
EFFICIENT VIEW SYNTHESIS SCHEME WITH RAY CASTING AND PULL-PUSH
TECHNIQUES

Ku-Chu Wei1, Yung-Lin Huang2, Shao-Yi Chien1

Media IC & System Lab
1Graduate Institute of Electronics Engineering and Department of Electrical Engineering

2Graduate Institute of Networking and Multimedia
National Taiwan University

1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C.
{kcwei, cary}@media.ee.ntu.edu.tw, sychien@cc.ee.ntu.edu.tw

ABSTRACT

View synthesis, composed of depth-image-based rendering

followed by hole-filling, is a crucial technology for 3D TV

and free-viewpoint TV. To realize view synthesis in practical

systems, the efficiency of view synthesis must be considered

to achieve good a trade-off between the image quality and the

computational complexity. We propose a efficient view syn-

thesis scheme that, when compared to state-of-the-art back-

ward warping, requires only half of the runtime with compa-

rable quality. Specifically, the proposed scheme uses ray cast-

ing and pull-push processing to render in one pass, which can

be regarded as applying 3D filters in the depth-image-based

rendering. Moreover, the proposed scheme can benefit the

hole-filling process to further improve the efficiency of view

synthesis.

Index Terms— View synthesis, depth-image-based ren-

dering, free-viewpoint TV, ray casting, pull-push algorithm

1. INTRODUCTION

With the huge improvement of 3D TV, the representation of

3D videos has brought lots of researches, seeking for bet-

ter compression efficiency with the independence to display

technology. Among various representations, video plus depth

(V+D) can fulfill the requirements with the aid of depth-

image-based rendering (DIBR) [1]. The receiver side of 3D

systems can flexibly render virtual views to suit different

types of display devices. The rendered virtual views for 3D

TV are constrained to a narrow baseline, often specialized

into 1D cases. Stepping forward, free-viewpoint TV (FTV)

allows more flexibility by breaking the limitation of camera

configurations. Although previous works specialized for 1D

view synthesis cannot be directly employed in FTV systems,

DIBR itself can be applied to general FTV applications. With

the MVD (multi-view plus depth) representation, an exten-

sion of V+D representation, the virtual views can be synthe-

sized by DIBR given the depth maps of every reference views.

However, unlike 2D warping, holes appear due to physical

occlusions in 3D warping. A mature image processing tech-

nique, inpainting [2], can fill such regions and therefore im-

plemented in most current view synthesis systems [3][4].

In this paper, we focus on how to improve the efficiency

of the implementation of DIBR rather than the hole-filling

process. However, we will also demonstrate that by improv-

ing the DIBR implementation properly, the hole-filling pro-

cess can be benefitted, resulting in an overall enhancement

for view synthesis.

2. PREVIOUS WORKS

Two classical DIBR implementations, forward warping and

backward warping, are briefly introduced in this section.

2.1. One-pass Forward Warping

One-pass forward warping is the basic implementation of

DIBR, where both the structure and texture information are

mapped to the virtual view simultaneously. First, 3D warping

is employed to transform pixels from input reference views to

the virtual view. Assume Ar and
[
Rr|tr

]
are the intrinsic and

extrinsic parameters of the reference view respectively. Given

a pixel position (xr, yr) in the image coordinate of the refer-

ence view and the corresponding depth value zr, the world

coordinate of the 3D point Pw = (xw, yw, zw)
T

is calculated

by

Pw = R−1
r

(
zrA

−1
r pr − tr

)
, (1)

where pr = (xr, yr, 1)
T

. Assume Av and
[
Rv|tv

]
are the

intrinsic and extrinsic parameters of the virtual view respec-

tively. The mapped position in the image coordinate of the

virtual view (xrv, yrv) with depth zrv can be further derived

by

zrvprv = Av (RvPw + tv) , (2)



(a) Left view(unfiltered) (b) Right view(unfiltered)

(c) Left view(filtered) (d) Right view(filtered)

Fig. 1. Depth filtering in backward warping. Top rows are

the two warped partial depth maps, while the bottom rows are

the depth maps filtered by 5x5 median filters. The cracks are

removed after filtering.

where prv = (xrv, yrv, 1)
T

.

