(90
o
S~~~
(0]
o
S~
Q\
(QV|
o
(Q\/
(¢B]
]
(48]
O

Lecturer: Hua-Yang Weng

HLS 101

edu| Education

HLS Textbook

Why Learn HLS

Introduction to FPGA
Architecture

From Gate to HLS
HLS Introduction

Application Acceleration
Development Flow

1O Interface
PIPELINE
Data Flow
Data Type

Memory Architecture

Bridge of Life

<

Structure and Hierarchical o

Design

Best Practice

Signed in as:

Prevem Dashboard

Textbooks

HLS Textbook

As society embraces digital transformation with intelligent service and automation, the sheer volume of data and computing continues to
skyrocket. Moore's law may be soon out of gas; even not, the power will limit its continued growth. So a new approach needs to pick up the
gap. Heterogeneous computing is a likely candidate, especially FPGA.

Many infrastructure providers, such as Amazon, Microsoft, Alibaba, Baidu, are embracing FPGA as a Service (FaaS) to scale their computing
environment, e.g., Amazon F1 instance, Alibaba F3. FPGA design is traditionally performed by hardware designer The conventional way of job
partitioned among software and hardware designer no longer meet the development cycle. It needs a paradigm shift. That is to have a
software designer do end-to-end design from application to a hardware accelerator. From my experience of leading product development,
the software engineer using C++ to design accelerator can design as good quality as an experienced hardware engineer in terms of
performance and resource used. However, it does take a learning curve. The objective of the course is to empower the software designer to
develop an efficient hardware accelerator and develop a system that efficiently integrates application and hardware accelerator.

The HLS textbook is to supplement the in-class lecture. Therefore, it contains extensive material that is not possible to cover in class. HLS is
an area that covers an extensive background, from the programming language, compiler, logic design, compiler techniques, computer
architecture, system design, and application-domain knowledge. In addition, it is the first time to put together comprehensive material from
industry documents, mainly from FPGA vendor Xilinx published papes. Laboratory and code examples are based on the Xilinx Vitis tool.

The textbook starts with

Chapter 1: An Introduction. It gives a brief overview of the contemporary art of computation—the need for HLS and industry status in
adopting HLS.
Chapter 2: FPGA architecture. Designers need to know the architecture components (CLB, DSP, BRAM, and Interconnect) in the FPGA to use

its resource effectively.

Chapter 3: From Gate to HLS. It introduces background on logic design, Verilog language. A last it takes a gcd design to illustrate the
abstraction that HLS can offer.

See the below textbook for detalls
https://boledu-next-chakra.vercel.app/textbooks/hls-textbook

Course:

NTUEE EEE5060 Application Acceleration with High-Level-Synthesis
NTUEE EEE5029 Multimedia System-on-chip Design

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

https://boledu-next-chakra.vercel.app/textbooks/hls-textbook

Outline

Why HLS?
HLS IP Flow
Pragma Introduction

Design Flow
Labs

7 53, Media IC and System Lab
{\["]/:] Graduate Institute of Electronics Engineering
=22 National Taiwan University

Outline

Why HLS?

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Why HLS?

Software Defined Hardware (SDH)
Computational Efficiency

Design and Verification Productivity
Improve Quality of Results (QoR)
Fast system prototyping

Fast architecture exploration
C++ «—— python v.s. verilog «—— HLS

/7 W, Media IC and System Lab
{\["]/:] Graduate Institute of Electronics Engineering
‘2" National Taiwan University

Why HLS?

Software Defined Hardware (SDH)

Defense Advanced Research Projects Agency

7 53, Media IC and System Lab
{\["]/:] Graduate Institute of Electronics Engineering
=22 National Taiwan University

DARPA — Software Defined Hardware (SDH) Program

“In modern warfare, decisions are driven by information. ...
The ability to exploit this data to understand and predict the world around
us is an asymmetric advantage for the Department of Defense (DoD).”

Goal Of SDH: High-level program

° Compute eﬁiCiency (GOPS/WCItt) In SDH [D(:rnc[almit:‘lysmlft:t:m|::ilzrs\'l:hrhigh-le\luzlIanguages(Tzzz|]
system to be at efficiencies within 5X of ASICs e B | W
and 500-1000X better than CPU - — -
implementation. .D

* The same programmability as current B Processng
NumPy/Python implementation Time = T, Time =T,

| Reconfigurable processor architectures (TA1) |

Provide application and dataflow reconfigurable software & hardware co-design for optimized performance

SDH Program Concept and Structure

Slides from NTUEE EEE5060 Application

. Media IC and System Lab Acceleration with High-Level-Synthesis
.| Graduate Institute of Electronics Engineering
National Taiwan University

Why HLS?

Computational Efficiency

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Computational Power

\ 3 BIF' GMC
Branch Bus Interface le] Graphics Memory Controller
‘(-u. VLB, PCl, AGP, PCie} = (VRAM, WRAM, MDRAM, DDR, GDDR, HBM)
PMU VGABIOS
Power .:‘ll;:mﬂt Compression unit I
ni v (initialization) -
e v e ﬁ
(de/compression of
MPEG2, Theora, VPR,
H.264, H.::ﬁ.\)lm, vc-a, m T
| ass [I
DIF Graphics and Compute Array | + + + +
Display Interface e (a.k.a, 3D engine) | 4 4
W7 oo El ., o 3
pr et 108 | | &
<« v“I::-)dll] mpmm Serial TX - +—t +) —
< (VGA, DV, HDMI, wu,, 1 i O v
<+ “",w“ oMt
4 composite video,
HMM
k * {LVDS, TMDS)
o -+ EDID
* Highly flexibility « Better flexibility * Good flexibiliy
* Low computing efficiency + Average computing efficiency - [Better computing efficiency |
* General software processing + Suited to simple logic and SIMD * Parallel computing, real-time

computationally intensive task processing, low power consumption
Suited to hardware acceleration of

specific algorithm

. Media IC and System Lab
.} Graduate Institute of Electronics Engineering
National Taiwan University

What area that FPGA is more compute efficient than GPU

* I[rregular parallelism
* Customized data types
* Customized datapath, e.g. dataflow

 Efficient memory access semantics (random access, FIFO, stack etc.)

Why is FPGA not as popular as GPU?

S Media IC and System Lab Slides from NTUEE EEES5060 Application

(,11 J:) Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis
=2’ National Taiwan University

CD/W: Computational Density (GOPs/s) per Watt

GO/ (K ope) CDIW (1p32 ops) =
LXT60 C1060
SX475T SK4TST CBT0
8000 £260 E680 SX475T
LX330T LX760
7000 12
6000
« 5000
[}
2 4000 E
& g
8 3000 %
2000]
1000
0
SUHUIII Smi\" O;"i'gn CICS’X’BP;DEd I?"éﬂi‘; P{MIE(LX‘C!I IT;‘;;:;" Ir‘;.];;;" ?e:lt: T!:‘I:?;io \I':‘I::ﬁ vms \":‘LTS Vﬁt:s
e s b = A = s S Altera Mer:r AMD Clearspeed I1BM Blue BM Irttel(eun Intel Xeon Nvida Nvidia linx e Janx Xilnx
S(EI;;III ﬂ;gﬁl\ soapslgl;g CSXE00 G,::;ép F'M;IIDEI W5580 X3230 I‘Déo Tesla CaTD \T”o?, \SN):STS ‘.L";76°E _;;‘:753-
http://cas.ee.ic.ac.uk/people/gacl/DATE2011/Stitt.pdf B L
)BOLEDU edu
Media IC and System Lab Slides from NTUEE EEE5060 Application
Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

National Taiwan University 12

Why HLS?

