
My First FPGA for

Altera DE2-115 Board

Digital Circuit Lab

TA: Po-Chen Wu

Outline

• Complete Your Verilog Design

• Assign The Device

• Add a PLL Megafunction

• Assign the Pins

• Create a Default TimeQuest SDC File

• Compile and Verify Your Design

• Configuring the Cyclone IV E FPGA

2

Complete Your Verilog

Design

3

exp1_traffic.v (1/5)

4

module exp1_traffic (
clk,
rst_n,
pause,
HEX0

);

//==== parameter definition ===============================
// for finite state machine
parameter S_NORMAL = 1'd0;
parameter S_PAUSE = 1'd1;

// for countdown
parameter C_PERIOD = 4'd9;

//==== in/out declaration ==================================
//-------- input ---------------------------
input clk;
input rst_n; // reset signal (button)
input pause; // pause signal (switch)

//-------- output --------------------------------------
output [6:0] HEX0;

It is a 10 seconds

countdown system.

The countdown system can be

paused by turning on the switch.

module name = file name

exp1_traffic.v (2/5)

5

//==== reg/wire declaration ================================
//-------- output --------------------------------------
reg [6:0] HEX0;

//-------- wires ---------------------------------------
wire clk_16; // 16MHz clock signal
wire [23:0] next_clks;
reg next_state;
reg [3:0] next_countdown;
reg [6:0] next_HEX0;

//-------- flip-flops ----------------------------------
reg [23:0] clks;
reg state;
reg [3:0] countdown;

//==== combinational part ==================================

// clock signal
clksrc clksrc1 (clk, clk_16);
assign next_clks = (state==S_PAUSE)? clks: clks+24'd1;

PLL

(input: clk, 50MHz)

(output: clk_16, 16MHz)

Output should be register.

(Critical path issue)

exp1_traffic.v (3/5)

6

// finite state machine (state)
always@(*) begin

case(state)
S_NORMAL: begin

if(pause==1) next_state = S_PAUSE;
else next_state = S_NORMAL;

end
S_PAUSE: begin

if(pause==1) next_state = S_PAUSE;
else next_state = S_NORMAL;

end
endcase

end

// countdown
always@(*) begin

if(clks[23]==1'b1 && next_clks[23]==1'b0)
next_countdown = (countdown==0)? C_PERIOD: countdown-4'd1;

else
next_countdown = countdown;

end

Cover every possible branch of

every if or case to avoid latches.

1Hz Cover

every

possible

branch.

Be careful!!

exp1_traffic.v (4/5)

7

// 7-segment Displays
always@(*) begin

case(countdown)
7'd0: next_HEX0 = 7'b1000000;
7'd1: next_HEX0 = 7'b1111001;
7'd2: next_HEX0 = 7'b0100100;
7'd3: next_HEX0 = 7'b0110000;
7'd4: next_HEX0 = 7'b0011001;
7'd5: next_HEX0 = 7'b0010010;
7'd6: next_HEX0 = 7'b0000010;
7'd7: next_HEX0 = 7'b1111000;
7'd8: next_HEX0 = 7'b0000000;
7'd9: next_HEX0 = 7'b0010000;
default: next_HEX0 = 7'b1111111;

endcase
end

Cover every possible branch.

exp1_traffic.v (5/5)

8

//==== sequential part =====================================
always@(posedge clk_16 or negedge rst_n) begin

if(rst_n==0) begin
clks <= 24'd0;
state <= S_NORMAL;
countdown <= C_PERIOD;
HEX0 <= 7'h7f;

end
else begin

clks <= next_clks;
state <= next_state;
countdown <= next_countdown;
HEX0 <= next_HEX0;

end
end

endmodule

Notepad++ (1/5)

9

Highlight

1

2

3

Notepad++ (2/5)

10

1

2

3

4

5

Notepad++ (3/5)

11

Column Mode Editing

1. Alt + Mouse dragging

2. Alt + Shift + Arrow keys

Notepad++ (4/5)

12

1

2

3

4

Notepad++ (5/5)

13

Assign The Device

14

Introduction to FPGA (1/3)

• A field-programmable gate array (FPGA) is an

integrated circuit designed to be configured by

a designer after manufacturing.