A visibility test (z test) is subsequently employed to deter-

mine if the pixel should be removed or kept. A depth buffer

zv is used to record the nearest depth value from the virtual

viewpoint, and the visibility is therefore tested by

zv(xv, yv) = min {zrv|(xrv, yrv) ≡ (xv, yv)}. (3)

Once the depth buffer zv(xrv, yrv) has been updated, the

corresponding color value cv(xrv, yrv) is updated simulta-

neously. That is, the texture and structure information up-

date synchronously. However, two main problems appear for

this approach. First, due to the discrete sampling, noticeable

cracks appear inevitably when synthesizing a novel-view im-

age, as shown in Fig. 1(a)(b). Second, different white balance

and exposure settings among the reference cameras can result

in a poor rendered image as shown in Fig. 6(a). Generally,

it is difficult to directly post-process on the rendered virtual

color image.

2.2. Backward Warping

To conquer the aforementioned problems, backward warp-

ing [5][6] uses inverse mapping with pre-filtered reference

images. The depth mapping and the color mapping are sepa-

rated in two passes. In the first pass, the reference depth map

Dr,k of each view k is warped to the virtual view to generate a

partial virtual depth map Dv,k, just identical as forward warp-

ing does, as shown in Fig. 1(a)(b). Then the partial virtual

depth map Dv,k is filtered by edge-preserving filters, such as

bilateral filters or median filters, to eliminate the cracks with-

out destroying the structure, as shown in Fig. 1(c)(d). The

color values are determined by backward mapping from the

filtered partial virtual depth maps in the second pass. Due to

the digital sampling, the back-projected positions are usually

non-integer values. Pre-filtering the reference images by bi-

linear interpolation (or bicubic interpolation) is consequently

performed to eliminate texture aliasing. Sophisticated back-

ward warping methods would further blend color values from

all visible reference views to generate a much better virtual

view, with an extra visibility test on input reference views.

Note that only depth maps are filtered by the edge-

preserving filters because they consist of structure informa-

tion only, while color images consist of the combination of

structure and texture information. It is relatively safe to inter-

polate depth values than interpolate color values. Although

good rendered results can be derived from backward warp-

ing, the required two-pass processing and extra storage (par-

tial depth maps and partial color images) lead to higher cost

for practical implementation. This paper aims to propose an

efficient one-pass view synthesis scheme with good perfor-

mance.

3. PROPOSED VIEW SYNTHESIS SCHEME

The key that backward warping can achieve better results

is filtering the depth maps and the color images separately.

Depth maps are filtered by edge-preserving filters in the first

pass, whereas color images are filtered by bilinear interpola-

tion in the second pass. To break the two-pass scheme, we

employ ray casting and a pull-push algorithm instead. The

overall flowchart of the proposed scheme is shown in Fig. 2.

Ray casting creates 3D filters in the world space, whereas

pull-push algorithm filters the virtual color buffer cv with the

aid of the depth buffer zv and the weight buffer wv . The detail

of each block will be explained in the following paragraphs.

3.1. Ray Casting

Generally more than one point are mapped to the same pixel

for view synthesis. The conventional one-pass forward warp-

ing generates objectionable artifacts due to not blending the

color information. Different from the 2D filters used in the

backward warping, points are directly filtered in the 3D world

coordinate, as shown in Fig. 3, which is more reasonable than

the 2D filters used in the backward warping. A 2D pixel cor-

responds to a frustum in the 3D space under perspective pro-

jection, and all points in the same frustum would be blended.

In practice, a modified visibility test (soft-z test) is per-

formed as the 3D filters. Potentially visible points that map to

the same pixel are all blended. However, a direct implemen-

tation of the soft-z test needs two passes: the first pass deter-

mines the information of the depth buffer zv by z test, and

the second pass verifies whether the mapped point (x, y, z)



Proposed View Synthesis SchemeReference 
color & depth

Synthesized 
color image

…
…

Pull-Push Algorithm

Pull phase Push phase

cv

zv

wv

Ray Casting

3D warping Visibility test
(soft-z test)

Fig. 2. Flowchart of proposed view synthesis scheme.

