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Outline

 Interfacing basics

 uP interfacing: I/O Addressing

 uP interfacing: Interrupts

 uP interfacing: Direct memory access

Arbitration

Hierarchical buses



Multimedia SoC Design Shao-Yi Chien 3

A Simple Bus

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

 Wires:

 Uni-directional or bi-directional

 One line may represent 

multiple wires

 Bus

 Set of wires with a single 

function

 Address bus, data bus

 Or, entire collection of wires

 Address, data and control

 Associated protocol: rules for 

communication
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Basic Protocol Concepts

 Actor: master initiates, servant (slave) respond

 Direction: sender, receiver

 Addresses: special kind of data
 Specifies a location in memory, a peripheral, or a 

register within a peripheral

 Time multiplexing
 Share a single set of wires for multiple pieces of data

 Saves wires at expense of time
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Example of Time Multiplexing

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer
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uP Interfacing: I/O Addressing

 A microprocessor communicates with other devices 

using some of its pins

 Port-based I/O (parallel I/O)

 Processor has one or more N-bit ports

 Processor’s software reads and writes a port just like a register

 Ex: P0 = 0xFF;  v = P1.2;  -- P0 and P1 are 8-bit ports (can be 

accessed bit by bit)

 Bus-based I/O

 Processor has address, data and control ports that form a single 

bus

 Communication protocol is built into the processor

 A single instruction carries out the read or write protocol on the 

bus
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Compromises/Extensions

 Parallel I/O peripheral

 When processor only 

supports bus-based I/O but 

parallel I/O is needed

 Each port on peripheral 

connected to a register 

within peripheral that is 

read/written by the 

processor

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-

based I/O processor
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Compromises/Extensions

 Extended parallel I/O

 When processor supports 

port-based I/O but more 

ports are needed

 One or more processor 

ports interface with parallel 

I/O peripheral extending 

total number of ports 

available for I/O

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Extended parallel I/O
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Types of Bus-Based I/O
 Processor talks to both memory and peripherals 

using the same bus – two ways to talk to peripherals
 Memory-mapped I/O

 Peripheral registers occupy addresses in the same address space 
as memory

 e.g., Bus has 16-bit address

 lower 32K addresses may correspond to memory

 upper 32k addresses may correspond to peripherals

 Standard I/O (I/O-mapped I/O)
 Additional pin (M/IO) on bus indicates whether a memory or 

peripheral access

 e.g., Bus has 16-bit address

 all 64K addresses correspond to memory when M/IO set to 0

 all 64K addresses correspond to peripherals when M/IO set to 1
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Memory-Mapped I/O vs. 

Standard I/O
 Memory-mapped I/O

 Requires no special instructions
 Assembly instructions involving memory like MOV and ADD 

work with peripherals as well

 Standard I/O requires special instructions (e.g., IN, OUT) to 
move data between peripheral registers and memory

 Standard I/O
 No loss of memory addresses to peripherals

 Simpler address decoding logic in peripherals 
possible
 When number of peripherals is much smaller than address 

space then high-order address bits can be ignored  smaller 
and/or faster comparators
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uP Interfacing: Interrupts

 Suppose a peripheral intermittently receives 
data, which must be serviced by the processor
 The processor can poll the peripheral regularly to see 

if data has arrived – wasteful

 The peripheral can interrupt the processor when it 
has data

 Requires an extra pin or pins: Int
 If Int is 1, processor suspends current program, jumps 

to an Interrupt Service Routine, or ISR

 Known as interrupt-driven I/O

 Essentially, “polling” of the interrupt pin is built-into 
the hardware, so no extra time!
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uP interfacing: Interrupts

 What is the address (interrupt address vector) of 

the ISR?

 Fixed interrupt

 Address built into microprocessor, cannot be changed

 Either ISR stored at address or a jump to actual ISR stored if 

not enough bytes available

 Vectored interrupt

 Peripheral must provide the address

 Common when microprocessor has multiple peripherals 

connected by a system bus

 Compromise: interrupt address table
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Interrupt-Driven I/O using Fixed 

ISR Location
1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000.

2: P1 asserts Int to request 

servicing by the microprocessor.

3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and sets PC to the ISR fixed location 

of 16. 

4(a): The ISR reads data from 0x8000, 

modifies the data, and writes the resulting 

data to 0x8001. 

5: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing.

4(b): After being read, P1 de-

asserts Int.

T
im

e
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Interrupt-Driven I/O using Fixed 

ISR Location

1(a): P is executing its 

main program

1(b): P1 receives input data 

in a register with address 

0x8000.