• An electronic device is said to be field-

programmable if it can be modified "in the field".

15

Introduction to FPGA (2/3)

• FPGAs contain programmable logic

components called "logic blocks", and a

hierarchy of reconfigurable interconnects that

allow the blocks to be "wired together".

• FPGAs can be used to implement any logical

function that an ASIC could perform.

16

Introduction to FPGA (3/3)

• Xilinx and Altera are the current FPGA market

leaders and long-time industry rivals.

• Both Xilinx and Altera provide free Windows and

Linux design software (ISE and Quartus)

17

Altera's Main FPGA Products

• Stratix series FPGAs are the largest, highest

bandwidth devices, with up to 1.1 million logic

elements.

• Cyclone series FPGAs and are the company's

lowest cost, lowest power FPGAs.

• Arria series FPGAs are between the two

device families above.

18

Altera® Development Kits

• Development kits include software, reference

designs, cables, and programming hardware

(development board).

19

http://www.altera.com/products/devkits/kit-dev_platforms.jsp

http://www.altera.com/products/devkits/kit-dev_platforms.jsp

Installed The USB-Blaster driver
(1/2)

• Plug in the 12-volt adapter to provide power to the board.

• Use the USB cable to connect the leftmost USB

connector (the one closest to the power switch) on the

DE2-115 board to a USB port on a computer that runs

the Quartus II software.

• Turn on the power switch on the DE2-115 board.

20

power

USB cable

12-volt adapter

Installed The USB-Blaster driver
(2/2)

• The computer will recognize the new hardware

connected to its USB port.

• But it will be unable to proceed if it does not have

the required driver already installed.

• The DE2-115 board is programmed by using Altera

USB-Blaster mechanism. If the USB-Blaster driver

is not already installed, the New Hardware Wizard

will appear.

• Next →Next →… →OK!

21

Setup Licensing (1/2)

22

1

2

Setup Licensing (2/2)

23

1

2

Make sure these items appear, and

now you can compile your design.

Only for IP 140.112.*.*

Create a New Project

24

1

2

3

25

1

2

3

same as (top-level) file name

26

1 2

3

27

1

2for DE2-115

3

28

Add a PLL

Megafunction

29

Using Quartus Add a PLL

Megafunction

• A PLL uses the on-board oscillator (50 MHz for

DE2-115 Board) to create a constant clock

frequency as the input to the counter.

• To create the clock source, you will add a pre-

built library of parameterized modules (LPM)

megafunction named ALTPLL.

30

31

1

2

32

1

33

1

34

1

2

3

35

1

2

3

for DE2-115

36

Uncheck all the options

1

37
1

38

1

39

1

40

1

2

41

1

2

Assign the Pins

42

Assign the Pins

• Before making pin assignments…

43

1

2

3

44

1

2

45

Type “M23”, then push Enter

1

2

Now, you are finished creating your Quartus II design!

for DE2-115

Create a Default

TimeQuest SDC File

46

Create a Default TimeQuest

SDC File

• Timing settings are critically important for a
successful design.

• For this tutorial you will create a basic
Synopsys Design Constraints File (.sdc) that
the Quartus II TimeQuest Timing Analyzer
uses during design compilation.

• For more complex designs, you will need to
consider the timing requirements more
carefully.

47

48

1

2

49

1
2

50

create_clock -period 20 [get_ports clk]
create_clock -period 62.5 -name clk_16
derive_pll_clocks
derive_clock_uncertainty
set_input_delay 0 -clock clk_16 [all_inputs]
set_output_delay 0 -clock clk_16 [all_outputs]

create_clock -period 20 [get_ports clk]
derive_clock_uncertainty
set_input_delay 0 -clock clk [all_inputs]
set_output_delay 0 -clock clk [all_outputs]

If we do not use pll:

51

1

2

3
4

Compile and Verify

Your Design

52

Compile Your Design

• After creating your design you must compile it.