Algorithm 1 One-pass soft-z test

Require: depth threshold Δz
color buffer cv ← 0
depth buffer zv ← ∞
weight buffer wv ← 0
for each warped point (x, y, z) with color c do

if z < zv(x, y)−Δz then
zv(x, y) ← z
cv(x, y) ← c
wv(x, y) ← 1

else if zv(x, y)−Δz ≤ z ≤ zv(x, y) + Δz then
zv(x, y) ← z

cv(x, y) ← c+wv(x,y)×cv(x,y)
wv(x,y)+1

wv(x, y) ← wv(x, y) + 1
end if

end for

z

x

y

Fig. 3. Illustration of ray casting.

is potentially visible by checking if z < zv(x, y) + Δz. To

improve the efficiency of ray casting, we further modify the

soft-z test to be performed in one pass by using dynamic pro-

gramming, as listed in Algorithm 1. The one-pass soft-z test

requires an extra weight buffer wv . However, the execution

time is halved with minor quality loss compared to the origi-

nal two-pass soft-z test.

3.2. Pull-push Algorithm

After ray casting, the virtual image still has lots of cracks due

to digital sampling. To eliminate the cracks, edge-preserving

filters can be employed in backward warping (see Sec. 2.2).

However, it is hard to determine the proper kernel size of

the filters for sequences with different resolutions. There-

v

Fig. 4. Illustration of the pull-push algorithm.

fore the pull-push algorithm [7], which interpolates data from

scattered points by two phases, is adopted in the proposed

scheme. The pull phase (first phase) generates a series of

downsampled images, and the push phase (second phase) uses

the downsampled images to reconstruct the images, as illus-

trated in Fig. 4. Different from the setting of conventional

pull-push algorithms, we have not only the color buffer cv ,

but also the depth buffer zv and the weight buffer wv . Hence

the algorithm is further modified to enhance the performance

in the view synthesis scheme.

3.2.1. Pull Phase

Noticeable noise for real-world sequences appears due to in-

correctly estimated depth values. To reduce the effect from

such noise, the pyramid of the depth buffer zv is constructed

first by the following equation:

zv,1(x, y) =

∑2x+1
i=2x

∑2y+1
j=2y wv(i, j)zv(i, j)∑2x+1

i=2x

∑2y+1
j=2y wv(i, j)

. (4)

The downsampled depth buffer zv,1 is then used to check if

there exists odd visible depth values in zv by

zv(x, y)− zv,1(x/2, y/2) > Δz. (5)

For each 2x2 window, if only one depth value exceeds the

threshold Δz, the depth value has high probability of being

wrong. Those pixels are marked as u(x, y) = 0, and the other

pixels are marked as u(x, y) = 1. With the extra marked

information, the pyramid of the color buffer cv is then con-

structed by

cv,1(x, y) =

∑2x+1
i=2x

∑2y+1
j=2y u(i, j)wv(i, j)cv(i, j)∑2x+1

i=2x

∑2y+1
j=2y u(i, j)wv(i, j)

. (6)



Fig. 5. Results of the pull-push algorithm. The first column

visualizes the weight buffer wv . Brighter pixels represent

higher weight, and red pixels denotes those who contributed

from only one point. The second and the third columns are the

depth buffer zv and the color buffer cv before the pull-push

processing. The last column shows the pull-push processed

color buffer cv .

As a result, the color value cv(x, y) would not be averaged if

the pixel is marked as uncertainty, u(x, y) = 0, which makes

the view synthesis being more resistant to the sparse noise.

3.2.2. Push Phase

The pixel values are then refilled in the push phase under the

following three cases: pixels without color information, or

wv(x, y) = 0, because those are where the cracks appear;

pixels contributed from one point only, or wv(x, y) = 1,

because the pixels have high possibility to be quite differ-

ent from adjacent pixels; pixels with large depth error, or

u(x, y) = 0, because the large depth difference compared to

adjacent pixels indicates the depth of the pixel has high prob-

ability to be wrong. The results of the pull-push algorithm are

shown in Fig. 5. It can be seen that cracks are removed and

error pixels are corrected by the pull-push algorithm. The re-

maining black regions are indeed the occluded regions, which

are filled by inpainting.

