
1

Interfacing

Shao-Yi Chien

Multimedia SoC Design Shao-Yi Chien 2

Outline

 Interfacing basics

 uP interfacing: I/O Addressing

 uP interfacing: Interrupts

 uP interfacing: Direct memory access

Arbitration

Hierarchical buses

Multimedia SoC Design Shao-Yi Chien 3

A Simple Bus

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

 Wires:

 Uni-directional or bi-directional

 One line may represent

multiple wires

 Bus

 Set of wires with a single

function

 Address bus, data bus

 Or, entire collection of wires

 Address, data and control

 Associated protocol: rules for

communication

Multimedia SoC Design Shao-Yi Chien 4

Basic Protocol Concepts

 Actor: master initiates, servant (slave) respond

 Direction: sender, receiver

 Addresses: special kind of data
 Specifies a location in memory, a peripheral, or a

register within a peripheral

 Time multiplexing
 Share a single set of wires for multiple pieces of data

 Saves wires at expense of time

Multimedia SoC Design Shao-Yi Chien 5

Example of Time Multiplexing

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer

Multimedia SoC Design Shao-Yi Chien 6

uP Interfacing: I/O Addressing

 A microprocessor communicates with other devices

using some of its pins

 Port-based I/O (parallel I/O)

 Processor has one or more N-bit ports

 Processor’s software reads and writes a port just like a register

 Ex: P0 = 0xFF; v = P1.2; -- P0 and P1 are 8-bit ports (can be

accessed bit by bit)

 Bus-based I/O

 Processor has address, data and control ports that form a single

bus

 Communication protocol is built into the processor

 A single instruction carries out the read or write protocol on the

bus

Multimedia SoC Design Shao-Yi Chien 7

Compromises/Extensions

 Parallel I/O peripheral

 When processor only

supports bus-based I/O but

parallel I/O is needed

 Each port on peripheral

connected to a register

within peripheral that is

read/written by the

processor

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-

based I/O processor

Multimedia SoC Design Shao-Yi Chien 8

Compromises/Extensions

 Extended parallel I/O

 When processor supports

port-based I/O but more

ports are needed

 One or more processor

ports interface with parallel

I/O peripheral extending

total number of ports

available for I/O

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Extended parallel I/O

Multimedia SoC Design Shao-Yi Chien 9

Types of Bus-Based I/O
 Processor talks to both memory and peripherals

using the same bus – two ways to talk to peripherals
 Memory-mapped I/O

 Peripheral registers occupy addresses in the same address space
as memory

 e.g., Bus has 16-bit address

 lower 32K addresses may correspond to memory

 upper 32k addresses may correspond to peripherals

 Standard I/O (I/O-mapped I/O)
 Additional pin (M/IO) on bus indicates whether a memory or

peripheral access

 e.g., Bus has 16-bit address

 all 64K addresses correspond to memory when M/IO set to 0

 all 64K addresses correspond to peripherals when M/IO set to 1

Multimedia SoC Design Shao-Yi Chien 10

Memory-Mapped I/O vs.

Standard I/O
 Memory-mapped I/O

 Requires no special instructions
 Assembly instructions involving memory like MOV and ADD

work with peripherals as well

 Standard I/O requires special instructions (e.g., IN, OUT) to
move data between peripheral registers and memory

 Standard I/O
 No loss of memory addresses to peripherals

 Simpler address decoding logic in peripherals
possible
 When number of peripherals is much smaller than address

space then high-order address bits can be ignored smaller
and/or faster comparators

Multimedia SoC Design Shao-Yi Chien 11

uP Interfacing: Interrupts

 Suppose a peripheral intermittently receives
data, which must be serviced by the processor
 The processor can poll the peripheral regularly to see

if data has arrived – wasteful

 The peripheral can interrupt the processor when it
has data

 Requires an extra pin or pins: Int
 If Int is 1, processor suspends current program, jumps

to an Interrupt Service Routine, or ISR

 Known as interrupt-driven I/O

 Essentially, “polling” of the interrupt pin is built-into
the hardware, so no extra time!

Multimedia SoC Design Shao-Yi Chien 12

uP interfacing: Interrupts

 What is the address (interrupt address vector) of

the ISR?

