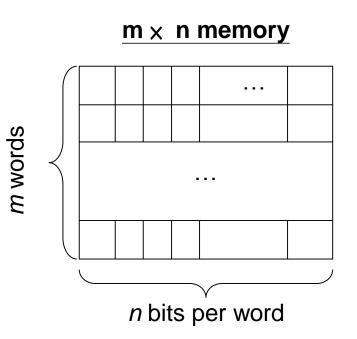


Outline

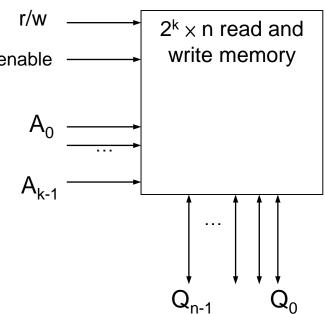
Memory write ability and storage permanence


- Common memory types
- Advanced RAM
- Memory hierarchy and cache
- Memory management unit (MMU)
- New memory packaging in SoC

Memory: Basic Concepts

Stores large number of bits

- \square *m* x *n*: *m* words of *n* bits each
- k = Log₂(m) address input signals
- □ or *m* = 2^k words
- □ e.g., 4,096 x 8 memory:
 - 32,768 bits
 - 12 address input signals
 - 8 input/output data signals



Memory: Basic Concepts

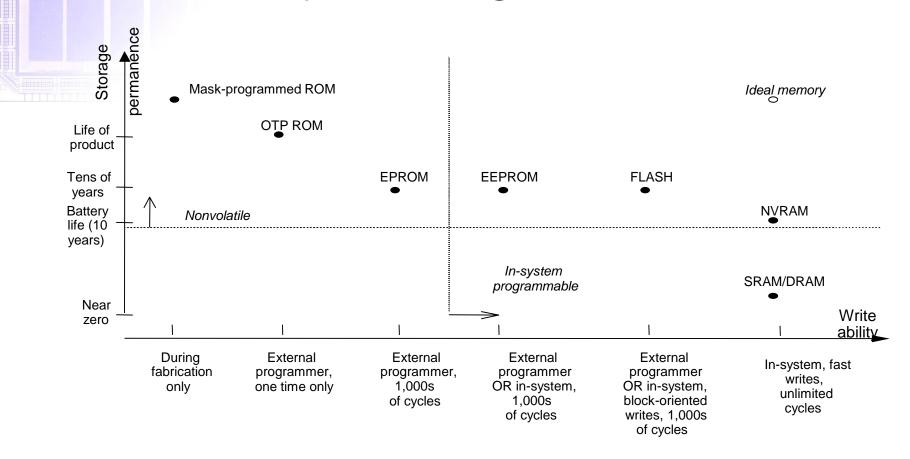
Memory access
 r/w: selects read or write r/w
 Enable: read or write only enable when asserted A₀
 Multiport: multiple A_k.
 Multiport: multiple A_k.

memory external view

Write Ability/ Storage Permanence

- Traditional ROM/RAM distinctions
 - □ ROM
 - Read only, bits stored without power
 - □ RAM
 - Read and write, lose stored bits without power
- Traditional distinctions are blurred
 - Advanced ROMs can be written to
 - e.g., EEPROM
 - Advanced RAMs can hold bits without power
 - e.g., NVRAM (Nonvolatile RAM)
 - □ New types of memory: FeRAM, PCM, MRAM, ...

Write ability


□ Manner and speed a memory can be written

Storage permanence

Ability of memory to hold stored bits after they are written
 Multimedia SoC Design
 Shao-Yi Chien

Write Ability/ Storage Permanence

Write ability and storage permanence of memories,

showing relative degrees along each axis (not to scale).

Multimedia SoC Design

Write Ability

- Ranges of write ability
 - High end
 - Processor writes to memory simply and quickly
 - e.g., RAM
 - Middle range
 - Processor writes to memory, but slower
 - e.g., FLASH, EEPROM
 - Lower range
 - Special equipment, "programmer", must be used to write to memory
 - e.g., EPROM, OTP ROM
 - Low end
 - Bits stored only during fabrication
 - e.g., Mask-programmed ROM
- In-system programmable memory
 - □ Can be written to by a processor in the embedded system using the memory → do not need "programmer"
 - Memories in high end and middle range of write ability

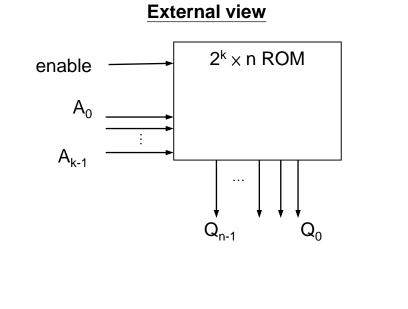
Multimedia SoC Design

Storage Permanence

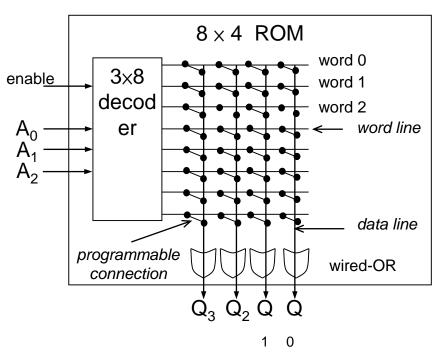
- Range of storage permanence
 - □ High end

- Essentially never loses bits
- e.g., mask-programmed ROM
- Middle range
 - Holds bits days, months, or years after memory's power source turned off
 - e.g., NVRAM
- □ Lower range
 - Holds bits as long as power supplied to memory
 - e.g., SRAM
- Low end
 - Begins to lose bits almost immediately after written
 - e.g., DRAM
- Nonvolatile memory
 - Holds bits after power is no longer supplied
 - □ High end and middle range of storage permanence

Multimedia SoC Design


ROM: "Read-Only" Memory

- Nonvolatile memory
- Can be read from but not written to, by a processor in an embedded system
- Traditionally written to, "programmed," before inserting to embedded system
- Uses
 - Store software program for general-purpose processor
 - Store constant data needed by system
 - Implement combinational circuits


Multimedia SoC Design

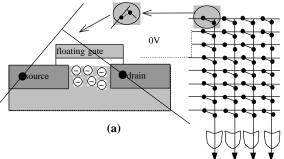
ROM: "Read-Only" Memory

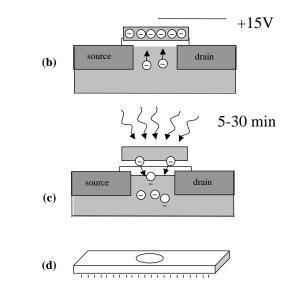
Mask-Programmed ROM

- Connections "programmed" at fabrication
 Set of masks
- Lowest write ability
 - □ Only once
- Highest storage permanence
 - □ Bits never change unless damaged
- Typically used for final design of high-volume systems
 - Spread out NRE cost for a low unit cost

Multimedia SoC Design

OTP ROM: One-Time Programmable ROM


- Connections "programmed" after manufacture by user
 - Use a machine called ROM programmer
 - Each programmable connection is a fuse
 - ROM programmer blows fuses where connections should not exist
- Very low write ability
 - □ Typically written only once and requires ROM programmer device
- Very high storage permanence
 - Bits don't change unless reconnected to programmer and more fuses blown
- Commonly used in final products
 - □ Cheaper, harder to inadvertently modify

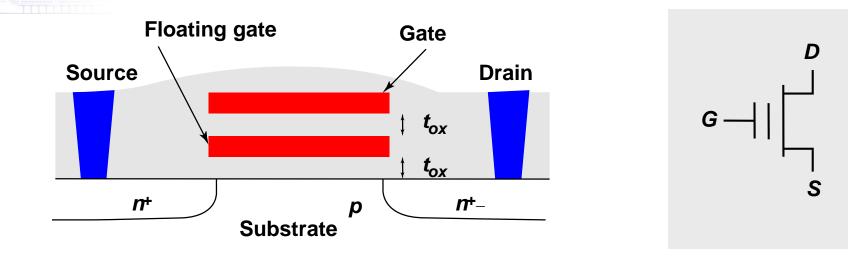


EPROM: Erasable Programmable ROM Programmable component is a

MOS transistor

- Transistor has *floating gate* surrounded by an insulator
- (a) Negative charges form a channel between source and drain storing a logic 1
- (b) Large positive voltage at gate causes negative charges to move out of channel and get trapped in floating gate storing a logic 0
- (c) (Erase) Shining UV rays on surface of floating-gate causes negative charges to return to channel from floating gate restoring the logic 1
- (d) An EPROM package showing quartz window through which UV light can pass

