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As society embraces digital transformation with intelligent service and automation, the sheer volume of data and computing continues to
skyrocket. Moore’s law may be soon out of gas; even not, the power will limit its continued growth. So a new approach needs to pick up the
gap. Heterogeneous computing is a likely candidate, especially FPGA.

Many infrastructure providers, such as Amazon, Microsoft, Alibaba, Baidu, are embracing FPGA as a Service (FaaS) to scale their computing
environment, e.g., Amazon F1 instance, Alibaba F3. FPGA design is traditionally performed by hardware designer The conventional way of job
partitioned among software and hardware designer no longer meet the development cycle. It needs a paradigm shift. That is to have a
software designer do end-to-end design from application to a hardware accelerator. From my experience of leading product development,
the software engineer using C++ to design accelerator can design as good quality as an experienced hardware engineer in terms of
performance and resource used. However, it does take a learning curve. The objective of the course is to empower the software designer to
develop an efficient hardware accelerator and develop a system that efficiently integrates application and hardware accelerator.

The HLS textbook is to supplement the in-class lecture. Therefore, it contains extensive material that is not possible to cover in class. HLS is
an area that covers an extensive background, from the programming language, compiler, logic design, compiler techniques, computer
architecture, system design, and application-domain knowledge. In addition, it is the first time to put together comprehensive material from
industry documents, mainly from FPGA vendor Xilinx published papes. Laboratory and code examples are based on the Xilinx Vitis tool.

The textbook starts with

Chapter 1: An Introduction. It gives a brief overview of the contemporary art of computation—the need for HLS and industry status in
adopting HLS.
Chapter 2: FPGA architecture. Designers need to know the architecture components (CLB, DSP, BRAM, and Interconnect) in the FPGA to use

its resource effectively.

Chapter 3: From Gate to HLS. It introduces background on logic design, Verilog language. A last it takes a gcd design to illustrate the
abstraction that HLS can offer.

See the below textbook for details
https://boledu-next-chakra.vercel.app/textbooks/hls-textbook

Course:

NTUEE EEE5S060 Application Acceleration with High-Level-Synthesis
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High Level Synthesis - HLS

High-level Code
Converts code to intermediate
Front-end Syntactc Analysis | - representation - allows allfollowing

steps to use language independent

* Convert (C/C++/OpenCL) into a RTL circuit
* Optimize for power, performance, area, timing

* Use Directives (Pragma) to direct Itemedite fornel _ _
compile/optimization process Repesetztion J CPE’EEE&&?EJZEEZ22?.2?15
* Vendors — FPGA vendors, IC g - oo st
« Xilinx Vitis-HLS, Intel HLS Compiler | comtentpropasetion
¢ Siemens/ Mentor CataPUIt; Cadence Stratus HI—S, yd [ ‘Scheduling/ResourceAIIocation] E;:i[]rgn:;;v:];gj;i%zzrdatlon il
(Synopsys Synphony HLS) Backen !
* Focus on the Back-end part ™ BidingResoutoe Shang| Miaps operations oto physical resources
* Scheduling/Resource Allocation
* Binding/Resource Sharing Controller + Datapath

Code generation from a Domain-Specific Language for C-based HLS of hardware accelerators
©BOLEDU https://dl.acm.org/doi/pdf/10.1145/2656075.2656081
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Why HLS?



Why HLS?

* Computational Efficiency

* FPGA development is made easy by HLS
e C++ &< python v.s. verilog &<— HLS

* Design and Verification Productivity



Why HLS?

* Computational Efficiency



e Compute Efficiency (GOPs/Watt)
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* Better flexibility
* Average computing efficiency
* Suited to simple logic and SIMD
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Ease of programmability vs. efficiency

Programmabiliy

©BOLEDU
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Computational Power Hits a Plateau

Load-store v.s. Dataflow architecture

Rough Energy costs for various operations in 45nm 0.9V

«“ »” FAdd Cache (64bit)
* Load-store (“von Neumann”) 8bit 0.03pJ 16 bit  0.4p) 8KB  10pJ
* Energy per instruction: 70pJ) 32bit 0.1p] 32 bit 0.9pJ 32KB  20pJ
Mult FMult ™B 100pJ
8bit 0.2pJ 16 bit  1pJ DRAM 1.3-2.6nJ
V.S. 32bit 3pJ 32 bit 4pJ

» Dataflow (“non von Neumann”)
* Energy per operation: 1 ~3pJ

Instruction Energy Breakdown

25pJ | 6pJ | Control | 70 pJ
! ! !
I-Cache Access Register File Add
Access

Application Acceleration is a dataflow management problem

Bl

ISSCC 2014: Mark Horowitz, Computing's Energy Problem and What We Can Do About It: https://ieeexplore.ieee.org/document/6757323 d
©BOLEDU eau
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©BOLEDU

Why is FPGA more compute efficient than GPU?

* [rregular parallelism

* Customized data types

* Customized datapath, e.g. dataflow

* Efficient memory access semantics (random access, FIFO, stack etc.)

Why is FPGA not as popular as GPU?

Media IC & System Lab
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Why HLS?

* FPGA development is made easy by HLS
e C++ &< python v.s. verilog &<— HLS



Difficulties in developing Application Accelerators

 HW language are low-level
and very difficult

* Know nothing about
hardware design

« How software application
interacts with FPGA

©BOLEDU
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FPGA Development Made Easy by HLS

« Use C, C++, OpenCL,

 HW language are low-level
Python, or TensorFlow

and very difficult

—

Media IC & System Lab
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Vitis Al Library
Functions

AXI
Streaming
Video
from
Platform

axiStrm
2xfMat

Custom C++ code

Code Snippet ’ S
Top Level Function Deﬁnition/ inianed e

Interface definitions \

Dataflow the processing

Internal streaming variable declarations\

Synchronize to start of frame 256 dine1

ionven from axi stream to xf::Mat \ - = i
[ ]
]

Resize the image \ f

Subtract the mean

values and apply scale \
2 ]

nemory mapped interface ||

© Copyright 2020 Xilinx

©BOLEDU
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Speedup Development by Libraries

