
HLS Introduction & Lab
2023.08.02

Fan, Yung-Wei

Media IC & System Lab 1

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

• See the below textbook for details
• https://boledu-next-chakra.vercel.app/textbooks/hls-textbook

• Course:
• NTUEE EEE5060 Application Acceleration with High-Level-Synthesis
• NTUEE EEE5029 Multimedia System-on-chip Design

2
Media IC & System Lab 2

Outline

• Why HLS?
• HLS Introduction
• HLS Design Flow
• Lab

Media IC & System Lab 3

Media IC & System Lab 4

©BOLEDU

High Level Synthesis - HLS

• Convert (C/C++/OpenCL) into a RTL circuit
• Optimize for power, performance, area, timing
• Use Directives (Pragma) to direct

compile/optimization process

• Vendors – FPGA vendors, IC
• Xilinx Vitis-HLS, Intel HLS Compiler
• Siemens/Mentor Catapult, Cadence Stratus HLS,

(Synopsys Synphony HLS)

• Focus on the Back-end part
• Scheduling/Resource Allocation
• Binding/Resource Sharing

CPU compiler techniques:
• Induction variable eliminations
• Unreachable code elimination
• Dead-variable elimination,
• Common-subexpression elimination
• Constant propagation
• . . .

Code generation from a Domain-Specific Language for C-based HLS of hardware accelerators
https://dl.acm.org/doi/pdf/10.1145/2656075.2656081

Why HLS?

Media IC & System Lab 5

Why HLS?

• Computational Efficiency
• FPGA development is made easy by HLS
• C++ ←→ python v.s. verilog ←→ HLS

• Design and Verification Productivity

Media IC & System Lab 6

Why HLS?

• Computational Efficiency
• FPGA development is made easy by HLS
• C++ ←→ python v.s. verilog ←→ HLS

• Design and Verification Productivity

Media IC & System Lab 7

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Computational Power

10

• Compute Efficiency (GOPs/Watt)

Media IC & System Lab 8

©BOLEDU

Ease of programmability vs. efficiency

CPU:1 FPGA:1000GPU:100

Media IC & System Lab 9

©BOLEDU

Load-store v.s. Dataflow architecture

ISSCC 2014: Mark Horowitz, Computing's Energy Problem and What We Can Do About It: https://ieeexplore.ieee.org/document/6757323

Rough Energy costs for various operations in 45nm 0.9V

• Load-store (“von Neumann”)
• Energy per instruction: 70pJ

v.s.

• Dataflow (“non von Neumann”)
• Energy per operation: 1 ~3pJ

Application Acceleration is a dataflow management problem

Media IC & System Lab 10

Computational Power Hits a Plateau

©BOLEDU

Why is FPGA more compute efficient than GPU?

• Irregular parallelism
• Customized data types
• Customized datapath, e.g. dataflow
• Efficient memory access semantics (random access, FIFO, stack etc.)

Why is FPGA not as popular as GPU?

Media IC & System Lab 11

Why HLS?

• Computational Efficiency
• FPGA development is made easy by HLS
• C++ ←→ python v.s. verilog ←→ HLS

• Design and Verification Productivity

Media IC & System Lab 12

©BOLEDU

Difficulties in developing Application Accelerators

• Know nothing about
hardware design

• How software application
interacts with FPGA

• HW language are low-level
and very difficult

Media IC & System Lab 13

©BOLEDU

FPGA Development Made Easy by HLS

• HW language are low-level
and very difficult

• Use C, C++, OpenCL,
Python, or TensorFlow

Media IC & System Lab 14

©BOLEDU

Media IC & System Lab 15

©BOLEDU

Speedup Development by Libraries

Media IC & System Lab 16

©BOLEDU

FPGA Development Made Easy by HLS

• Know nothing about
hardware design

• Parallel programming
concept apply

Media IC & System Lab 17

©BOLEDU

Think “Parallel”

• Data-level Parallelism
• Task-Level Parallelism

• Instruction (operator) -
Level Parallelism

Media IC & System Lab 18

©BOLEDU

FPGA Development Made Easy by HLS

• How software application
interacts with FPGA

• Off-shelf Platform
ready

Media IC & System Lab 19

©BOLEDU

Software Interacts with FPGA

X86 CPU

Host
Application

Accelerated
Function

FPGA

PCIe

User
application
Program

FPGA
Platform

Code

C/C++, Python,
OpenCL with
API

C/C++
Functions

Moving function to FPGA creates a lot of overhead.
Can we really gain performance and reduce power?