μP

P1 P2

System 

bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC
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Interrupt-Driven I/O using Fixed 

ISR Location

2: P1 asserts Int to request 

servicing by the 

microprocessor

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

IntInt

1
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Interrupt-Driven I/O using Fixed 

ISR Location

3: After completing 

instruction at 100, P sees 

Int asserted, saves the PC’s 

value of 100, and sets PC 

to the ISR fixed location of 

16.

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int

100100
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μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction

instruction 

...

Main program
...

Program memory

PC

Int

Interrupt-Driven I/O using Fixed 

ISR Location

4(a): The ISR reads data 

from 0x8000, modifies the 

data, and writes the 

resulting data to 0x8001.

4(b): After being read, P1 

deasserts Int.
100

Int
0

P1

System 

bus

P1

0x8000

P2

0x8001
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Interrupt-Driven I/O using Fixed 

ISR Location

5: The ISR returns, thus 

restoring PC to 100+1=101, 

where P resumes 

executing.

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction

instruction 

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

100
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Interrupt-Driven I/O using 

Vectored Interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000.

2: P1 asserts Int to request 

servicing by the microprocessor.3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and asserts Inta.

5(a): μP jumps to the address on the bus 

(16). The ISR there reads data from 0x8000, 

modifies the data, and writes the resulting 

data to 0x8001. 

6: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing.

5(b): After being read, P1 

deasserts Int.

T
im

e

4: P1 detects Inta and puts 

interrupt address vector 16 on 

the data bus.
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Interrupt-Driven I/O using 

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Int
Inta

16

1(a): P is executing its main 

program

1(b): P1 receives input data in 

a register with address 

0x8000.
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Interrupt-Driven I/O using 

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Inta

16

2: P1 asserts Int to request 

servicing by the 

microprocessor

Int

1

Int
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Interrupt-Driven I/O using 

Vectored Interrupt

3: After completing instruction 

at 100, μP sees Int asserted, 

saves the PC’s value of 100, 

and asserts Inta

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int
Inta

16

100100

1
Inta
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μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int
Inta

16

Interrupt-Driven I/O using 

Vectored Interrupt

100

4: P1 detects Inta and puts 

interrupt address vector 16

on the data bus 16

16

System bus
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Interrupt-Driven I/O using 

Vectored Interrupt

5(a): PC jumps to the address 

on the bus (16).  The ISR 

there reads data from 0x8000, 

modifies the data, and writes 

the resulting data to 0x8001.

5(b): After being read, P1 

deasserts Int.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0 

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int
Inta

16

100

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

P1 P2

0x8000 0x8001

System bus

0

Int
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Interrupt-Driven I/O using 

Vectored Interrupt

6: The ISR returns, thus 

restoring the PC to 

100+1=101, where the μP 

resumes

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction

instruction 

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

100
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Interrupt Address Table

 Compromise between fixed and vectored 

interrupts

 One interrupt pin

 Table in memory holding ISR addresses (maybe 256 

words)

 Peripheral doesn’t provide ISR address, but rather 

index into table

 Fewer bits are sent by the peripheral

 Can move ISR location without changing peripheral
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Jump Table

M
e

m
o

ry
 B

u
s

Processor

Peripheral 1 Peripheral 2

Priority Arbiter

(Interrupt

Controller)

MASK

IDX0

IDX1

ENABLE

DATA

MEMORY

Interrupt Table
 Fixed priority: i.e., Peripheral1 

has the highest priority

 Keyword “_at_” followed by 

memory address forces 

compiler to place variables in 

specific memory locations

 e.g., memory-mapped 

registers in arbiter (interrupt 

controller), peripherals

 A peripheral’s index into 

interrupt table is sent to 

memory-mapped register in 

arbiter (interrupt controller)

 Peripherals receive external 

data and raise interrupt
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Interrupt Table

void main() {

InitializePeripherals();

for(;;) {} // main program goes here

}

unsigned char ARBITER_MASK_REG _at_ 0xfff0;

unsigned char ARBITER_CH0_INDEX_REG _at_ 0xfff1;

unsigned char ARBITER_CH1_INDEX_REG _at_ 0xfff2;

unsigned char ARBITER_ENABLE_REG _at_ 0xfff3;

unsigned char PERIPHERAL1_DATA_REG _at_ 0xffe0;

unsigned char PERIPHERAL2_DATA_REG _at_ 0xffe1;

unsigned void* INTERRUPT_LOOKUP_TABLE[256] _at_ 0x0100;
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Interrupt Table

void Peripheral1_ISR(void) {

unsigned char data;

data = PERIPHERAL1_DATA_REG;

// do something with the data

}

void Peripheral2_ISR(void) {

unsigned char data;

data = PERIPHERAL2_DATA_REG;