Use Extensive, Open Source Libraries O
Domain-Specific Libraries GltHUb
b | s I ‘ " Q 8
Vision & Quantitative Data Analytics & Data Compression Data Security R p\ /O\
Image Finance Database D
A A
Common Libraries Partner Libraries
+ - o,of o) é 0
X = o O
o)
Math Linear Algebra Statistics DSP Data Management

400+ functions across multiple libraries for performance-optimized out-of-the-box acceleration

Bl
©BOLEDU edu

Media IC & System Lab 16



FPGA Development Made Easy by HLS

« Know nothing about - Parallel programming
hardware design ‘ concept apply

©BOLEDU

Media IC & System Lab
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Think “Parallel”

Task Parallelism

[data (0.n-1)] [data (0.4)] ld.na(()'{)] [data (0.2 ]]0 [data (()l)]l ldl l()()]]
Program S — L -
Instance 0
H § [data (1,n-1)] [data (1.4)] |d| (1.3)] |un (1.2)] 3 [data (1,1)] ldl a (1.0)] ,
« Data-level Parallelism = ..... o '
. ,E Instance 1 El EI
 Task-Level Parallelism :
[data (m=1.n=1)]  [data (m—1.4)] dl(ml'i) dl(ml’) dl(lnll) [data (m I())l,
Program - -
Instance m-1
- Task 0 Task 1 Task 2
* Instruction (operator) - for nr im0 i e
. — *
Level Parallelism Ao Rl Rl
Bk
©BOLEDU edu
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FPGA Development Made Easy by HLS

* How software application
interacts with FPGA

- Off-shelf Platform
‘ “ ready

Media IC & System Lab
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Software Interacts with FPGA

C/C++, Pyt_hon, C/C++
'(A)SlenCL with Functions
X86 CPU FPGA
N 4 2
Host i
Appllcatloni User
preTrrmessesesssesssseasiaay app”cation
: Acceler_ated 3 Program
: Function ;
Acceleration API AXl Interfaces FPGA
Runtime and Drivers DMA Engine Platform
Code
‘} v
T PCle
Moving function to FPGA creates a lot of overhead. BL
©BOLEDU Can we really gain performance and reduce power? ed

Media IC & System Lab 20



Why HLS?

* Design and Verification Productivity



Design and Verification Productivity

 Fast architecture exploration
* Improve Quality of Results (QoR)
* Industry uses cases

How is possible that HLS can have better QoR than RTL code?

Media IC & System Lab 22



Design and Verification Productivity

Functionality

Architecture

Constraints

Schedule of Operations

—— User Manages

FSM Encoding Area Reduction
HLS
Timing ECO Clock Gating — Automatically
Manages

Pipeline Registers Consistent RTL Style

Sharing Datapath Components

First Design 10X-15X Faster

Derivative Design 40X Faster
Typical QoR 0.7-1.2X

http://www.ecs.umass.edu/ece/labs/visicad/ece667/reading/hls-survey.pdf

©BOLEDU

Media IC & System Lab
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4 Design Exploration with Directives

One body of code:
Many hardware outcomes

The same hardware is used for each iteration of
the loop:

*Small area

*Long latency

*Low throughput

loop: for (i=3;i>=0;i--) {

i (i==0) {
acc+=x*c[0];
shift_reg[0]=x;

}else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}

J

Before we get into details, let’s look
under the hood ....

HiUV WnNkeo 1179

Different hardware is used for each iteration of the
loop:

*Higher area

«Short latency

*Better throughput

© Copyright 2018 Xilinx

Media IC & System Lab

Different iterations are executed concurrently:
*Higher area

«Short latency

*Best throughput

. XILINX.

24
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©BOLEDU

Industry case - Nvidia

NVResearch Protatype: 36 Chips on Package in TSMC 16nm Technology

Nvidia Research — Machine Learning Accelerator

“10X Improvement in RTL design and verification effort
compared to manual RTL”

47.5 mm

* Enable full SoC level performance - < 2.6% from RTL in
cycle count ——— :

* Low Design Effort — Spec-to-Tapeout in 6 months with < [Gomaren RIPT=IN
10 researchers 0-5“-”
LTS 0.48-1.8 GHz
Nvidia Xavier 12nFF SoC A
e C++ functional verification runtime ~500x less resource than
RTL S Traditional RTL Time
Functional
* Fast verification makes rapid product changes possible Regression
* VP9/HEVC code from 8 to 10 bit color depth in 2 weeks 3 months
* Change from 20nm/500Mhz to 28/nm/800Mhz in 3 days 1000 CPUs

Resources

with HLS

https://www.mentor.com/hls-lp/multimedia/player/nvidia-design-and-verification-of-a-machine-learning-accelerator-soc-
using-an-object-oriented-hls-based-design-flow-2ceal3e3-93cf-4539-bac6-01f75c263fcl

Media IC & System Lab

2.4mm
RC18 Testchip

HLS C++
Functional
Regression

2 weeks
14 CPUs

A 4

Resources

25
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Industry Case — Google Designs VP9 CODEC in Half the Time

Top-level (axig2dec)

Time to Verified RTL: 2x faster P FrT P e e prp) pr———
* Builtin under 6 monts v.s. 1 year for RTL
69k lines of C++ v.s. 1.2 millon lines of Verilog -;*E{ i |
decoder (EMD) e
Simulation Speed: 500x faster = T e
 RTL simulation: 70 servers and 2 days o S = i
. . . i) s oenerarea R
* Csimulation: 3 serversin 2 hours ——
>99% bugs caught in C simulation — S (B.og;c.gf%i:w;ﬁow)
Benefits from the view of Google " fe—
* 90% less code, less bug ‘/Df;:;':g:c;,; \
* Flexibility — SW-like process, late-stage s m?mm En?mm E!Tﬂﬂ
algorithm changes £
* Rapid HW prototyping — rapidly evaluate new - \ \ e /
idea, algorithms re—
o
https://go.mentor.com/4uNV1

Media IC & System Lab 26
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HLS Introduction