Media IC & System Lab 20

Why HLS?

• Computational Efficiency
• FPGA development is made easy by HLS
• C++ ←→ python v.s. verilog ←→ HLS

• Design and Verification Productivity

Media IC & System Lab 21

Design and Verification Productivity

Media IC & System Lab 22

• Fast architecture exploration
• Improve Quality of Results (QoR)
• Industry uses cases

©BOLEDU

Design and Verification Productivity

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/hls-survey.pdf

Media IC & System Lab 23

©BOLEDU

Media IC & System Lab 24

Media IC & System Lab 25

©BOLEDU

Industry case - Nvidia

Nvidia Research – Machine Learning Accelerator

“10X Improvement in RTL design and verification effort
compared to manual RTL”

• Enable full SoC level performance - < 2.6% from RTL in
cycle count

• Low Design Effort – Spec-to-Tapeout in 6 months with <
10 researchers

Nvidia Xavier 12nFF SoC
• C++ functional verification runtime ~500x less resource than

RTL
• Fast verification makes rapid product changes possible

• VP9/HEVC code from 8 to 10 bit color depth in 2 weeks
• Change from 20nm/500Mhz to 28/nm/800Mhz in 3 days

with HLS

https://www.mentor.com/hls-lp/multimedia/player/nvidia-design-and-verification-of-a-machine-learning-accelerator-soc-
using-an-object-oriented-hls-based-design-flow-2cea13e3-93cf-4539-bac6-01f75c263fc1

©BOLEDU

Industry Case – Google Designs VP9 CODEC in Half the Time

• Time to Verified RTL: 2x faster
• Built in under 6 monts v.s. 1 year for RTL
• 69k lines of C++ v.s. 1.2 millon lines of Verilog

• Simulation Speed: 500x faster
• RTL simulation: 70 servers and 2 days
• C simulation: 3 servers in 2 hours

• > 99% bugs caught in C simulation

• Benefits from the view of Google
• 90% less code, less bug
• Flexibility – SW-like process, late-stage

algorithm changes
• Rapid HW prototyping – rapidly evaluate new

idea, algorithms

https://go.mentor.com/4uNV1

Media IC & System Lab 26

HLS Introduction

Media IC & System Lab 27

HLS Introduction

• C to RTL Mapping
• Function, Array, Loop
• Pragmas / Directives

• Software and Hardware are different
• Unsupported C/C++ Constructs

• Example - GCD

Media IC & System Lab 28

Media IC & System Lab 29

©BOLEDU

High Level Synthesis - HLS

• Convert (C/C++/OpenCL) into a RTL circuit
• Optimize for power, performance, area, timing
• Use Directives (Pragma) to direct

compile/optimization process

• Vendors – FPGA vendors, IC
• Xilinx Vitis-HLS, Intel HLS Compiler
• Siemens/Mentor Catapult, Cadence Stratus HLS,

(Synopsys Synphony HLS)

• Focus on the Back-end part
• Scheduling/Resource Allocation
• Binding/Resource Sharing

CPU compiler techniques:
• Induction variable eliminations
• Unreachable code elimination
• Dead-variable elimination,
• Common-subexpression elimination
• Constant propagation
• . . .

Code generation from a Domain-Specific Language for C-based HLS of hardware accelerators
https://dl.acm.org/doi/pdf/10.1145/2656075.2656081

HLS Introduction

• C to RTL Mapping
• Function, Array, Loop
• Pragmas / Directives

• Software and Hardware are different
• Unsupported C/C++ Constructs

• Example - GCD

Media IC & System Lab 30

©BOLEDU

Mapping of Key Attributes of C Code

Media IC & System Lab 31

©BOLEDU

Function Hierarchy

• Top-level function becomes the top level of the RTL
• Sub-functions are synthesized into blocks in the RTL design
• Inlined to dissolve the hierarchy

• Provide greater optimization opportunity

void A { ... Body A ...}
void C { ... Body C ...}
void B { C; }
void TOP() {

A（ ... ）
B (...)

}

Media IC & System Lab 32

©BOLEDU

Function Arguments
• Function arguments mapped to ports on the RTL blocks

• Global variable if accessed only local to the function, no io port created.

