template
image from the synthetic dataset is warped according to pose
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Figure 8. Pose estimation results with refinement approach (DPE) and
without refinement approach (APE). The average value of rotation and
translation errors are both reduced by the proposed refinement approach.

pt. Two ambiguous pose, pa1 and pa2 , can be obtained from pt
using the functional minimization method (Zheng et al., 2013).
One of the two plausible poses p′a is randomly chosen and ad-
ded with some Gaussian noise. The refinement approach is then
applied to p′a for estimating the pose of the warped template
image. Finally, we compute Er and Et of both the initial noisy
pose p′a and the refined pose pr according to pt. Thus, if the
proposed refinement approach can disambiguate the plausible
pose p′a, the rotation error can be reduced significantly. All
images in the synthetic dataset are used for the experiment.

We compare the proposed refinement method with the refine-
ment approach with only one candidate pose in Algorithm 1,
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Figure 9. Results of the proposed method without refinement (w/o), refinement with one candidate (w/ 1), and refinement with two candidates (w/ 2).
(a) The rotation errors are reduced significantly in the ambiguous cases, but the translation errors are relatively not because the translation terms of
ambiguous poses are quite similar in most cases. (b) The difference of pose errors before and after applying two kinds of refinement approaches. While
the proposed refinement approach can disambiguate the object pose effectively, approach with only one candidate pose suffers from the risk of getting
trapped into a local minimum.
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Figure 10. Experimental results on the visual tracking dataset (Gauglitz et al., 2011) under varying motion blur levels, where level 9 stands for the
strongest motion blur.

Table 4. Evaluation results for different pose refinement approaches on the
synthetic image dataset in the refinement analysis experiment.

Approach Er(°) Et(%) SR(%)

Without Refinement 2.235 1.369 66.82

Refinement with 1 Candidate Pose 0.734 0.461 65.49

Refinement with 2 Candidate Poses 0.558 0.416 92.05

and present the results in Figure 9. While the rotation errors of
ambiguous poses are usually large (which causes the pose flip-
ping), the proposed refinement approach can disambiguate the
object pose effectively and reduce the rotation errors signific-
antly (which result in smoother pose estimations throughout an
image sequence). Table 4 shows that the proposed refinement
method can help improve estimation accuracy in terms of ro-
tation and translation and address the pose ambiguity problem
effectively.

5.2. Visual Tracking Dataset
We analyze the performance of the proposed algorithm

and state-of-the-art methods on the visual tracking (VT) data-
set (Gauglitz et al., 2011) which contains 96 videos and 6,889
frames with 6 templates. These videos are recorded under dif-
ferent moving and lighting conditions with motion-blurs. The

camera image size in this dataset is 640×480 pixels. And since
the templates have different primary resolutions, we resize each
template to 570×420 pixels uniformly. It is a challenging data-
base for pose estimation due to significant viewpoint changes,
drastic illumination differences, and noisy camera images.

The evaluation results of the proposed and feature-based
methods on six templates under different conditions are shown
in Table 5. Different from synthetic images, the color appear-
ance of a template image may change significantly within a
video sequence in this real image dataset. The DPE algorithm
performs favorably against the feature-based methods under
most conditions, especially when distinguishable features can-
not be found on a template image.

While PnP algorithms perform well in pose estimation, the
success hinges on whether the feature can be well matched. As
shown in Figure 10, feature-based approaches do not perform
well when motion blurs occur. Similarly, feature-based meth-
ods do not estimate pose well on videos listed in Table 5 due
to motion blurs. On the other hand, the proposed algorithm can
estimate poses well under blur conditions. As motion blurs are
likely to occur in AR applications, the proposed algorithm can
be better applied to estimate 6-DoF pose than feature-based ap-
proaches. However, if the target object appears an extremely
flat color in a camera image, the proposed method is likely to
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Table 5. Experimental results on the visual tracking dataset (Gauglitz et al., 2011) under different conditions. The best results (excluding the proposed
direct pose tracking method) for each condition are highlighted in bold.