EPROM: Erasable Programmable ROM

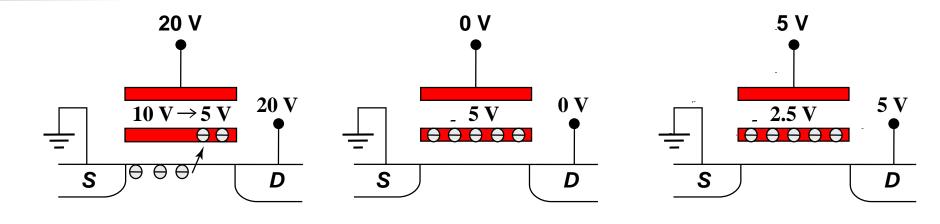

- Better write ability
 - Can be erased and reprogrammed thousands of times
- Reduced storage permanence

Program lasts about 10 years but is susceptible to radiation and electric noise

Typically used during design development

Non-Volatile Memories The Floating-Gate Transistor (FAMOS)

Device cross-section


Schematic symbol

Source: J. M. Rabaey, A. Chandrakasan, and B. Nikolic, *Digital Integrated Circuits*, 2nd Ed., Prentice Hall, 2003.

Multimedia SoC Design

Floating-Gate Transistor Programming

Avalanche injection

Removing programming voltage leaves charge trapped

Programming results in higher V_T .

Source: J. M. Rabaey, A. Chandrakasan, and B. Nikolic, *Digital Integrated Circuits*, 2nd Ed., Prentice Hall, 2003.

Multimedia SoC Design

EEPROM: Electrically Erasable ROM

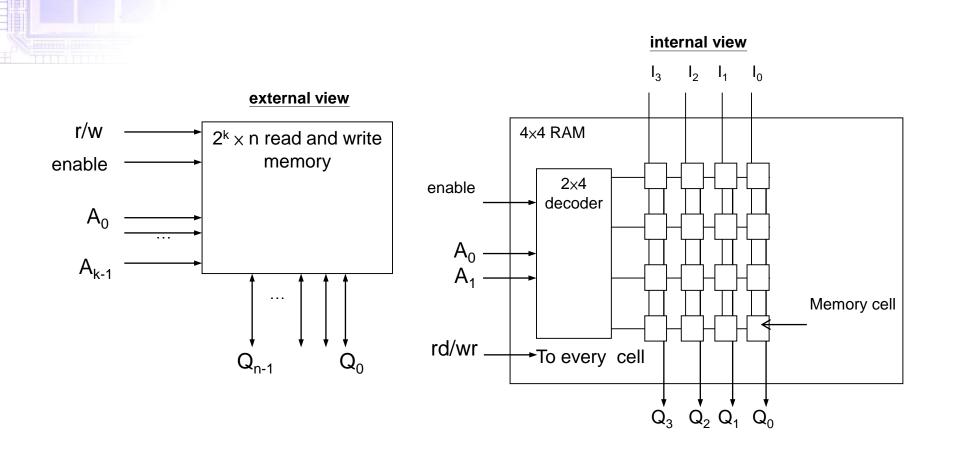
- Programmed and erased electronically
 - Typically by using higher than normal voltage
 - Can program and erase individual words
- Better write ability
 - Can be in-system programmable with built-in circuit to provide higher than normal voltage
 - Built-in memory controller commonly used to hide details from memory user
 - □ Writes very slowly due to erasing and programming
 - "Busy" pin indicates to processor EEPROM still writing
 - Can be erased and programmed tens of thousands of times
- Similar storage permanence to EPROM (about 10 years)
- Far more convenient than EPROMs, but more expensive

Multimedia SoC Design

Flash Memory

- Extension of EEPROM
 - Same floating gate principle
 - Same write ability and storage permanence
- Fast erase
 - Large blocks of memory erased at once, rather than one word at a time
 - Blocks typically several thousand bytes large
- Writes to single words may be slower
 - Entire block must be read, word updated, then entire block written back
- Used with embedded systems storing large data items in nonvolatile memory

e.g., Digital cameras, TV set-top boxes, cell phones
 Multimedia SoC Design
 Shao-Yi Chien

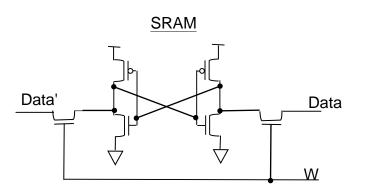


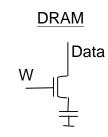
RAM: "Random-Access" Memory

- Typically volatile memory
 - □ Bits are not held without power supply
- Read and written easily by embedded system during execution
- Internal structure is more complex than ROM
 - □ A word consists of several memory cells, each storing 1 bit
 - Each input and output data line connects to each cell in its column
 - □ Rd/wr connected to every cell
 - When row is enabled by decoder, each cell has logic that stores input data bit when rd/wr indicates write or outputs stored bit when rd/wr indicates read

RAM: "Random-Access" Memory

Basic Types of RAM


- SRAM: Static RAM
 - Memory cell uses latch to store bit
 - Requires 6 transistors
 - Holds data as long as power supplied
- DRAM: Dynamic RAM
 - Memory cell uses MOS transistor and capacitor to store bit
 - More compact than SRAM
 - "Refresh" is required due to capacitor leak
 - Word's cells refreshed when read
 - Typical refresh rate 15.625 microsec.


Shao-Yi Chien

Slower to access than SRAM

Multimedia SoC Design

RAM Variations

PSRAM: Pseudo-static RAM

- DRAM with built-in memory refresh controller
- Popular low-cost high-density alternative to SRAM

NVRAM: Nonvolatile RAM

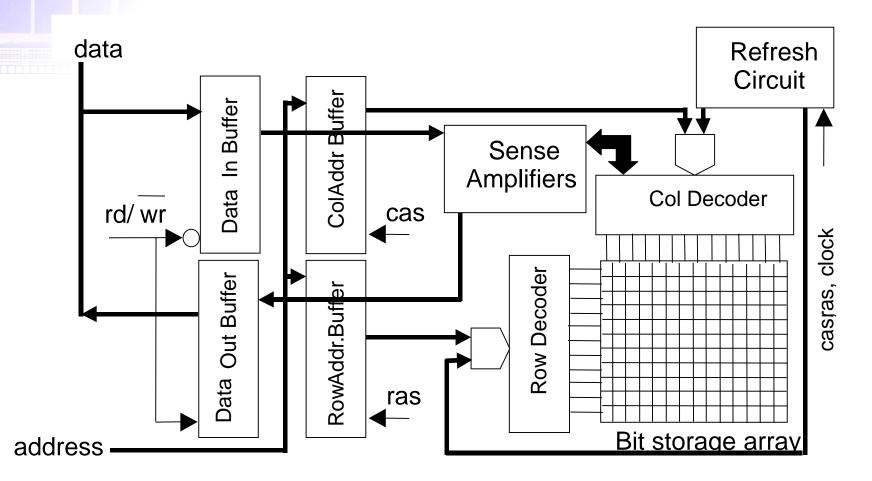
- Holds data after external power removed
- Battery-backed RAM
 - SRAM with its own permanently connected battery
 - Many NVRAMs have batteries that can last for 10 years
 - Writes as fast as reads
 - No limit on number of writes unlike nonvolatile ROM-based memory
- SRAM with EEPROM or flash
 - Stores complete RAM contents on EEPROM or flash before power turned off

Advanced RAM

- DRAMs are commonly used as main memory in processor based embedded systems
 - □ High capacity, low cost
- Many variations of DRAMs proposed
 - □ Need to keep pace with processor speeds
 - □ FPM DRAM: fast page mode DRAM
 - □ EDO DRAM: extended data out DRAM
 - SDRAM/ESDRAM: synchronous and enhanced synchronous DRAM
 - □ RDRAM: rambus DRAM

