

Shao-Yi Chien

Ref:

- 1. P. Rashinkar, P. Paterson, and L. Singh, "Chap. 2: System-Level Verification," *System-on-a-chip Verification*, Kluwer Academic Publishers, 2001.
- 2. P. Rashinkar, P. Paterson, and L. Singh, "Chap. 6: Hardware/Software Coverification," *System-on-a-chip Verification*, Kluwer Academic Publishers, 2001.

Outline

System design
 System verification

 Hardware/software co-verification
 Rapid prototyping

System Design

Multimedia SoC Design

System Verification

System Verification

- V-shaped model: top-down and bottom-up implementation approach
- Create a system-level testbench
 - System testbench metrics
- Emulation
- Hardware acceleration
- Hardware modeling
- Mixed-level simulation
- Design partitioning

V-Shaped Model

Top-down and bottom-up implementation approach

Multimedia SoC Design

Create a System-Level Testbench

- Explicit and implied functionalities
 For example:
 - Data packet (xyz) will appear on port A
 - No illegal bus cycles are generated
 - Memory location (xyz) contains value (AB) on completion of the test
 - Variable (A) goes active during the execution of the test
 - Variable (A) does not go active during the execution of the test
- Pay particular attention to
 - Corner cases
 - Boundary conditions
 - Design discontinuities
 - Error conditions
 - Exception handling

System Testbench Metrics

Whether or not all of the test defined in the verification plan are included

- □ A qualitative measure
- How to define and measure functional coverage is still a problem
- When possible, test all possible combinations of transactions with all possible data sets

Big Challenge for SoC Verification: High Gate Count

- The number of gates on an SoC device increases
- The size of the system-level testbench required to test the SoC exhaustively grows exponentially
- Software simulation cannot keep up with this exponential growth

Some Verification Strategies (1)

Example

Some Verification Strategies (2)

Emulation

Hardware accelerator

Multimedia SoC Design

Some Verification Strategies (3)

Hardware modeling

□ Ex: with a processor bounded core

Multimedia SoC Design

Some Verification Strategies (4)

Mixed-Level Simulation

□ Single complex block

Some Verification Strategies (5)

Mixed-Level Simulation

Many complex block: verify one block at a time

Multimedia SoC Design

Some Verification Strategies (6)

Hardware/Software Co-verification

HW/SW Co-verification environment

Multimedia SoC Design

Hardware/Software Co-verification

HW/SW Co-verification environment

Multimedia SoC Design

Mentor Graphics Seamless CVE

Mentor Graphics Seamless CVE

Multimedia SoC Design

Hardware/Software Co-verification

Emulation environment

Multimedia SoC Design

Hardware/Software Co-verification

Soft prototype environment

Multimedia SoC Design

Rapid Prototype Systems (RPS)

Rapid prototype environment
 Emulation
 Reconfigurable
 Application specific prototyping

Rapid Prototype Systems (RPS)

Features:

Limitations:

- Wide application
- High performance
 Possible for real-time
- Work with AMS devices
- ECO

- Fast engineering change order to minor design modification on FPGA
- Software development

- Design partition
 - Several FPGAs with limited I/O pins
- Plug-in modules
- May need design (RTL code) modification
- Interconnect delay

Cadence Incisive Palladium (Quickturn)

	Palladium	Palladium II	Palladium III	
Maximum capacity	Up to 128M gates	Up to 256M gates	Up to 256M gates	
Domain capacity	1M gates	1.8M gates	1.8M	
Domains per board	8	9	9	
Gates per board	8M	16M	16M	
Memory per board	4GB	4.6GB	4.6GB	
Maximum speed	750KHz	1.5MHz	2MHz	

Incisive Enterprise Palladium Series

Multimedia SoC Design

Cadence Incisive Palladium (Quickturn)

Multimedia SoC Design

Cadence Verification Computing Platform: Palladium XP

Multimedia SoC Design

Cadence Verification Computing Platform: Palladium XP

Up to 2 billion gates!

Multimedia SoC Design

Mentor Graphics VStation (Aptix)

CIC has one similar equipment!

Multimedia SoC Design

ForteLink Gemini System

Multimedia SoC Design

ALDEC HES-DVM

Multimedia SoC Design

ALDEC HES-DVM

6

Reconfigurable RPS

Application-Specific RPS

Map target design to commercially available components

- Limited expansion and reuse capability
- Usually provide board support packages (BSP)

Multimedia SoC Design

ARM Versatile

ARM Versatile

Multimedia SoC Design

SOCLE SoC Platform

ARM RISC + FPGA + Peripherals

SOCLE SoC Platform

Multimedia SoC Design

ZedBoard

SMIMS PC-Based FPGA Platform for Hardware/Sofware Co-Design and Co-Verification

SMIMS PC-Based FPGA Platform for Hardware/Sofware Co-Design and Co-Verification

Multimedia SoC Design

Comparison

Environment	Speed	Debugging	Software	Timing	Cost
Soft/virtual prototype	Medium	Algorithm	Firmware	No	Low
Co-verification	Slow	High	Firmware	Yes	High
Rapid prototype system	Medium →High	Low	Real	Yes	Medium
Emulation	High	Low	Real	Yes	Very high