

Logic Synthesis with Design Compiler

Speaker: Kuan-Ting Tu

Advisor: Prof. Shao-Yi Chien

Date: 2024/08/13

Outline

- Introduction
- What is Logic Synthesis?
- Synopsys Design Compiler
- Setting Design Environment
- Setting Design Constraints
- Synthesis Report and Analysis
- Gate-Level Simulation

What is Logic Synthesis?

• Synthesis is the process to convert RTL into a gate-level netlist optimized with a set of design constraints.

What is Logic Synthesis?

What is Logic Synthesis?

Company

Q

Synopsys Design Compiler

Solutions Products

Home **v**

RTL Design and Synthesis 🔻

Design Compiler

Support

Design Compiler

Design V

Concurrent Timing, Area, Power, and Test Optimization

Design Compiler® RTL synthesis solution enables users to meet today's design challenges with concurrent optimization of timing, area, power and test. Design Compiler includes innovative topographical technology that enables a predictable flow resulting in faster time to results. Topographical technology provides timing and area prediction within 10% of the results seen post-layout enabling designers to reduce costly iterations between synthesis and physical implementation. Design Compiler also includes a scalable infrastructure that delivers 2X faster runtime on quad-core platforms.

Design Compiler is the core of Synopsys' comprehensive RTL synthesis solution, including Power Compiler™, DesignWare®, PrimeTime®, and DFTMAX™. Design Compiler NXT is also available and includes includes best-in-class quality-of-results, congestion prediction and alleviation capabilities, physical viewer, and floorplan exploration. Additionally Design Compiler NXT produces physical guidance to IC Compiler, place-and-route solution for tighter correlation to layout and faster placement runtime.

NEWS

Synopsys Digital and Custom Design Platforms Certified for TSMC's Latest 3nm Process Technology

Synopsys Enables First-Pass Silicon Success for Early Adopters of Next-Generation Armv9 Architecture-based SoCs

Synopsys and Samsung Foundry Collaboration Delivers Optimized Reference Methodology for High-Performance Compute Designs

Download Datasheet

How to launch Design Compiler

- GUI Mode
 - Command: dv

- DC-TCL command Mode (recommended*)
 - Command:

%dc_shell

%dc_shell> gui_start

%dc_shell> gui_stop

- Before synthesis, we usually prepare a tcl file.
 - Command: dc_shell –f xxxxxxxxx.tcl

Design SPEC **Synthesis Design Flow RTL Coding** (Functional Design) RTL Coding Develop the RTL design (Synthetic design) Specify Libraries Simulate the design to verify its functionality. Read Design Run the Synthesis to verify that it can meet the specification etting Design Environ (Timing/Power/Area). **Synthesis** ing Design Constra **Compile Design** Timing/Area

Gate-level Netlist

Synthesis Design Flow - Specify Libraries

Specify Libraries

- Search path
 - lists all the related directories of design and libraries.
- Link library
 - lists all technology process libraries with various timing condition.
- Target library
 - selects libraries from link_library
- Symbol library
 - defines symbols of schematic view for Design Vision
- DesignWare library
 - defines built-in operators in Synopsys