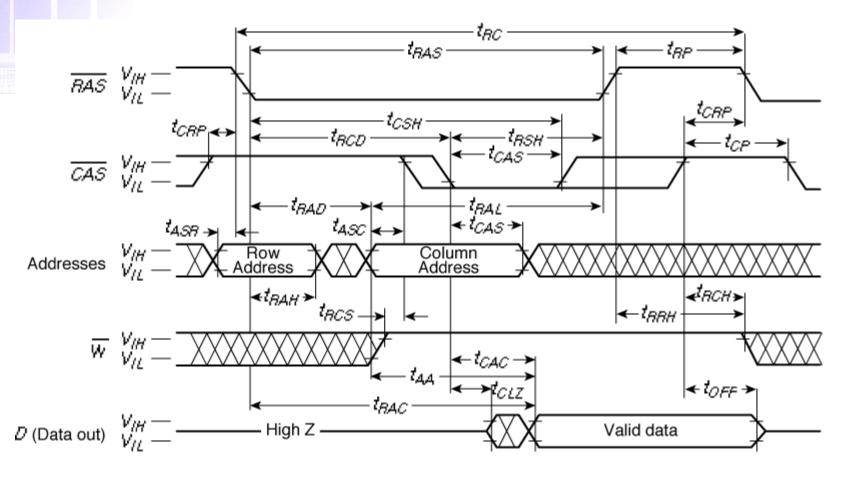
Multimedia SoC Design

Basic DRAM


 Address bus multiplexed between row and column components

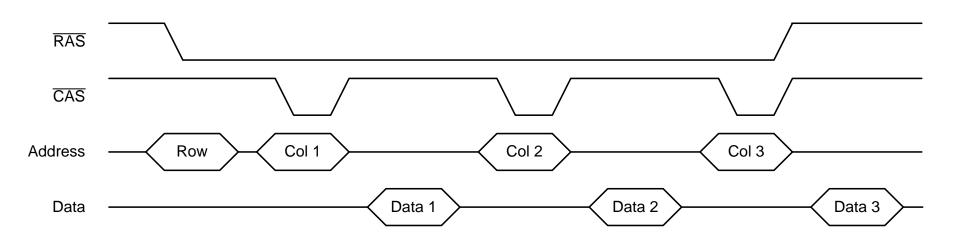
- Row and column addresses are latched in, sequentially, by strobing ras and cas signals, respectively
- Refresh circuitry can be external or internal to DRAM device
 - Strobes consecutive memory address periodically causing memory content to be refreshed
 - Refresh circuitry disabled during read or write operation

Multimedia SoC Design



Basic DRAM

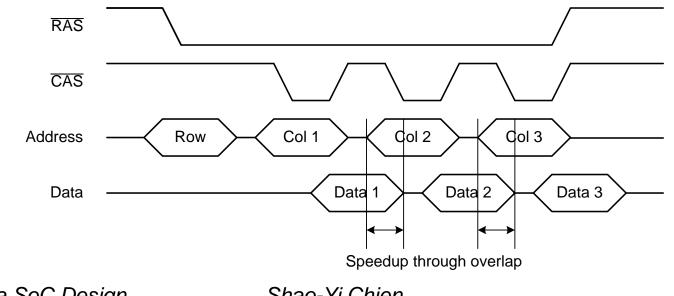
Basic DRAM


Source: J. M. Rabaey, A. Chandrakasan, and B. Nikolic, *Digital Integrated Circuits*, 2nd Ed., Prentice Hall, 2003. *Multimedia SoC Design* Shao-Yi Chien

Fast Page Mode DRAM (FPM DRAM)

- Each row of memory bit array is viewed as a page
- Page contains multiple words
- Individual words addressed by column address
- Timing diagram on the next slide:
 - □ Row (page) address sent
 - □ 3 words read consecutively by sending column address for each
- Extra cycle eliminated on each read/write of words from the same page

Fast Page Mode DRAM (FPM DRAM)


Extended Data Out DRAM (EDO DRAM)

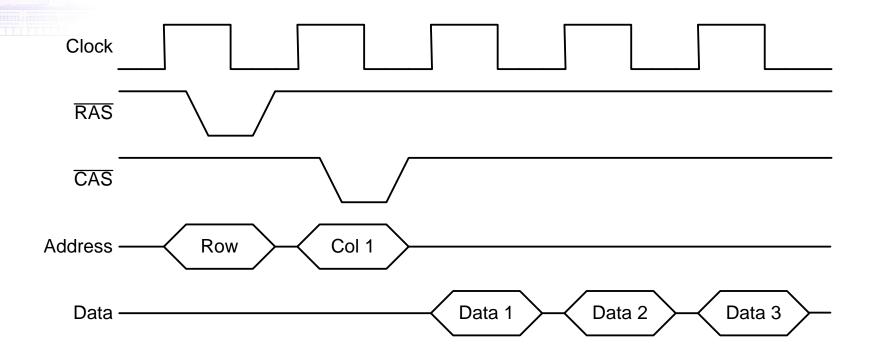
Improvement of FPM DRAM

Extra latch before output buffer

Allows strobing of cas before data read operation completed

Reduces read/write latency by additional cycle

Multimedia SoC Design



(S)ynchronous and Enhanced Synchronous (ES) DRAM

- SDRAM latches data on active edge of clock
- Eliminates time to detect ras/cas and rd/wr signals
- A counter is initialized to column address then incremented on active edge of clock to access consecutive memory locations
- ESDRAM improves SDRAM
 - Added buffers enable overlapping of column addressing
 - □ Faster clocking and lower read/write latency possible

SDRAM Timing

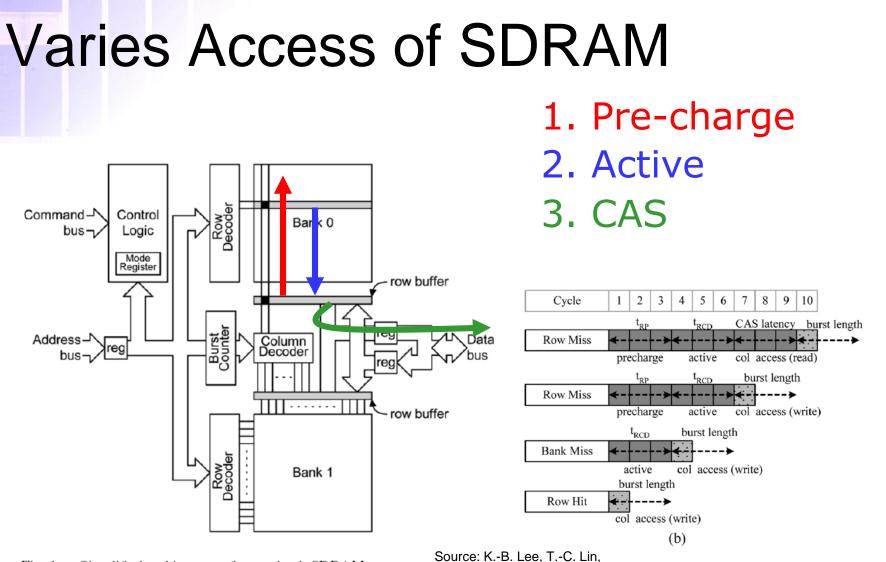
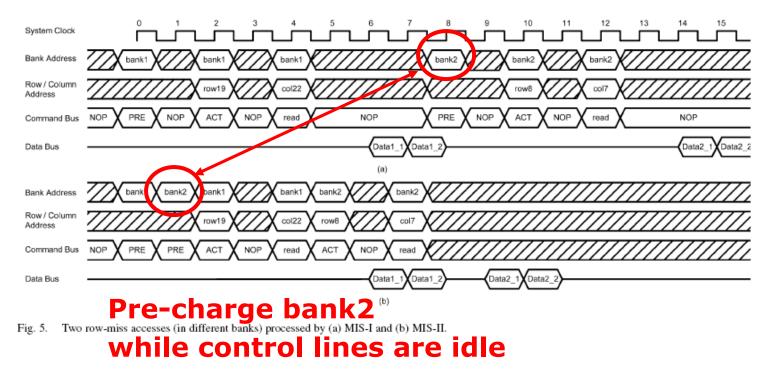


Fig. 1. Simplified architecture of a two-bank SDRAM.