• Insert control ports (Port-level Protocol) to automatically synchronize data

exchange among blocks

• Insert Block-level Protocol on Top level function to communicate with Host

• Arbitrary precision bit-width to reduce resource and latency

int17 foo_top(int8* a, int8* b, int8* c, int17* ret)

{

int sum, multi;

sum = *a + *b;

multi = sum * *c;

return multi;

}

Media IC & System Lab 33

©BOLEDU

Function, Top function (Kernel) explained

Media IC & System Lab 34

©BOLEDU

Host/Kernel Communication

Media IC & System Lab 35

©BOLEDU

Expressions – Data Flow Graph

• Start by analyzing the data
dependencies between the various
steps in the expression shown above.
This analysis leads to a Data Flow
Graph (DFG)

• Expression is translated to datapath
and its control path (FSM)

y = a*x + b + c;

Media IC & System Lab 36

©BOLEDU

Resource Allocation, Scheduling, Binding

• Resource allocation: Each operation is
mapped to a hardware resource,
annotated with both timing and area
information

#pragma HLS allocation operation instance = add limit = 1

• Scheduling: decide which clock cycle to
perform what operations

• Binding: mapped to the hardware
resource.

#pragma HLS bind_op variable=<variable> op=<type>
impl=<value> latency=<int>

Media IC & System Lab 37

©BOLEDU

Arrays

• Typically implemented by a memory block
• Read & write array mapped to RAM
• Constant array mapped to ROM

• Memory access is often the performance bottleneck
• HLS default memory model assumes 2-port BRAM
• Array can be reshaped and/or partitioned to remove bottleneck

Media IC & System Lab 38

©BOLEDU

Partition, Reshape Your Arrays

• Partitioning splits an array into independent arrays
• Array can be partitioned on any of their dimensions for better throughput

• Reshaping combines array elements into wider containers
• Different arrays into a single physical memory
• New RTL memories are automatically generated without changes to C code

Media IC & System Lab 39

©BOLEDU

Control Flow: Loop

• Loops are the main area of parallelism in an algorithm
• Loops can be

• pipelined,
• Unrolled, Partially unrolled,
• Merged
• Flattened

• HLS generates the datapath and control logic

Media IC & System Lab 40

©BOLEDU

Loop - Pipeline

• One of the most important optimization
• Allow a new iteration to begin before the previous iteration is complete
• Key matric: Initiation Interval (II)

II = 3

II = 1

Media IC & System Lab 41

©BOLEDU

Pipeline Latency v.s. Throughput

II: Initiation Interval

Media IC & System Lab 42

©BOLEDU

Pipeline May Take Longer Latency

Media IC & System Lab 43

Initiation Interval (II) Concept

©BOLEDU

Basic Concept: Latency, Initiation Interval (II)

• Latency = time between start and finish of a task
• Throughput = number of tasks finished in a given time
• Throughput = 1/Latency?
• Initiation Interval (II) = Number of clock between new input samples
• Iteration Latency = # of clock to execute one iteration (L)
• Loop Latency = # of clock to execute all the operations in a loop
• Ultimate goal is to achieve II = 1 （most critical performance metric）

Media IC & System Lab 44

©BOLEDU

Control Flow – Rolled

• By default, loops are rolled
• Each loop iteration corresponds to a “sequence” of states (DAG)
• The state sequence will be repeated multiple times based on the loop trip

count.
• The resource (adder) is repeatedly used in the loop iteration.
• Efficient use the resource, but longer latency

void F (. . .) {
. . .
add: for (i=0; i <= 3; i++) {

b += a[i] + b;
. . .

Media IC & System Lab 45

©BOLEDU

Loop - Unroll
• Rolled loops can be made unrolled or partially unrolled by

#pragma UNROLL [factor = n]
• Pros

• Decrease loop overhead
• Increase parallelism for scheduling

• Cons
• Increase operator count, negatively impact area, power and timing

void F (. . .) {
. . .
add: for (i=0; i <= 3; i++) {

#pragma UNROLL
b += a[i];

. . .

Media IC & System Lab 46

©BOLEDU

Task-Level Parallelism - Dataflow

Media IC & System Lab 47

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

#Pragma Introduction
• Interface Synthesis pragma HLS interface

• Task-level Pipeline pragma HLS dataflow, pragma HLS stream

• Pipeline pragma HLS pipeline

• Loop Unrolling pragma HLS unroll, pragma HLS dependence

• Array Optimization pragma HLS array_partition, pragma HLS array_reshape

•Resource Optimization pragma HLS allocation, pragma HLS function_instantiate

•Others
• https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

65
Media IC & System Lab 48

HLS Introduction

• C to RTL Mapping
• Function, Array, Loop
• Pragmas / Directives

• Software and Hardware are different
• Unsupported C/C++ Constructs

• Example - GCD

Media IC & System Lab 49

©BOLEDU

Data Dependency

RAW (Read After Write)
- True dependency
- S1-iteration(u) -> S2-iteration (v)
- S1 computes a value S2 uses

for(i=0; I < N; i++)
{

A[i] = A[i-1] * a;
}

WAR (Write After Read)
- S1 read from a memory location

update by S2
- Renaming to resolve WAR

For(… i++) {
A[i-1] = b – a;
B[i] = A[i] + 1 ;

