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ABSTRACT

Since most depth maps are quantized to 8-bit numbers in current
3D video systems, the induced cardboard effects can disturb hu-
man perception. Moreover, depth maps with larger resolution suf-
fer more from the quantization error. Therefore, this paper proposes
an optimization approach to reduce the depth quantization error with
well-preserved structure of the depth maps. The experimental results
demonstrate that the proposed approach can successfully recover the
structure characteristics from the quantized depth maps. Evaluation
in mean square error (MSE) and mean structural similarity index
(MSSIM) also strongly support our theory and algorithm. Through
enhancing the quality of the depth maps from the very beginning,
this work can benefit most 3D processing applications, such as 3D
modeling, shape registration, and view synthesis.

Index Terms— depth maps, 3D processing, quantization error,
optimization

1. INTRODUCTION

With the improvement of depth sensors and stereo video systems,
videos with depth maps enable various applications such as 3D re-
construction [1] and 3D TV [2]. Graphics models can be derived
from multiple depth maps in 3D reconstruction [1]. However, depth
maps often accompany sensor noise when capturing. Deriving ac-
curate graphics models while reducing the negative effect of sensor
noise attracts lots of researchers for a long time.

On the other hand, 3D TV provides realistic stereoscopic feeling
using extra information from depth maps. The possibility of altering
the viewpoint when playing back the video introduces amazing vi-
sual effects with stereo and autostereoscopic displays. View synthe-
sis is essential for such an application, and depth-image-based ren-
dering (DIBR) [3] is the most popular and well-grown technique for
view synthesis, where new viewpoints can be synthesized via depth
images. However, poor quality of depth maps leads to bad results
for DIBR [4]. Unreasonable structure appears when watching such
a video, resulting uncomfortable feeling.

Since these applications are sensitive to the quality of depth
maps, lots of researches in the last decade focused on the depth re-
finement to derive good quality of depth maps. By imposing sta-
tistical methods with constraints, the quality of depth maps was up-
graded [5][6], with little visible artifacts. However, all the techniques
operate on the depth images only. That is, all the depth signals are
recorded as depth maps, where the amplitudes are often represented
by 8-bit numbers in current 3D video formats [2].
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Fig. 1: Illustration of the effect from coarse quantization step ∆z.
(c)(d) With small ∆x, artifacts due to coarse ∆z becomes visible as
the viewpoint altered.

Most researchers think quantization (sampling) in X-Y domains
dominates the perception, since human visual system (HVS) has
poor discriminability in depth than that in spatial domain. Conse-
quently, the resolution (width×height) of depth maps becomes larger
with the improving acquisition techniques, whereas depth values re-
main being recorded into 8-bit numbers. The gap between quantiza-
tion step in spatial domain (sampling interval) and that in intensity
domain for depth maps becomes much larger nowadays.

The big gap would result in perceivable artifacts, as illustrated
in Fig. 1. Since the y-axis behaves similar to the x-axis does, we
only illustrate and explain the signal z(x) rather than z(x, y) here.
As shown in Fig. 1, view synthesis or altering viewpoints is equiv-
alent to projecting the signal from x-axis to x′-axis. Assuming the
spatial sampling interval is ∆x and the quantization step is ∆z, after
projection, the distance of adjacent samples in x′-axis becomes

∆x′ = ∆x cos θ + ∆z sin θ, (1)

where θ is the angle between x-axis and x′-axis, as shown in Figs. 1a
and 1b. When the spatial resolution becomes larger, the spatial sam-
pling interval ∆x is getting smaller, whereas ∆z remains the same.
As θ is approaching to 90 degrees, altering a novel viewpoint, the
value of ∆x′ becomes dominated by ∆z rather than ∆x. That is,
the coarse quantization step ∆z will lead to low resolution or large
sampling interval ∆x′, as shown in Figs. 1c and 1d. Although HVS
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Fig. 2: Visualization of the cardboard effect due to quantization. As
altering viewpoint from view 1 to view 2, the noticeable cardboard
effect appears.

may not be so sensitive in z-direction, the quantization step along z-
direction now contributes to x′-direction as large viewpoint change
occurs. The quantization effect in z-direction becomes perceptible
to HVS, and the cardboard effect [4] is introduced accordingly. It is
a new problem for the field of 3D video processing when the spa-
tial resolution continues increasing. Another example is shown in
Fig. 2. Figs. 2a and 2c are rendered with a quantized depth map,
while Figs. 2b and 2d are rendered with an unquantized depth map.
The cardboard effect is apparently perceivable in Fig. 2c.