Bricks Building Mission Paris Sunset Wood

Condition Method Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%)

Unconstrained

SIFT+IPPE 2.98 1.07 0.40 2.60 0.89 6.60 1.64 0.72 60.6 1.61 0.66 44.0 3.22 1.32 26.6 2.04 0.53 5.00

SIFT+OPnP 2.37 0.98 0.40 2.60 0.88 6.80 1.48 0.73 61.6 1.44 0.65 43.8 2.81 1.43 28.4 1.43 0.41 5.00

ASIFT+IPPE 2.67 1.05 37.0 2.80 0.92 31.4 3.03 1.11 58.0 1.57 0.72 91.0 3.40 2.10 44.4 2.54 1.03 33.0

ASIFT+OPnP 1.92 0.93 37.6 2.48 0.88 31.4 2.35 0.91 57.4 1.31 0.85 91.0 3.03 2.11 46.0 2.20 1.01 34.8

APE 2.12 1.45 52.0 1.11 0.92 88.0 1.57 1.14 98.0 0.75 0.76 99.0 4.24 3.89 43.4 1.41 2.24 53.0

DPE 1.00 0.72 52.0 0.93 0.66 88.4 1.17 0.70 98.2 0.47 0.54 99.8 3.49 4.12 46.8 0.67 1.53 56.0

DPT 1.11 0.94 90.2 1.23 0.81 92.2 1.17 0.70 98.4 0.81 0.65 96.0 3.69 4.46 49.9 0.88 1.43 91.2

Panning

SIFT+IPPE – – 0.00 1.29 0.55 10.0 2.18 0.65 96.0 3.34 1.04 40.0 5.49 0.75 20.0 – – 0.00

SIFT+OPnP – – 0.00 0.81 0.54 10.0 2.39 0.61 100 4.45 1.12 50.0 6.79 1.27 24.0 – – 0.00

ASIFT+IPPE 5.91 1.52 80.0 7.89 0.98 2.00 4.95 1.15 82.0 5.85 0.91 44.0 13.8 2.56 10.0 9.94 1.42 4.00

ASIFT+OPnP 5.80 1.40 80.0 19.2 5.59 2.00 4.95 0.98 88.0 5.93 1.16 62.0 15.5 3.34 10.0 16.0 2.02 4.00

APE 4.27 0.50 96.0 1.56 1.08 100 1.79 0.96 100 3.94 1.05 74.0 4.53 0.56 100 6.03 1.24 56.0

DPE 1.04 0.29 96.0 0.38 0.63 100 0.90 0.89 100 1.52 0.97 86.0 2.75 0.68 100 1.05 0.93 60.0

DPT 1.64 0.36 95.9 0.38 0.64 100 0.95 0.89 100 1.51 0.98 100 2.68 0.71 100 1.33 0.92 79.6

Rotation

SIFT+IPPE 1.65 0.34 44.0 2.79 0.50 56.0 1.17 0.42 100 1.71 0.37 98.0 5.97 0.57 74.0 3.76 0.40 62.0

SIFT+OPnP 1.74 0.37 46.0 2.69 0.52 56.0 1.05 0.41 100 1.61 0.33 100 5.61 0.66 84.0 2.51 0.39 70.0

ASIFT+IPPE 2.83 0.39 100 6.15 1.24 76.0 2.35 0.36 100 1.35 0.33 100 6.68 0.91 72.0 3.39 0.47 94.0

ASIFT+OPnP 1.78 0.39 100 5.09 1.11 74.0 1.66 0.37 100 1.23 0.36 100 5.69 0.90 78.0 2.88 0.49 98.0

APE 1.20 0.25 100 2.00 0.66 100 1.11 0.42 100 0.71 0.25 100 2.18 0.66 100 1.64 0.66 100
DPE 0.84 0.24 100 1.50 0.59 100 0.31 0.46 100 0.56 0.29 100 0.90 0.52 100 0.98 0.55 100