Design and Verification Productivity

7 W\ Media IC and System Lab
\ 4 Graduate Institute of Electronics Engineering
»* National Taiwan University

Design and Verification Productivity

—— User Manages

Functionality

Architecture

Constraints

Schedule of Operations

FSM Encoding Area Reduction
HLS
Timing ECO Clock Gating — Automatically
Manages

Pipeline Registers Consistent RTL Style

Sharing Datapath Components

First Design 10X-15X Faster

Derivative Design 40X Faster
Typical QoR 0.7-1.2X
http://www.ecs.umass.edu/ece/labs/visicad/ece667/reading/hls-survey.pdf gdt
Media IC and System Lab Slides from NTUEE EEE5060 Application

Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis
National Taiwan University 14

Why HLS?

Improve Quality of Results (QoR)

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Improve Quality of Results (QoR)

* Advanced optimization algorithm — leverage on continued research for
better and intelligent synthesis algorithms

* Allow more design space exploration — quickly create many different
implementation from one high-level description of the design. e.g. Explore
SIMD parallelism with a single parameters.

Algorithm Impl. FF LUT BRAM DSP48 Throughput
Sobel Filter RTI 123 202 1 0 2.350 kHz
HLS 172 252 1 0 2.213 kHz
Gaussian Filter RTI 128 174 1 0 2118 kHz
HLS 86 152 1 0 2.890 kHz
Morphelogic RTL 80 77 0 0 5.571 kHz
HLS 119 123 0 0 5.261 kHz
Histogram RTL 176 201 1 0 1.758 kHz
HLS 141 214 1 0 1.819 kHz

“A Comparative Study between RTL and HLS for Image Processing Application with FPGAs” https://escholarship.org/uc/item/9vx1s37b

Media IC and System Lab Slides from NTUEE EEE5060 Application

| Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis
" National Taiwan University

Example from Qualcomm

ICPC

HLS C Verification

+——— Manual leration ——
Algo Model CatapultC | .. ., HLS
G

C Regression ‘

Stimulus &
Coverage
C-Model Stimulus and Coverage Model "Design
‘ RTL Verification
C Stimulus T Coverage
RTL Stimulus & Coverage
v
‘ Algo Model }“-’ RTL Regression — RTL
IP RTL Wrapper

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

The HLS design code space is
much smaller at the C-level than
at the RTL, making it easier to
verify and correct; the 100x faster
simulation speeds enable us to
detect problems and close
coverage magnitudes faster than in
RTL

With the HLS methodology, what is
verified in C stays verified in the
RTL domain. As a result, most of
the bugs are found and corrected in
C

When HLS/HLYV is done, the
remaining work in the RTL
environment is mostly at the
interface level.

Slides from NTUEE EEE5029 Multimedia
System-on-chip Design

Example from NVIDIA
(Image Decoder)

=]
=
D Verilog D C++

Traditional flow

3 months on 1,000 CPUs

: Resources ' Resources

Media IC and System Lab Slides from NTUEE EEE5029 Multimedia

Graduate Institute of Electronics Engineering System-on-chip Design
National Taiwan University

Example from NVIDIA
(Image Decoder)

C++ HEVC Decoder . . C++ decoder
510 MMz »
Catapult Catapult

200m library

Verilog meeting timing and perf

Verllog
retuned for 10-bit data path

QoR - Area & Timing

Design Dlsplay module #1 Dlsplay module #2 Camera module #1 Camera module #2

3434 2876 879 10960 2762 2838 49390 50247
0 0 036 033 0 0 0 0
Perf 3 pixels / 3cycles 3 pixels/ 3cycles 2 pixels / cycle 2 pixels /cycle
E1CHICAN 3 cycles 3 cycles unconstrained unconstrained

o A Media IC and System Lab Slides from NTUEE EEE5029 Multimedia
\I"l4:] Graduate Institute of Electronics Engineering System-on-chip Design
“National Taiwan University

Industry case - Nvidia

NVResearch Prototype: 36 Chips on Package in TSMC 16nm Technology

Nvidia Research — Machine Learning Accelerator

“10X Improvement in RTL design and verification effort
compared to manual RTL”

47.5 mm

* Enable full SoC level performance - < 2.6% from RTL in | i
cycle count : .

* Low Design Effort — Spec-to-Tapeout in 6 months with < 1916 e ‘
10 researchers CE o2 =
fre 0.48-1.8 GHz RC18 Testchip
Nvidia Xavier 12nFF SoC A
* C++ functional verification runtime ~500x less resource than HLS C++
RTL WLEl Traditional RTL Time Functional
e " . Functional Regression
* Fast verification makes rapid product changes possible Regression
* VP9/HEVC code from 8 to 10 bit color depth in 2 weeks 3 months ﬂ"::l'j‘;’
* Change from 20nm/500Mhz to 28/nm/800Mhz in 3 days 1000 CPUs i
with HLS Resources Resources
https://www.mentor.com/hls-lp/multimedia/player/nvidia-design-and-verification-of-a-machine-learning-accelerator-soc- B
using-an-object-oriented-hls-based-design-flow-2ceal3e3-93cf-4539-bac6-01f75c263fcl edu

/7 %> Media IC and System Lab Slides from NTUEE EEE5060 Application

é: (j Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

¢=%" National Taiwan University

Industry Case — Google Designs VP9 CODEC in Half the Time

Time to Verified RTL: 2x faster
* Built in under 6 monts v.s. 1 year for RTL
* 69k lines of C++ v.s. 1.2 millon lines of Verilog

S$AO Filter (sao)

Intra / Inter

* Simulation Speed: 500x faster - S
* RTL simulation: 70 servers and 2 days .. T
* Csimulation: 3 serversin 2 hours

Bit-Accurate Architecture
Cr+ Referemnce (Block 10, Dataflow)

~ /

* Benefits from the view of Google p——
* 90% less code, less bug /q/ fﬁ \
» Flexibility — SW-Ilike process, late-stage m@ W w

* >99% bugs caught in Csimulation

Simulation Vector

algorithm changes
* Rapid HW prototyping — rapidly evaluate new Sy \. / /
idea, algorithms e
v

Simulate and FPGA Prototype

Standarcdd RTL Synthesis Flow

https://go.mentor.com/4uNV1

EDU

. Media IC and System Lab
Graduate Institute of Electronics Engineering

National Taiwan University

edu

Application Specific

Example of Oil, Gas workload

Productivity

) Not the traditional programming model for FPGAS:

 One Software Engineer, no previous Q&G experience, one month to describe
& implement entire RTM Algo in C++
+ No optimized library calls, completely described in C++
» <500 ines of code, < 50 Pragmas

) Standard language, open source tools and libraries

/5, Media IC and System Lab

*\ﬁ%ﬂ] .. Graduate Institute of Electronics Engineering
L% J

National Taiwan University

s

Seismic Method for Oil and Gas industry

» Seismic Imaging Technology
- Seismic Survey: Acoustic wave sampling

- Seismic Imaging: Mathematically process
the wave traces to create an image

» RTM (Reverse Time Migration)
- High-fidelity algorithm for imaging
complex sub-surface structures
- Cross-correlation between source distance

wavefield and receiver wavefield

- Wavefield reconstruction by saved
boundaries

How to cbtan an accurate
representation of the subsurface?