* Cto RTL Mapping

* Function, Array, Loop
* Pragmas / Directives

e Software and Hardware are different
e Unsupported C/C++ Constructs

* Example - GCD



High Level Synthesis - HLS

High-level Code
Converts code to intermediate
Front-end Syntactc Analysis | - representation - allows allfollowing

steps to use language independent

* Convert (C/C++/OpenCL) into a RTL circuit
* Optimize for power, performance, area, timing

* Use Directives (Pragma) to direct Itemedite fornel _ _
compile/optimization process Repesetztion J CPE’EEE&&?EJZEEZ22?.2?15
* Vendors — FPGA vendors, IC g - oo st
« Xilinx Vitis-HLS, Intel HLS Compiler | comtentpropasetion
¢ Siemens/ Mentor CataPUIt; Cadence Stratus HI—S, yd [ ‘Scheduling/ResourceAIIocation] E;:i[]rgn:;;v:];gj;i%zzrdatlon il
(Synopsys Synphony HLS) Backen !
* Focus on the Back-end part ™ BidingResoutoe Shang| Miaps operations oto physical resources
* Scheduling/Resource Allocation
* Binding/Resource Sharing Controller + Datapath

Code generation from a Domain-Specific Language for C-based HLS of hardware accelerators
©BOLEDU https://dl.acm.org/doi/pdf/10.1145/2656075.2656081

Media IC & System Lab 29



HLS Introduction

* Cto RTL Mapping

* Function, Array, Loop
* Pragmas / Directives



Mapping of Key Attributes of C Code

Function: design hierarchy, mapped to MODULE

#include "fir.h"

Arguments : mapped to Input/output interface of
the hardware

Types: All variables are of a defined type, influence
the area and the performance

hif##Accum Loop: for (i=N-1;i>=0;i--) { I
(1==0) {
shift reg[0]=x;
data = x;
} else {
shift reg[i]l=shift regl[i-11;
data = shift regl[il;

=

Loops: impact on area and performance, HLS opt
with Directive Pragma

Control flow: Control logic

Arrays: impact the device area, and performance
bottleneck

Expression/Operators: Function unit.
Allocation/Scheduling (Sharing) to meet
performance and area

©BOLEDU

Media IC & System Lab 31



Function Hierarchy

 Top-level function becomes the top level of the RTL
» Sub-functions are synthesized into blocks in the RTL design

* Inlined to dissolve the hierarchy
* Provide greater optimization opportunity

void A{...Body A ...}

void C{... Body C ...} TOP

void B{ C;}

void TOP() { A B
A(.) c
B (..)

}

©BOLEDU

Media IC & System Lab 32



Function Arguments

* Function arguments mapped to ports on the RTL blocks
* Global variable if accessed only local to the function, no io port created.

* Insert control ports (Port-level Protocol) to automatically synchronize data
exchange among blocks

* Insert Block-level Protocol on Top level function to communicate with Host
* Arbitrary precision bit-width to reduce resource and latency

intl7 foo_top(int8* a, int8* b, int8* c, int17* ret) a : .
{ b =—> 9-bit Add, 17-bit Mult — return
int sum, multi; C |

sum = *a + *b;
multi = sum * *c; a_vld jm—>
return multi; b_vId ;

cvld =m—/—>

FSM Control
Logic

©BOLEDU




Function, Top function (Kernel) explained

£S | PL
@
/{°§b block-fevel  Function

protecq

' rt-lerel / Fnction.

protecs |

OOM'R”M o S‘f'am/%/ Fm‘bvu/ (AXT-D

AXT- [
—OPhe fost commuicode [

©BOLEDU

A I- mostes
MZ" S"be».q

Media IC & System Lab
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Host/Kernel Communication

\ RTL Ports Dir | Bits = Protocol Source Object | CType
| ap_clk in| 1 ap_ctr_hs  adders_io returnvalue
| ap_rst in 1 ap_ctrl_hs adders_io | return value
ap_start in 1 |ap_ctrl_hs | adders_io | return value|
ap_done out 1 ap_ctrl_hs | adders_io | return value
ap_idle out| 1 ap_ctrl_hs adders_io | return value|
ap ready 0 ap ctrl h .lc'..o ' va ‘
in n | ap_hs_ inT | scalar]/
in1_ap_vid in| 1 aphs| in1 | scalar]
in1_ap_ack out 1 ap_hs in1 scalar]
aou D O DO =
in2_empty_n pointerf

= Outline [I4 Directive &

~ @ _adders io

HLS INTERFACE ap_ctrl_hs port=return

n_outl
HLS INTERFACE ap_bus depth=4 port=in_out1

ind

HLS INTERFACE ap_hs port=in1
in2

HLS INTERFACE ap_fifo port=in2

©BOLEDU

in_out1_req_din in_out pomter'
in_out1_req_full_n  in 1 ap_bus in_out1 | pointer|
in_outl_req write  out| 1 ap_bus inoutl | pointerf
in_out1_rsp_empty n in 1 ap_bus in_out1 | pointer|
in_out1_rsp_read out 1. ap_bus in_out1 | pointerfi .
in_out1_address ‘out| 32 ap_bus in_out1 | pointer|
in_out1_datain . in| 32 ap_bus in_out1 | pointer|
in_out1_dataout jout| 32 ap_bus in_out1 | pointer|
in_out1 size out| 32 __ap bus in_out1 pointer]|
Vitis HLS Compiler > |P Integrator

D

Media IC & System Lab

‘ Block Design ‘

PS/MPSOC

‘ Host Driver
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Expressions — Data Flow Graph

y=a*x+b+c;

e Start by analyzing the data
dependencies between the various
steps in the expression shown above.
This analysis leads to a Data Flow
Graph (DFG)

* Expression is translated to datapath
and its control path (FSM)

i !
i
\-) Control logic — FSM 74!-!-!—)

©BOLEDU
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Resource Allocation, Scheduling, Binding

* Resource allocation: Each operation is
mapped to a hardware resource,
annotated with both timing and area
information

#pragma HLS allocation operation instance = add limit=1

* Scheduling: decide which clock cycle to
perform what operations

* Binding: mapped to the hardware
resource.