Dithering [7] is a mature technique in audio and video process-
ing that randomizes quantization error by applying noise intention-
ally, using the fact that random noise is less perceivable or objec-
tionable than the harmonic tones. However, in current 3D video
coding systems, only quantized depth maps can be derived in the
application sides, while dithering can only deal with quantization or
re-quantization given the original data. Reducing quantization error
without knowing the original data becomes an ill-posed problem,
which is the focus of this paper.

2. PROPOSED ALGORITHM

The stair-like quantized signal with high-frequency noise comes
from the original signal, as shown in Fig. 3. Normally, low-pass
filters can be applied to eliminate the stair-like shape. All high-
frequency components, including the quantization error and the edge
information, are removed in the meanwhile. The 3D perception can
be severely influenced with the incomplete edge information. On the
other hand, though the bilateral filters remove high-frequency noise
while preserving edges, determining the proper size of the filter
kernel is crucial. Filtering with a small-size kernel is not effective,
whereas artifacts such as halo effects appears when filtering with a
large-size kernel. Therefore, an optimization framework is proposed
in this paper to conquer the quantization error.

Given the original signal I and the quantization step q, we as-
sume round-off is used in quantization, and the quantized signal X
can be accordingly modeled as:

− q
2
≤ I −X ≤ q

2
. (2)

As mentioned before, generally the quantization step (sampling in-
terval) in spatial domain is much smaller than that in intensity do-
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Fig. 3: An example 1D depth signal to verify (3). Compared to the
quantized signal, the estimated signal is much similar to the original
one.

main for depth signals; that is, the signals should be smooth in spa-
tial domain. The preferred estimated signal I ′ can be approximated
by diagonal line segments (

∥∥∇2I ′
∥∥
1
) and horizontal line segments

(‖∇I ′‖1). Meanwhile, we impose (2) to constrain the estimated sig-
nal I ′ being similar to I . In summary, the following energy function
is utilized to recover signals from the quantized signals:

I ′∗ = argmin
I′

‖X − I ′‖2 + λ1

∥∥∇2I ′
∥∥
1

+ λ2 ‖∇I ′‖1
s.t.− q

2
≤ I ′ −X ≤ q

2

(3)

A 1D signal is employed to demonstrate the performance of the
proposed approach, as shown in Fig. 3. Since we impose the quan-
tization constraint (2) during optimization, the proposed algorithm
would maintain the critical high-frequency edge information.

3. EXPERIMENTS

Although (3) can be directly minimized via convex optimization [8],
the high computation and memory requirements make that infeasi-
ble. In practice, a row-column decomposition is employed to reduce
the high computation requirements by separating a 2D problem into
multiple 1D problems. In the following experiments, we set λ1 = 1
and λ2 = 0.1, since better results can be derived by using diagonal
line segments than using horizontal ones.

For the convenience of analysis, we use computer graphics ren-
dering to derive floating-point depth maps z as the ground truth. The
depth maps z are then normalized using

znormalized = 255− 255

zfar − znear
× (z − znear), (4)

and rounded off to 8-bit integers (0 to 255), generating quantized
8-bit depth maps.

3.1. Results

We use point-cloud models to visualize the results properly by pro-
jecting the depth maps into 3D space. Figs. 4 and 5 show the results
of two sequences, Room and Sponza, respectively. Although the-
oretically the row-column decomposition might degrade the results
slightly, the processed depth maps are much better than the quan-
tized ones. Sequence Room is employed to show the optimization
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Fig. 4: Comparison between the reconstructed models and the ground truth for sequence Room. The second row and the third row show
images from two selected views. The optimization reduces the cardboard effect effectively.