Forward Propagation Implementation

PT) 30 | eplaty
 imddo | EEE
/ Streaming

,‘U | Streaming le.

/ [Modue | wama oI, ot

abiaw

/ B)
/ R R |
/ Stren:'ﬂa Isotropic wave equation
e ~DDR 1 BHE D) e
o . 2 2 =Pp(x.1)
A . v(x) ast
@ .
\\a
\\\

Forward Kernel

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Why HLS?

Fast system prototyping: ESL

Media IC and System Lab
- Graduate Institute of Electronics Engineering
National Taiwan University

Typical SOC design flow

m Overlap in specification/architecture phase and
RTL-design phase; multiple design changes

Architecture design done informally
m S\V development starting late in the project

Specification
& Architecturg o O

Haraware Dev.

A
-
o i
e

RTL Closure I Tape-OutI

Multimedia SoC Design Shao-Yi Chien 27
» j\%\ Media IC and System Lab Slides from NTUEE EEE5029 Multimedia
13] 754 . Graduate Institute of Electronics Engineering System-on-chip Design

s2%" National Taiwan University

Verification at the Backend

Cost to fix a problem

Testand
Simulations

_| > Ti
/\ /P \ 1mec

Project roject
Start End

7 4> Media IC and System Lab Slides from NTUEE EEE5029 Multimedia

% /)

el .| Graduate Institute of Electronics Engineering System-on-chip Design
2" National Taiwan University

Emerging SoC Design Flow (2/2)

ESL : Electronic System Level Design

ESL -Algorithm design
-Interfaces/standards
-High-level architecture
-Detailed architecture exploration SW Platform
-Virtual prototypes for SW

development

Product Specification

RTL -Interconnect/bus design = Sofltware ;
-IP qualification/configuration evelopmen

-Block design e Support SW

-Power optimization e OS validation

-HW/SW Integration (basic) ¢ Applications
IS

-Synthesis

Gates/Physical
-Place and route
-EC & timing design/verification

-Analog design/verification Physical Design
-Test & DFM

Test & Production
I
Product

Source: _SVHODSYS, I_FIC. . _ Slides from NTUEE EEE5029 Multimedia
Multimedia SoC Design Shao-Yi Chien System-on-chip Design 44

PYULIUI UL T UAIVY U Y v Dy

ESL: New SOC Design Flow

m Architecture closure
Achieve a reduction # of RTL iterations
Can perform concurrent HW and SW design
Shorten the time it takes to get to golden RTL

Create Executable Specifications

Time Specificatio
SEVI [S & Architecture

n
Architecture Closur RTL Closure I Tape-Out

Multimedia SoC Design Shao-Yi Chien 46
KW%&% Graduate Institute of Electronics Engineering System-on-chip Design

National Taiwan University

SOC Design Flows

Typical Flow: Step 1 and 2 performed on RTL model

RTL Closure
w

-

3
- 3
~ Imories
o] Sub-System

a
Q
o
w D .. -
Application

DSP Logic
Sub-System

Peripherals

New Flow: Step 1 on transaction level, step 2 on RTL model

RTL Closure

Micro
Memories Processor

DSP
Sub-System

Multimedia SoC Design Shao-Yi Chien 49
/% %, Media IC and System Lab Slides from NTUEE EEE5029 Multimedia
ﬁ\%ﬂ%: Graduate Institute of Electronics Engineering System-on-chip Design
T3 Craduate Insttute of Elec
“s2% National Taiwan University

(5 Feke
Languages %goﬁ‘

ok

Functional

VHDL Verilog SystemC System Ptolemy

Verilog Matlab
Multimedia SoC Design Shao-Yi Chien 75
~ Media IC and System Lab Slides from NTUEE EEE5029 Multimedia
| Graduate Institute of Electronics Engineering System-on-chip Design

" National Taiwan University

SystemC

m Not a new language
m A special class library

Based on C++
Includes all the advantages/disadvantages of C++

Good reference implementation

C++ compatibility supports SW compatibility
Only limited path to implementation

TLM methodology and experience exists

Oriented towards HDS verification, architecture
exploration, and fast higher level simulation

Ca% Media IC and System Lab
‘\Il4: Graduate Institute of Electronics Engineering
:~2” National Taiwan University

High Level Synthesis Tools

m Mentor Graphics—=>Calypt: Catapult C (Acquiqred
by Calypto)-> [IMentor Graphics Catapult C

m Forte Design System: Cynthesizer (Acquired by
Cadence)

m Synopsys: Synphony C compiler
m Cadence: C28i|icon9|8tartus HLS
m ChipVision: PowerOpt?

m Xilinx: Vivado —»‘VitiS-HLS, Vitis
m NEC CyberWorkBench

Multimedia SoC Design Shao-Yi Chien 106

7 53, Media IC and System Lab
f(’(“ Graduate Institute of Electronics Engineering
=2’ National Taiwan University

Why HLS?

Fast architecture exploration
C++ «—— python v.s. verilog «—— HLS

* L3\ Media IC and System Lab
@1 Graduate Institute of Electronics Engineering
7 National Taiwan University

Total Power™"

Z0MS/s 30M3/s MSis

Throughput
(MS/s)

Unpipelined microarchitecture
taking 16-clock cycles per loop
iteration

Highly pipelined microarchitecture

Media IC and System Lab

| Graduate Institute of Electronics Engineering

National Taiwan University

Slides from NTUEE EEE5029 Multimedia
System-on-chip Design

Outline

HLS IP Flow

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

HLS IP Flow

0. Coding in C++
1. C-Simulation (SW-Emulation)

Check the C source code evaluation with the golden (Similar to SystemC)

2. C-Synthesis
Perform C -> RTL synthesis

3. Co-Simulation (Hardware-Emulation)
Using standard RTL verification tools

4. Generate bitstream (FPGA)
RTL to Gate-level synthesis + P&R for IC flow

See UGS871 for details:

(i« ~, Media IC and System Lab https://docs.xilinx.com/v/u/en-US/ug871-vivado-high-
{\["]/:] Graduate Institute of Electronics Engineering level-synthesis-tutorial
=+ National Taiwan University

0. Coding in C++

Coding in C++ rather than tedious RTL level

Benefits:
No sequential logic bugs

Unified coding language
Design: C++
Verification: C++
Application: C++

Disadvantages:
Stiff learning curve
RTL is still the mainstream in Digital IC Design Flow

FAE, customer,

7 53, Media IC and System Lab
:(,zl Graduate Institute of Electronics Engineering
=22 National Taiwan University

Illustration — GCD

Euclidean Algorithm

gcd(a,b)=gcd(b,r)

where,a=qgb +r

A B
vy
r=AMODB

=
m >
un
-

GCD=B

Simplified Euclidean GCD Algorithm

gcd(a,b)=ged(b,(a—Db))
=ged(a,(b—a))