#pragma HLS bind_op variable=<variable> op=<type>
impl=<value> latency=<int>

©BOLEDU

Clock Cycle

y=a*x+b+c;

-
Scheduling
Phase

(.

(. C
Initial Binding
Phase

\.

Mul

AddSub

AddSub

(- .
Target Binding

Phase
\_

DSP48

AddSub

Media IC & System Lab
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Arrays

* Typically implemented by a memory block

void TOP(int) ‘\'fl’ Tl

: — N2 A A_in il \R(\I.l\llll—b\
e Read & write array mapped to RAM T e Bl e
* Constant array mapped to ROM :

 Memory access is often the performance bottleneck
* HLS default memory model assumes 2-port BRAM
* Array can be reshaped and/or partitioned to remove bottleneck

. See UG902 to get full throughput on this example
void foo (...) { . laan—Anguygmoggdgedwm) —

SUM_LOOP:for(i=2;i<N;++i) {
+ + WR RD RD
}

}

Example: Code implies three reads from a RAM, prevents full throughput

©BOLEDU
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Partition, Reshape Your Arrays

* Partitioning splits an array into independent arrays

* Array can be partitioned on any of their dimensions for better throughput
* Reshaping combines array elements into wider containers

e Different arrays into a single physical memory

* New RTL memories are automatically generated without changes to C code

factor of 2

= - ¢ RTL arrays

Exampie:

ractor of 2 » RTL arrays

o

[y

(¥

=

w

=

(%]

€

=
o -
~ w
= =
(¥ e

complete o |l - , r Individual elements

©BOLEDU edu
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Control Flow: Loop

» Loops are the main area of parallelism in an algorithm

* Loops can be
* pipelined,
* Unrolled, Partially unrolled,
* Merged
* Flattened

* HLS generates the datapath and control logic

©BOLEDU
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Loop - Pipeline

* One of the most important optimization
* Allow a new iteration to begin before the previous iteration is complete

* Key matric: Initiation Interval (I1)

void F (...) {
ck LML LML LT
: {0:ic3:1
add: for (1_e’l<_3’l++) { READ — meE READ | compute[ WRITE |
# PRAGMA HLS PIPELINE -3
op_READ; P loop latency = 12 [ reap | compute] WRITE\]
op_COMPUTE;
op_WRITE; ck [T LITLIL
} READ | COMPUTE| WRITE
([rero ] cowpure [ ware )
A <> READ |COMPUTE| WRITE
=1 | READ | COMPUTE| WRITE
- loop latency = 6 -
©BOLEDU
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Pipeline Latency v.s. Throughput

A function, latency t1

Decompose a function
into 4 steps, latency t2

Compare the latency to
execute 4 iterations of
non-pipelined function
(4*t1) v.s. pipelined
functions (t2 + 3 1l)

[I: Initiation Interval

©BOLEDU

Media IC & System Lab
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Pipeline May Take Longer Latency

I
X H v {El o

Latency =35 Telk (clock period) = 20
Throughput = 1/35 Latency =2 * Tclk = 40
Throughput =1/20

©BOLEDU
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Initiation Interval (II) Concept

* Latency = time between start and finish of a task

* Throughput = number of tasks finished in a given time

* Throughput = 1/Latency?

* Initiation Interval (II) = Number of clock between new input samples
* [teration Latency = # of clock to execute one iteration (L)

* Loop Latency = # of clock to execute all the operations in a loop

 Ultimate goal is to achieve Il =1 (most critical performance metric)

RD cmP
RD cmP
|




Control Flow — Rolled

* By default, loops are rolled
* Each loop iteration corresponds to a “sequence” of states (DAG)

* The state sequence will be repeated multiple times based on the loop trip
count.

* The resource (adder) is repeatedly used in the loop iteration.
* Efficient use the resource, but longer latency

void F(...){

add for (i=0; i <= 3; i++) { L O e
b +=ali] + b; a[i]@—’ ~b ‘

©BOLEDU
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Loop - Unroll

* Rolled loops can be made unrolled or partially unrolled by
#pragma UNROLL [factor = n]

* Pros
* Decrease loop overhead
* Increase parallelism for scheduling
* Cons
* Increase operator count, negatively impact area, power and timing

voidF(...){

a[3]|:>)° (

add: for (i=0; i <= 3; i++) { a[2] > :°—>° !L . m C|k|_|_ Note: A tight timing
a[1] ] ' constraint could lead
#pragma UNROLL 3[9]—> to a latency different
b +=ali]; than 1 clock cycle.

WiN = O

Example: Fully unrolled loop.
(parallel execution but more area)

©BOLEDU edu
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Task-Level Parallelism - Dataflow

> By default a C function producing data for another is fully executed first

// This memory can be a FIFO during optimization |_|_|_|_|—I_|—|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_
rgb_pixel inter pix[MAX_HEIGHT][MAX_WIDTH]; SobalEilter
// Primary processing functions — "
sepia_filter(in_pix,inter_ pix); — qulsh all _wrltes then. Sobel starts
sobel filter(inter_pix,out_pix2); Sobel Filter | to inter_pix[N]... accessing
> Dataflow allows Sobel to start as soon as data is ready JESpEpEpERENE
>> Functions operate concurrently and continuously
>> The interval (hence throughput) is improved W\
>> Channel buffer has to be filled before consumed for ping-pong | Sobel Filter ]

> Dataflow creates memory channels
. Channel (FIFO)
>> Created between loops or functions to store data samples

o ) Sepia Filter
>> “Ping-pong” channel holds all the data .