DPT 0.84 0.24 100 1.50 0.59 100 0.32 0.46 100 0.55 0.29 100 0.88 0.51 100 0.99 0.54 100

Perspective
Distortion

SIFT+IPPE 2.99 0.46 58.0 4.38 0.40 34.0 2.77 0.43 76.0 3.98 0.40 76.0 6.56 0.87 58.0 4.70 0.59 20.0

SIFT+OPnP 1.45 0.30 58.0 2.62 0.45 34.0 0.68 0.53 76.0 1.53 0.45 76.0 4.79 0.74 62.0 6.23 0.43 24.0

ASIFT+IPPE 3.01 0.25 72.0 4.99 0.43 68.0 3.74 0.35 80.0 3.07 0.34 84.0 4.96 0.64 58.0 3.69 0.75 66.0

ASIFT+OPnP 1.55 0.29 72.0 3.51 0.54 68.0 1.95 0.39 80.0 1.78 0.51 84.0 3.73 0.87 62.0 2.07 0.82 66.0

APE 1.81 0.94 56.0 0.97 0.77 92.0 1.35 0.56 86.0 0.69 0.42 90.0 2.44 2.32 68.0 1.74 1.34 68.0
DPE 0.89 0.29 56.0 0.74 0.51 92.0 0.81 0.52 86.0 0.43 0.46 90.0 1.47 1.96 78.0 0.56 0.86 68.0

DPT 0.72 0.34 93.9 0.71 0.51 100 0.84 0.61 95.9 0.57 0.68 98.0 1.61 1.63 75.5 0.62 1.13 87.8

Zoom

SIFT+IPPE 2.51 0.53 6.00 3.28 0.34 26.0 4.01 0.42 100 3.09 0.40 100 9.75 0.94 60.0 4.23 0.45 40.0

SIFT+OPnP 1.15 0.38 6.00 3.14 0.30 28.0 2.30 0.40 98.0 2.73 0.43 100 7.42 0.91 60.0 2.83 0.46 42.0

ASIFT+IPPE 4.91 0.76 64.0 4.60 0.56 58.0 5.24 0.67 76.0 2.54 0.20 74.0 10.5 1.05 50.0 4.10 0.43 48.0

ASIFT+OPnP 3.32 0.65 64.0 3.95 0.52 58.0 3.36 0.48 80.0 1.67 0.36 76.0 6.47 1.18 56.0 4.33 0.50 54.0

APE 3.37 0.77 94.0 1.73 0.33 100 3.13 0.63 100 1.22 0.55 100 5.58 0.74 100 3.79 1.06 100
DPE 1.14 0.33 94.0 0.86 0.27 100 1.94 0.51 100 0.50 0.45 100 2.50 0.80 100 0.87 0.61 100

DPT 1.16 0.33 100 0.87 0.27 100 1.98 0.51 100 0.52 0.45 100 2.43 0.80 100 0.93 0.58 100

Static
Lighting

SIFT+IPPE 1.51 0.83 27.5 2.75 0.98 20.0 1.09 0.48 81.3 1.56 0.79 72.5 2.28 0.87 57.5 1.01 0.50 21.3

SIFT+OPnP 1.49 0.91 28.7 2.42 1.18 20.0 0.77 0.43 81.3 1.58 0.86 72.5 1.94 0.91 60.0 1.00 0.52 21.3

ASIFT+IPPE 1.20 0.81 75.0 2.77 0.88 42.5 1.43 0.48 100 1.28 0.65 100 2.66 1.73 47.5 1.80 0.58 52.5

ASIFT+OPnP 1.09 0.82 75.0 2.41 0.82 42.5 1.27 0.45 100 1.23 0.76 100 2.45 1.59 62.5 1.46 0.58 52.5

APE 1.75 1.44 71.3 0.90 0.50 100 0.95 0.60 100 1.24 0.72 100 2.97 3.59 81.3 1.61 1.85 85.0
DPE 1.20 1.06 71.3 0.85 0.40 100 0.61 0.51 100 1.03 0.68 100 2.24 2.44 82.5 0.94 0.78 85.0