A B

vy

Compare A, B [

module gcd_behavior #(parameter width = 32)
(input [width-1: 0] A_in, B_in,
output [width-1:0] Y);
reg [width-1:0] A, B, Y, swap
Integer done;

always @(A_in or B_in) begin
while (A ! =B) begin
if(A>B) A<=A-B;
else B<=B-A;
end
end
Y =B;
endmodule

RTL synthesis tool only copies the circuit for

the while/for loop

ut the # ot loop could not be determined
at compiling time

| The circuit could not be synthesized |

It needs a structure implementation

77 . Media IC and System Lab
14« Graduate Institute of Electronics Engineering
»* National Taiwan University

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Illustration — GCD (RTL)

‘,

B
0 1
MUX Ay MUX_B
AM v BM
Reg A [_|FSM L T Reg_B
AR ' BR
R , vy
SubtractorA SubtractorB
AS=A-B GCD BS=B-A
AS | [AGB ALB | | BS

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

module ged_fsm(
input clock, reset, go,
input AGB, ALB,
output A_en, B_en,
A_mux_sel, B_mux_sel,
out_mux_sel, ouput done);
reg running = 0;
always @(posedge clock) begin
if(go) running<=1;
else if (done) running <= 0;
end
reg [5:0] ctrl_sig;
assign { A_en, B_en, A_mux_sel, B_mux_sel, done }
always @(*) begin
if('running) ctrl_sig =5’b11_00_0;
else if(AGB) ctrl_sig =5'b10_1x_0;
else if(ALB) ctrl_sig=5"b11_11_0;
else 5'b00_xx_1;
end
endmodule

ctrl_sig =

module ged_datapath #(parameter width = 16)
(input clock,
input A_en, B_en, A_mux_sel, B_mux_sel,
out_mux_sel,
input [width-1:0] A_in, B_in;
output AGB, ALB,
output [width-1:0]Y;)
reg [width-1:0] A, B;
assign Y = A;

// Datapath Logic

wire [width-1:0] out = (out_mux_sel) ? B: A-B:;
wire [width-1:0] A_next = (A_mux_sel) ? out : A_in;
wire [width-1:0] B_next = (B_mux_sel) ? A: B_in;

// Generate output control signals
wire AGB = (A > B);
wire ALB = (A < B);

// edge-triggered flip-flop
always @(posedge clock) begin
if(lA_en) A <=A_next;
if (B_en) B <=B_next;
end
endmodule

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

A Glimpse of High-Level-Synthesis

HLS build synchronous design
* | No timing -> no clock, reset |
* No port width — imply by data type
* Portdirection —|hs, rhs
* Input: only read, “pass by value”
* Quptut: function return, areference, or a
pointer
* Inout: a reference or a pointer
Loop:
* Automatic control/datapath synthesis

A B

vy v

Compare A, B [4———

GCD=B

Media IC and System Lab

A Graduate Institute of Electronics Engineering

National Taiwan University

ap_uint<32> ged(ap_uint<32> opA, ap_uint<32> opB) {
#pragma HLS INLINE

while (opA !'=0pB) {
#pragma HLS PIPELINE
if (opA > opB)
opA = opA - opB;
else
opB = opB - opA;
}
return opA;

}

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Mapping of Key Attributes of C Code

de

Function: design hierarchy, mapped to MODULE

Arguments : mapped to Input/output interface of

finclude "fir.h"

the hardware

Types: All variables are of a defined type, influence
the area and the performance

aticldata_t shift reg[N];

Accum_ Loop: for (i=N=-1;i>=0;i==) ({ I

Loops: impact on area and performance, HLS opt
with Directive Pragma

Control flow: Control logic

Arrays: impact the device area, and performance
bottleneck

Expression/Operators: Function unit.
Allocation/Scheduling (Sharing) to meet
performance and area

_ Media IC and System Lab
. Graduate Institute of Electronics Engineering
National Taiwan University

(1==0) {
shift reqg[(]=x;
data = x;
} else {
shift regl[il=shift regl[i=11;
data = shift reglil;

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Function Hierarchy

* Top-level function becomes the top level of the RTL
« Sub-functions are synthesized into blocks in the RTL design

* Inlined to dissolve the hierarchy
* Provide greater optimization opportunity

void AO{ ... Body A ...}
void CO{... Body C ...} TOP
void BO{ CO;}
void TOP() { A B

“Z. Media IC and System Lab Slides from NTUEE EEE5060 Application

:&J Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis
‘2" National Taiwan University

Function Arguments

* Function arguments mapped to ports on the RTL blocks

* Additional control ports are added to the design for
control/synchronization among blocks

* Input/output (I/O) protocols
* Allow automatically synchronize data exchange among blocks

intl7 foo_top(int8* a, int8* b, int8* ¢, int17* ret) a . .
{ b =—> 9-bit Add, 17-bit Mult — return

int sum, multi; C

sum = *a + *b;

multi = sum * *c; a3 Vid | — FSM C

’ - ontrol

return multi; . —p 1es vid

) b vld =—— Logic
cvld ==

/7 Media IC and System Lab Slides from NTUEE EEE5060 Application
\[%/:) Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

National Taiwan University

How top module connects to system

#include "adders_io.h"

2T Outline | 18 Directive

~ @ adders_io

void adders_io(int inl, int *in2, int *in_outl) {

P + P %HLSINTERFALE ap_hs
in_outl = inl + *in2 + *in_outl,; ——

%HLSINTERFA E ap_fifo port=in2

% HLS INTERFACE ap_ct

A_hs port—return

part=ini

} inline B S raRsACt o bum dapehed paremin_cu
RTL Ports Dir Bits Protocol |Source Object C Type

|ap_clk in 1| ap_ctrl_hs adders io | return value
ap_rst in 1 ap_ctrl_hs adders_io | return value
ap_start in 1 ap_ctrl_hs adders_io | return value
ap_done out 1 ap_ctrl_hs adders_io | return value
ap_idle out 1 ap_ctrl_hs adders_io | return value

| ap ready out 1_ap cirl hs adders io | returp valuel
in1 in 32 ap_hs in1 scalar
in1_ap_vid in 1] ap_hs in1 scalar
in1 _ap ack out 1 ap_hs int scalar
TNZ_dout n_ 32| ap_iio N2 pointer|
in2_empty_n in 1 ap_fifo in2 pointer,
in_out1_req_din out 1 ap_bus in_out1 pointer,
in_out1_req_full_n in 1 ap_bus in_out1 painter,
in_out1_req_write | out 1| ap_bus in_out1 pointer
in_out1_rsp_empty_n in 1 ap_bus in_out1 pointer
in_out1_rsp_read out 1 ap_bus in_out1 pointer,
in_out1_address out 32 ap_bus in_out1 pointer|
in_out1_datain in 32 ap_bus in_outl pointer
in_out1_dataout jout 32 ap_bus in_out1 pointer
. . 3 . | .