// do something with the data

}

void InitializePeripherals(void) {

ARBITER_MASK_REG = 0x03; // enable both channels

ARBITER_CH0_INDEX_REG = 13;

ARBITER_CH1_INDEX_REG = 17;

INTERRUPT_LOOKUP_TABLE[13] = (void*)Peripheral1_ISR;

INTERRUPT_LOOKUP_TABLE[17] = (void*)Peripheral2_ISR;

ARBITER_ENABLE_REG = 1;

}
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Interrupt Controller

 A Slave device

 Support
 multiple interrupt 

sources

 Vectored interrupt

 Software interrupt

 Priority filtering

 Masking

 Programmable for 
some cases

Interrupt

Controller
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Additional Interrupt Issues

 Maskable vs. non-maskable interrupts
 Maskable: programmer can set bit that causes 

processor to ignore interrupt
 Important when in the middle of time-critical code

 Non-maskable: a separate interrupt pin that can’t be 
masked
 Typically reserved for drastic situations, like power failure 

requiring immediate backup of data to non-volatile memory
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Additional Interrupt Issues

 Jump to ISR

 Some microprocessors treat jump the same as call of 

any subroutine

 Complete state saved (PC, registers) – may take hundreds of 

cycles

 Others only save partial state, like PC only

 Thus, ISR must not modify registers, or else must save them 

first

 Assembly-language programmer must be aware of which 

registers stored
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Sources of Interrupt Overhead

 Handler execution time

 Interrupt mechanism overhead

 Register save/restore

 Pipeline-related penalties

 Cache-related penalties
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ARM Interrupts

 ARM7 supports two types of interrupts:

Fast interrupt requests (FIQs).

 Interrupt requests (IRQs).

 Interrupt vector address

FIQ: 0x0000001C

 IRQ: 0x00000018



Multimedia SoC Design Shao-Yi Chien 35

ARM Interrupt Procedure

 CPU actions:

 Save PC. Copy CPSR (current program status 

register) to SPSR (saved program status register)

 Force bits in CPSR to record interrupt

 Force PC to vector

 Handler responsibilities:

 Restore proper PC

 Restore CPSR from SPSR

 Clear interrupt disable flags



Multimedia SoC Design Shao-Yi Chien 36

ARM Interrupt Latency

 Worst-case latency to respond to FIQ is 28 
cycle: 

Three cycles to synchronize external request

Up to 20 cycles to complete current 
instruction

Three cycles for data abort

Two cycles to enter interrupt handling state

 The best case is 4 cycle
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Direct Memory Access (DMA)

 Buffering
 Temporarily storing data in memory before processing

 Data accumulated in peripherals commonly buffered

 Microprocessor could handle this with ISR
 Storing and restoring microprocessor state (interrupt overhead) 

is inefficient

 Regular program must wait

 DMA controller is more efficient
 Separate single-purpose processor

 Microprocessor relinquishes control of system bus to DMA 
controller
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Direct Memory Access (DMA)

Microprocessor can meanwhile execute its 

regular program

 No inefficient storing and restoring state due to ISR 

call

 Regular program needs not to wait unless it 

requires the system bus

 Harvard architecture – processor can fetch and execute 

instructions as long as they don’t access data memory –

if they do, processor stalls

 A system with separate bus between the microprocessor 

and cache (or TCM) may be able to execute when DMA 

is working
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Peripheral to Memory Transfer 

without DMA
1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000.

2: P1 asserts Int to request 

servicing by the microprocessor.
3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and asserts Inta.

5(a): μP jumps to the address on the bus 

(16). The ISR there reads data from 0x8000 

and then writes it to 0x0001, which is in 

memory. 

6: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing.

5(b): After being read, P1 

deasserts Int.

T
im

e

4: P1 detects Inta and puts 

interrupt address vector 16 on the 

data bus.
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Peripheral to Memory Transfer 

without DMA

1(a): P is executing its main 

program

1(b): P1 receives input data in 

a register with address 

0x8000.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 
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Peripheral to Memory Transfer 

without DMA

2: P1 asserts Int to request 

servicing by the 

microprocessor

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 
1

Int

100
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Peripheral to Memory Transfer 

without DMA

3: After completing instruction 

at 100, P sees Int asserted, 

saves the PC’s value of 100, 

and asserts Inta.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 

100

Inta
1

100
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Peripheral to Memory Transfer 

without DMA

4: P1 detects Inta and puts 

interrupt address vector 16 on 

the data bus.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 

100

16

16
System bus
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μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction 

Inta

Peripheral to Memory Transfer 

without DMA

5(a): P jumps to the address 

on the bus (16).  The ISR there 

reads data from 0x8000 and 

then writes it to 0x0001, which 

is in memory.

