
My First Nios II for

Altera DE2-115 Board

Digital Circuit Lab

TA: Po-Chen Wu

Outline

• Hardware Design

• Nios II IDE Build Flow

• Programming the CFI Flash

2

Hardware Design

3

Introduction

• This slides provides comprehensive

information that will help you

understand how to create a FPGA

based SOPC system implementing on

your FPGA development board and run

software upon it.

4

Required Features (1/2)

• The Nios II processor core is a soft-core

central processing unit (CPU) that you could

program onto an Altera field programmable

gate array (FPGA).

• This chapter illustrates you to the basic flow

covering hardware creation and software

building.

5

Required Features (2/2)

• The example NIOS II standard hardware system
provides the following necessary components:

• Nios II processor core, that’s where the software will
be executed.

• On-chip memory to store and run the software.

• JTAG link for communication between the host
computer and target.

• Hardware (typically using a USB-Blaster cable).

• LED peripheral I/O (PIO), be used as indicators.

6

Creation of Hardware Design

7

1

2

3

1

2

3

same as (top-level) file name

8

9

1

10

1

2for DE2-115

3

1

2

11

1

2

3 4

12

1

2

13

1(double-click)

14

2

1

2

15

16

1

2(double-click)

3

1

2

17

12(double-click)

3

4

18

1

2

19

1

2(double-click)

3

4

5

20

1(double-click)

2

21

22

1

2

23

1

2(double-click)

3

24

1

2

25

1

26

1

27

1

2

28

1

29

30

1

2

3

4

5

31

1

2

3

4

32

1

33

module NiosII (

clk,

rst_n,

led,

);

input clk, rst_n;

output [7:0] led;

DE2_115_QSYS DE2_115_QSYS_inst (

.clk_clk(clk),

.reset_reset_n(rst_n),

.led_export(led),

);

endmodule

34

1

2 3

35

1

2

3

36

12

3

4

37

1

2

38

39

1

2

3
4

40

1

2
3

41

1

2

42

1

2

43

1

2

44

1
2

45

create_clock -period 20 [get_ports clk]
derive_clock_uncertainty
set_input_delay 0 -clock clk [all_inputs]
set_output_delay 0 -clock clk [all_outputs]

46

1

2

46

3
4

5

47

1

48

1

49

1

50

When configuration is complete, the FPGA is

configured with the Nios II system, but it does not

yet have a C program in memory to execute.

NIOS II IDE Build Flow

This Chapter covers build flow of Nios II C

coded software program.

51

Introduction

• The Nios II IDE build flow is an easy-to-use

graphical user interface (GUI) that

automates build and makefile management.

• In this section you will use the Nios II IDE

to compile a simple C language example

software program to run on the Nios II

standard system configured onto the FPGA

on your development board.
52

53

1

2

3

4

54

1

2 3

55

1

2

3

56

1

57

Project Description

• When you create a new project, the NIOS
II SBT for Eclipse creates two new projects
in the NIOS II C/C++ Projects tab:

• Hello_NiosII is your C/C++ application project.
This project contains the source and header
files for your application.

• Hello_NiosII_bsp is a board support package
that encapsulates the details of the Nios II
system hardware.

58

59

1(right-click)

2

60

61

2

3

1(right-click)

62

Edit and Re-Run the Program

63

1

2

64

#include <stdio.h>

#include "system.h"

#include "altera_avalon_pio_regs.h"

int main()

{

printf("Hello from Nios II!\n");

int count = 0;

int delay;

while(1) {

IOWR_ALTERA_AVALON_PIO_DATA(LED_BASE, 1 << count);

delay = 0;

while(delay < 2000000) {

delay++;

}

count = (count+1) % 8;

}

return 0;

}

65

1(right-click)

2

3

66

Orient your development board so

that you can observe LEDGs blinking

Why the LEDs Blink? (1/2)

• The Nios II system description header
file, system.h, contains the software
definitions, name, locations, base
addresses, and settings for all of the
components in the Nios II hardware
system.

• The system.h file is located in the in the
Hello_NiosII_bsp directory.

67

68

Why the LED Blinks? (2/2)

• The Nios II processor controls the PIO

ports (and thereby the LED) by reading

and writing to the register map.