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

AXI-Lite

AXI-Slave

AXI-Stream

AXI-Master

Infrastructure

- DMA

- Fabric

- Configuratio
/Parameters

- Driver

PCle <@=p Host/PC

AX| <= PS/MPSOC

B L
edu

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Arrays

* Typically implemented by a memory block
* Read & write array mapped to RAM
* Constant array mapped to ROM

* By using directives
* An array can be partitioned and map to multiple RAMs (ARRAY_PARTITIION)
* Multiple arrays can be merged and mapped to one RAM (ARRAY_RESHAPE)
* A array can be partitioned into individual elements and map to registers

. AN
void TOMint) el ror
| , N3 . RAM
int AINL e, < AN A inepiN DOUT == A_oul
fortimi<cN:ies) v i — —p AW
Aliex] = Ali] + i 0 :::“'
!
“), Media IC and System Lab Slides from NTUEE EEES5060 Application
J:) Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

/" National Taiwan University

Expressions — Data Flow Graph

* Expression is translated to datapath and its
control path (FSM)

* Start by analyzing the data dependencies
between the various steps in the expression
shown above. This analysis leads to a Data
Flow Graph (DFG)

7 53, Media IC and System Lab
:(,zl Graduate Institute of Electronics Engineering
=22 National Taiwan University

— o % .
y=a*x+b+g;

a X

e

wl

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Control Flow: Loop

* Loops are the main area of parallelism in an algorithm

* Loops can be
* pipelined,
* Unrolled, Partially unrolled,
* Merged
* Flattened

* HLS generates the datapath and control logic

A Media IC and System Lab Slides from NTUEE EEE5060 Application

:(r\ﬂ J-) Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis
22" National Taiwan University

Control Flow — Rolled

* By default, loops are rolled

* Each loop iteration corresponds to a “sequence” of states (DAG)

count.

void TOP(...) {

l."c.nr(i =3:i>0;i-){
b +=a[i];
}

}

7 53, Media IC and System Lab
{\["]/:] Graduate Institute of Electronics Engineering
‘2" National Taiwan University

The state sequence will be repeated multiple times based on the loop trip

The resource (adder) is repeatedly used in the loop iteration.
Efficient use the resource, but longer latency

N - s1

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Loop - Unroll

* Rolled loops can be made unrolled or partially unrolled by
#pragma UNROLL [factor =n]

* Pros
* Decrease loop overhead
* Increase parallelism for scheduling
* Cons
* Increase operator count, negatively impact area, power and timing

// Unrolled
// Rolled void TOP(...) {
void TOP(...) {
c[0] = a[0] * b[0];
for(i=0;i<4;i++) c[1] = a[1] * b[1];
cli] = a[i] * b[il; c[2] = a[2] * b[2];
} c[3] = a[3] * b[3];
}
"3 Media IC and System Lab Slides from NTUEE EEE5060 Application
| Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

National Taiwan University

Loop - Pipeline

* One of the most important optimization
* Allow a new iteration to begin before the previous iteration is complete

* Key matric: Initiation Interval (1)
ali] bli]

1-0 S = et

i=1 =1 |Id * . st

i=2 Id = * st

® -
=

cri]

/7%, Media IC and System Lab Slides from NTUEE EEES060 Application
=9 J.) Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

A UENIA
“ National Taiwan University

1. C-Simulation (SW-Emulation)

Verify your C/C++ code with the golden

Since the hardware is designed in C++, the testbench
IS also C++.

It is just like Freshman C/C++ course.

7 53, Media IC and System Lab
lf,z} Graduate Institute of Electronics Engineering
=2’ National Taiwan University

Non-Synthesizable Code for
Testbench

The great power of HLS is the C-simulation and RTL
co-simulation testbench are the same.

Similar to systemC ESL validation

Use SYNTHESIS for testbench code

void hier_funcd(din_t A, din_t B, dout_t *C, dout_t *D)
{

dint_t apb, amb;

sumsub_func(&A,&B,&apb,&amb);
#ifndef _ SYNTHESIS__
FILE *fp1;
char filename[255];
sprintf(filename,"Out_apb_%03d.dat",apb);
fpl=fopen(filename,"w");
fprintf(fpl, "%d \n", apb);
fclose(fpl);
#endif
shift_func(&aphb,&amb,C,D);
}

/7 W, Media IC and System Lab
{\["]/:] Graduate Institute of Electronics Engineering
‘2" National Taiwan University

2. C-Synthesis

Analysis the C/C++ code and transform to RTL code

Tools:

FPGA: Vivado-HLS (deprecated) — Vitis-HLS
IC: Stratus-HLS, ... etc.

Tools guaranteed the logic.

Pragmas are needed to control its behavior
UNROLL factor=2
PIPELINE II=1

7 53, Media IC and System Lab
:(,zl Graduate Institute of Electronics Engineering
=22 National Taiwan University

Resource Allocation, Scheduling, Binding

* Resource allocation: Each operation is
mapped to a hardware resource,
annotated with both timing and area

information
#pragma HLS allocation operation instance = add limit=1

* Scheduling: decide which clock cycle to
perform what operations

* Binding: mapped to the hardware

resource.

#pragma HLS bind_op variable=<variable> op=<type>
impl=<value> latency=<int>

“ 4\ Media IC and System Lab
;. Graduate Institute of Electronics Engineering
/" National Taiwan University

y=a*x+b+c;

Clock Cycle
- - ~
Scheduling
Phase a_ .
L=
X
—
-
b + Y -
.
< »
L — J
(. . 3
Initial Binding Mul Addsub
Phase
Addsub
L y,
- —)
Target Binding
Phase DS Addsb
€1
|

Al4220-081518

Slides from NTUEE EEE5060 Application
Acceleration with High-Level-Synthesis

Example - Expression Datapath
Resource allocation & Scheduling

N X 5 g
o wnn
+ + + * +

L o

delay=4 using 1 adder
and 1 multiplier

delay=6 using 1 MAC

A Media IC and System Lab Slides from NTUEE EEE5060 Application

:(r\ﬂ J:) Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis
=22 National Taiwan University

Example — Expression Datapath
Binding & Resource Sharing

I Generating Datapath

Assign State for Control Signals

idle

sl

sell ' sel2 i3 ' e Assume initially ainrl;binr2;cinr3
e) mm

add Ii2 r2 r3
- 0] add 1 mul 1 rl r3 r2 r3

sel5 sel6 sel7 sel8 add 1 ~ 0 _ ~ rl r3 _ _
add 1 - - - - 2 ri - -
18-643-F19-109-515, James C. Hoe, CMU/ECE/CALCM, ©2015

52

s3

p Generating State Machines
i * Multiple cycles Peseesssssssccsecscc-o--o- |
» States: (idle, s1, s2,s3,s4 inputs i AN s
’ ’ ’ ’ ! outputs
Z * Encode States: 000,100,101,110,111) | N / Ad_hEE_>
. Generate Control Signals : Fsm atapat '
lay=4 using 1 adder : , - 7 :
delay=4 using a‘dd.e - Combines the Control Signal State & ' O e @ -ﬂ | '
and 1 multiplier : | T
State Machine, e.g. clock — [|
- e.g.enl=s1]s3]s4; R e E PP LR T
. Media IC and System Lab Slides from NTUEE EEE5060 Application
/., Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

National Taiwan University

Example — Control Flow

2int controlflow(int a[N]) {
int i, acc; 4: add input/output

acc = 0; : 5: Generate Controller (State Machines) for datapath control
for(i = @; i < N; i++) { i | | acc | ‘ ali] ‘ ‘ addr ,