5(b): After being read, P1 de-

asserts Int.
100

16: MOV R0, 0x8000 

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR 

100:

101: instruction 

...

Main program
...

instruction 

RETI  # ISR return

System bus

16: MOV R0, 0x8000 

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR 

100:

101: instruction 

...

Main program
...

instruction 

RETI  # ISR return

0x8000

P1

Data memory

0x0001

Int

0
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μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction 

Inta

Peripheral to Memory Transfer 

without DMA

6: The ISR returns, thus 

restoring PC to 100+1=101, 

where P resumes executing.

100100
+1

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19:

ISR 

100:

101: instruction 

...

Main program
...

instruction 

RETI  # ISR return
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Peripheral to Memory Transfer 

with DMA
1(a): μP is executing its main 

program. It has already configured 

the DMA ctrl registers.

1(b): P1 receives input 

data in a register with 

address 0x8000.

2: P1 asserts req to 

request servicing by 

DMA ctrl.

7(b): P1 de-asserts req.

T
im

e

3: DMA ctrl asserts 

Dreq to request control 

of system bus.

4: After executing instruction 100, 

μP sees Dreq asserted, releases 

the system bus, asserts Dack, and 

resumes execution. μP stalls only if 

it needs the system bus to continue 

executing.
5: (a) DMA ctrl asserts 

ack (b) reads data from 

0x8000 and (b) writes 

that data to 0x0001. 

6:. DMA de-asserts 

Dreq and ack 

completing handshake 

with P1. 
7(a): μP de-asserts Dack and 

resumes control of the bus.
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Peripheral to Memory Transfer 

with DMA

1(a): P is executing its main 

program. It has already 

configured the DMA ctrl registers

1(b): P1 receives input data in a 

register with address 0x8000.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req
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Peripheral to Memory Transfer 

with DMA

2: P1 asserts req to request 

servicing

by DMA ctrl.

3: DMA ctrl asserts Dreq to 

request control of system bus

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

reqreq

1

P1
Dreq

1

DMA ctrl P1
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Peripheral to Memory Transfer 

with DMA

4: After executing instruction 

100, P sees Dreq asserted, 

releases the system bus, asserts 

Dack, and resumes execution, 

P stalls only if it needs the 

system bus to continue 

executing.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Dack
1
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Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack

req

Peripheral to Memory Transfer 

with DMA

5: DMA ctrl (a) asserts ack, (b) 

reads data from 0x8000, and (c) 

writes that data to 0x0001.

(Meanwhile, processor still 

executing if not stalled!)
ack

1
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Peripheral to Memory Transfer 

with DMA

6: DMA de-asserts Dreq and ack

completing the handshake with 

P1.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

ack
0Dreq

0
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Arbitration: Priority Arbiter

 Consider the situation where multiple peripherals request 
service from single resource (e.g., microprocessor, DMA 
controller, memory controller) simultaneously - which 
gets serviced first?

 Arbiter
 Single-purpose processor

 Peripherals make requests to arbiter, arbiter makes 
requests to resource

 Arbiter connected to system bus for configuration only

 Priority arbiter
 The arbiter grants the request according to a priority 

list
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Arbitration

 The arbitration process plays a crucial role in 
determining the performance of the system

 It assigns the priorities with which processor are 
granted the access to the shared communication 
resource

 Arbitration become more and more important
 Increasing integration levels of SoC  increase 

contention  violate real-time constraints  need 
efficient contention resolution scheme
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Arbitration: Priority Arbiter

 Types of priority

Fixed priority

Time division multiple access (TDMA)

Rotating priority (round-robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among 

peripherals with similar priority demands

Slot reservation

LOTTERYBUS
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Better Arbiter?

 A good arbiter should be able to provide

Proportional allocation of communication 

bandwidth

Low latency communication for high priority 

data transfer
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Fixed Priority
 Each peripheral has a unique rank

 Highest rank is chosen first with simultaneous requests

 Preferred when clear difference in rank between 

peripherals

 May lead to starvation for the low priority components

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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Fixed Priority

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

C1

C4
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Fixed Priority

 The fraction of bandwidth a component 

receives is extremely sensitive to the 

priority value it is assigned

 Low priority component get a negligible 

fraction of the bus bandwidth  leads to 

starvation for the low priority 

component
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Time Division Multiple Access 

(TDMA)

 Guarantee bandwidth for each component

 Long latencies for high priority components

 Sometimes, two-level arbitration protocol is used:

 Timing wheel, each slot is statically reserved for a 

unique master

 To alleviate the problem of wasted slots, a second 

level of arbitration issues a grant to the next 

requesting master in a round-robin fashion if the 

assigned master does not have a pending 

communication request
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Time Division Multiple Access 

(TDMA)

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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TDMA

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Well time-aligned 

low latency

Not well time-

aligned  high 

latency
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Rotating Priority (Round-Robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among 

peripherals with similar priority demands

 High bus utilization

 Worst-case waiting time is reliably predictable

 The actual bandwidth is uncertain
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LOTTERYBUS Communication 

Architecture

 Lottery manager

 Randomly choose 

one master to be the 

winner of the lottery

 A maximum transfer 

size limits to 

prevent a master 

from monopolizing 

the bus Source: K. Lahiri, A. Raghunathan, and G. 

Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for 

System-on-Chip designs,” DAC 2001.
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LOTTERYBUS Communication 

Architecture

 The master to be 

granted is chosen in a 

randomized way with 

probability of granting 

component.
t r

 





n

j jj

ii
i

tr

tr
CP

1

)(Probability of grating component Ci:
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LOTTERYBUS:

Bandwidth Allocation

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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LOTTERYBUS:

Latency

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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Slot Reservation

 TDMA + round-robin

 Only one master is periodically allocated a 

slot for the contention-free access

The length of the time slot is adjustable

 For the inter-slot time, the contention 

among the remaining masters is managed 

in a round-robin fashion
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration 

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8, 

pp. 189—210, 2003.
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Important Notes

 The optimal bus arbitration policy is not 

unique, but strongly depends on the traffic 

conditions

 There exists a trade-off between 

contention-avoidance bus arbitration 

policies and contention-resolution bus 

protocols
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration 

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8, 

pp. 189—210, 2003.
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Arbitration: Daisy-Chain 

Arbitration
 Arbitration is done by peripherals

 Built into peripheral or external logic added
 req input and ack output are added to each peripheral

 Peripherals are connected to each other in 
daisy-chain manner
 One peripheral connected to resource, all others 

connected “upstream”

 Peripheral’s req flows “downstream” to resource, 
resource’s ack flows “upstream” to requesting 
peripheral

 Closest peripheral has highest priority
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Arbitration: Daisy-Chain Arbitration

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Higher priority Lower priority
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Arbitration: Daisy-Chain 

Arbitration

 Pros/cons

Easy to add/remove peripheral - no system 

redesign needed

Does not support rotating priority

One broken peripheral can cause the loss of 

accessing to other peripherals
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Network-Oriented Arbitration

 When multiple microprocessors share a bus (sometimes 

called network-on-chip, NoC)

 Arbitration typically built into bus protocol

 Separate processors may try to write simultaneously causing 

collisions

 Data must be resent

 Don’t want to start sending again at the same time

 Statistical methods can be used to reduce chances

 Typically used for connecting multiple IPs

 Trend – use to connect multiple on-chip processors
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Multilevel Bus Architectures

 Single bus is not enough for all communication
 Peripherals would need high-speed, processor-specific bus 

interface
 Excess gates, power consumption, and cost; less portable

 Too many peripherals slows down bus

 Processor-local bus
 High speed, wide, most frequent communication

 Connects microprocessor, cache, memory controllers, etc.

 Peripheral bus
 Lower speed, narrower, less frequent communication

 Typically industry standard bus (ISA, PCI) for portability

 Bridge
 Single-purpose processor converts communication between 

busses



Multimedia SoC Design Shao-Yi Chien 74

Multilevel Bus Architectures

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

BridgePeripheralPeripheralPeripheral

Peripheral bus



Multimedia SoC Design Shao-Yi Chien 75

Multi-Layer AHB

 Multi-layer AHB

 Enables parallel access paths between multiple 

masters and slaves by an interconnection matrix (bus 

matrix)

 Increase the overall bus bandwidth

 More flexible system architecture

 Make slaves local to a particular layer

 Make multiple slaves appear as a single slave to the 

interconnection matrix

 Multiple masters on a single layer 
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Multi-Layer AHB

 A simple multi-layer system
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Multi-Layer AHB
 Local slaves

 Slave #4 and Slave #5 can only be accessed by 

Master #2
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Multi-Layer AHB

 Multiple slaves on 

one slave port
 Combine low-bandwidth 

slaves together

 Combine salves usually 

accessed by the same 

master together
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Multi-Layer AHB

 Multiple masters on 

one layer
 Combine masters which 

have low-bandwidth 

requirements together

 Combine special masters 

together
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Multi-Layer AHB

 Multi-port slaves
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Example