DPT 1.20 1.05 100 0.85 0.39 100 0.61 0.51 100 1.02 0.68 100 2.85 3.13 100 0.91 0.72 100

Dynamic
Lighting

SIFT+IPPE 1.38 0.41 13.0 1.81 0.89 17.0 1.16 0.55 78.0 1.12 0.47 38.0 1.45 0.67 44.0 1.08 0.42 28.0

SIFT+OPnP 1.37 0.43 13.0 1.59 0.90 17.0 0.98 0.58 77.0 1.13 0.52 38.0 1.29 0.70 48.0 1.01 0.43 28.0

ASIFT+IPPE 1.22 0.36 62.0 2.81 1.10 38.0 1.53 0.54 100 0.95 0.48 100 3.31 1.33 47.0 1.79 0.56 48.0

ASIFT+OPnP 1.14 0.38 63.0 3.01 1.15 37.0 1.42 0.55 100 0.92 0.53 100 2.60 1.33 48.0 1.47 0.59 51.0

APE 1.25 0.71 40.0 1.06 0.68 98.0 0.99 0.70 100 0.65 0.33 84.0 3.26 3.10 72.0 1.26 1.31 52.0
DPE 1.00 0.47 40.0 1.20 0.65 98.0 0.47 0.52 100 0.63 0.41 84.0 2.75 3.19 77.0 0.82 0.72 52.0

DPT 1.00 0.45 100 1.20 0.66 100 0.46 0.52 100 0.63 0.42 100 3.29 3.67 100 0.81 0.63 100
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Figure 11. Estimation results by the proposed DPE method on the visual tracking dataset (Gauglitz et al., 2011) under different conditions. The success
cases are represented with rendered cyan boxes, and the failure cases are represented with rendered magenta boxes.
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Figure 12. Cumulative percentage of poses whose rotation or translation
errors are under thresholds specified in the x-axis over experiments on the
visual tracking dataset (Gauglitz et al., 2011). There is a total of 6,889 poses
estimated by each pose estimation approach.

fail because the appearance between the template and its local
patches are almost indistinguishable.

Sample pose estimation results from the proposed DPE
method are shown in Figure 11. The cumulative percentage
of estimated poses according to different translation and ro-
tation errors are shown in Figure 12. Overall, the proposed
direct method performs favorably against the feature-based ap-
proaches within the success rate of 77.76%. The success rate of
the SIFT-based and ASIFT-based approaches are 29.98% and
48.52% respectively.

Note that the proposed pose refinement approach can also be
regarded as a direct pose tracking (DPT) algorithm. The eval-
uation results of the DPT method on the VT dataset are shown

in Table 5, Figure 10, and Figure 12. If the DPT method loses
track of the object pose (i.e., the rotation or translation error is
larger than the pre-defined threshold, i.e., δr and δt), we reset
the initial object pose in the current frame as the object pose
in the previous frame. Overall, the proposed DPT method can
track object poses well. The DPT algorithm can be integrated
with the DPE method for more robust performance with certain
re-initialization schemes (e.g., periodic restarts).

5.3. Object Pose Tracking Dataset

We evaluate the proposed algorithm and feature-based meth-
ods on the object pose tracking (OPT) benchmark dataset (Wu
et al., 2017). For 2D objects, it contains 138 videos with 20,988
frames. These videos are recorded under four designed motion
patterns and five camera speeds controlled by a programmable
robotic arm. Furthermore, these videos contain two different
lighting conditions and a free-motion case. The frame size in
this dataset is 1920×1080 pixels, and we resize each template
to 300×300 pixels. Sample images rendered according to the
pose estimated by the proposed DPE method on this OPT data-
set are shown in Figure 13.

The pose tracking results of all evaluated algorithms under
Flashing Light, Moving Light, and Free Motion conditions with
six templates and different texture levels are shown in Table 6.
Similar to the results in Section 5.1 and Section 5.2, feature-
based methods do not perform well on the template images with
less texture or structure. In contrast, the proposed DPE method
is able to track object poses well except the Wing image. When
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Figure 13. Estimation results by the proposed DPE method on the object pose tracking dataset (Wu et al., 2017) under different conditions. The success
cases are represented with rendered cyan boxes, and the failure cases are represented with rendered magenta boxes.