) |
e VAV AN \.f

return acc;

" 0 q 0 &a
)\ o< /3% !_Ll !%m

acc..ol alll ||| addr |

. . - - Controller
1: Decompose into states 3: Determine sources of state variable input \// 323 \ /

In from memory

T 1 J

Done Memory Read

acc Memory address
1
\
+
Media IC and System Lab Slides from NTUEE EEE5060 Application
Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

National Taiwan University

HLS extra the control logic in the form of a finite-state-machine, in which each of state CO, C1, C2, C3 perform the following tasks

e CO: perform (b+c) and loop initiation. The result is latched at the end of the CO state
e C1: Generate in memory access control signal, including in_addr, in_ce
e (C2:wait for the RAM return in[i] data

e (3: Perform the multiplication of x*a and addition. Generate the out RAM control signals, out_addr, out_ce, out_we

The full sequence of states are: CO, {C1, C2, C3}, {C1, C2, C3}, {C1, C2, C3}, and return to CO

If directive "#pragma PIPELINE" is specified, HLS generates a pipelined datapath for the operations in the loop and its corresponding loop
controller logic.

el |] || []

b —
A +
Datapath ¢ | _ A
| | ou_data

Led
e

a_ EI - -
! #
in_data . ~mm =
| i —= ot _addr
—=in_addr —= out_ce
> in_ce = out_we

Finite State Machine (FSM)

oo | S D),
N T
& | X14218
'
start done
/253 Media IC and System Lab Slides from NTUEE EEE5060 Application
i;; {Fﬂ .} Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

42" National Taiwan University

Example — Control Flow (Vivado HLS)

“int controlflow(int a[N]) { Scheduling
int i, acc; OperatiomControl St
peratiani-ontra) ep
acc = ©; | 0 ! 2 | . emory
P . = . = ¥ Loop 1 - Leop 1
for(i 8; i < N; i++) { T i°P
acc += a[1]; ace_0(phi_mus) i
} iemp_In7(icmg) E 0 &a
i(+) ! — v 4
return acc; aload(read) i) e | I’_J._” 1] { 21 | |
y a Ao e
il i :::::ﬂ"’11a[l|‘add|
1 / l1 8 \ / \ 1
Resource . / /
+ +
-| Expression
Variable Name Operation | DSP48E | FF | LUT Bitwidth PO | Bitwidth P1
Interface ace_fu_75_p2 N 0 0 39 32 32
i_fu_64_p2 - 0o/ 0 13 4 1
RTL Ports | Dir | Bits | Protocol | Source Object C Type . ; T T T 2 2 acc Memory address
ap_clk | in | 1 ap_ctrl_hs controlflow | return value | lcm[:‘>_|n7_fu_53_p2 lemp 0 | 0 | J
ap_rst | in | 1 ap_ctrl_hs controlflow | return value | Tota 3 0 0 61 40 37 .
ap_start | im | 1 ap_ctrl_hs controlflow | return value | - Multiplexer ¢ Memow address IS the
ap.done | out | 1 ap_ctrl_hs controlflow | return value | - . . same as ﬂ'va ria ble i’-"
ap_idle jout | 1 apctrlhs controlflow | return value | Name | LUT | Input Size | Bits Total Bits
ap_ready | out | 1 ap.ctihs controlflow | return value acc_0_reg_46 9 2| 32 64 = But, address of array “a”
ap_return | out = 32 ap_ctrl_hs controlflow | return value ap NS fsm 21 4 1 4 . .
Toat| 4] ' ' =0 is different?
a_addressD | out | 4 | ap_memory a | array | i 0_reg_35 9 > 4 8
a_cel | out | 1 | ap_memory a array |
a_q0 in 32 | ap_memory a array Total 39 8 37 76
Media IC and System Lab Slides from NTUEE EEE5060 Application
Graduate Institute of Electronics Engineering Acceleration with High-Level-Synthesis

National Taiwan University

3. Co-Simulation (Hardware-Emulation)
Using standard RTL verification tools

Waveform viewers

System-level considerations
E.g. FIFOs, deadlocks, ... etc.

3, 401

Need to remove this latenc

Jl Il |

7« 5, Media IC and System Lab
: ,«1 . Graduate Institute of Electronics Engineering
\ National Taiwan University

4.Generate bitstream (FPGA)

Tools: Vivado

Automation in FPGA tools without clicks
Configure the synthesis and placement via FPGA .tcl
This step takes around 1~2 hr

-Postlayeut-verfication-— Run on FPGA

7 53, Media IC and System Lab
lf,z} Graduate Institute of Electronics Engineering
=2’ National Taiwan University

100 frames

Appllcatlon T|meI|ne (112) testbench

Nama Valua L |3 aaa amam mo |3 5130 aema " | |4 oua cmeaa m » 4,500, COGO00 ns
OpenCL Host Trace
« OpenCL API Calls
General tiCreatePro
Queue . .1lboag
« Data Transfer
« Read
Parall ead Joi)

Parall...ead . il |
Parall.rte 1 HHi T AR SRR B -
parl e Hi- PR HHHHHHHEHHHE R

Copy 0o

Kernel Engueues
< wllire_...ent_apl

1 iIHiHIIIHIH1—iI-III||IIIIflinIIIII-If-HIHHiI-IHPHIIHI-HHHI||I-H-HHH|II-'IIHII|-iHHIHHHI}HHHHIIIfHHIIHfHIiHH-}II|IIH S S

Keme. .. eus

Frame 2

é - N
4 sub-systems - L sub-systems F=Fm h— | -
N N N e ErEE EEEE L ! .
H—t+—++—+ :QI I B o e =9=II 1-P|I=Q :9:
1 > 1 1 o1 1= 1 = 1
2 | | 2 | | 2 @ |
e el =z 2]
| | 1 21 || | 1 4 - ha i &
L l 1 | !'C!I 1 | | !'C!I | 1 !'C! ||33=
LI I I I i—ql | D 1 i—gi | 1 i—q I—‘I
H —+ |=c8i —4 } :cgi F—t—i :cg Irtgi
1 Q 1 Q 1 I
: ER _— P39 ., L3 | 3 |
1 I i l| 1 1 i || | 1 | || 1 |
e —

Y {Tyﬂ Graduate Institute of Electronics Engineering
X £ National Taiwan University

P

f'}"i} IvViedld 1L ana SysLer Lao

Namea Valua ilailﬁﬁﬁm Hi 2,041,000, GO0 us 2,042, 000,000 us 2,042,100.000 us 2,042, 200 .0C
1 1 I 1 L 1 1 L L I I 'l L L 1 I 1 L I 1 L i L Il 1 1 I L 1 ' 1 I 1 1 L Il L 1 1 'l
« QpenCL Host Trace

~ [opencLAPI Calls |ssue
e 0 REm
Queue 0.,.21bDas(— M e

 DataTransfer FPGA CPU can perform other tasks
- While FPGA | |

LRI |

Parallel Read 1

Farallel Rzad 2 . |
. Parallel write |
Parallel Write 1 —-—-—-
Parallel Write 2 - I
| :
Copy 0o S1RRL=] I:)Rt’bUtlUl]

Kernel Engueues

< willire_u...ment_apl

Kernel...queue

Name Value |2.9d5,3w.um us £,245,310,000 us I2.945.320.
i i i i i i i i 1 i i I i L i i

2,945,330.000 u |24 945, 340,000 us I2.945431
P P P T T T N T T T PR

* OpenCL Host Trace

. OpeQCLAHlCaIIs' ' . |Ssue Read CPU, FPGA Sinc _

Queue 0...21b0a%(| . |

« Data Transfer
Read

Parallel Read 1

Parallel Read 2 -/
v Write /

Parallel Write 1 ¢

Parallel Write 2
Copy 00
Kernel Engueues

v Wilink_u...ment_api
Kemnel ...queue

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University 62

Outline

Pragma Introduction

Media IC and System Lab
;. Graduate Institute of Electronics Engineering
/" National Taiwan University

#Pragma Introduction

Special purpose directive for turning on or off some
compiler-specific features.