Multimedia SoC Design

multimedia platform SoC," IEEE CSVT, May 2005. Shao-Yi Chien

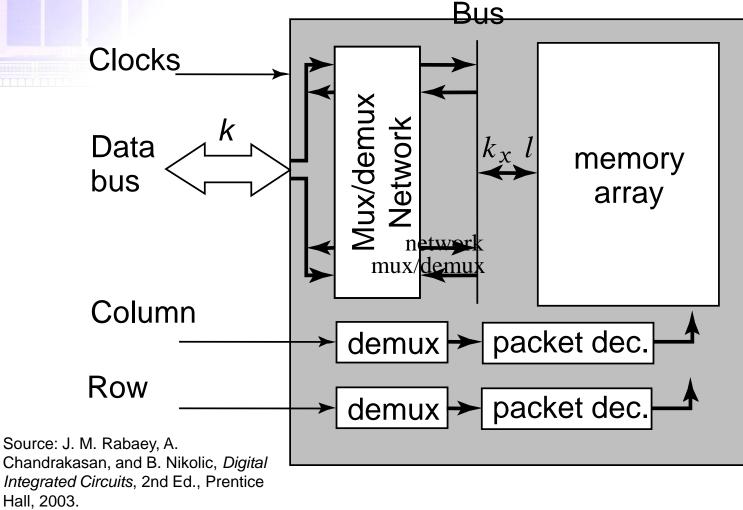

and C.-W. Jen, "An efficient quality-aware memory controller for

32

Bank Interleave

Different banks can operate concurrently

Source: K.-B. Lee, T.-C. Lin, and C.-W. Jen, "An efficient quality-aware memory controller for multimedia platform SoC," IEEE CSVT, May 2005. *Multimedia SoC Design* 33



Rambus DRAM (RDRAM)

- More of a bus interface architecture than DRAM architecture
- Data is latched on both rising and falling edge of clock (300MHz)
- Broken into 4 banks each with own row decoder
 Can have 4 pages open at a time
- Multiple open page scheme
- Capable of very high throughput

RDRAM Architecture

Multimedia SoC Design

DRAM Integration Problem

SRAM is easily integrated on the same chip

 \Box Ex. processor

DRAM is more difficult

Different chip making process between DRAM and conventional logic

□ Goal of conventional logic (IC) process:

- Minimize parasitic capacitance to reduce signal propagation delays and power consumption
- □ Goal of DRAM process:
 - Create capacitor cells to retain stored information
- □ Integration processes: embedded DRAM

Emerging NVM

PCM (PRAM)
MRAM, STT-RAM
FeRAM

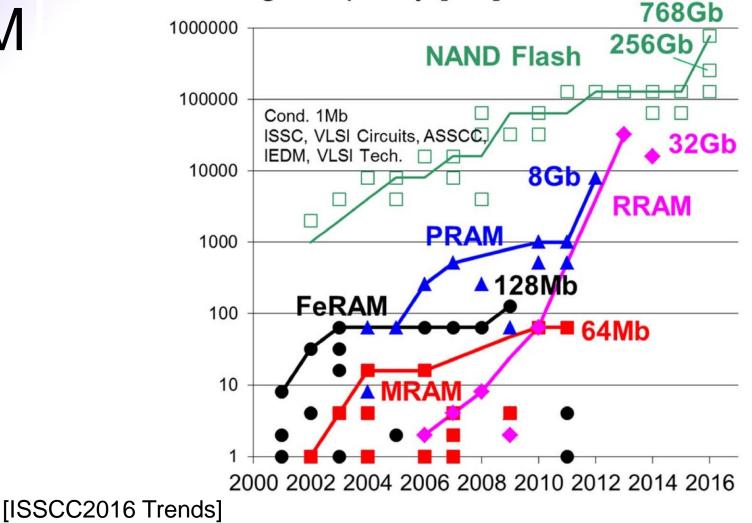
3D XPoint

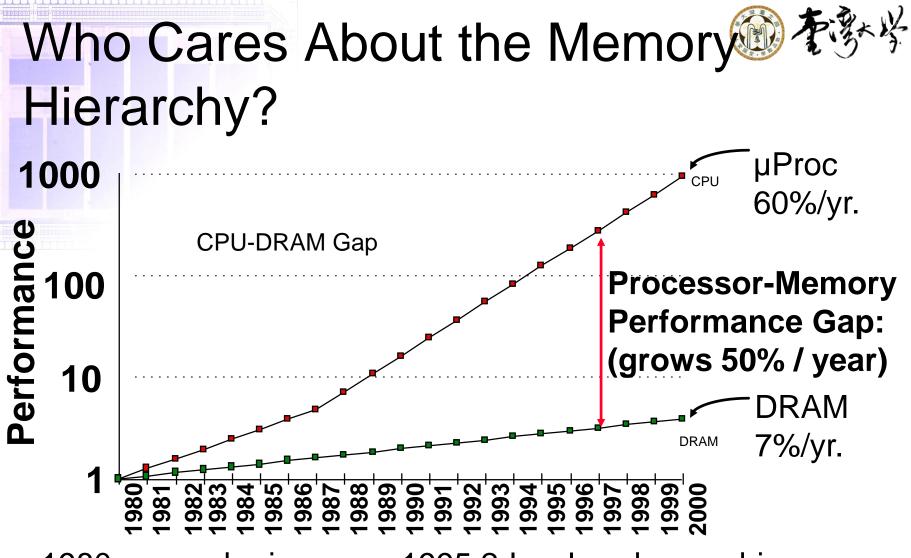
Emerging NVM

Features	FeRAM	MRAM	STT-RAM	РСМ
Cell size (F ²)	Large, approximately 40 to 20	Large, approximately 25	Small, approximately 6 to 20	Small, approximately 8
Storage mechanism	Permanent polarization of a ferroelectric material (PZT or SBT)	Permanent magnetization of a ferromagnetic material in a MTJ	Spin-polarized current applies torque on the magnetic moment	Amorphous/polycrystal phases of chalcogenide alloy
Read time (ns)	20 to 80	3 to 20	2 to 20	20 to 50
Write/erase time (ns)	50/50	3 to 20	2 to 20	20/30
Endurance	10 ¹²	>10 ¹⁵	>10 ¹⁶	10 ¹²
Write power	Mid	Mid to high	Low	Low
Nonvolatility	Yes	Yes	Yes	Yes
Maturity	Limited production	Test chips	Test chips	Test chips
Applications	Low density	Low density	High density	High density

Jagan Singh Meena, Simon Min Sze, Umesh Chand and Tseung-Yuen Tseng, "Overview of emerging nonvolatile memory technologies," *Nanoscale Research Letters*, 2014, 9:526.

Multimedia SoC Design


Emerging NVM



Emerging NVM

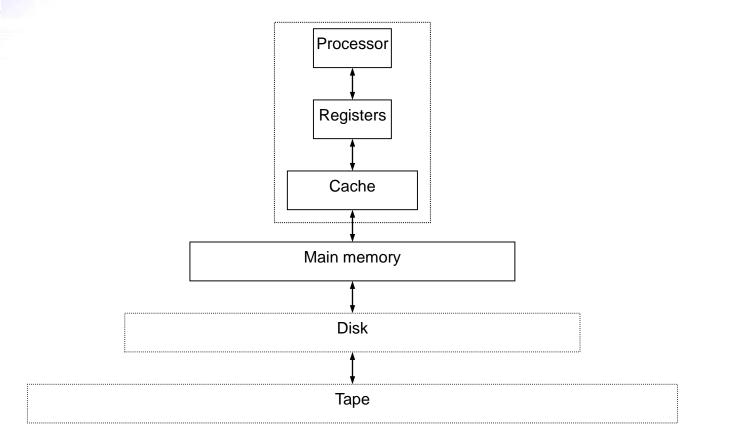
Storage Capacity [Mb]

Multimedia SoC Design

 1980: no cache in µproc; 1995 2-level cache on chip (1989 first Intel µproc with a cache on chip)

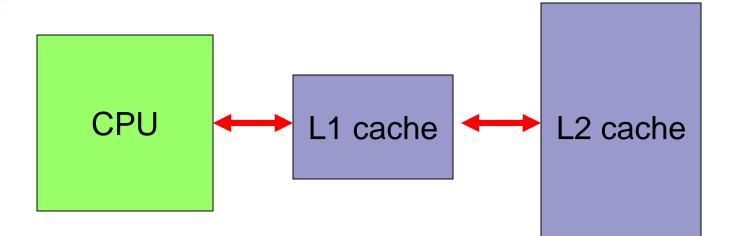
Source: J. L. Hennessy and D. A. Patterson, Ch. 5, *Computer Architecture: a Quantitative Approach*, 3rd Ed., Morgan Kaufmann, 2003.