Design Vision - Schematic

	Design Vision - TopLevel.1 (FIR) 🔘 🗇 🙆
File Edit View Select Highlight List Hierarchy Design Att	butes Schematic Timing Test Power AnalyzeRTL Window Help
] 🖆 📮 🍯] Q. Q. Q. ⊙ Q. 🗐 🛄 🖄 🍨 🔤 🖬 👪 👪	
Celk (All)	⇒schematic.2
Image: Book of the state H = FIR Cell Name / Ref Name Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state Image: Book of the state	
Q Image: Arise U978 MX2X2 U980 INVX20 U980 INVX20 U981 INVX4 U982 QR2X4 U985 INVX4 U986 INVX12 U986 INVX12 U986 INVX12 U987 INVX4 U986 INVX12 U987 INVX12 U987 INVX12 U987 INVX12 U987 INVX12 U987 INVX12 U987 INVX12 U996 A012862X2 U990 NAND28X4 U991 A0122822 U990 NAND28X4 U993 CLKINVX8 U993 CLKINVX8 U995 MX2X2 U996 A013281X2 U996 A013322 U997 INVX4 U996 A013322 U999 INVX4 U1000 OR2X4 U1001 MX2X2 U1001 MX2X2 U1002 OR2X4 U1003 CLKINVX3 U1004 INVX4 U1004 INVX4 U1005 OR2X1 U1006 OA221X4 <	
Pg Hier.1	Schematic.2
<pre>design_vision> read_file -format ddc {/media/ver Reading ddc file '/media/verdvana/Project/IC_Syn Loaded 4 designs. Current design is 'FIR'. design_vision> Current design is 'FIR'.</pre>	vana/Project/IC_Synthesis/FIR/mapped/FIR.ddc}
Log History	*
	e)

Synthesis Design Flow - Read Design

Specify Libraries

Read Design

Synthesis Design Flow - Setting Design Environment

- Beware that the defaults are not realistic conditions.
 - Input drive is not infinite
 - Capacitive loading is usually not zero
 - Consider process, voltage, and temperature (PVT) variation
 40

Synthesis Design Flow - Setting Design Environment

 Set design rule constraints & design optimization constraints

- create_clock
- set_clock_latency
- set_clock_uncertainty
- set_clock_transition
- set_input_delay
- set_output_delay
- set_max_area

Basic Clock Constraints

- PeriodWaveform
- Uncertainty – Skew

- Latency
 - Source latency (option)
 - Network latency

Transition

- Input transition
- Clock transition

Setting Design Constraint – Create Clock

- Default clock characteristics (ideal clock):
 - 0 delay at clock port
 - 0 propagation delay
 - 0 transition delay
 - 0 uncertainty
- Create Clock

create_clock -period 10 [get_ports clk]

Clock Uncertainty: Skew

• The **spatial variation** in arrival time of a clock transition on an integrated circuit. (different drive & load)

Clock Uncertainty: Jitter

• The **temporal variation** of the clock period at a given point on an integrated circuit. (crystal oscillator variation)

Setting Clock Uncertainty

- Different clock arrival time
 - Models clock skew + jitter effects on the clock
 - After clock tree synthesis (CTS) at P&R, real propagated skew is considered!
- Experience
 - Small circuits: 0.1ns set_clock_uncertainty 0.1 [get_ports clk]
 - Large circuits: 0.3ns

64	clock clk (rise edge)	8.00	8.00
65	clock network delay (ideal)	0.50	8.50
66	clock uncertainty	-0.10	8.40
67	output external delay	-0.50	7.90
68	data required time		7.90
69			
70	data required time		7.90
71	data arrival time		-7.90
72			
73	slack (MET)		0.00

Setting Clock Latency

Network latency

<pre>set_clock_latency</pre>	0.5		[get_clocks	clk]
<pre>set_clock_latency</pre>	-fall	0.5	[get_clocks	clk]
<pre>set_clock_latency</pre>	-rise	0.5	[get_clocks	clk]

Source latency (optional)

<pre>set_clock_latency 1.5 -source</pre>	[get_clocks clk]
<pre>set_clock_latency 1.5 -source -ea</pre>	arly [get_clocks clk]
<pre>set_clock_latency 1.5 -source -la</pre>	ate [get_clocks clk]

Setting Clock Transition

- Rise: transition time setting to only rising edges of clocks
- Fall: transition time setting to only falling edges of clocks

set_clock_transition delay [get_clocks clk]
set_clock_transition delay -fall [get_clocks clk]
set_clock_transition delay -rise [get_clocks clk]

Set Ideal Network Avoid DC optimization to special nets: Clock Asynchronous Reset High fanout nets Effect