> “FIFQ” for sequential access, no need to store all the data

©BOLEDU edu
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#Pragma Introduction

Interface Synthesis
Task-level Pipeline
Pipeline

Loop Unrolling

Array Optimization
Resource Optimization
Others

Media IC & System Lab
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HLS Introduction

e Software and Hardware are different
e Unsupported C/C++ Constructs



Data Dependency

RAW (Read After Write)
- True dependency
- Sl-iteration(u) -> S2-iteration (v)

WAR (Write After Read)

- S1read from a memory location
update by S2

- Renaming to resolve WAR

- S1 computes a value S2 uses

WAW (Write After Write)
S1 write to a memory that write by S2
Renaming to resolve WAW

<-uonesay|

for(i=0; | < N; i++) For( ... i++) { For( ... i++) {
{ Ali-1] =b - a; B[i] = A[i-1] + 1;
Ali] = A[i-1] * a; Bli]=A[i]+1; Ali] =B[i+1] + b
} } Bli+2]=b-a;}
| /AO- x| o/a1 | s/A0 | I/A1 | 5/B1 & I/A0 | $/B1 | I/B2 | s/AL | /B3
yaL | * | s/A2 g s/AL | * | /B2 g I/A1 | s/B2 | I/B3 | s/A2 | s/B3
I/A2 | s/B3 | I/B4

©BOLEDU

We don’t have compiler/processor take care it for us.

https://www.geeksforgeeks.org/dependency-graph-in-compiler-design/

Register renaming: http://people.ee.duke.edu/~sorin/ece252/lectures/4.2-tomasulo.pdf

Media IC & System Lab
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Software (C/C++) and Hardware (HDL Simulator) Behave Differently

1. In software, a statement is evaluated once in a sequential manner v.s. in event-
driven hardware scheduling, out-of-order, and re-evaluate if RHS variables/signals
change.

2. In software C program, statements are evaluated in a blocking manner, vs. in
hardware, it is non-blocking, i.e., runs concurrently.

.................................................

.................................................

4 (
1 e C x ®)-r0
2 E L 0 x x + foo foo
| L foo L foo N N
______________________ et phyeyenn A oeeeeeeeeeeoo....tOPOrdering !
void foo(int I1, int 12, int *O) { void fxn_reuse_try(int |, int *0) { void fxn_ordering_try(int |, int *0) {
staticint L; // latch int tmp; // output of left module int tmp1; // output of left module
int tmp2; // output of right module
*0=I1*L; // read current-L foo(l,1,&tmp); // left in figure
L=12+L; // assign next-L foo(tmp,tmp,0); // right in figure foo<1>(l,tmp2,&tmp1); // left in figure
} } foo<2>(tmp1,tmpl,&tmp2); // right in figure

*O=tmp2; }

©BOLEDU
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Unsupported C/C++ Constructs

 System Calls
* Dynamic Memory Usage (malloc)

* No C++ dynamic polymorphism nor dynamic virtual function call
* Static/Compile-time polymorphism (function/operator overloading) is ok

* Pointer Limitation

e Recursive Functions

All resource must be statically allocated at compilation stage

©BOLEDU Refer to ug902
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©BOLEDU

System Calls

* e.g., printf(), malloc(), getc(), time(), sleep()

* HLS defined macro __ SYNTHESIS _ to
exclude non-synthesized code

« _ SYNTHESIS__ is only defined in HLS

* Maintain the same copy of the source code for
C-simulation and C/RTL co-simulation

void hier_func4(din_t A, din_t B, dout_t *C, dout_t *D)

{
dint_t apb, amb;

sumsub_func(&A,&B,&apb,&amb);
#ifndef _ SYNTHESIS__
FILE *fp1;
char filename[255];
sprintf(filename,"Out_apb_%03d.dat",apb);
fpl=fopen(filename,"w");
fprintf(fp1, "%d \n", apb);
fclose(fpl);
#endif
shift_func(&apb,&amb,C,D);
}

Media IC & System Lab
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Dynamic Memory Usage

* Memory allocation: malloc(),
alloc(), and free()

* User-defined macro NO_SYNTH

©BOLEDU

#include "malloc_removed.h"
#include <stdlib.h>
// #tdefine NO_SYNTH

dout_t malloc_removed(din_t din[N], dsel_t width) {
#ifdef NO_SYNTH
long long *out_accum = malloc (sizeof(long long));
int* array_local = malloc (64 * sizeof(int));
#else
long long _out_accum;
long long *out_accum = & _out_accum;
int _array_local[64];
int* array_local = &_array_local[0];
#endif

Media IC & System Lab
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©BOLEDU

Pointer Limitation

* General Pointer Casting
* Not support general pointer casting
» Support pointer casting between native C/C++ types.

* Pointer Arrays
» Support pointer array to a scalar or an array of scalars
» Not support array of pointers point to additional pointers

* Function Pointer — not supported

Media IC & System Lab
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Recursive Function — A GCD Example

* Recursive functions cannot be
synthesized because their function
call depth is data-dependent, thus
non-determined at compiler time.

* Tail-recursion is a loop in disguise,
the simple function can easily be
transformed as right.

©BOLEDU

unsigned foo (unsigned m, unsigned n) {
if (m ==0) return n;
if (n ==0) return m;
return foo(n, m%n);

}

unsigned foo (unsigned m, unsigned n) {
while( m!=0 & n!=0) {
unsigned int mmodn=m%n;
m=n;
n=mmodn;
}
if (m ==0) return n;
else return m;

}

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Recursive-Functions

Media IC & System Lab
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HLS Introduction

* Example - GCD



Illustration — GCD

Euclidean Algorithm Simplified Euclidean GCD Algorithm
gcd(a,b)=gcd(b,r) gcd(a,b)=ged(b,(a—b))
where,a=qgb +r =gcd(a,(b—a))
A B A B
vy oy
r=AMODB | Compare A, B [¢———
o
B=r
Y -B H
GCD=B =

Media IC & System Lab

module gcd_behavior #(parameter width = 32)
(input [width-1: 0] A_in, B_in,
output [width-1:0] Y );
reg [width-1:0] A, B, Y, swap
Integer done;

always @( A_in or B_in ) begin
while (A ! =B ) begin
iflA>B) A<=A-B;
else B<=B-A;
end
end
Y = B;
endmodule

RTL synthesis tool only copies the circuit for
the while/for loop
ut the # of loop could not be determined
at compiling time
| The circuit could not be synthesized |
It needs a structure implementation
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Illustration — GCD (RTL)