Multimedia SoC Design


Memory Hierarchy

- Microprocessor clock rates are increasing at a faster rate than memory speeds
- Want inexpensive, fast memory
- Main memory
 - Large, inexpensive, slow memory stores entire program and data
- Cache
 - Small, expensive, fast memory stores copy of likely accessed parts of larger memory
 - Can be multiple levels of cache
 - □ Increase the average performance of the memory system
- Local buffer/scratchpad
 - Like cache
 - Sometimes used in dedicated hardware accelerators

Multimedia SoC Design

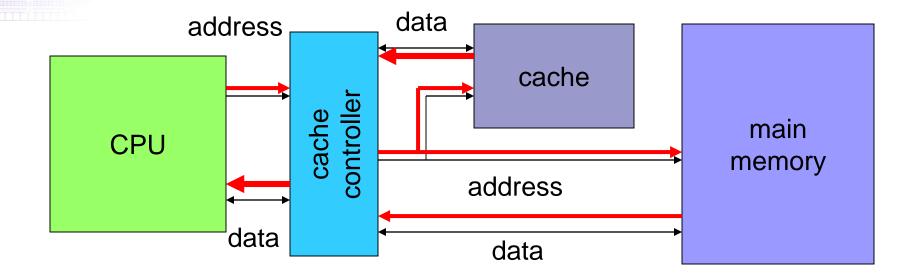

Memory Hierarchy

Multimedia SoC Design

Multiple Levels of Cache

Cache

- A cache is a small, fast memory that holds copies of some of the contents of main memory
- Useful when the CPU is using only a relatively small set of memory locations (working set)
- Usually designed with SRAM
 - □ Faster but more expensive than DRAM
- Usually on the same chip as processor
 - □ Space limited, so much smaller than off-chip main memory
 - □ Faster access (1 cycle vs. several cycles for main memory)
- Cache controller is required
- Several cache design choices
 - □ Cache mapping, replacement policies, and write techniques


Cache Operation

- Many main memory locations are mapped onto one cache entry
- May have caches for:
 - □ instructions;
 - □ data;
 - □ data + instructions (**unified**)
- Memory access time is no longer deterministic
- Request for main memory access (read or write)
- First, check cache for copy
 - Cache hit
 - Copy is in cache, quick access
 - Cache miss
 - Copy not in cache, read address and possibly its neighbors into cache

Multimedia SoC Design

Caches and CPUs

Types of Misses

Compulsory (cold): location has never been accessed.

Capacity: working set is too large.

Conflict: multiple locations in working set map to same cache entry.

Memory System Performance

h = cache hit rate.

- t_{cache} = cache access time, t_{main} = main memory access time.
- Average memory access time:

 $\Box t_{av} = ht_{cache} + (1-h)t_{main}$

Multi-Level Cache Access Time

- $h_1 = cache hit rate.$
- h_2 = rate for miss on L1, hit on L2.
- Average memory access time:
 - $\Box t_{av} = h_1 t_{L1} + h_2 t_{L2+} (1 h_2 h_1) t_{main}$

Cache Mapping

Far fewer number of available cache addresses

- Are address' contents in cache?
- Cache mapping is used to assign main memory address to cache address and determine hit or miss

Three basic techniques:

- Direct mapping
- Fully associative mapping
- Set-associative mapping
- Caches are partitioned into indivisible cache blocks or cache lines of adjacent memory addresses
 - □ Usually 4 or 8 addresses per line

Multimedia SoC Design

Direct Mapping

Main memory address is divided into 2 fields

Index

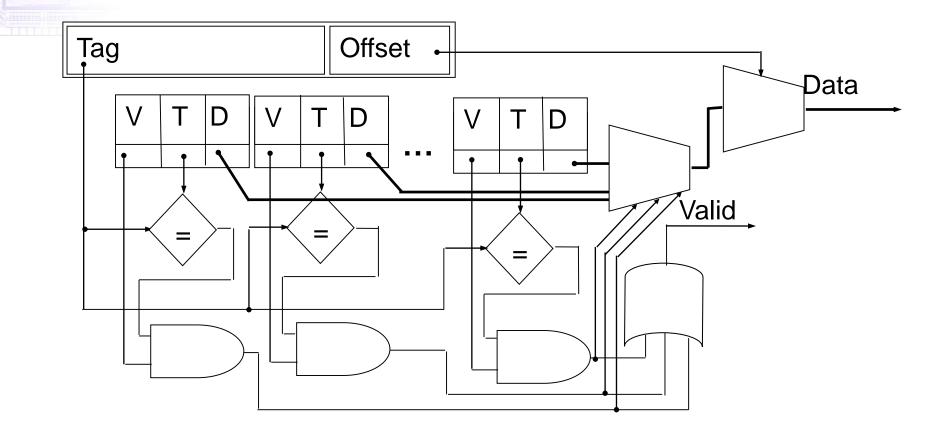
- Cache address
- Number of bits determined by cache size
- 🗆 Tag
 - Compared with tag stored in cache at address indicated by index
 - If tags match, check valid bit
- Valid bit
 - □ Indicates whether data in slot has been loaded from memory
- Offset
 - Used to find particular word in cache line

Multimedia SoC Design

Direct Mapping

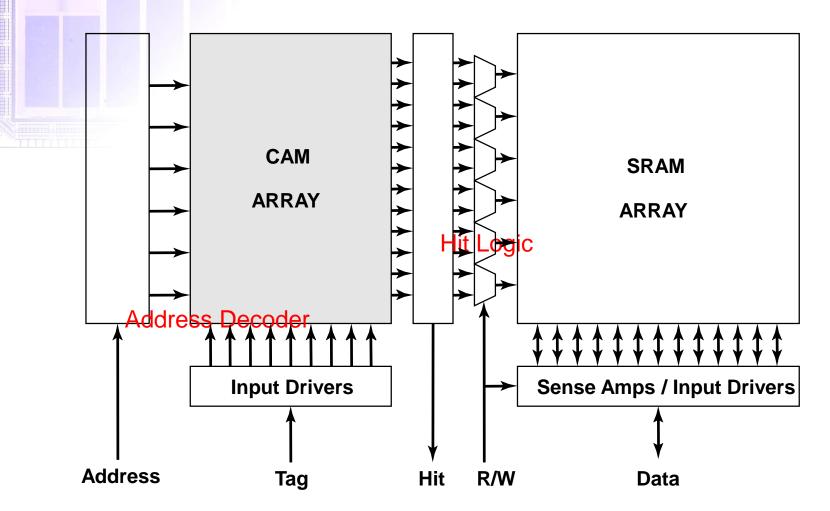
lid gata V T D offset Data Data

V: Valid T: Tag D: Data



Fully Associative Mapping

- Complete main memory address stored in each cache address
- All addresses stored in cache simultaneously compared with desired address
 - Can also be implemented with CAM (contentaddressable memory)
- Valid bit and offset are the same as direct mapping

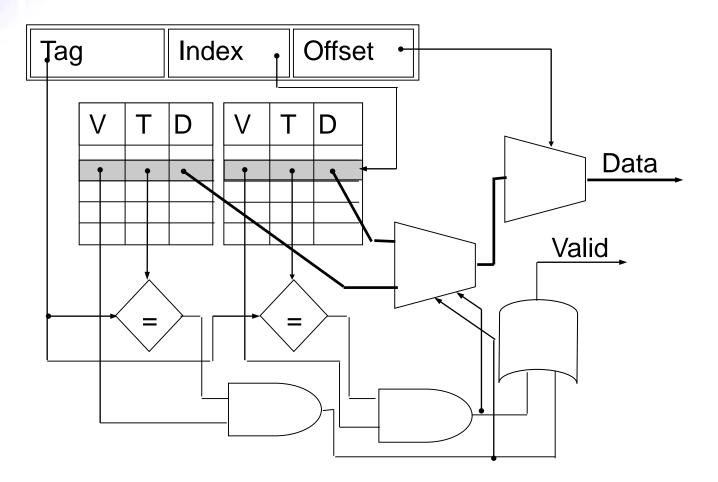


Fully Associative Mapping

CAM in Cache Memory

Source: J. M. Rabaey, A. Chandrakasan, and B. Nikolic, *Digital Integrated Circuits*, 2nd Ed., Prentice Hall, 2003.