#pragma omp parallel for

Example: OpenMP for (k=0; k<pixel3DTiles[]].size() ; k++) {

(*pointDatavec)[pointcnt].x = point3DTiles[j][k](@);

MUIt|-thread programm'ng (*pointDatavec)[pointCnt].y = point3DTiles[j][k](1);
(*pointDatavec)[pointcnt].z = point3DTiles[j][k](2);
(*pointDatavec)[pointCnt].pixel = pixel3DTiles[j][k];
++pointcnt;
++tilePointcCnt;

. }
Example: HLS
Unroll, pipeline,
for (int i = @3 i < 9; i++) { for (int i=0; i<frameDataNum; i++) {

#pragma HLS LOOP_TRIPCOUNT min=1 max=TRIPCOUNT

#pragma HLS UNROLL .
#pragma HLS PIPELINE

R[1] = @; frameStreamOut.write(frameIn[i]);

Media IC and System Lab
Graduate Institute of Electronics Engineering

National Taiwan University

#Pragma Introduction

Interface Synthesis
Task-level Pipeline
Pipeline

Loop Unrolling

Array Optimization
Resource Optimization
Others

7 53, Media IC and System Lab
-\ l(,ﬂ Graduate Institute of Electronics Engineering
=2’ National Taiwan University

https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/VzNoUJlGB0oH~0KUptwZIw
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/Mole2Ho71QqjhWqO7vtlUQ
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/2~hWpZnpG2BnyKw~0BgF7g
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/3GVsbTvcINaYLSUNJC7FNQ
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/QjplS4c6i0LsluhcxguEDA
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/7TO1LgrWQy6ktwyPHEFAaA
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/xC87~_So8TySDLZQeRpj~Q
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/Fy~nFVxz6UVtbs_aeOgM2w
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/3uHHopaRJq~qqzS8K3Vp1A
https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/iqk7JePodWlAHn6ryjMNpg
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

Outline

Design Flow

Media IC and System Lab
/.. Graduate Institute of Electronics Engineering
/" National Taiwan University

Design Flow

Platform select

Data center flow
Embedded system flow

Develop software algorithm
Software profile

Set Acceleration Goal
Applicability of the Hardware
Hardware Architecture Plan
HLS coding

7 53, Media IC and System Lab
:(,zl Graduate Institute of Electronics Engineering
=22 National Taiwan University

1. Platform select

Data Center Flow Embedded System Flow

Host Application (c/c++/python, ...etc)

Executable File g++ compiler/python interpreter

Kernel Design (RTL/ HLS)

Alveo US0 ») UltraScale+ MPSoC
Xilinx v++ Block design Xilinx v++ Block design
FPGA Board Host Machine Processing System Programable Logic
Us0 GS) GIN)

CPU/MCU

P
C Consumer

I User Kernels I | User
e

Kernels

DMA

DSPs. m OpenCL AMBA K — ax DMA
API Switch BP0

HBM2 HBM2 'DDR4- Peripherals

1) fl dudlE Uule O C O
W National Taiwan University

2. Develop Software Algorithm

C++ Is a better choice for HLS development flow

Python or other language is okay, but need to translate
to C++ for HLS hardware synthesis

Rewrite the code in C/C++
Cython or other transforms may/may-not help

Pure C++ code Is the simplest case

If function calls deeper API, then need to ensure the code in APl is
synthesizable

Other examples: FINN (Python)

7 53, Media IC and System Lab
lf,z} Graduate Institute of Electronics Engineering
=2’ National Taiwan University

Number of

subsystems

3. Software profile: identify the
function to be accelerated

Rendering

4 2.75

Background

GUI

0.53

Pose
Estimation

6.51

Pose
Refinement

10.43

Model
Rendering

0.31

Swap

Total

Window Time

7.60

28.51

Iter #
3.16

Avg GN Avg LS

Iter #
0.17

You can use timers such as std::chrono

The platform and the underlying computational cores
matters a lot

High-end CPU, low-end CPU, MCU, GPU,

s 4o Media IC and System Lab

" A

-2 National Taiwan University

3l J:) Graduate Institute of Electronics Engineering

https://en.cppreference.com/w/cpp/chrono

4. Set Acceleration Goal

Set your goal
What is the assumption of this goal, under what scenario?

Example:

Acceleration Goals: Frame latency < 2.5 ms

Assuming surgeon head motion — 20 deg/sec

Assuming 4 subsystems — 1 surgical target + 3 surgical instruments
Assuming pipelined sense-compute-render-display system

Assuming bottleneck of the pipeline bounded by compute core

Current software application latency — 10 ms
l l

Display Display Display
Tcompute

/i 5, Media IC and System Lab I < - :I
0 “I/:) Graduate Institute of Electronics Engineering Penod ~

%’ National Taiwan University

[
»

FPS ~ 1/Tcompute

4. Set Acceleration Goal

Number of Background GUI Pose Pose Model Swap Total | Avg GN Avg LS

subsystems Rendering Estimation Refinement Rendering Window Time Iter # Iter #

4 2.75 0.53 6.51 10.43 0.31 7.60 28.51 3.16 0.17

Is this goal competitive?
x4 times faster, not too impressive (Impressive -> 2 ~ 3 orders)

Achievable ?

Roughly estimate the cycles needed

What's the time complexity of the function? How much degree of parallelism
can be achieved to reach this goal? (Resource enough?)

Determine if it is PCle-bound (Data center flow)
800x800x3 + 10000 x (1 + 3 x 4) byte @ 33us = 57.84 GB/s

U50 PCle bandwidth (Host -> PCle -> FPGA) Read(Write): 11GB/s ->
PCle-bounded

7 53, Media IC and System Lab
-\ (,11 y .. Graduate Institute of Electronics Engineering
=2’ National Taiwan University

5. Applicability of the Hardware

How general is your hardware?
ASIC-like?
DSP-like?

Example (ASIC-like)

Applicable to most Direct Dense Photometric
Refinement problems (DDPR)

Not restricted to planar or marker objects — General 3D rigid objects
Suits the front-end refinement of Visual Odometry (VO) if depth provided

Example (DSP-like)

Custom ISA + common processing units

/% 5, Media IC and System Lab
&”mﬂﬁ; Graduate Institute of Electronics Engineering
%2 National Taiwan University

6. Hardware Architecture Plan

What is the possible compute architecture? dataflow?
E.g. Systolic array, dedicated dataflow?