4. EXPERIMENTAL RESULTS

To compare the view synthesis efficiency of the proposed al-

gorithm, we also implement both one-pass forward warping

and backward warping as mentioned in Section 2. As for

the edge-preserving filter in the backward warping, 3x3 me-

dian filters are used to smooth the depth maps faster, which

is identical to the setting in the MPEG view synthesis refer-

ence software (VSRS) [8]. The hole-filling are finished by

Table 1. PSNR and the execution time of rendering view 6

from view 5 and view 7 for sequence Breakdancers.

Method PSNR (dB)
Time (sec.) Time (sec.)

(w/o inpainting) (w/ inpainting)

Forward 31.8038 0.573 0.815
Backward 33.7382 2.891 2.935

Proposed 33.5162 0.656 0.676

the Navier-Stokes method [2], which has been implemented

in many open source libraries. Note that the depth threshold

Δz influences the image quality largely, and it is set to be half

of the z-direction quantization interval. That is,

Δz =
1

2
× zfar − znear

255
, (7)

which is sequence-independent.

Last, all the programs are run on a PC with i7-2600 CPU

and 4GB memory, and the OS is Win7 64-bit.

4.1. MSR 3D video

The sequence Breakdancers produced by Interactive Visual

Group at Microsoft Research [9] is used for the experiments,

and the sequence contains 100 frames from 8 different views.

View 5 and view 7 are selected as the input reference views,

and the camera parameter of the virtual view is set identical

to view 6 for all view synthesis algorithms. Fig. 6 shows the

rendered results by three approaches: forward warping, back-

ward warping, and the proposed scheme. Note that the white

balance setting of view 5 and view 7 is slightly different for

this sequence. Discontinuous color values on the background

wall are visible for the result of forward warping, while both

backward warping and the proposed scheme eliminate such

artifacts. The PSNR evaluation and the execution time are

listed in Table 1. It can be seen that the proposed scheme per-

forms similarly as backward warping does; both outperforms

forward warping, whereas the proposed scheme only requires

less than one quarter time of backward warping. Efficient

view synthesis is achieved by the proposed scheme.

The visibility test in the proposed scheme is soft-z test,

which is more complicated than the z test in the forward warp-

ing is. Thus, the execution time of the proposed approach is

expected to be longer than that of forward warping. How-

ever, the execution time including inpainting of the proposed

scheme is surprisingly even shorter than that of forward warp-

ing. Since the pull-push algorithm is employed after ray cast-

ing, most cracks as well as the small occlusion regions are

eliminated. The regions needing inpainting become much

smaller than that of forward warping, even smaller than that

of backward warping does, and the execution time reflects the

facts consequently.



Table 2. PSNR and the execution time of rendering view 4 from different input reference views for sequence Breakdancers.

The input reference views: Near - view 3 & view 5, Medium - view 2 & view 6, Far - view 1 & view 7. It can be seen that the

execution time (with inpainting) of the proposed scheme is even shorter that that of one-pass forward warping.

Method PSNR (dB) Time (w/o inpainting)(sec.) Time (w/ inpainting)(sec.)
Near Medium Far Near Medium Far Near Medium Far

Forward 32.2530 31.3266 29.9668 0.559 0.561 0.552 0.758 1.685 2.646

Backward 33.9458 33.1014 31.6309 2.779 2.553 2.437 2.838 2.721 2.880

Proposed 33.5339 33.1245 31.6121 0.668 0.667 0.674 0.707 0.733 0.861

Another experiment is further performed to observe the

effect of the baseline distance between the reference views.

The camera parameter of the rendered virtual view is set iden-

tical to view 4. For input reference views, view 3 and view 5

are used as small baseline, view 2 and view 6 are used as

medium baseline, and large baseline uses view 1 and view 7.

The PSNR evaluation and the execution time from the three

different baseline distances are listed in Table 2. Similar to

the results of the previous experiment, the PSNR of the pro-

posed scheme performs almost the same as that of backward

warping. Moreover, the proposed scheme even outperforms

backward warping at the medium baseline. The execution

time without inpainting of forward warping and that of the

proposed scheme are almost identical among different base-

line distances. However, when taking the inpainting time into

consideration, forward warping takes almost the same time

that backward warping requires, while the proposed scheme

takes only one third time that forward warping requires. As

the baseline distance is getting larger, the inpainting time be-

comes dominant rather than DIBR. With the proposed pull-

push algorithm, subsequent inpainting can be benefitted, re-

sulting in an overall efficiency enhancement.