Multimedia SoC Design



Set-Associative Mapping

- Compromise between direct mapping and fully associative mapping
- Index is the same as in direct mapping
- But, each cache address contains content and tags of 2 or more memory address locations
- Tags of that set simultaneously compared as in fully associative mapping
- Cache with set size N called N-way set-associative
 2-way, 4-way, 8-way are common

Set-Associative Mapping

Cache-Replacement Policy

Technique for choosing which block to replace

- □ When fully associative cache is full
- □ When set-associative cache's line is full
- Direct mapped cache has no choice
- Random
 - Replace block chosen at random
- LRU: least-recently used

Replace block not accessed for longest time

- FIFO: first-in-first-out
 - Push block onto queue when accessed
 - Choose block to replace by popping queue

Multimedia SoC Design

Cache Write Techniques

When written, data cache must update main memory

Write-through

i in

- □ Write to main memory whenever cache is written to
- Easiest to implement
- Processor must wait for slower main memory write
- Potential for unnecessary writes

Write-back

- □ Main memory only written when "dirty" block replaced
- Extra **dirty bit** for each block set when cache block written to
- Reduces number of slow main memory writes

Example: Direct-mapped vs. Set-Associative

address	data
000	0101
001	1111
010	0000
011	0110
100	1000
101	0001
110	1010
111	0100

Direct-Mapped Cache Behavior

After 001 access:		After 010 access:			
block	tag	data	block	tag	data
00	-	-	00	-	-
01	0	1111	01	0	1111
10	-	-	10	0	0000
11	-	-	11	-	-

Direct-Mapped Cache Behavior

After 011 access:		After 100 access:			
block		data	block		data
	tag	uala		tag	
00	-	-	00	1	1000
01	0	1111	01	0	1111
10	0	0000	10	0	0000
11	0	0110	11	0	0110

Direct-Mapped Cache Behavior

After 101 access:		After 111 access:			
block	tag	data	block	tag	data
00	1	1000	00	1	1000
01	1	0001	01	1	0001
10	0	0000	10	0	0000
11	0	0110	11	1	0100

2-Way Set-Associative Cache Behavior

Final state of cache (twice as big as directmapped): set blk 0 tag blk 0 data blk 1 tag blk 1 data 00 1 1000 1111 1 $01 \ 0$ 0001 10 0 0000 0110 11 0 1 0100

2-Way Set-Associative Cache Behavior

Final state of cache (same size as directmapped): set blk 0 tag blk 1 tag blk 0 data blk 1 data 01 0000 10 1000 \mathbf{O} 1 10 0111 11 0100

Example Caches

StrongARM:

- 16 Kbyte, 32-way, 32-byte block instruction cache.
- 16 Kbyte, 32-way, 32-byte block data cache (write-back).

SHARC:

□ 32-instruction, 2-way instruction cache.

Cache Impact on System Performance

- Most important parameters in terms of performance:
 - Total size of cache
 - Total number of data bytes cache can hold
 - Tag, valid and other house keeping bits not included in total
 - Degree of associativity
 - Data block size
- Larger caches achieve lower miss rates but higher access cost
 - □ e.g.,
 - 2 Kbyte cache: miss rate = 15%, hit cost = 2 cycles, miss cost = 20 cycles
 avg. cost of memory access = (0.85 * 2) + (0.15 * 20) = 4.7 cycles
 - 4 Kbyte cache: miss rate = 6.5%, hit cost = 3 cycles, miss cost will not change
 - □ avg. cost of memory access = (0.935 * 3) + (0.065 * 20) = 4.105 cycles

(improvement)

8 Kbyte cache: miss rate = 5.565%, hit cost = 4 cycles, miss cost will not change
 avg. cost of memory access = (0.94435 * 4) + (0.05565 * 20) = 4.8904 cycles

(worse) Multimedia SoC Design

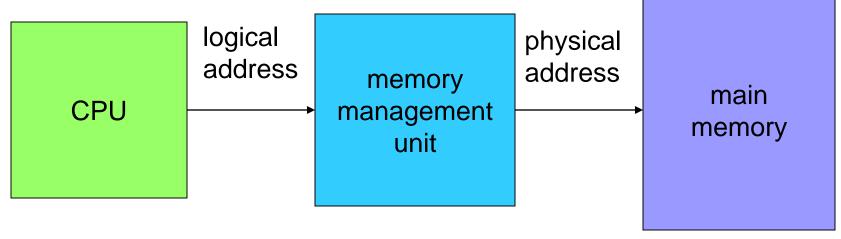


Cache Performance Trade-Offs

Improving cache hit rate without increasing size

□ Increase line size

□ Change set-associativity



Multimedia SoC Design

Memory Management Units

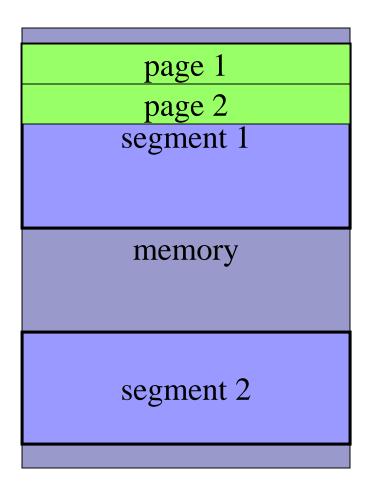
Memory management unit (MMU) translates addresses:

(Hardware page-table walker)

Memory Management Tasks

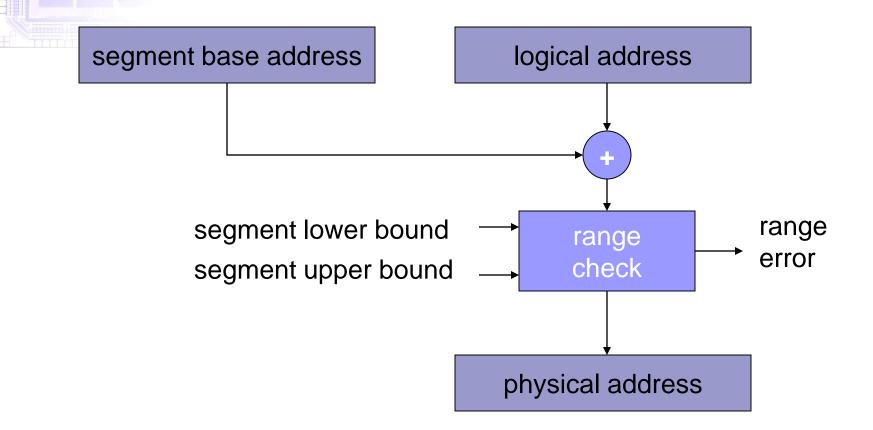
- Allows programs to move in physical memory during execution
- Allow software to manage multiple programs in a single physical memory, each with its own address space
- Allows virtual memory:
 - Memory images kept in secondary storage;
 - Images returned to main memory on demand during execution.