Weight Memory
| v v

> N = s TR 1S MAC Unit -
‘ l Activations, l _ a 8 1 N >’<
5 | an o] fwc| . ue SR S X Separate data movement (IO
Tl Wiz Waz N2 1
= - + e
2 P \ N 4 from Computation (PE)
> . H “l2 -,
g | | - ' {
> m‘;*: - ':3*:5 veee —al WAC
8 é] é)] - + o E—
§ e Vo e Iéﬁ;z:. é?;ﬁtéigr +— Registers Data Fetching |, l Nfc ” tvec l‘_
E Yip Y28 Yug e (A) Compute
- Rodrigues
(B)(E) Calculate Hessian I

h

Residual Kernel
* [Firo]

| (C) Forming Hessian |)
I Ping-Pong
Buffer

[(0-1) cholesky |
T

(D-2) Back- | (F)Line
Substitution Search

/7 3 Media IC and System Lab
‘1).} Graduate Institute of Electronics Engineering
National Taiwan University

Design Flow

HLS coding

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

HLS Code Prerequisites

No unsupported data type (Due to dynamic allocating)
Std::vector, new (malloc), *pointers,

No unsupported relative high-level-functions
E.g. Eigen, *OpenCV, OpendD, Most of the libraries.

(>X Prevent RTL-like or hardware unfriendly coding style
during design)

7 53, Media IC and System Lab
lf,z} Graduate Institute of Electronics Engineering
=2’ National Taiwan University

Original Host Code (1/3)

1. Not supported data type (Due to dynamic allocating)

(Eigen -> C++ template library for linear algebra, equivalent to numpy in python)

void DodecaSystemTracker::denseAlignment(const cv::Mat& normalizedImage,

const Region& validRegion, Need tO I’eWI‘Ite |n
const dst::Vec& pixel3D, I |
array or pointer!

const dst::MatX3& point3D,

int methodSelection,
double epsilonRot,
double epsilonTra,
int maxIter,
dst::Mat3* R,
dst::Vec3* t)

namespace dst

{
typedef unsigned char byte;

typedef Eigen::VectorXd Vec;
typedef Eigen::MatrixXd Mat;
dst::Vecé p; typedef Eigen::Vector2d Vec2;

typedef Eigen::Vector3d Vec3;
p << Transformation::FromRotationMatirxToAxisAngle(*R), * t; typedef Eigen::Vectordd Vecd;
dst::Vece deltaP = dst::Vec6::Constant(DBL_MAX); typedef Eigen::Matrix<double, 6, 1> Vecé;
int iter = o; typedef Eigen::Matrix<double, 7, 1> Vec7;
int num = pixel3D.size();

dst::Mat34 Rt; typedef Eigen::RowVector2d RVec2;
Rt << *R, * t; typedef Eigen::RowVector3d RVec3;
dst::Vec warpedI(num); typedef Eigen::RowVectord4d RVecd;
dst::Vec warpedIu(num); typedef Eigen::Matrix<double, 1, 6> RVec6;
dst::Vec warpedIv(num); typedef Eigen::Matrix<double, 1, 7> RVec7;

") Graduate Institute of Electronics Engineering
National Taiwan University

Original Host Code (2/3)

2. Not supported relative high-level-functions

(Eigen class array-wise operation) _ _
Need to rewrite the detail

Implementations!

// --- Step 1: Comput - - -

dst::MatX3 point2D = {(point3D * R->transpose()).rowwise()]+ t->transpose()) * _inMat.transpose();
point2D.leftCols(2).array().colwise() = 1. / poin).array();

// --- Step 2: Compute H ---
dst::Maté H =|J.tran5pﬂse() * 7, |f/ [6, 6] = [6, N] @ [N, 6]

// --- Step 3: Compute delta p ---

dst::Vec E = pixel3D - warpedI; // [N,]
dst::Vec6 JtE = J.transpose() * E; // [6, 1]
deltaP =|H.inverse() * JtE;|// [6, 1]

f;/ 4 Media IC and System Lab
” ﬂ/ Graduate Institute of Electronics Engineering
Y National Taiwan University

Original Host Code (3/3)

(>X Prevent RTL-like or hardware unfriendly coding style during
design)

double rxcll_14 = rx * cl1_14;

double rycll 14 = ry * cli_14;
double rzcll 14 = rz * cli_14;
(*IRP) (8, @) = -(sl * ry2rz2 * rx_13) - (2 * ry2rz2 * rxcll_14); Use for |Oop instead to
(¥IRr)(@, 1) = (2 * cl1 * ry_12) - (sl * ry2rz2 * ry_13)

- (2 * ry2rz2 * rycll_14); galn the beneflt Of HLS

(*3IRr)(@, 2) = (2 * cl1 * rz_12) - (sl * ry2rz2 * rz_13)
- (2 * ry2rz2 * rzcli_14);

(*IRr) (1, @) = (rzsl * rx_13) - (rzcl * rx_12) - (cl1 * ry_12)
+ (rx * rysl * rx_13) + (2 * rx * ry * rxcll_l14);

(*IRr) (1, 1) = (rzsl * py_13) - (rzcl * ry_12) - (cll * rx_12)
+ (rx * prysl * ry_13) + (2 * rx * ry * rycll_l14);

(*IRr) (1, 2) = (rzsl * rz_13) - (rzcl * prz_12) - sl 1
+ (rx * rysl * rz_13) + (2 * rx * ry * rzcll_14);

(*IRr) (2, @) = (rycl * rx_12) - (cl1 * rz_12) - (rysl * rx_13)
+ (rx * rzsl * rx_13) + (2 * rx * rz * rxcll_l14);

(¥*IRr)(2, 1) = s1_1 + (rycl * ry_12) - (rysl * ry_13)
+ (rx * rzsl * ry_13) + (2 * rx * rz * rycll_l14);

(*3Rr)(2, 2) = (rycl * rz_12) - (cl1 * rx_12) - (rysl * rz_13)
+ (rx * rzsl * rz_13) + (2 * rx * rz * rzcll_l4);

(*IRr) (3, @) = (rzcl * rx_12) - (cl1 * ry_12) - (rzsl * rx_13)
+ (rx * rysl * rx_13) + (2 * rx * ry * rxcll_l14);

(¥*IRr) (3, 1) = (rzcl * py_12) - (cl1 * rx_12) - (rzsl * ry_13)
+ (rx * prysl * ry_13) + (2 * rx * ry * rycll_l14);

Media IC and System Lab
Graduate Institute of Electronics Engineering

National Taiwan University

Then the 4 steps...

C-Simulation
C-Synthesis
Co-Simulation
Generate Bitstream

7 53, Media IC and System Lab
lf,z} Graduate Institute of Electronics Engineering
=2’ National Taiwan University

Outline

Labs

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

Lab Introduction

Design flles from NTUEE EEES5060 Application Acceleration with High-
Level-Synthesis

Labl, Lab2: Embedded system flow
Vitis-hls, Vivado
MPSoC FPGAs: Pyng, Ultrascale+

Lab3: Data center flow
Vitis
Data Center FPGAs: Alveo

/7 W, Media IC and System Lab
{\["]/:] Graduate Institute of Electronics Engineering
=22/ National Taiwan University

