
Design and Model Large VLSI System

林裕盛 Yu-Sheng Lin

Outline

2

● This slides does NOT discuss how to write Verilog.

● This slides focuses on high-level issues

○ Partitioning

○ Interfacing

○ Modelling

○ Verification

● It is about the design pattern and best practice for designing VLSI

systems.

In realworld cases, you must think in high-level

● Research is NOT like IC contest, which
provides detailed spec.

3

● In research, you have to explore large
number of potential designs.

● Prematurely diving into Verilog wastes
your time.

IC Contest
Image processor with

given spec

Research
Q: which one is good for

my AI processor

In realworld cases, you must also think:
● If your boss ask you how long you need, and how do you progress,

how do you let him/her know?

● If you are a PhD, and have 2 masters help you, can you speed up?

● How do you trust the code? Even if you graduate (in school) or are

promoted (in a company).

4

So, what is necessary?
● Test

○ Run by machine, not by you

● Unittest

○ Protect each piece of your code

● For this, you need good interfacing and partitioning

5

Interfacing: the less the better

6

● Valid: used by AXI stream

● Valid/ready: used by AXI

● Valid/ready (bidirectional): used by AHB

90%

3%

5%

Personal feeling about how
often each type appears

Properties of the interfaces
● The next stage shall always receive

○ Used when hardware resources is allocated

● The next stage can pause the output, most commonly used
○ Model the FIFO interface

● Usually used when model cycle-accurate parts

7

Use struct to simplify interface for data ports
● This is suggested by Synopsys

● Make your Verilog much much cleaner

8

typedef struct packed {
 logic [1:0] a;
 AnotherStruct [2:0] b;
} TheStruct;

module A(
 input TheStruct s
);
endmodule

TheStruct data;
A a(
 .s(data)
);

Example: simple 1D CNN module
● Control:

○ Begin address, end address, length, weight [3]

● Memory:

○ Read address (RA), Read data (RD), Write address+data (WAD)

9

Your Code
Design under test

DUT

Memory

Control

RA RD WAD

Control

typedef logic [31:0] addr_t;
typedef struct {
 addr_t beg_addr;
 addr_t end_addr;
 logic [15:0][2:0] w;
} control_t;

Testable modularization
● Valid/Ready interfaces is used everywhere

● Individual module is testable

10

Read
Address
Calculate

ConvBegin address
Len

End address
Len

Weight

RD
RA

Write
Address
Calculate

WD WA

WAD

Done

A good partition divide large design into testable subparts

11

Read
Address
Calculate

Conv

Write
Address
Calculate

def WrAddr(len, addr):
 ret = list()
 for i in range(len_):
 ret.append(addr+i)
 return ret

def RdAddr(len, addr):
 ret = list()
 for i in range(len_):
 for j in range(3):
 ret.append(addr+i+j-1)
 return ret

=
=
= def Conv(data):

 return sum(
 w[i]*data[i]
 for i in range(3)
)

Practive by yourselves
● Write the I/O of every module in SystemVerilog

● Connect the toplevel module

● Note: don't need to implement the internal

● Think: how to test individual modules?

12