Table 6. Experimental results of the object pose tracking dataset (Wu et al., 2017) under different conditions. The best results (excluding the proposed
direct pose tracking method) for each condition are highlighted in bold.

Wing Duck City Beach Maple Firework

Condition Method Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%) Er(°) Et(%) SR(%)

Flashing Light

SIFT+IPPE 10.6 2.96 1.24 6.99 0.43 100 2.11 0.20 100 2.80 0.16 100 1.80 0.15 100 1.63 0.12 100
SIFT+OPnP 14.2 2.33 9.32 5.94 0.33 100 0.86 0.10 99.4 0.83 0.09 100 0.35 0.08 100 0.23 0.07 100
ASIFT+IPPE 14.6 3.27 4.35 6.36 0.50 100 3.01 0.28 100 1.79 0.19 100 2.43 0.22 100 2.73 0.25 100
ASIFT+OPnP 17.5 2.84 3.11 3.58 0.34 100 1.47 0.16 100 0.88 0.18 100 1.35 0.12 100 0.91 0.16 100

APE 10.4 1.51 36.0 2.12 0.22 100 1.95 0.56 100 1.28 0.28 100 1.98 0.41 100 2.00 0.34 100
DPE 8.32 1.52 42.2 0.72 0.05 100 1.08 0.19 100 0.50 0.09 99.4 0.50 0.05 98.1 0.38 0.04 100

DPT 6.46 1.72 86.3 0.76 0.05 99.4 1.16 0.17 100 0.47 0.09 100 0.56 0.05 97.5 0.43 0.05 100

Moving Light

SIFT+IPPE 17.8 0.69 0.61 7.54 0.63 94.5 2.52 0.22 100 2.60 0.15 100 1.87 0.15 100 1.64 0.13 100
SIFT+OPnP 15.2 2.75 8.54 5.95 0.50 94.5 1.02 0.11 100 0.69 0.09 100 0.55 0.09 100 0.22 0.07 100
ASIFT+IPPE 15.6 2.97 1.83 7.13 0.61 100 4.71 0.41 99.4 1.74 0.20 100 2.42 0.20 100 2.68 0.27 100
ASIFT+OPnP 19.4 0.38 0.61 5.10 0.46 100 2.73 0.29 99.4 0.84 0.15 100 0.98 0.12 100 0.80 0.18 100

APE 11.3 4.98 27.4 4.24 0.37 99.4 5.43 0.71 55.5 3.64 0.35 75.0 6.09 1.03 62.2 3.26 0.54 95.1

DPE 8.41 4.38 45.1 2.14 0.12 100 2.34 0.18 56.7 1.51 0.09 77.4 3.20 0.32 59.8 0.71 0.04 94.5

DPT 9.22 1.92 64.4 1.96 0.11 100 2.59 0.19 98.8 1.42 0.10 99.4 4.08 0.37 82.2 0.76 0.05 100

Free Motion

SIFT+IPPE 7.55 3.95 1.15 5.80 0.59 93.2 1.00 0.28 100 0.61 0.42 99.9 0.73 0.39 100 1.38 0.39 100
SIFT+OPnP 9.81 2.87 2.04 3.68 0.57 96.8 0.77 0.27 100 0.61 0.41 100 0.72 0.38 100 1.09 0.38 100
ASIFT+IPPE 11.6 2.54 0.38 7.89 1.18 90.6 2.43 0.39 99.4 0.95 0.53 99.9 1.45 0.49 96.4 1.78 0.39 98.7

ASIFT+OPnP 11.4 5.38 1.15 6.53 0.90 96.7 2.03 0.36 99.7 0.91 0.52 100 1.39 0.49 99.9 1.55 0.36 99.7

APE 6.14 5.16 56.1 2.73 0.31 98.7 1.35 0.66 100 1.53 0.86 83.7 3.18 1.98 98.3 1.79 0.55 100
DPE 4.84 4.41 59.7 1.16 0.23 98.7 0.60 0.18 100 0.54 0.27 91.1 0.65 0.34 99.1 1.05 0.30 100