}

WAW (Write After Write)
- S1 write to a memory that write by S2
- Renaming to resolve WAW

For(… i++) {
B[i] = A[i-1] + 1;
A[i] = B[i+1] + b
B[i+2] = b – a; }

l/A0 * s/A1

l/A1 * s/A2

Latency ->

Iteration->

https://www.geeksforgeeks.org/dependency-graph-in-compiler-design/
Register renaming: http://people.ee.duke.edu/~sorin/ece252/lectures/4.2-tomasulo.pdf

l/A0 S/B1 l/B2 s/A1 s/B3

l/A1 s/B2 l/B3 s/A2 s/B3

l/A2 s/B3 l/B4

Latency ->

Iteration->

s/A0 l/A1 S/B1

s/A1 * s/B2

Latency ->

Iteration->

We don’t have compiler/processor take care it for us.

Media IC & System Lab 50

©BOLEDU

Software (C/C++) and Hardware (HDL Simulator) Behave Differently

1. In software, a statement is evaluated once in a sequential manner v.s. in event-
driven hardware scheduling, out-of-order, and re-evaluate if RHS variables/signals
change.
2. In software C program, statements are evaluated in a blocking manner, vs. in
hardware, it is non-blocking, i.e., runs concurrently.

void foo(int I1, int I2, int *O) {
static int L; // latch

*O=I1*L; // read current-L
L=I2+L; // assign next-L

}

void fxn_reuse_try(int I, int *O) {
int tmp; // output of left module

foo(I,I,&tmp); // left in figure
foo(tmp,tmp,O); // right in figure

}

void fxn_ordering_try(int I, int *O) {
int tmp1; // output of left module
int tmp2; // output of right module

foo<1>(I,tmp2,&tmp1); // left in figure
foo<2>(tmp1,tmp1,&tmp2); // right in figure
*O=tmp2; }

Media IC & System Lab 51

©BOLEDU

Unsupported C/C++ Constructs

• System Calls
• Dynamic Memory Usage (malloc)
• No C++ dynamic polymorphism nor dynamic virtual function call

• Static/Compile-time polymorphism (function/operator overloading) is ok

• Pointer Limitation
• Recursive Functions

Refer to ug902

Media IC & System Lab 52

©BOLEDU

System Calls

void hier_func4(din_t A, din_t B, dout_t *C, dout_t *D)
{

dint_t apb, amb;

sumsub_func(&A,&B,&apb,&amb);
#ifndef __SYNTHESIS__

FILE *fp1;
char filename[255];
sprintf(filename,"Out_apb_%03d.dat",apb);
fp1=fopen(filename,"w");
fprintf(fp1, "%d \n", apb);
fclose(fp1);

#endif
shift_func(&apb,&amb,C,D);

}

• e.g., printf(), malloc(), getc(), time(), sleep()

• HLS defined macro __SYNTHESIS__ to
exclude non-synthesized code

• __SYNTHESIS__ is only defined in HLS

• Maintain the same copy of the source code for
C-simulation and C/RTL co-simulation

Media IC & System Lab 53

©BOLEDU

Dynamic Memory Usage

• Memory allocation: malloc(),
alloc(), and free()

• User-defined macro NO_SYNTH

#include "malloc_removed.h"
#include <stdlib.h>
// #define NO_SYNTH

dout_t malloc_removed(din_t din[N], dsel_t width) {
#ifdef NO_SYNTH

long long *out_accum = malloc (sizeof(long long));
int* array_local = malloc (64 * sizeof(int));

#else
long long _out_accum;
long long *out_accum = &_out_accum;
int _array_local[64];
int* array_local = &_array_local[0];

#endif
……
}

Media IC & System Lab 54

©BOLEDU

Pointer Limitation

• General Pointer Casting
• Not support general pointer casting
• Support pointer casting between native C/C++ types.

• Pointer Arrays
• Support pointer array to a scalar or an array of scalars
• Not support array of pointers point to additional pointers

• Function Pointer – not supported

Media IC & System Lab 55

©BOLEDU

Recursive Function – A GCD Example

• Recursive functions cannot be
synthesized because their function
call depth is data-dependent, thus
non-determined at compiler time.