Page fault: MMU generates an exception when requesting for location not resident in memory. Multimedia SoC Design
Shao-Yi Chien

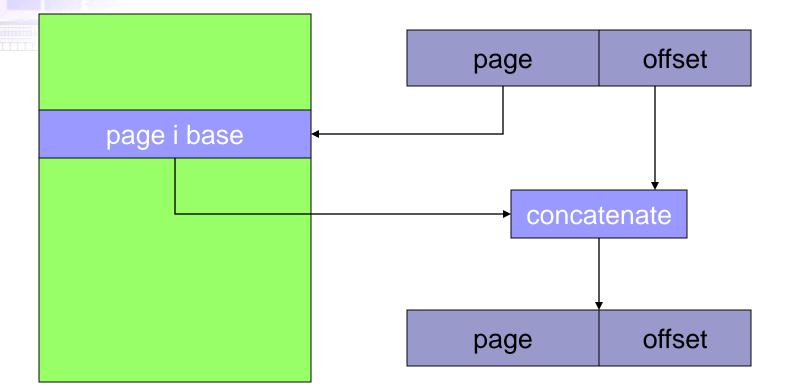


Address Translation

- Requires some sorts of register/table to allow arbitrary mappings of logical to physical addresses.
- Two basic schemes:
 - Segmented: arbitrary size, described by its start address and size
 - Paged: uniform size, which simplifies the hardware required for address translation
 - Can support **fragmentation** for a program
- Segmentation and paging can be combined (x86): divide each segment into pages and using two steps for address translation

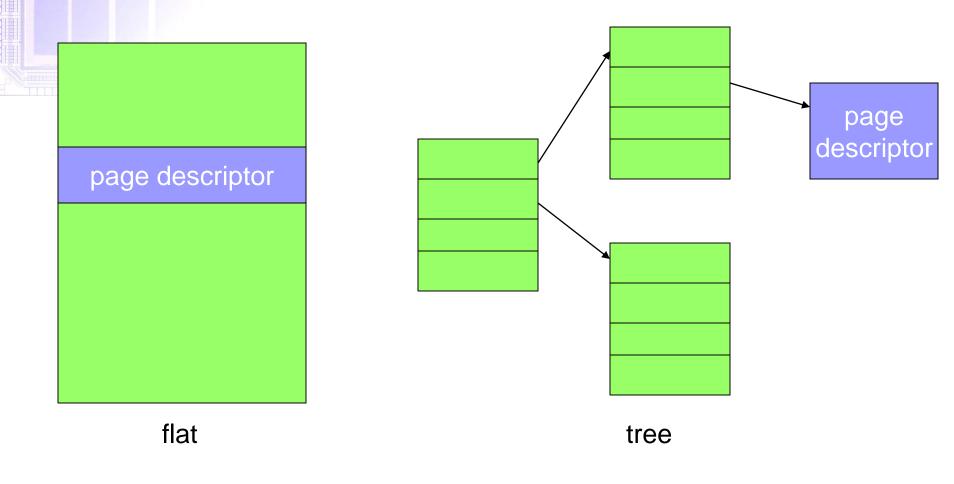

Segments and Pages

Multimedia SoC Design



Segment Address Translation

Page Address Translation


Do not need to check the boundary Typical page size: 512 bytes to 4K bytes Shao-Yi Chien

Multimedia SoC Design

75

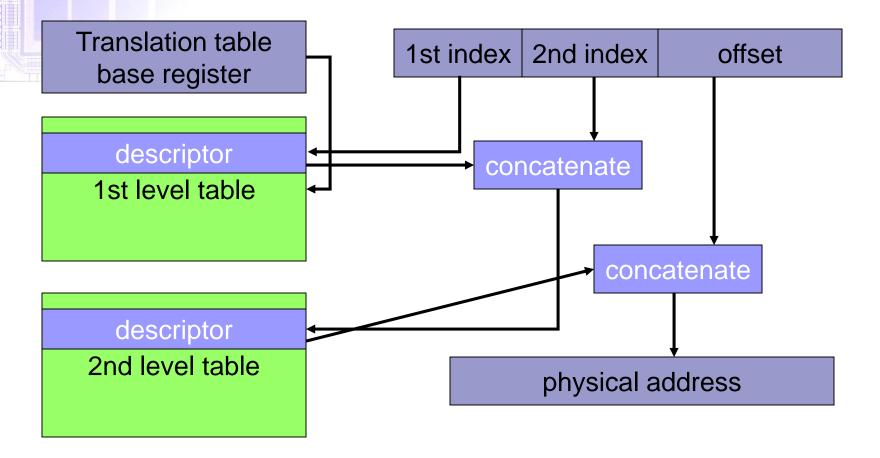
Page Table Organizations

Caching Address Translations

 Large translation tables require main memory access.

TLB: translation lookaside buffer, cache for address translation.

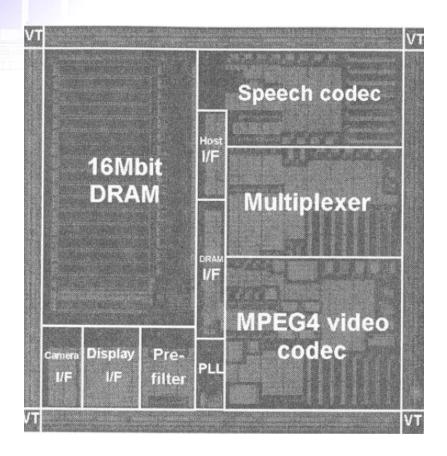
Typically small


ARM Memory Management

Memory region types:
 Section: 1 Mbyte block;
 Large page: 64 kbytes;
 Small page: 4 kbytes.

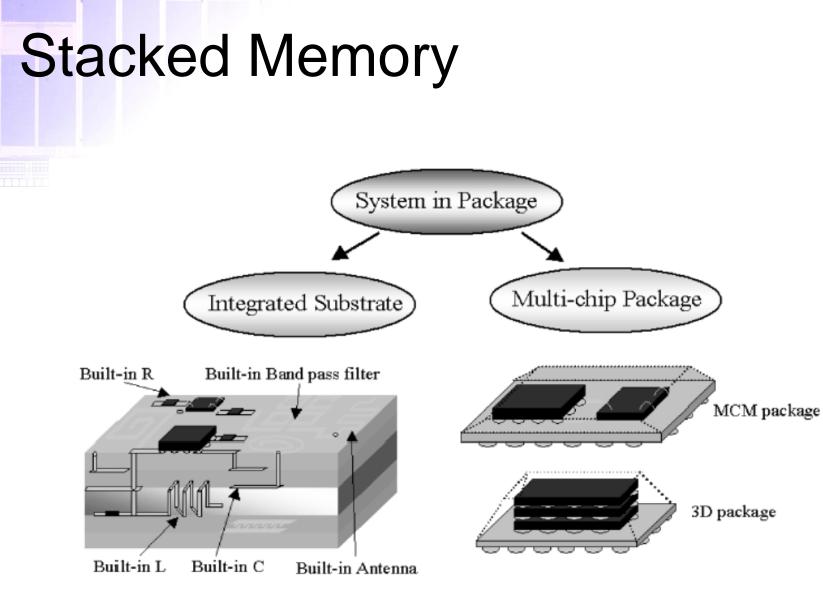
- An address is marked as section-mapped or page-mapped.
- Two-level translation scheme.

ARM Address Translation



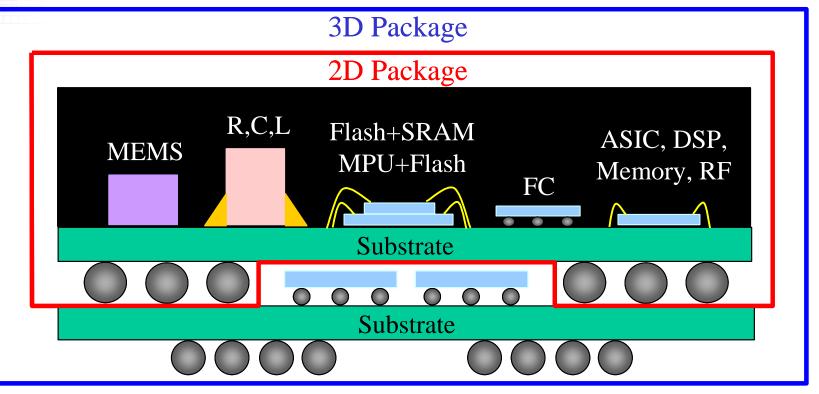
New Memory Packaging in SoC

- Embedded DRAM
- Stacked memory
 - □ Known good die (KGD)
- System in Package, silicon interposer
- 3D-IC
- Wide I/O, HBM, HMC


Embedded DRAM

Source: T. Nishikawa et al., "A 60MHz 240mW MPEG-4 Video-Phone LSI with 16Mb Embedded DRAM," *ISSCC2000*.