 Fixed interrupt

 Address built into microprocessor, cannot be changed

 Either ISR stored at address or a jump to actual ISR stored if

not enough bytes available

 Vectored interrupt

 Peripheral must provide the address

 Common when microprocessor has multiple peripherals

connected by a system bus

 Compromise: interrupt address table

Multimedia SoC Design Shao-Yi Chien 13

Interrupt-Driven I/O using Fixed

ISR Location
1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the microprocessor.

3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and sets PC to the ISR fixed location

of 16.

4(a): The ISR reads data from 0x8000,

modifies the data, and writes the resulting

data to 0x8001.

5: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

4(b): After being read, P1 de-

asserts Int.

T
im

e

Multimedia SoC Design Shao-Yi Chien 14

Interrupt-Driven I/O using Fixed

ISR Location

1(a): P is executing its

main program

1(b): P1 receives input data

in a register with address

0x8000.

μP

P1 P2

System

bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Multimedia SoC Design Shao-Yi Chien 15

Interrupt-Driven I/O using Fixed

ISR Location

2: P1 asserts Int to request

servicing by the

microprocessor

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

IntInt

1

Multimedia SoC Design Shao-Yi Chien 16

Interrupt-Driven I/O using Fixed

ISR Location

3: After completing

instruction at 100, P sees

Int asserted, saves the PC’s

value of 100, and sets PC

to the ISR fixed location of

16.

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100100

Multimedia SoC Design Shao-Yi Chien 17

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

Interrupt-Driven I/O using Fixed

ISR Location

4(a): The ISR reads data

from 0x8000, modifies the

data, and writes the

resulting data to 0x8001.

4(b): After being read, P1

deasserts Int.
100

Int
0

P1

System

bus

P1

0x8000

P2

0x8001

Multimedia SoC Design Shao-Yi Chien 18

Interrupt-Driven I/O using Fixed

ISR Location

5: The ISR returns, thus

restoring PC to 100+1=101,

where P resumes

executing.

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Multimedia SoC Design Shao-Yi Chien 19

Interrupt-Driven I/O using

Vectored Interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the microprocessor.3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and asserts Inta.

5(a): μP jumps to the address on the bus

(16). The ISR there reads data from 0x8000,

modifies the data, and writes the resulting

data to 0x8001.

6: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

5(b): After being read, P1

deasserts Int.

T
im

e

4: P1 detects Inta and puts

interrupt address vector 16 on

the data bus.

Multimedia SoC Design Shao-Yi Chien 20

Interrupt-Driven I/O using

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Int
Inta

16

1(a): P is executing its main

program

1(b): P1 receives input data in

a register with address

0x8000.

Multimedia SoC Design Shao-Yi Chien 21

Interrupt-Driven I/O using

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Inta

16

2: P1 asserts Int to request

servicing by the

microprocessor

Int

1

Int

Multimedia SoC Design Shao-Yi Chien 22

Interrupt-Driven I/O using

Vectored Interrupt

3: After completing instruction

at 100, μP sees Int asserted,

saves the PC’s value of 100,

and asserts Inta

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

100100

1
Inta

Multimedia SoC Design Shao-Yi Chien 23

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

Interrupt-Driven I/O using

Vectored Interrupt

100

4: P1 detects Inta and puts

interrupt address vector 16

on the data bus 16

16

System bus

Multimedia SoC Design Shao-Yi Chien 24

Interrupt-Driven I/O using

Vectored Interrupt

5(a): PC jumps to the address

on the bus (16). The ISR

there reads data from 0x8000,

modifies the data, and writes

the resulting data to 0x8001.

5(b): After being read, P1

deasserts Int.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

100

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

P1 P2

0x8000 0x8001

System bus

0

Int

Multimedia SoC Design Shao-Yi Chien 25

Interrupt-Driven I/O using

Vectored Interrupt

6: The ISR returns, thus

restoring the PC to

100+1=101, where the μP

resumes

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Multimedia SoC Design Shao-Yi Chien 26

Interrupt Address Table

 Compromise between fixed and vectored

interrupts

 One interrupt pin

 Table in memory holding ISR addresses (maybe 256

words)