• Tail-recursion is a loop in disguise,
the simple function can easily be
transformed as right.

unsigned foo (unsigned m, unsigned n) {
if (m == 0) return n;
if (n == 0) return m;
return foo(n, m%n);

}

unsigned foo (unsigned m, unsigned n) {
while(m!=0 & n!=0) {

unsigned int mmodn=m%n;
m=n;
n=mmodn;

}
if (m == 0) return n;
else return m;

}

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Recursive-Functions

Media IC & System Lab 56

HLS Introduction

• C to RTL Mapping
• Function, Array, Loop
• Pragmas / Directives

• Software and Hardware are different
• Unsupported C/C++ Constructs

• Example - GCD

Media IC & System Lab 57

Media IC & System Lab 58Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 37

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 38

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 59

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 39

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 60

HLS Design Flow

Media IC & System Lab 61

HLS Design Flow

• Design Flow
• HLS IP Flow

Media IC & System Lab 62

HLS Design Flow

• Design Flow
• HLS IP Flow

Media IC & System Lab 63

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Design Flow
1. Platform select
• Data center flow
• Embedded system flow

2. Develop software algorithm
3. Software profile

4. Set Acceleration Goal

5. Applicability of the Hardware
6. Hardware Architecture Plan

7. HLS coding

67
Media IC & System Lab 64

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Host Machine

Consumer
CPU

DDR4

OpenCL
API

FPGA Board
U50

DSPs

HBM2

X
R
T

1. Platform select

68

Data Center Flow Embedded System Flow
Host Application (c/c++/python, …etc)

g++ compiler/python interpreterExecutable File

Kernel Design (RTL / HLS)

Xilinx v++ Block design

Xilinx v++ compiler

Processing System
(PS)

Programable Logic
(PL)

CPU/MCU

AMBA
Switch

Peripherals

AXI DMA

User Kernels

AXI DSPs

Memories

Xilinx v++ Block design

P
C
I
e

AXI

AXI

HBM2

SLR1SLR0

User Kernels

UltraScale+ MPSoCAlveo U50

Media IC & System Lab 65

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

2. Develop Software Algorithm
• C++ is a better choice for HLS development flow
• Python or other language is okay, but need to translate

to C++ for HLS hardware synthesis
• Rewrite the code in C/C++
• Cython or other transforms may/may-not help

• Pure C++ code is the simplest case
• If function calls deeper API, then need to ensure the code in API is

synthesizable

•Other examples: FINN (Python)

69
Media IC & System Lab 66

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

3. Software profile: Identify the
function to be accelerated

• You can use timers such as std::chrono
• https://en.cppreference.com/w/cpp/chrono

• The platform and the underlying computational cores
matters a lot
• High-end CPU, low-end CPU, MCU, GPU, ……

70

Number of
subsystems

Background
Rendering

GUI Pose
Estimation

Pose
Refinement

Model
Rendering

Swap
Window

Total
Time

Avg GN
Iter #

Avg LS
Iter #

4 2.75 0.53 6.51 10.43 0.31 7.60 28.51 3.16 0.17

Media IC & System Lab 67

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

4. Set Acceleration Goal
• Set your goal
• What is the assumption of this goal, under what scenario?

• Example:

Acceleration Goals: Frame latency ≤ 2.5 ms
• Assuming surgeon head motion → 20 deg/sec
• Assuming 4 subsystems → 1 surgical target + 3 surgical instruments
• Assuming pipelined sense-compute-render-display system
• Assuming bottleneck of the pipeline bounded by compute core
• Current software application latency → 10 ms

71

Sensor Sensor Sensor Sensor

Compute
Render

Sensor

Display

Compute Compute Compute

Render Render

Display Display
FPS ~ 1/𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒

Period ~ 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒Media IC & System Lab 68

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

4. Set Acceleration Goal

• Is this goal competitive?
• x4 times faster, not too impressive (Impressive -> 2 ~ 3 orders)

• Achievable ?

• Roughly estimate the cycles needed
• What’s the time complexity of the function? How much degree of parallelism

can be achieved to reach this goal? (Resource enough?)