A B
! MUX_A ° ‘mux B’
AM y BM
Reg A [ _|FSM > Reg_B
AR BR
\ y * \
SubtractorA SubtractorB
AS=A-B GCD BS=B-A
AS | [AcB ALB | | BS

module ged_fsm(
input clock, reset, go,
input AGB, ALB,
output A_en, B_en,
A_mux_sel, B_mux_sel,
out_mux_sel, ouput done );
reg running = 0;
always @( posedge clock) begin
if(go) running<=1;
else if (done) running <= 0;
end
reg [5:0] ctrl_sig;
assign { A_en, B_en, A_mux_sel, B_mux_sel, done }
always @(*) begin

if( !running) ctrl_sig =5’b11_00_0;
else if( AGB) ctrl_sig = 5’b10_1x_0;
else if( ALB ) ctrl_sig=5’b11_11_0;
else ctrl_sig = 5’b00_xx_1;
end
endmodule

Media IC & System Lab

module ged_datapath #(parameter width = 16)
(input clock,
input A_en, B_en, A_mux_sel, B_mux_sel,
out_mux_sel,
input [width-1:0] A_in, B_in;
output AGB, ALB,
output [width-1:0] Y; )
reg [width-1:0] A, B;
assign Y =A;

// Datapath Logic

wire [width-1:0] out = ( out_mux_sel) ? B: A-B:;
wire [width-1:0] A_next = ( A_mux_sel ) ? out : A_in;
wire [width-1:0] B_next = ( B_mux_sel ) ? A : B_in;

// Generate output control signals
wire AGB = ( A > B);
wire ALB = (A< B);

// edge-triggered flip-flop
always @( posedge clock) begin
if(A_en) A<=A_next;
if (B_en) B <=B_next;
end
endmodule
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A Glimpse of High-Level-Synthesis

HLS build synchronous design
* | No timing -> no clock, reset |
* No port width —imply by data type
* Port direction — |hs, rhs
* Input: only read, “pass by value”

A B

vy v

Compare A, B [ ¢—

GCD=B

* Quptut: function return, areference, or a
pointer
* Inout: a reference or a pointer
Loop:
» Automatic control/datapath synthesis

ap_uint<32> ged( ap_uint<32> opA, ap_uint<32> opB ) {
#pragma HLS INLINE

while ( opA !=0pB ) {
#pragma HLS PIPELINE
if (opA > opB)
opA = opA - opB;
else
opB = opB - opA;

return opA;

Media IC & System Lab
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HLS Design Flow



HLS Design Flow

* Design Flow
* HLS IP Flow



HLS Design Flow

* Design Flow



Design Flow

Platform select

Data center flow
Embedded system flow

Develop software algorithm
Software profile

Set Acceleration Goal
Applicability of the Hardware
Hardware Architecture Plan
HLS coding

Media IC & System Lab
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1. Platform select

Data Center Flow Embedded System Flow

Host Application (c/c++/python, ...etc)

Executable File g++ compiler/python interpreter

Kernel Design (RTL / HLS)

Alveo US0 » _ UltraScale+ MPSoC  “S@¥
Xilinx v++ Block design Xilinx v++ Block design
FPGA Board P : :
. rocessing System Programable Logic
U50 Host Machine 9=y 9 J

P

C Consumer
User Kernels |§§ | CPU

e

AMBA [K__ax 3| DMA
Switch m-
65
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2. Develop Software Algorithm
C++ is a better choice for HLS development flow

Python or other language is okay, but need to translate
to C++ for HLS hardware synthesis

Rewrite the code in C/C++
Cython or other transforms may/may-not help

Pure C++ code is the simplest case

If function calls deeper API, then need to ensure the code in APl is
synthesizable

Other examples: FINN (Python)
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3. Software profile: identify the
function to be accelerated

Number of

subsystems Rendering

4 2.75

Background

GUI

0.53

Pose
Estimation

6.51

Pose

Model

Swap

Total

Refinement Rendering Window Time

10.43

0.31

7.60

28.51

lter #
3.16

Avg GN Avg LS

lter #
0.17

You can use timers such as std::chrono

The platform and the underlying computational cores
matters a lot

High-end CPU, low-end CPU, MCU, GPU, ......

Media IC & System Lab
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4. Set Acceleration Goal

Set your goal
What is the assumption of this goal, under what scenario?

Example:

Acceleration Goals: Frame latency < 2.5 ms

Assuming surgeon head motion — 20 deg/sec
Assuming 4 subsystems — 1 surgical target + 3 surgical instruments

Assuming pipelined sense-compute-render-display system
Assuming bottleneck of the pipeline bounded by compute core

Current software application latency — 10 ms
| |

Display Display Display
Tcompute 68

[
»

FPS ~ 1/Tcompute

(L) Media IC and System Lab I < - >I
1)) Graduate Institute of Electronics Engineering Media'IC & 'System! tab PeHOd ~

@ s, . . . .
¢=%  National Taiwan University




4. Set Acceleration Goal

Number of Background  GUI Pose Pose Model Swap Total ' Avg GN « Avg LS

subsystems Rendering Estimation Refinement Rendering Window Time Iter # Iter #

4 2.75 0.53 6.51 10.43 0.31 7.60 28.51 3.16 0.17

Is this goal competitive?
x4 times faster, not too impressive ( Impressive -> 2 ~ 3 orders )

Achievable ?

Roughly estimate the cycles needed
What's the time complexity of the function? How much degree of parallelism
can be achieved to reach this goal? (Resource enough?)

Determine if it is PCle-bound (Data center flow)

800x800x3 + 10000 x (1 + 3 x4) byte @ 33us = 57.84 GB/s

U50 PCle bandwidth (Host -> PCle -> FPGA) Read(Write): 11GB/s ->
PCle-bounded
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5. Applicability of the Hardware

How general is your hardware?
ASIC-like?
DSP-like?