- No delay on clock network or asynchronous reset network
- Build these clock network tree in place & route(APR)

set_ideal_network [get_ports clk]

https://www.programmersought.com/article/14253513030/

Specify Clock Constraints

- Set fix hold
 - Set_fix_hold informs compile that hold time violations of the specified clocks should be fixed.
 - To fix a hold violation requires slowing down data signals.
 - Design Compiler considers the minimum delay cost only if the set_fix_hold command is used.

set_fix_hold [get_ports clk]

- Set dont touch network
 - Do not re-buffer clk network
 - Clock tree synthesis (CTS) is implemented in place & route stage

set_dont_touch_network [get_ports clk]

STA (Static Timing Analysis)

Actual data path delay (Data Arrival Time): (1)+(2)+(3)

Input / Output Delay

- Clock cycle >= DFF_{clk-Qdelay} + a + b + DFF_{setup}
 Input delay = DFF_{clk-Qdelay} + a
- Clock cycle >= DFF_{clk-Qdelay} + d + e + DFF_{setup}
 Output delay = e + DFF_{setup}

Media IC & System Lab

Setting Input Delay

- Select input ports
- Attributes / Operating Environment / Input Delay
 - Relative to clock trigger time

S Input Delay Name: <∧uitiple Selected>	♦ Example
Belative to clock: clk	< 6.4ns ►
Rising edge Ealling edge Same rise and fall Max rise: 10 Min rise: Min fall: Add delay OK Cancel Apply	clk dik-q design clk-q l.4 ns clk-q clk design clk-q d.4ns clk design

set_input_delay -clock clk -max 6.4 [get_ports in1]
set_input_delay -clock clk -min 4.4 [get_ports in1]

Setting Output Delay

- Select output ports
- Attributes / Operating Environment / Output Delay
 - Relative to clock trigger time

set_output_delay -clock clk -max 5.3 [get_ports in1]

Special Circuits: Clock Gating

• Reduce dynamic power dissipation

Clock Gating (Auto CG)

Clock Gating (Manual)

Synthesis Design Flow - Compile Design

Compile Design - Perform optimization

Perform optimization

- Logic level optimization
- Gate level optimization (w/ technology library)
 - Combinational mapping
 - Sequential mapping

Synthesis Design Flow - Synthesis Report and Analysis

- Timing
 - The default is to display one maximum delay path
- Area
 - Area report shows the um² of the design
- Power
 - Report both dynamic and static power
 - PrimeTime is more accurate
 - 25 # Report Synthesis Results
 - 26 report_timing > "./Report/\${DESIGN}_syn.timing"
 - 27 report_area > "./Report/\${DESIGN}_syn.area"
 - 28 report_power > "Report/\$DESIGN_syn.power"

Save Design

- Synopsys Design Constraints (.sdc)
 - A format used to specify the design intent, including the timing, power and area constraints for a design.
- Standard Delay Format (.sdf)
 - Estimate timing data for each cell in the design, important in gate-sim
- Gate-Level Netlist (.v)
 - Description of the connectivity of an electronic circuit, containing all of the logic and delays of the entire circuit.
- Synopsys encrypted binary file (*.ddc)
 - Record the constraints and synthesis results

Preparations for gate level simulation

- Write out gate-level netlist
 - write -format verilog -output Netlist/\$DESIGN_SYN.v -hierarchy
- Get SDF(Standard Delay Format)
 - write_sdf -version 2.1 -context verilog -load_delaycell ./Netlist/\${DESIGN}_syn.sdf
- Modify your testbench file to include timing delay
 - sdf_annotate ("SDF_FILE_NAME", top_module_instance_name);
- Gate level simulation with timing information
 - vcs testbench.v design_syn.v -v cell_model.v -full64 -R -debug_access+all +v2k +define+SDF

```
53 `ifdef SDF
54 initial $sdf_annotate(`SDFFILE, u_CONV);
55 `endif
56
```


Reference

- 2023 Fall NTU CVSD Slides
- 2022 Spring NYCU ICLAB Slides
- 2020 TSRI Logic Synthesis Class Handouts