4.2. Computer-generated (CG) sequence

We use a computer-generated (CG) sequence to further eval-

uate how the baseline distance influences the inpainting time,

by freely controlling the baseline. Notice that the depth maps

are perfect, allowing us to analyze the causality precisely. The

CG model Sponza produced by Crytek is used in this paper.

The baseline distance is set into 10 levels, and the baseline

distance is proportional to the level; that is, the baseline dis-

tance of level 7 is exactly 7/4 times than that of level 4.

The inpainting time of each level is shown in Fig. 7. As

the baseline distance is getting larger, the required inpaint-

ing time increases correspondingly. The forward warping

requires the longest inpainting time among the three meth-

ods, while the proposed scheme requires the shortest time.

The reduction ratio on inpainting is roughly constant with the

baseline distance. The backward warping requires about 75%

time of forward warping, and the proposed scheme only needs

about 60% time.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Level of baseline distance

Ti
m

e 
(s

ec
on

d)

Foreward warping
Backward warping
Proposed

Fig. 7. Comparison of the inpainting time with different base-

line distance for sequence Sponza.

5. CONCLUSION

We propose an efficient view synthesis scheme with ray cast-

ing and pull-push algorithm. Only one pass is required to

synthesize novel views, resulting in a great trade-off between

the resource cost and the quality. The required time is slightly

more than that of forward warping, while similar PSNR is

achieved compared to that of backward warping. Moreover,

with the proposed pull-push algorithm, both cracks and small

occlusion regions can be eliminate simultaneously. The sub-

sequent inpainting time is therefore reduced, making the pro-

posed method even faster than forward warping. Note that

as the number of input views increases, the overhead of back-

ward warping increases largely, while our method has no such

problems. With the proposed efficient view synthesis scheme,

the development of FTV can be benefited.

In the current implementation, the depth threshold Δz in

both ray casting and pull-push algorithm is set as a constant

(sequence-independent). However, Δz should adapt accord-

ing to the properties of the input sequence, such as the distri-

bution of depth maps. A possible future direction is to analyze

the optimal determination of Δz, which may be sequence-

dependent or location-dependent. Moreover, we observe that

the pull-push algorithm is highly suitable for the view synthe-

sis application. Although only two-level pyramids are used

in this paper, it is possible to further extend the existing pull-

push algorithm by adopting multi-level pyramids.



(a) Forward Warping (b) Backward Warping (c) Proposed

Fig. 6. Comparison of the rendered results for sequence Breakdancers. The top row are the results without hole-filling, and the

second row are the results after hole-filling. The details of selected patches are shown in the bottom row.

6. REFERENCES

[1] C. Fehn, “Depth-image-based rendering (DIBR), com-

pression, and transmission for a new approach on 3D-

TV,” in Proc. SPIE 5291, Stereoscopic Displays and Vir-
tual Reality Systems XI, 2004.

[2] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-

stokes, fluid dynamics, and image and video inpainting,”

in Computer Vision and Pattern Recognition (CVPR),
2001.

[3] K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method

using depth based in-painting for view synthesis in free

viewpoint television and 3-D video,” in Picture Coding
Symposium, May 2009.

[4] I. Daribo and H. Saito, “A novel inpainting-based lay-

ered depth video for 3DTV,” Broadcasting, IEEE Trans-
actions on, vol. 57, no. 2, pp. 533 – 541, June 2011.

[5] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tan-

imoto, “View generation with 3D warping using depth

information for FTV,” Journal of Image Communication,

vol. 24, no. 1-2, pp. 65–72, January 2009.

[6] D. Berjon, A. Hornung, F. Moran, and A. Smolic, “Eval-

uation of backward mapping DIBR for FVV applica-

tions,” in Multimedia and Expo (ICME), IEEE Interna-
tional Conference on, July 2011.

[7] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-

hen, “The lumigraph,” in SIGGRAPH, New York, NY,

USA, 1996.

[8] ISO/IEC JTC1/SC29/WG11, MPEG, View Synthesis
Software Manual, September 2009, release 3.5.

[9] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and

R. Szeliski, “High-quality video view interpolation using

a layered representation,” ACM Trans. Graph., vol. 23,

no. 3, pp. 600–608, Aug. 2004.