Example (ASIC-like)

Applicable to most Direct Dense Photometric
Refinement problems (DDPR)

Not restricted to planar or marker objects — General 3D rigid objects
Suits the front-end refinement of Visual Odometry (VO) if depth provided

Example (DSP-like)

Custom ISA + common processing units
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6. Hardware Architecture Plan

What is the possible compute architecture? dataflow?

E.g. Systolic array, dedicated dataflow?

Activation Memory

Weight Memory
] . v
G2 Bag MACL IMAC) oo ol TS ' MAC Unit -
v i Activations, ‘ Ll a8 ‘ >’<
o B3y @ [oie] e ke -[ g X Separate data movement (IO
S Wiz Wa2 Wh2 1 L
. o= P .
I \ L\ ey i from Computation (PE)
L4 . “la . kY
+ 4 - ! t
g AR I N
oo & = g —
2 [yu Y21 Yvi Local lteration : . rvec || tvec
% Y1z Y22 vz Buffer Controller [T Registers Dact:z;rifglzlzlrng . T
& s Y28 Yus (?2) C()jo_mpute
,| (B)(E) Calculate Hessian ° r:gues

Residual Kernel
t FIFO
I (C) Forming Hessian I .
7 N Ping-Pong

[ (D-1) Cholesky | ——
¥ ,
(D-2) Back- | (F)Line |
Substitution Search
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Design Flow

HLS coding

Media IC & System Lab
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HLS Design Flow

e HLS IP Flow



HLS IP Flow

0. Coding in C++
1. C-Simulation (SW-Emulation)

Check the C source code evaluation with the golden (Similar to SystemC)

2. C-Synthesis
Perform C -> RTL synthesis

3. Co-Simulation (Hardware-Emulation)
Using standard RTL verification tools

4. Generate bitstream (FPGA)
RTL to Gate-level synthesis + P&R for IC flow
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0. Coding in C++

Coding in C++ rather than tedious RTL level

Benefits:
No sequential logic bugs

Unified coding language
Design: C++
Verification: C++

Application: C++

Disadvantages:
Stiff learning curve
RTL is still the mainstream in Digital IC Design Flow

FAE, customer, ....

Media IC & System Lab
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1. C-Simulation (SW-Emulation)

Verify your C/C++ code with the golden

Since the hardware is designed in C++, the testbench
is also C++.

It is just like Freshman C/C++ course.
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2. C-Synthesis

Analysis the C/C++ code and transform to RTL code

Tools:
FPGA: Vivado-HLS (deprecated) — Vitis-HLS
|C: Stratus-HLS, ... etc.

Tools guaranteed the logic.

Pragmas are needed to control its behavior

UNROLL factor=2
PIPELINE [1=1

Media IC & System Lab
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3. Co-Simulation (Hardware-Emulation)
Using standard RTL verification tools

Waveform viewers

System-level considerations
E.g. FIFOs, deadlocks, ... etc.

3,100.000 ns 3,200.000 ns

% HLS Process Summary

# AESL_inst_denseAl..ent_api_activi ~ - —— + +
R Need to remove this latenc
% Design Top Signals

% Test Bench Signals

Il il !
|
|

# ap clk

» ap rst

» ap_start

# ap_continue

# frameStream_write

& point3DStream_write

& point3DStream_read
§ grp_storelocalBu..._fu_S03_activity

W frame_fifo_depth

oo ~EocEEl - ~ o ~
NN

¥ point_fifo_depth



4.Generate bitstream (FPGA)

Tools: Vivado
Automation in FPGA tools without clicks

Configure the synthesis and placement via FPGA .icl

This step takes around 1~2 hr

-Postlayeout-verification-— Run on FPGA
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L3

Media IC & System Lab
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Lab Introduction

Design files from NTUEE EEE5060 Application Acceleration with High-
Level-Synthesis

We will only go through Lab1

| Lab1,|Lab2: Embedded system flow
IVitis-hls, Vivadd
MPSoC FPGAs: Ultrascale+

Lab3: Data center flow
Vitis
Data Center FPGAs: Alveo

Media IC & System Lab
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AXI

AXl4

High-performance memory-mapped requirements.

AXI-Lite

Low-throughput memory-mapped communication

AXI-Stream
For high-speed streaming data
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¥ PYNQ®

/Applicatiqns\

puﬂon X
o

A

Jupyter

&~

4 Software )

ARMa

SDSOC

a Hardware )

/
- VI;/ADO

=)

>>12

is a Framework

4 ) N ]
Jupyter/ LL[_[ PYNQ notebooks |
IPython
S [ matplotlib ] [ numpy ] ---------- [ scikit-learn ] [ opencv ]) ]
4 ) I
PYNQ libs ]
Python [ dma
[ Overlay ] /_\‘
\—l PL GPIO Int t H MMIO libcma.
) ]{ ]-[ nterrup 2 Ibcma.so .
Linux kernel
_[ fpga_manager ]{ sysgpio ]-[ uio ]—[ devmem ]-[ xInk P
Ve l' axi_intc } N 1
[_[ User designs ] \
FPGA L[_[ 2 L[_[ PYNQ overlays ]
\_ FYNQ IPs ) Overlay — package of

» Design Bitstream
ocasl metadata file (hwh)

PYNQ Document: https://pyna.readthedocs.io/en/v2.5/getting started.html#

Media IC & System Lab

- Apps

- APls

- Drivers

- Bitstreams

PYNQ
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PYNQ-enabled boards

> Python productivity for Zynqg
>> Open source

>> Build image for other Zynq
boards

> Downloadable SD card image
>> Zynq 7000
- PYNQ-Z1 (Digilent)
- PYNQ-Z2 (TUL)
> Zyng MPSoC
- Ultra96 (Avnet)
- ZCU104 (Xilinx)
> Zynq RFSoC
- ZCU111 RFSoC (Xilinx)

©BOLEDU

We are using this board

© Copyright 2019 Xilinx

Ultra96

ZCU104

Media IC & System Lab

ZCU111 £ XILINX.
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Software Interacts with FPGA

| cIC++, Python,
| OpenCL with
xa6 cpu_ !