• For the PIO, there are four registers: data,

direction, interrupt mask, and edge capture.

• To turn the LED on and off, the application

writes to the PIO data register.

69

Register Map File (1/2)

• The PIO core has an associated

software file altera_avalon_pio_regs.h.

• This file defines the core's register map,

providing symbolic constants to access the

low-level hardware.

• This file is located in
Project\software\Hello_NiosII_bsp\drivers\inc

\.

70

Register Map File (2/2)

• When you include this file, several useful
functions that manipulate the PIO core
registers are available to your program.

• In particular, the function
IOWR_ALTERA_AVALON_PIO_DATA (base, data)
can write to the PIO data register, turning the
LED on and off.

• The PIO is just one of many SOPC peripherals
that you can use in a system.

71

Debugging the Application

• Before you can debug a project in the

NIOS II SBT for Eclipse, you need to

create a debug configuration that

specifies how to run the software.

72

73

1(double-click)

74

1(right-click)

2
3

4

75

1

2

Debugging Tips

• When debugging a project in the Nios II

SBT for Eclipse, you can pause, stop or

single step the program, set breakpoints,

examine variables, and perform many

other common debugging tasks.

76

77

Return to the Nios II C/C++ project

perspective from the debug perspective.

1

2

Configure BSP Editor

• In this section you will learn how to

configure some advanced options about

the target memory or other things.

• By performing the following steps, you

can charge all the available settings.

78

79

1(right-click)

2

3

80

1

81 1

Note

• If you make changes to the system
properties or the Qsys properties or
your hardware, you must rebuild your
project

• To rebuild, right-click the
Hello_NiosII_BSP->Nios II->Generate
BSP and then Rebuild Hello_NiosII
Project.

82

Programming the CFI Flash

83

Introduction

• With the density of FPGAs increasing,

the need for larger configuration storage

is also increasing.

• If your system contains a common flash

interface (CFI) flash memory, you can

use your system for FPGA configuration

storage as well.

84

85

1

2

86

1

2

87

1(double-click)

88

2

1

89

1

2

90

1

91

1

92

1

2

93

2

1

94

1

2

3

4

95

1

2

96

1(double-click)

2

3

97

1

2

98

1(double-click)

2

99

1

2

100

1

2(double-click)

101

1

2

3

102

1

103

1(double-click)

104

1

2

105

1

2

1

2

3

106

4

107

1

108

module NiosII (
clk,
rst_n,
led,
// flash
FL_ADDR,
FL_CE_N,
FL_DQ,
FL_OE_N,
FL_RESET_N,
FL_RY,
FL_WE_N,
FL_WP_N

);
input clk, rst_n;
output [7:0] led;
// flash
output [22:0] FL_ADDR;
output FL_CE_N;
inout [7:0] FL_DQ;
output FL_OE_N;
output FL_RESET_N;
input FL_RY;
output FL_WE_N;
output FL_WP_N;
DE2_115_QSYS DE2_115_QSYS_inst (

.clk_clk(clk),

.reset_reset_n(rst_n),

.led_export(led),
// flash
.tristate_bridge_flash_out_fs_addr(FL_ADDR),
.tristate_bridge_flash_out_fl_read_n(FL_OE_N),
.tristate_bridge_flash_out_fl_cs_n(FL_CE_N),
.tristate_bridge_flash_out_fs_data(FL_DQ),
.tristate_bridge_flash_out_fl_we_n(FL_WE_N),

);
// flash config
assign FL_RESET_N = 1'b1;
assign FL_WP_N = 1'b1;
endmodule

109

1
2

3
4

110

1

2

111

112

1

113

1

114

1

115

116

1

2

3

4

117

1(right-click)

2 3

118

1(right-click)

2

119

1(right-click)

2

3

120

1

2

3

4

5

121

2

3

4

5

1

122

1

123

1

Finally...

• Restart power on the development

board.

• Download NiosII.sof of your project

“NiosII” to the board.

• You will see that the LEDs blink!

124

The End.

Any question?

Reference

1. "My First Nios II for Altera DE2-115

Board" by Terasic Technologies Inc.

2. "My First Nios II for Altera DE2i-150

Board" by Terasic Technologies Inc.

3. "DE2-115 User Manual" by Terasic

Technologies Inc.

126