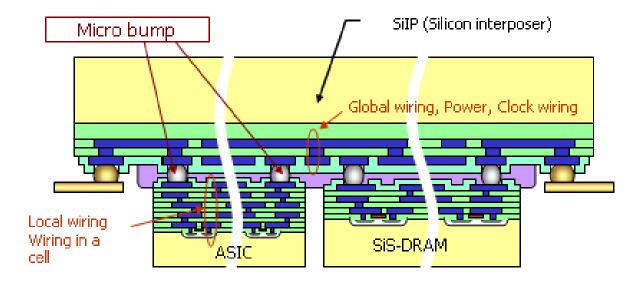
Multimedia SoC Design



Multimedia SoC Design

Stacked Memory

Source: 鉅景科技; 工研院IEK-ITIS 計畫(2003/06)


Multimedia SoC Design

System in Silicon

SiS (System-in-Silicon) architecture

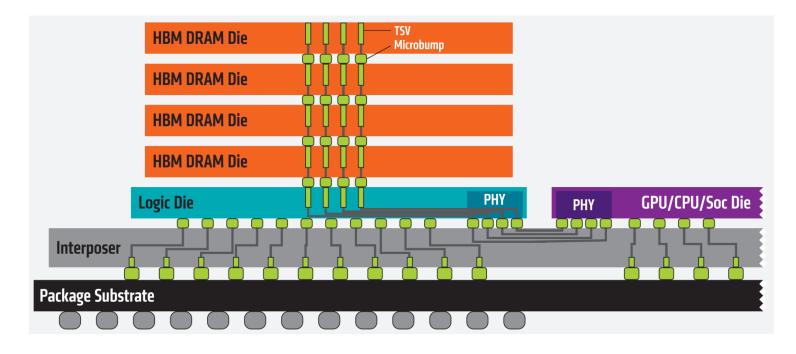
- an applied technology of silicon interposer(SiIP) and micro bump
- SoC design methodology + Multichip fabrication

Source: System Fabrication Technologies (SFT)

New Standards

Wide I/O, HBM, HMC

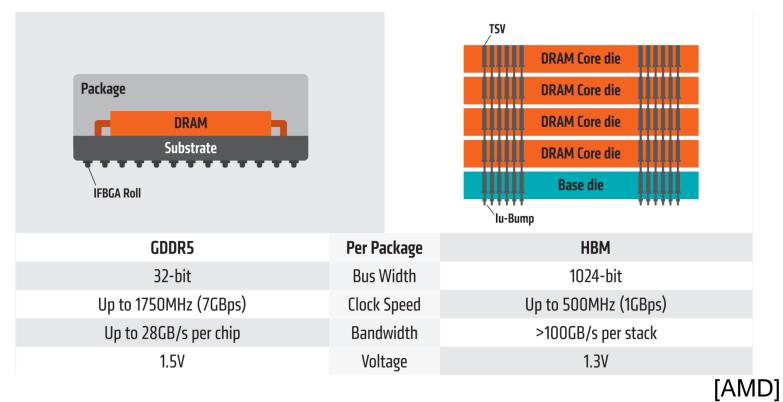
http://www.extremetech.com/computing /197720-beyond-ddr4-understand-thedifferences-between-wide-io-hbm-andhybrid-memory-cube/2


Multimedia SoC Design

Memory	DDR3/4	LPDDR3/4	Wide IOn	НМС	НВМ
Applications	PCs, laptops, servers, enterprise, consumer, embedded	Smartphones, feature phones, tablets, mobile electronics	High end smartphones	High end servers, high end enterprise	Graphics, computing
JEDEC Standard	Yes	Yes	Yes	No	Yes
DRAM Interface	Traditional parallel interface, single ended, bidirectional strobes, separate clock, etc.	Traditional parallel interface, single ended, bidirectional strobes, separate clock, etc.	Wide parallel interface. Signaling is similar to SDRAM. Wide IO is SDR, Wide IO2 is DDR.	Chip to chip SERDES interface.	Wide parallel, multi- channel interface. DDR signaling.
Interface Voltage (V)	DDR3: 1.5, 1.35, 1.25 DDR4: 1.2	LPDDR3: 1.2 LPDDR4: 1.1	Wide IO: 1.2 Wide IO2: 1.2	1.2	1.2
Interface Width (bits)	4-72	16, 32, 64	Wide IO: 512 Wide IO2: 256, 512	Up to 4 links with up to 16 lanes each	128 per channel, up to 8 independent channels (1024 max)
Max. Speed (Data Rate per pin in Mbps)	DDR3 up to 2133 DDR4 up to 3200	LPDDR3 up to 2133 LPDDR4 up to 3200, possible plan to 4266	Wide IO up to 266 Wide IO2 up to 1066	10, 12.5 or 15 Gbps (SerDes)	Up to 2000
Maximum Bandwidth (GBps)	64-bit DDR3 up to 17 64-bit DDR4 up to 25.6	64-bit LPDDR3 up to 17 64-bit LPDDR4 up to 34	Wide IO up to 17 Wide IO2 up to 68	Up to 240	Up to 256
System Configuration	Typically PCB based connections. Component & DIMMs. SIP	Typically PoP point to point. Some PCB	DRAM stack on top of Apps Processor. Connection via TSVs	Point to point, short reach SERDES. PCB based	2.5D TSV based silicon interposer (SIP)
Notable Features	Familiar interface. No technical barriers, low risk	Familiar interface. No technical barriers, low risk	Relies on TSVs being mature. Mechanical stress, thermal, test, supply chain logistics may be complex.	Special logic die with memory controller at bottom of DRAM stack. Relies on TSVs being mature.	Relies on TSVs being mature. Mechanical stress, thermal, test
Benefits	 Mature infrastructure Mature ecosystem Low risk Low cost 	 Mature infrastructure Mature ecosystem Low risk Low cost 	High bandwidth Bandwidth scalability Power efficiency Compact footprint and form factor	 High bandwidth Bandwidth scalability Power efficiency PCB connectivity between host and DRAM 	 High bandwidth Bandwidth scalability Power efficiency
Challenges	 No longer scalable for speed Signal integrity Customers unprepared for integration challenges 	 No longer scalable for speed Signal integrity Customers unprepared for integration challenges 	Relies on TSVs Supply chain logistics (who does what and who is responsible for what) Thermal and power delivery Test and repair Cost	Relies on TSVs Not a JEDEC standard Cost PHY IP infrastructure	Relies on TSVs Relies on 2.5D interposer Cost PHY IP infrastructure
System Cost	Lowest	Low	High	High	Modest

New Standards

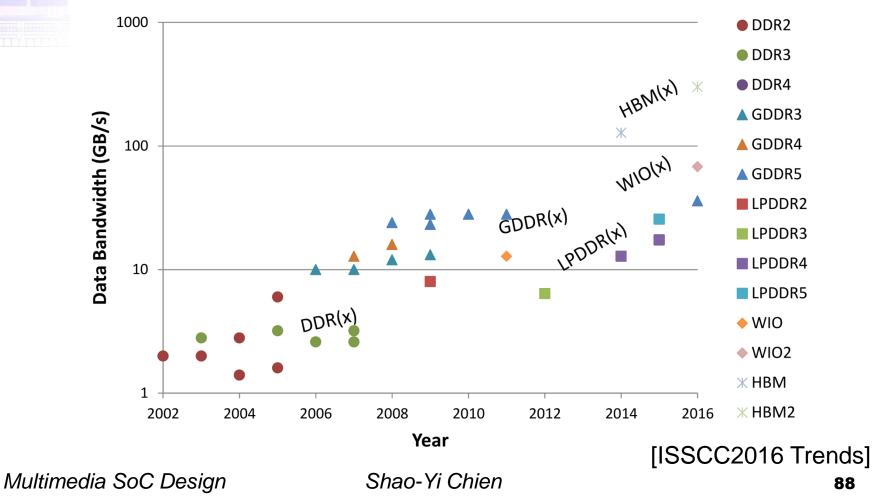
HBM



[AMD]

New Standards

HBM



Multimedia SoC Design

New Standards

Data Bandwidth for DRAM