• Determine if it is PCIe-bound (Data center flow)
• 800x800x3 + 10000 x (1 + 3 x 4) byte @ 33us = 57.84 GB/s
• U50 PCIe bandwidth (Host -> PCIe -> FPGA) Read(Write): 11GB/s ->
PCIe-bounded

72

Number of
subsystems

Background
Rendering

GUI Pose
Estimation

Pose
Refinement

Model
Rendering

Swap
Window

Total
Time

Avg GN
Iter #

Avg LS
Iter #

4 2.75 0.53 6.51 10.43 0.31 7.60 28.51 3.16 0.17

Media IC & System Lab 69

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

5. Applicability of the Hardware
•How general is your hardware?
• ASIC-like?
• DSP-like?

• Example (ASIC-like)
• Applicable to most Direct Dense Photometric
Refinement problems (DDPR)
• Not restricted to planar or marker objects → General 3D rigid objects
• Suits the front-end refinement of Visual Odometry (VO) if depth provided

• Example (DSP-like)
• Custom ISA + common processing units

73
Media IC & System Lab 70

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

6. Hardware Architecture Plan
•What is the possible compute architecture? dataflow?
• E.g. Systolic array, dedicated dataflow?

74

※ Separate data movement (IO)
from Computation (PE)

Media IC & System Lab 71

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Design Flow
1. Platform select
• Data center flow
• Embedded system flow

2. Develop software algorithm
3. Software profile

4. Set Acceleration Goal

5. Applicability of the Hardware
6. Hardware Architecture Plan

7. HLS coding

75
Media IC & System Lab 72

HLS Design Flow

• Design Flow
• HLS IP Flow

Media IC & System Lab 73

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

HLS IP Flow
0. Coding in C++
1. C-Simulation (SW-Emulation)
• Check the C source code evaluation with the golden (Similar to SystemC)

2. C-Synthesis
• Perform C -> RTL synthesis

3. Co-Simulation (Hardware-Emulation)
• Using standard RTL verification tools

4. Generate bitstream (FPGA)
• RTL to Gate-level synthesis + P&R for IC flow

See UG871 for details:
https://docs.xilinx.com/v/u/en-US/ug871-vivado-high-
level-synthesis-tutorialMedia IC & System Lab 74

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

0. Coding in C++
•Coding in C++ rather than tedious RTL level
• Benefits:
• No sequential logic bugs
• Unified coding language
• Design: C++
• Verification: C++

• Application: C++

•Disadvantages:
• Stiff learning curve
• RTL is still the mainstream in Digital IC Design Flow

• FAE, customer, ….

36
Media IC & System Lab 75

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

1. C-Simulation (SW-Emulation)
• Verify your C/C++ code with the golden

• Since the hardware is designed in C++, the testbench
is also C++.

• It is just like Freshman C/C++ course.

50
Media IC & System Lab 76

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

2. C-Synthesis
• Analysis the C/C++ code and transform to RTL code
• Tools:

• FPGA: Vivado-HLS (deprecated) → Vitis-HLS
• IC: Stratus-HLS, … etc.

• Tools guaranteed the logic.

• Pragmas are needed to control its behavior
• UNROLL factor=2
• PIPELINE II=1
• …

52
Media IC & System Lab 77

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

3. Co-Simulation (Hardware-Emulation)
• Using standard RTL verification tools
• Waveform viewers

• System-level considerations
• E.g. FIFOs, deadlocks, … etc.

59
Media IC & System Lab 78

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

4.Generate bitstream (FPGA)
• Tools: Vivado

• Automation in FPGA tools without clicks

• Configure the synthesis and placement via FPGA .tcl
• This step takes around 1~2 hr

• Post layout verification → Run on FPGA

60
Media IC & System Lab 79

Lab

Media IC & System Lab 80

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Lab Introduction
•Design files from NTUEE EEE5060 Application Acceleration with High-

Level-Synthesis

• Lab1, Lab2: Embedded system flow
• Vitis-hls, Vivado
• MPSoC FPGAs: Pynq, Ultrascale+

• Lab3: Data center flow
• Vitis
• Data Center FPGAs: Alveo

82
Media IC & System Lab 81

We will only go through Lab1

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

AXI
•AXI4
•High-performance memory-mapped requirements.

•AXI-Lite
•Low-throughput memory-mapped communication

•AXI-Stream
•For high-speed streaming data

69
Media IC & System Lab 82

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 103

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 83

©BOLEDU

We are using this board

Media IC & System Lab 84

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 104

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 85

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 105

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 86

Media IC & System Lab 87Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 110

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 113

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 88

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 114

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 89

Hua-Yang Weng
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 116

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-SynthesisMedia IC & System Lab 90

Let’s Start

Media IC & System Lab 91