 Peripheral doesn’t provide ISR address, but rather

index into table

 Fewer bits are sent by the peripheral

 Can move ISR location without changing peripheral

Multimedia SoC Design Shao-Yi Chien 27

Jump Table

M
e

m
o

ry
 B

u
s

Processor

Peripheral 1 Peripheral 2

Priority Arbiter

(Interrupt

Controller)

MASK

IDX0

IDX1

ENABLE

DATA

MEMORY

Interrupt Table
 Fixed priority: i.e., Peripheral1

has the highest priority

 Keyword “_at_” followed by

memory address forces

compiler to place variables in

specific memory locations

 e.g., memory-mapped

registers in arbiter (interrupt

controller), peripherals

 A peripheral’s index into

interrupt table is sent to

memory-mapped register in

arbiter (interrupt controller)

 Peripherals receive external

data and raise interrupt

Multimedia SoC Design Shao-Yi Chien 28

Interrupt Table

void main() {

InitializePeripherals();

for(;;) {} // main program goes here

}

unsigned char ARBITER_MASK_REG _at_ 0xfff0;

unsigned char ARBITER_CH0_INDEX_REG _at_ 0xfff1;

unsigned char ARBITER_CH1_INDEX_REG _at_ 0xfff2;

unsigned char ARBITER_ENABLE_REG _at_ 0xfff3;

unsigned char PERIPHERAL1_DATA_REG _at_ 0xffe0;

unsigned char PERIPHERAL2_DATA_REG _at_ 0xffe1;

unsigned void* INTERRUPT_LOOKUP_TABLE[256] _at_ 0x0100;

Multimedia SoC Design Shao-Yi Chien 29

Interrupt Table

void Peripheral1_ISR(void) {

unsigned char data;

data = PERIPHERAL1_DATA_REG;

// do something with the data

}

void Peripheral2_ISR(void) {

unsigned char data;

data = PERIPHERAL2_DATA_REG;

// do something with the data

}

void InitializePeripherals(void) {

ARBITER_MASK_REG = 0x03; // enable both channels

ARBITER_CH0_INDEX_REG = 13;

ARBITER_CH1_INDEX_REG = 17;

INTERRUPT_LOOKUP_TABLE[13] = (void*)Peripheral1_ISR;

INTERRUPT_LOOKUP_TABLE[17] = (void*)Peripheral2_ISR;

ARBITER_ENABLE_REG = 1;

}

Multimedia SoC Design Shao-Yi Chien 30

Interrupt Controller

 A Slave device

 Support
 multiple interrupt

sources

 Vectored interrupt

 Software interrupt

 Priority filtering

 Masking

 Programmable for
some cases

Interrupt

Controller

Multimedia SoC Design Shao-Yi Chien 31

Additional Interrupt Issues

 Maskable vs. non-maskable interrupts
 Maskable: programmer can set bit that causes

processor to ignore interrupt
 Important when in the middle of time-critical code

 Non-maskable: a separate interrupt pin that can’t be
masked
 Typically reserved for drastic situations, like power failure

requiring immediate backup of data to non-volatile memory

Multimedia SoC Design Shao-Yi Chien 32

Additional Interrupt Issues

 Jump to ISR

 Some microprocessors treat jump the same as call of

any subroutine

 Complete state saved (PC, registers) – may take hundreds of

cycles

 Others only save partial state, like PC only

 Thus, ISR must not modify registers, or else must save them

first

 Assembly-language programmer must be aware of which

registers stored

Multimedia SoC Design Shao-Yi Chien 33

Sources of Interrupt Overhead

 Handler execution time

 Interrupt mechanism overhead

 Register save/restore

 Pipeline-related penalties

 Cache-related penalties

Multimedia SoC Design Shao-Yi Chien 34

ARM Interrupts

 ARM7 supports two types of interrupts:

Fast interrupt requests (FIQs).

 Interrupt requests (IRQs).