(a) Color image (b) Depth map

Fig. 5: Comparison between the reconstructed models and the ground truth for sequence Sponza. The second row and the third row show
images from two selected views. From left to right: quantized, column optimized, row optimized, column-row optimized, row-column
optimized, ground truth.



Table 1: Evaluation and execution time for sequence Room (1280x720)

Name MSE Reduction Ratio MSSIM Enhancement Ratio Execution Time (sec.)
Original (8-bit) 0.0830 - 0.5118 - -

Column optimized 0.0323 61.0843% 0.7693 1.5031 707.66
Row optimized 0.0253 69.5181% 0.9370 1.8308 609.79

Column-row optimized 0.0060 92.7711% 0.9888 1.9320 1318.0
Row-column optimized 0.0057 93.1325% 0.9903 1.9349 1326.1

Table 2: Evaluation and execution time for sequence Sponza (1280x960)

Name MSE Reduction Ratio MSSIM Enhancement Ratio Execution Time (sec.)
Original (8-bit) 0.0822 - 0.2106 - -

Column optimized 0.0532 35.2798% 0.4841 2.2987 836.63
Row optimized 0.0709 13.7470% 0.4076 1.9354 752.83

Column-row optimized 0.0585 28.8321% 0.6136 2.9136 1600.1
Row-column optimized 0.0564 31.3869% 0.6149 2.9196 1596.4

effect in each pass. Optimizing along column direction only refines
the cardboard effect vertically as shown in Figs. 4d and 4h. By fur-
ther optimizing along row direction, as shown in Figs. 4e and 4i, the
cardboard effect is refined horizontally. The depth map after two-
pass optimization has similar structure to the ground truth as shown
in Figs. 4f and 4j. Similar results are also observed with sequence
Sponza, as shown in Fig. 5, where the cardboard effects are success-
fully alleviated.

3.2. Objective Evaluation

Mean square error (MSE) is first employed to evaluate how well the
signals are estimated. The evaluation results are listed in Tables 1
and 2, where great reduction is shown in terms of MSE.

However, the reduction in MSE does not reflect the signal prop-
erties completely since the structure of signals is not considered. Al-
ternatively, we employ mean structure similarity index (MSSIM) [9]
to measure the structure of signals. MSSIM is the average of SSIM
calculated within each small window, and the SSIM measure be-
tween two signals x and y is:

SSIM(x, y) =

(
2µxµy

µ2
x + µ2

y

)(
2σxy

σ2
x + σ2

y

)
, (5)

where µx and µy denote the means of x and y respectively, σxy is
the covariance of x and y, and σ2

x and σ2
y are the variances of x

and y respectively. SSIM would be 1 if two identical signals are
measured. We use small windows (4×4) for SSIM to measure the
local structures completely. Tables 1 and 2 also list the evaluation
results. Obvious enhancement is achieved after optimizing the depth
maps along both row and column directions. While only one-pass
optimization of the depth maps may cause smaller MSE, MSSIM is
always larger after two-pass optimization.

We use a PC to run these experiments, with the environment of
i7-2600K with 4GB memory and Win7 64-bit OS. Tables 1 and 2
also show the execution time of each sequence. It can be seen that
the execution time grows with the resolution of the depth map.

4. CONCLUSION

This paper first shows that the cardboard effect due to quantization
in depth maps influences the applications of 3D reconstruction and
view synthesis, especially when spatial resolution becomes larger

and larger nowadays. We then model the quantization error and pro-
pose an optimization framework to reduce the error. The experi-
mental results are visualized in 3D point clouds to demonstrate the
effectiveness of our approach subjectively. Objective evaluation also
strongly shows the effectiveness of the proposed algorithm. Applica-
tions requiring precise depth maps can be beneficial from this paper.

Even if the row-column decomposition is employed, it still takes
minutes to minimize the energy function (3). The approximate meth-
ods for fast computing can be studied in the future. Furthermore,
only the quantization error is considered in this paper. By joint op-
timizing the sensor noise, this framework can be extended to suit
depth maps derived from various sensors.
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