DPT 4.52 3.14 69.5 0.88 0.18 100 0.55 0.22 100 0.49 0.26 99.6 0.58 0.26 100 1.02 0.30 100
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(a) Translation (b) Zoom (c) In-plane Rotation (d) Out-of-plane Rotation

Figure 14. Experimental results of the object pose tracking dataset Wu et al. (2017) in four designed motion patterns with different speeds.

a template image does not contain sufficient structural informa-
tion, the proposed direct method may estimate erroneous poses
which cover only parts of the template image, as shown in the
failure cases in Figure 13. The proposed method does not per-
form well on images when drastic color distortion occurs, e.g.,
under Moving Light condition, as the appearance distance met-
ric is less effective in such scenarios.

The pose tracking results of the template images in different
motion patterns and speed are shown in Figure 14. Since the
images in the Translation condition are more blurry than those
in other motion patterns at higher speed, the plot trends of the
evaluation results under this condition are similar as those un-
der the Gaussian Blur conditions in Figure 6. In contrast, the
other three motion patterns do not result in blurry images at the
highest speed, the performance of all approaches under con-
ditions at different speeds are similar. As all the evaluated ap-
proaches are scale and rotation invariant, they all perform favor-
ably on template images with the Zoom and In-plane Rotation
patterns. However, the success rates of SIFT-based methods are
lower in the Out-of-plane Rotation motion pattern as they are
not invariant under perspective distortion.

We evaluate the proposed DPT algorithm on the OPT data-
set to analyze the tracking performance using the same ex-
perimental setting as that described in Section 5.2, Figure 14
and Table 6 show that the DPT algorithm can track object poses
well on most template images except one. As discussed above,
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Figure 15. Cumulative percentage of poses whose rotation or translation
errors are under thresholds specified in the x-axis over experiments on the
object pose tracking dataset (Wu et al., 2017). There is a total of 20,988
poses estimated by each pose estimation approach.

the proposed DPT method does not work well on images, e.g.,
Wing, without sufficient structure for pose estimation based on
appearance. The curves of cumulative percentages of poses
estimated by the evaluated algorithms on the OPT dataset are
shown in Figure 15. Overall, the proposed direct method per-
forms favorably against feature-based approaches with a suc-
cess rate of 91.27%. The success rates of the SIFT-based and
ASIFT-based approaches are 79.46% and 82.74%, respectively.

6. Conclusions

In this paper, we propose a robust direct method for 6-DoF
pose estimation based on two main steps. First, the pose of a
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planar target with respect to a calibrated camera is approxim-
ately estimated using an efficient coarse-to-fine scheme. Next,
we use the LK-based method to further refine and disambigu-
ate the object pose. Extensive experimental evaluations on both
synthetic image and real image datasets demonstrate the pro-
posed algorithm performs favorably against two state-of-the-art
feature-based pose estimation approaches in terms of robust-
ness and accuracy under several varying conditions. We have
also implemented the proposed algorithm on a GPGPU plat-
form as the algorithm can be easily parallelized.
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Appendix A. Derivation Details of Bounded Steps

For presentation clarity, we use the notation ca for cos(θa)
and sa for sin(θa), where a stands for zc, x, or zt. As discussed
in Section 4.1, the rotation can be factorized as:

R = Rz(θzc)Rx(θx)Rz(θzt)

=

czcczt − cxszcszt −cxcztszc − czcszt sxszc
cztszc + cxczcszt cxczcczt − szcszt −sxczc

sxszt sxczt cx

 .
(A.1)

Our objective is to construct an ε-covering pose set S based
on (6) and (7). In this work, we construct S by first determining
bounded steps for horizontal distance tz and tilt angle θx. Next,
the bounded steps for the other dimensions θzc , θzt , tx, and ty
can be determined based on tz and θx. Let θz′t = θzt + ∆θzt ,
we obtain the following equation based on the current tz and
θx,

d(Tpθzt
(xi), Tpθzt+∆θzt

(xi)) =
√
f2
xα

2
θzt

+ f2
y c

2
xβ

2
θzt

≤
√
f2
xα

2
θzt

+ f2
yβθ2

zt

= O

(
∆θzt

tz + k sin(θx)