 Interrupt vector address

FIQ: 0x0000001C

 IRQ: 0x00000018

Multimedia SoC Design Shao-Yi Chien 35

ARM Interrupt Procedure

 CPU actions:

 Save PC. Copy CPSR (current program status

register) to SPSR (saved program status register)

 Force bits in CPSR to record interrupt

 Force PC to vector

 Handler responsibilities:

 Restore proper PC

 Restore CPSR from SPSR

 Clear interrupt disable flags

Multimedia SoC Design Shao-Yi Chien 36

ARM Interrupt Latency

 Worst-case latency to respond to FIQ is 28
cycle:

Three cycles to synchronize external request

Up to 20 cycles to complete current
instruction

Three cycles for data abort

Two cycles to enter interrupt handling state

 The best case is 4 cycle

Multimedia SoC Design Shao-Yi Chien 37

Direct Memory Access (DMA)

 Buffering
 Temporarily storing data in memory before processing

 Data accumulated in peripherals commonly buffered

 Microprocessor could handle this with ISR
 Storing and restoring microprocessor state (interrupt overhead)

is inefficient

 Regular program must wait

 DMA controller is more efficient
 Separate single-purpose processor

 Microprocessor relinquishes control of system bus to DMA
controller

Multimedia SoC Design Shao-Yi Chien 38

Direct Memory Access (DMA)

Microprocessor can meanwhile execute its

regular program

 No inefficient storing and restoring state due to ISR

call

 Regular program needs not to wait unless it

requires the system bus

 Harvard architecture – processor can fetch and execute

instructions as long as they don’t access data memory –

if they do, processor stalls

 A system with separate bus between the microprocessor

and cache (or TCM) may be able to execute when DMA

is working

Multimedia SoC Design Shao-Yi Chien 39

Peripheral to Memory Transfer

without DMA
1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the microprocessor.
3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and asserts Inta.

5(a): μP jumps to the address on the bus

(16). The ISR there reads data from 0x8000

and then writes it to 0x0001, which is in

memory.

6: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

5(b): After being read, P1

deasserts Int.

T
im

e

4: P1 detects Inta and puts

interrupt address vector 16 on the

data bus.

Multimedia SoC Design Shao-Yi Chien 40

Peripheral to Memory Transfer

without DMA

1(a): P is executing its main

program

1(b): P1 receives input data in

a register with address

0x8000.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

Multimedia SoC Design Shao-Yi Chien 41

Peripheral to Memory Transfer

without DMA

2: P1 asserts Int to request

servicing by the

microprocessor

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction
1

Int

100

Multimedia SoC Design Shao-Yi Chien 42

Peripheral to Memory Transfer

without DMA

3: After completing instruction

at 100, P sees Int asserted,

saves the PC’s value of 100,

and asserts Inta.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

100

Inta
1

100

Multimedia SoC Design Shao-Yi Chien 43

Peripheral to Memory Transfer

without DMA

4: P1 detects Inta and puts

interrupt address vector 16 on

the data bus.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

100

16

16
System bus

Multimedia SoC Design Shao-Yi Chien 44

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction

Inta

Peripheral to Memory Transfer

without DMA

5(a): P jumps to the address

on the bus (16). The ISR there

reads data from 0x8000 and

then writes it to 0x0001, which

is in memory.

5(b): After being read, P1 de-

asserts Int.
100

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

System bus

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

0x8000

P1

Data memory

0x0001

Int

0

Multimedia SoC Design Shao-Yi Chien 45

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction

Inta

Peripheral to Memory Transfer

without DMA

6: The ISR returns, thus

restoring PC to 100+1=101,

where P resumes executing.

100100
+1

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

Multimedia SoC Design Shao-Yi Chien 46

Peripheral to Memory Transfer

with DMA
1(a): μP is executing its main

program. It has already configured

the DMA ctrl registers.

1(b): P1 receives input

data in a register with

address 0x8000.

2: P1 asserts req to

request servicing by

DMA ctrl.

7(b): P1 de-asserts req.

T
im

e

3: DMA ctrl asserts

Dreq to request control

of system bus.

4: After executing instruction 100,

μP sees Dreq asserted, releases

the system bus, asserts Dack, and

resumes execution. μP stalls only if

it needs the system bus to continue

executing.
5: (a) DMA ctrl asserts

ack (b) reads data from

0x8000 and (b) writes

that data to 0x0001.

6:. DMA de-asserts

Dreq and ack

completing handshake

with P1.
7(a): μP de-asserts Dack and

resumes control of the bus.

Multimedia SoC Design Shao-Yi Chien 47

Peripheral to Memory Transfer

with DMA

1(a): P is executing its main

program. It has already

configured the DMA ctrl registers

1(b): P1 receives input data in a

register with address 0x8000.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Multimedia SoC Design Shao-Yi Chien 48

Peripheral to Memory Transfer

with DMA

2: P1 asserts req to request

servicing

by DMA ctrl.

