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Hardware Design
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Introduction

• This slides provides comprehensive 

information that will help you 

understand how to create a FPGA 

based SOPC system implementing on 

your FPGA development board and run 

software upon it.
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Required Features (1/2)

• The Nios II processor core is a soft-core 

central processing unit (CPU) that you could 

program onto an Altera field programmable 

gate array (FPGA).

• This chapter illustrates you to the basic flow 

covering hardware creation and software 

building.
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Required Features (2/2)

• The example NIOS II standard hardware system 
provides the following necessary components:

• Nios II processor core, that’s where the software will 
be executed.

• On-chip memory to store and run the software.

• JTAG link for communication between the host 
computer and target.

• Hardware (typically using a USB-Blaster cable).

• LED peripheral I/O (PIO), be used as indicators.
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Creation of Hardware Design
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module NiosII (

clk,

rst_n,

led,

);

input clk, rst_n;

output [7:0] led;

DE2_115_QSYS DE2_115_QSYS_inst (

.clk_clk(clk),

.reset_reset_n(rst_n),

.led_export(led),

);

endmodule
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create_clock -period 20 [get_ports clk]
derive_clock_uncertainty
set_input_delay 0 -clock clk [all_inputs]
set_output_delay 0 -clock clk [all_outputs]
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When configuration is complete, the FPGA is 

configured with the Nios II system, but it does not 

yet have a C program in memory to execute.



NIOS II IDE Build Flow

This Chapter covers build flow of Nios II C 

coded software program.
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Introduction

• The Nios II IDE build flow is an easy-to-use 

graphical user interface (GUI) that 

automates build and makefile management.

• In this section you will use the Nios II IDE 

to compile a simple C language example 

software program to run on the Nios II 

standard system configured onto the FPGA 

on your development board.
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Project Description

• When you create a new project, the NIOS 
II SBT for Eclipse creates two new projects 
in the NIOS II C/C++ Projects tab:

• Hello_NiosII is your C/C++ application project. 
This project contains the source and header 
files for your application.

• Hello_NiosII_bsp is a board support package 
that encapsulates the details of the Nios II 
system hardware.
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Edit and Re-Run the Program
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#include <stdio.h>

#include "system.h"

#include "altera_avalon_pio_regs.h"

int main()

{

printf("Hello from Nios II!\n");

int count = 0;

int delay;

while(1) {

IOWR_ALTERA_AVALON_PIO_DATA(LED_BASE, 1 << count);

delay = 0;

while(delay < 2000000 ) {

delay++;

}

count = (count+1) % 8;

}

return 0;

}
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Orient your development board so 

that you can observe LEDGs blinking



Why the LEDs Blink? (1/2)

• The Nios II system description header 
file, system.h, contains the software 
definitions, name, locations, base 
addresses, and settings for all of the 
components in the Nios II hardware 
system. 

• The system.h file is located in the in the 
Hello_NiosII_bsp directory.
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Why the LED Blinks? (2/2)

• The Nios II processor controls the PIO 

ports (and thereby the LED) by reading 

and writing to the register map. 

• For the PIO, there are four registers: data, 

direction, interrupt mask, and edge capture. 

• To turn the LED on and off, the application 

writes to the PIO data register.
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Register Map File (1/2)

• The PIO core has an associated 

software file altera_avalon_pio_regs.h. 

• This file defines the core's register map, 

providing symbolic constants to access the 

low-level hardware.

• This file is located in 
Project\software\Hello_NiosII_bsp\drivers\inc

\.
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Register Map File (2/2)

• When you include this file, several useful 
functions that manipulate the PIO core 
registers are available to your program. 

• In particular, the function 
IOWR_ALTERA_AVALON_PIO_DATA (base, data) 
can write to the PIO data register, turning the 
LED on and off.

• The PIO is just one of many SOPC peripherals 
that you can use in a system.  
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Debugging the Application

• Before you can debug a project in the 

NIOS II SBT for Eclipse, you need to 

create a debug configuration that 

specifies how to run the software.

72



73

1(double-click)



74

1(right-click)

2
3

4



75

1

2



Debugging Tips

• When debugging a project in the Nios II 

SBT for Eclipse, you can pause, stop or 

single step the program, set breakpoints, 

examine variables, and perform many 

other common debugging tasks.
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Return to the Nios II C/C++ project 

perspective from the debug perspective.
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Configure BSP Editor

• In this section you will learn how to 

configure some advanced options about 

the target memory or other things. 

• By performing the following steps, you 

can charge all the available settings.
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Note

• If you make changes to the system 
properties or the Qsys properties or 
your hardware, you must rebuild your 
project

• To rebuild, right-click the 
Hello_NiosII_BSP->Nios II->Generate 
BSP and then Rebuild Hello_NiosII
Project.
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Programming the CFI Flash
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Introduction

• With the density of FPGAs increasing, 

the need for larger configuration storage

is also increasing. 

• If your system contains a common flash 

interface (CFI) flash memory, you can 

use your system for FPGA configuration 

storage as well.
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module NiosII (
clk,
rst_n,
led,
// flash
FL_ADDR,
FL_CE_N,
FL_DQ,
FL_OE_N,
FL_RESET_N,
FL_RY,
FL_WE_N,
FL_WP_N 

);
input clk, rst_n;
output [7:0] led;
// flash
output [22:0] FL_ADDR;
output FL_CE_N;
inout [7:0] FL_DQ;
output FL_OE_N;
output FL_RESET_N;
input FL_RY;
output FL_WE_N;
output FL_WP_N;
DE2_115_QSYS DE2_115_QSYS_inst (

.clk_clk(clk),

.reset_reset_n(rst_n),

.led_export(led),
// flash
.tristate_bridge_flash_out_fs_addr(FL_ADDR),
.tristate_bridge_flash_out_fl_read_n(FL_OE_N),
.tristate_bridge_flash_out_fl_cs_n(FL_CE_N),
.tristate_bridge_flash_out_fs_data(FL_DQ),
.tristate_bridge_flash_out_fl_we_n(FL_WE_N),

);
// flash config
assign FL_RESET_N = 1'b1;
assign FL_WP_N = 1'b1;
endmodule
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Finally...

• Restart power on the development 

board. 

• Download NiosII.sof of your project 

“NiosII” to the board. 

• You will see that the LEDs blink!

124



The End.

Any question?
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