)
,

(A.2)

αθzt = cztx− szty
sx(sztx+ czty) + tz

−
cz′t
x− sz′ty

sx(sz′tx+ cz′t
y) + tz

, (A.3)

βθzt = sztx+ czty

sx(sztx+ czty) + tz
−

sz′t
x+ cz′t

y

sx(sz′tx+ cz′t
y) + tz

, (A.4)

where k denotes any constant in the range of [−
√

2,
√

2]. An
illustrative example of (A.2) is shown in Figure A.16. To
make (A.2) satisfy the constraint in (6), we set the step size,

∆θzt = Θ(ε(tz + k sin(θx))), (A.5)

Rotation around
𝑍𝑡-axis

1

Δ𝜃𝑧𝑡

𝑂(Δ𝜃𝑧𝑡)

1

Δ𝜃𝑧𝑡

𝑂
Δ𝜃𝑧𝑡

𝑡𝑧 − sin 𝜃𝑥

𝑂
Δ𝜃𝑧𝑡

𝑡𝑧 + sin 𝜃𝑥

Δ𝜃𝑧𝑡

(a) (b)

Figure A.16. (a) 2D illustration of rotation around Zt-axis. The linear dis-
tance (orange solid line) between points before and after applying rotation
is bounded by the arc length (brown dotted line). (b) 3D illustration of ro-
tation around Zt-axis. The linear distance between points is a function of
tilt angle θx.

where larger k means larger bounded steps for constructing S.
We set k to be 0 for ∆θzt in the proposed method.

As θzt denotes 2D image rotation of the planar target, it does
not influence the bounded steps for θzc . Let θz′c = θzc + ∆θzc ,
we obtain the following equation depending on the current tz
and θx:

d(Tpθzc (xi), Tpθzc+∆θzc
(xi)) =

√
f2
xα

2
θzc

+ f2
yβ

2
θzc

= O

(
∆θzc

tz + k sin(θx)

)
,

(A.6)

αθzc = czcx− cxszcy
sxy + tz

−
cz′cx− cxsz′cy
sxy + tz

, (A.7)

βθzc = szcx+ cxczcy

sxy + tz
−
sz′cx+ cxcz′cy

sxy + tz
. (A.8)

We can realize (A.6) in a similar way to (A.2). To make (A.6)
satisfy the constraint in (6), we set the step size:

∆θzc = Θ(ε(tz + k sin(θx))) = Θ(ε(tz)), (A.9)

which k is set to 0.
As the bounded steps for tx and ty are also influenced by

horizontal distance tz and tilt angle θx only, we have

d(Tptx (xi), Tptx+∆tx
(xi)) =

√
f2
xα

2
tx + f2

yβ
2
tx

= O

(
∆tx

tz + k sin(θx)

)
,

(A.10)

αtx = x+ tx
sxy + tz

− x+ tx + ∆tx
sxy + tz

, (A.11)

βtx = y

sxy + tz
− y

sxy + tz
, (A.12)

and:

d(Tpty (xi), Tpty+∆ty
(xi)) =

√
f2
xα

2
ty + f2

yβ
2
ty

= O

(
∆ty

tz + k sin(θx)

)
,

(A.13)

αty = x

sxy + tz
− x

sxy + tz
, (A.14)
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βty = y + ty
sxy + tz

− y + ty + ∆ty
sxy + tz

. (A.15)

To make (A.10) and (A.13) satisfy the constraint in (6), we set
these step sizes,

∆tx = Θ(ε(tz + k sin(θx))) = Θ(ε(tz −
√

2 sin(θx))),
(A.16)

∆ty = Θ(ε(tz + k sin(θx))) = Θ(ε(tz −
√

2sin(θx))).
(A.17)

as k is set to −
√

2 for pratical consideration.
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