• Compilation converts the design into a

bitstream that can be downloaded into the

FPGA.

• The most important output of compilation is an

SRAM Object File (.sof), which you use to

program the device.

53

54

1

Compilation Report

• Make sure there is no error.

55

Program the FPGA Device

• After compiling and verifying your design you

are ready to program the FPGA on the

development board.

• You download the SOF you just created into

the FPGA using the USB-Blaster circuitry on

the board.

56

power

USB cable

12-volt adapter

57

1

2

58

1

59

1

2

60

1

61

~~Finish~~

Demo Video

• 10 seconds countdown system

62

Configuring the

Cyclone IV E FPGA

63

Configuring the FPGA

• JTAG programming

• AS programming

64

In this method of programming, named after the IEEE standards Joint Test

Action Group, the configuration bit stream is downloaded directly into the

Cyclone IV E FPGA. The FPGA will retain this configuration as long as

power is applied to the board; the configuration information will be lost

when the power is turned off.

In this method, called Active Serial programming, the configuration bit

stream is downloaded into the Altera EPCS64 serial configuration device. It

provides non-volatile storage of the bit stream, so that the information is

retained even when the power supply to the DE2-115 board is turned off.

When the board's power is turned on, the configuration data in the EPCS64

device is automatically loaded into the Cyclone IV E FPGA.

JTAG Chain (1/2)

• To use JTAG interface for configuring FPGA

device, the JTAG chain on DE2-115 must form

a close loop that allows Quartus II programmer

to detect FPGA device.

65

JTAG Chain (2/2)

• Shorting pin1 and pin2 on JP3 can disable the JTAG signals

on HSMC connector that will form a close JTAG loop chain on

DE2-115 board. Thus, only the on board FPGA device

(Cyclone IV E) will be detected by Quartus II programmer.

66

Configuring the FPGA in

JTAG Mode (1/2)

• This figure illustrates the JTAG configuration

setup.

67

Configuring the FPGA in

JTAG Mode (2/2)

1. Ensure that power is applied to the DE2-115 board.

2. Configure the JTAG programming circuit by setting the

RUN/PROG slide switch (SW19) to the RUN position.

3. Connect the supplied USB cable to the USB Blaster

port on the DE2-115 board.

4. The FPGA can now be programmed by using the

Quartus II Programmer to select a configuration bit

stream file with the .sof filename extension.

68

Configuring the EPCS64 in

AS Mode (1/2)

• This figure illustrates the AS configuration

setup.

69

Configuring the EPCS64 in

AS Mode (2/2)

1. Ensure that power is applied to the DE2-115 board.

2. Connect the supplied USB cable to the USB Blaster port on the
DE2-115 board.

3. Configure the JTAG programming circuit by setting the
RUN/PROG slide switch (SW19) to the PROG position.

4. The EPCS64 chip can now be programmed by using the
Quartus II Programmer to select a configuration bit stream file
with the .pof filename extension.

5. Once the programming operation is finished, set the
RUN/PROG slide switch back to the RUN position and then
reset the board by turning the power switch off and back on; this
action causes the new configuration data in the EPCS64 device
to be loaded into the FPGA chip.

70

Programmer Object File

• Programmer Object File is a binary file (with

the extension .pof) containing the data for

programming a configuration device.

• A Programmer Object File for a configuration

device can be generated by the Convert

Programming Files command (File menu).

71

1

2

72

5

6

9

3
for DE2-115

4
7

8

1

73

2

3
4

5

74

1

2

75

~~Finish~~

The End.

Any question?

Reference

1. http://en.wikipedia.org/wiki/Field-

programmable_gate_array

2. "My First FPGA for Altera DE2-115 Board" by

Terasic Technologies Inc.

3. "DE2-115 User Manual" by Terasic
Technologies Inc.

77

http://en.wikipedia.org/wiki/Field-programmable_gate_array