Zynq Block Diagram

1 Pele

> AXI High Performance
>> 4x Slave (64-bit)
- 1K FIFOs

> ACP
> 1x Slave (64-bit)
>> Cache access

> AXI General Purpose ports
>> 2x Master (32-bit)
>> 2x Slave (32-bit)
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Zynq PS-PL Interface

Zynqg PS Overlay IP
s > AXI Master
> AXI High Performance HP/ 7] AXI4 Master
>> AXI HP/ACP
> 4x Slave (64-bit) ACE Poets . .
>> Typically higher performance IP
- 1K FIFOs
> AXI Stream
> ACP Zynq PS Overlay IP >> \/ia DMA
>> 1x Slave (64-bit) . >> HP/ACP ports for data path
>» Cache access ACP Ports S >> GP slave for control
G rors |
> AXI General Purpose ports Overlay IP > AXI (Lite) Slave IP
>> 2x Master (32-bit) >> General Purpose ports
> 2x Slave (32-bit) M >> Typically lower performance IP
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Lab#1 - Multiplication

vold multip Znum(int32 t n32Inl, int32 t n32In2, int32 t* pn32ResOut)
i

tpragma HLS INTERFACE s axilite port=pn32ResOut

fpragma HLS INTERFACE s axilite port=n32InZ

tpragma HLS INTERFACE s axilite port=n32Inl

fpragma HLS TOP name=multip 2num
*pn32ResOut = n32Inl * n32In2;

return;
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BD for Multiplication AXI-Lite

Diagram ?2 _&aX
a a x =® o a : o+ ® 4, C o = DefaultView v o
ps7_0_axi_periph
rst_ps7_0_200M
‘ i S00_AXI
slowest_sync_clk mb_reset = ¢ ! ACLK multip_2num_0
L0 ext_reset_in bus_struct_resef0:0] r- ARESETN | B ( )
O aux_reset_in peripheral_reset0:0] . S00_ACLK X MO0_AXI 4} U4 s_ax_AXILits
= mb_debug_sys_rst t_ P S00_ARESETN lxl ap_dk
= dom_locked ipheral_ o »4{ MOO_ACLK sp_rst_n
J 1400_ARESETN
Processor System Reset l
processing_system7_0 AXI Interconnect
DOR + || [ DDR
FIXED_10 + ||} {D FIXED_IO
ussiND_0 + ||
M_AXI_GPO
L= M_AXI_GP0_ACLK ZYNQ‘ TTCO_WAVEO_OUT
’ TTCO_WAVE1_OUT
TTCO_WAVE2_OUT
FCLK_CLKO (=—(— Address Editor x Diagram X
FCLK_RESETO N
ZYNQT Processing System Q E e
Cell Slave Interface  Slave Segment  Offset Address Range High Address
« @ processing_system7_0
v [ Data (32 address bits : 0x40000000 [ 1G ])
Reg 0x43C0_0000 64K ~  Ox43CO_FFFF

o= multip_2num_0 s_axi_AXILiteS
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HWH/HLS Register Map for Multiplication

<MODULES>
<MODULE ...| FULLNAME="/multip_2num 0" ...>
<PARAMETER NAME="C_S_AXI AXILITES_ BASEADDR" VALUE="0x43C00000"/>
<PARAMETER NAME="C_S AXI AXILITES HIGHADDR" VALUE="0x43COFFFF"/>
</PARAMETERS>

' Synthesis(solution)(multip_2num_csynth.rpt) | (8 xmultip_2num_hweh &2

1)/
2 // Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC v2019.2 (64-bit)

void multip 2num(int32 t n32Inl, int32 t n32In2, int3Z t* pn3ZResOut) 55 Copyright 1985-2019 Xilinx, Inc. All Rights Reserved.

3
4
1 5 // AXILiteS
6
7
g

#pragma HLS INTERFACE s axilite port=pn32ResOut 5 /[ @x00 : reserved
{pragna ALS INTERFACE s axilite port=n32In2 /] @x04 : reserved
T // ©x@8 : reserved
tpragma HLS INTERFACE s axilite port=n32Inl 9 // @x@c : reserved
fpragma HLS TOP name=multip 2num 10 // 0x10 : Data signal of n32Inl
N - 11 // bit 31~@ - n32In1[31:0] (Read/Write)
12 // ox14 : reserved
*pn32ResOut = n32Inl * n32In2; 13 // @x18 : Data signal of n32In2
14 // bit 31~@ - n32In2[31:0] (Read/Write)
15 // @xlc : reserved
return; 16 // @x20 : Data signal of pn32ResOut
} 7 /] bit 31~@ - pn32ResOut[31:@] (Read)
18 // ©x24 : Control signal of pn32ResOut
19 // bit @ - pn32ResOut_ap vld (Read/COR)
20 // others - reserved
21 // (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Hendshake)
22

23 #define XMULTIP_2NUM_AXILITES_ADDR_N32IN1_DATA 0x10
24 #define XMULTIP_2NUM AXILITES_BITS_N32IN1_DATA 32
25 #define XMULTIP 2NUM AXILITES ADDR N32IN2 DATA ox18

26 #define XMULTIP_2NUM_AXILITES_BITS_N32IN2_DATA 32
27 #define XMULTIP_2NUM_AXILITES_ADDR_PN32RESOUT_DATA 0x20
28 #define XMULTIP_2NUM AXILITES BITS PN32RESOUT DATA 32 B L
29 #define XMULTIP_2NUM_AXILITES_ADDR_PN32RESOUT_CTRL ©x24
©BOLEDU 30 edu
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Host Code for M

ultiplication

regIP = ol.multip_2num_ 0 }

Import MMIO (InVOIVmg In Overlaj/)/Jol = Overlay("/home/xilinx/IPBitFile/Multip2Num.bit")

Define memory mapped region

« The base/offset is defined in hwh file for 1 in range(9):

Read and Write 32-bit values

In read function, it shall check the
ap_vld (0x24)

regIP.write(ox10, i + 1)

regIP.write(ox18, j + 1)

.Res = regIP.read(0x20)

print(str(i + 1) + " * " + str(j + 1) + " = " + str(Res))
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Let’s Start