3: DMA ctrl asserts Dreq to

request control of system bus

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

reqreq

1

P1
Dreq

1

DMA ctrl P1

Multimedia SoC Design Shao-Yi Chien 49

Peripheral to Memory Transfer

with DMA

4: After executing instruction

100, P sees Dreq asserted,

releases the system bus, asserts

Dack, and resumes execution,

P stalls only if it needs the

system bus to continue

executing.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Dack
1

Multimedia SoC Design Shao-Yi Chien 50

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack

req

Peripheral to Memory Transfer

with DMA

5: DMA ctrl (a) asserts ack, (b)

reads data from 0x8000, and (c)

writes that data to 0x0001.

(Meanwhile, processor still

executing if not stalled!)
ack

1

Multimedia SoC Design Shao-Yi Chien 51

Peripheral to Memory Transfer

with DMA

6: DMA de-asserts Dreq and ack

completing the handshake with

P1.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

ack
0Dreq

0

Multimedia SoC Design Shao-Yi Chien 52

Arbitration: Priority Arbiter

 Consider the situation where multiple peripherals request
service from single resource (e.g., microprocessor, DMA
controller, memory controller) simultaneously - which
gets serviced first?

 Arbiter
 Single-purpose processor

 Peripherals make requests to arbiter, arbiter makes
requests to resource

 Arbiter connected to system bus for configuration only

 Priority arbiter
 The arbiter grants the request according to a priority

list

Multimedia SoC Design Shao-Yi Chien 53

Arbitration

 The arbitration process plays a crucial role in
determining the performance of the system

 It assigns the priorities with which processor are
granted the access to the shared communication
resource

 Arbitration become more and more important
 Increasing integration levels of SoC increase

contention violate real-time constraints need
efficient contention resolution scheme

Multimedia SoC Design Shao-Yi Chien 54

Arbitration: Priority Arbiter

 Types of priority

Fixed priority

Time division multiple access (TDMA)

Rotating priority (round-robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among

peripherals with similar priority demands

Slot reservation

LOTTERYBUS

Multimedia SoC Design Shao-Yi Chien 55

Better Arbiter?

 A good arbiter should be able to provide

Proportional allocation of communication

bandwidth

Low latency communication for high priority

data transfer

Multimedia SoC Design Shao-Yi Chien 56

Fixed Priority
 Each peripheral has a unique rank

 Highest rank is chosen first with simultaneous requests

 Preferred when clear difference in rank between

peripherals

 May lead to starvation for the low priority components

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 57

Fixed Priority

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

C1

C4

Multimedia SoC Design Shao-Yi Chien 58

Fixed Priority

 The fraction of bandwidth a component

receives is extremely sensitive to the

priority value it is assigned

 Low priority component get a negligible

fraction of the bus bandwidth leads to

starvation for the low priority

component

Multimedia SoC Design Shao-Yi Chien 59

Time Division Multiple Access

(TDMA)

 Guarantee bandwidth for each component

 Long latencies for high priority components

 Sometimes, two-level arbitration protocol is used:

 Timing wheel, each slot is statically reserved for a

unique master

 To alleviate the problem of wasted slots, a second

level of arbitration issues a grant to the next

requesting master in a round-robin fashion if the

assigned master does not have a pending

communication request

Multimedia SoC Design Shao-Yi Chien 60

Time Division Multiple Access

(TDMA)

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 61

TDMA

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Well time-aligned

low latency

Not well time-

aligned high

latency

Multimedia SoC Design Shao-Yi Chien 62

Rotating Priority (Round-Robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among

peripherals with similar priority demands

 High bus utilization

 Worst-case waiting time is reliably predictable

 The actual bandwidth is uncertain

Multimedia SoC Design Shao-Yi Chien 63

LOTTERYBUS Communication

Architecture

 Lottery manager

 Randomly choose

one master to be the

winner of the lottery

 A maximum transfer

size limits to

prevent a master

from monopolizing

the bus Source: K. Lahiri, A. Raghunathan, and G.

Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for

System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 64

LOTTERYBUS Communication

Architecture

 The master to be

granted is chosen in a

randomized way with

probability of granting

component.
t r

n

j jj

ii
i

tr

tr
CP

1

)(Probability of grating component Ci:

Multimedia SoC Design Shao-Yi Chien 65

LOTTERYBUS:

Bandwidth Allocation

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 66

LOTTERYBUS:

Latency

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 67

Slot Reservation

 TDMA + round-robin

 Only one master is periodically allocated a

slot for the contention-free access

The length of the time slot is adjustable

 For the inter-slot time, the contention

among the remaining masters is managed

in a round-robin fashion
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8,

pp. 189—210, 2003.

Multimedia SoC Design Shao-Yi Chien 68

Important Notes

 The optimal bus arbitration policy is not

unique, but strongly depends on the traffic

conditions

 There exists a trade-off between

contention-avoidance bus arbitration

policies and contention-resolution bus

protocols
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8,

pp. 189—210, 2003.

Multimedia SoC Design Shao-Yi Chien 69

Arbitration: Daisy-Chain

Arbitration
 Arbitration is done by peripherals

 Built into peripheral or external logic added
 req input and ack output are added to each peripheral

 Peripherals are connected to each other in
daisy-chain manner
 One peripheral connected to resource, all others

connected “upstream”

 Peripheral’s req flows “downstream” to resource,
resource’s ack flows “upstream” to requesting
peripheral

 Closest peripheral has highest priority

Multimedia SoC Design Shao-Yi Chien 70

Arbitration: Daisy-Chain Arbitration

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Higher priority Lower priority

Multimedia SoC Design Shao-Yi Chien 71

Arbitration: Daisy-Chain

Arbitration

 Pros/cons

Easy to add/remove peripheral - no system

redesign needed

Does not support rotating priority

One broken peripheral can cause the loss of

accessing to other peripherals

Multimedia SoC Design Shao-Yi Chien 72

Network-Oriented Arbitration

 When multiple microprocessors share a bus (sometimes

called network-on-chip, NoC)

 Arbitration typically built into bus protocol

 Separate processors may try to write simultaneously causing

collisions

 Data must be resent

 Don’t want to start sending again at the same time

 Statistical methods can be used to reduce chances

 Typically used for connecting multiple IPs

 Trend – use to connect multiple on-chip processors

Multimedia SoC Design Shao-Yi Chien 73

Multilevel Bus Architectures

 Single bus is not enough for all communication
 Peripherals would need high-speed, processor-specific bus

interface
 Excess gates, power consumption, and cost; less portable

 Too many peripherals slows down bus

 Processor-local bus
 High speed, wide, most frequent communication

 Connects microprocessor, cache, memory controllers, etc.

 Peripheral bus
 Lower speed, narrower, less frequent communication

 Typically industry standard bus (ISA, PCI) for portability

 Bridge
 Single-purpose processor converts communication between

busses

Multimedia SoC Design Shao-Yi Chien 74

Multilevel Bus Architectures

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

BridgePeripheralPeripheralPeripheral

Peripheral bus

Multimedia SoC Design Shao-Yi Chien 75

Multi-Layer AHB

 Multi-layer AHB

 Enables parallel access paths between multiple

masters and slaves by an interconnection matrix (bus

matrix)

 Increase the overall bus bandwidth

 More flexible system architecture

 Make slaves local to a particular layer

 Make multiple slaves appear as a single slave to the

interconnection matrix

 Multiple masters on a single layer

Multimedia SoC Design Shao-Yi Chien 76

Multi-Layer AHB

 A simple multi-layer system

Multimedia SoC Design Shao-Yi Chien 77

Multi-Layer AHB
 Local slaves

 Slave #4 and Slave #5 can only be accessed by

Master #2

Multimedia SoC Design Shao-Yi Chien 78

Multi-Layer AHB

 Multiple slaves on

one slave port
 Combine low-bandwidth

slaves together

 Combine salves usually

accessed by the same

master together

Multimedia SoC Design Shao-Yi Chien 79

Multi-Layer AHB

 Multiple masters on

one layer
 Combine masters which

have low-bandwidth

requirements together

 Combine special masters

together

Multimedia SoC Design Shao-Yi Chien 80

Multi-Layer AHB

 Multi-port slaves

Multimedia SoC Design Shao-Yi Chien 81

Example

