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Outline

 Interfacing basics

 uP interfacing: I/O Addressing

 uP interfacing: Interrupts

 uP interfacing: Direct memory access

Arbitration

Hierarchical buses
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A Simple Bus

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

 Wires:

 Uni-directional or bi-directional

 One line may represent 

multiple wires

 Bus

 Set of wires with a single 

function

 Address bus, data bus

 Or, entire collection of wires

 Address, data and control

 Associated protocol: rules for 

communication
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Basic Protocol Concepts

 Actor: master initiates, servant (slave) respond

 Direction: sender, receiver

 Addresses: special kind of data
 Specifies a location in memory, a peripheral, or a 

register within a peripheral

 Time multiplexing
 Share a single set of wires for multiple pieces of data

 Saves wires at expense of time
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Example of Time Multiplexing

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer
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uP Interfacing: I/O Addressing

 A microprocessor communicates with other devices 

using some of its pins

 Port-based I/O (parallel I/O)

 Processor has one or more N-bit ports

 Processor’s software reads and writes a port just like a register

 Ex: P0 = 0xFF;  v = P1.2;  -- P0 and P1 are 8-bit ports (can be 

accessed bit by bit)

 Bus-based I/O

 Processor has address, data and control ports that form a single 

bus

 Communication protocol is built into the processor

 A single instruction carries out the read or write protocol on the 

bus
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Compromises/Extensions

 Parallel I/O peripheral

 When processor only 

supports bus-based I/O but 

parallel I/O is needed

 Each port on peripheral 

connected to a register 

within peripheral that is 

read/written by the 

processor

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-

based I/O processor
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Compromises/Extensions

 Extended parallel I/O

 When processor supports 

port-based I/O but more 

ports are needed

 One or more processor 

ports interface with parallel 

I/O peripheral extending 

total number of ports 

available for I/O

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Extended parallel I/O
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Types of Bus-Based I/O
 Processor talks to both memory and peripherals 

using the same bus – two ways to talk to peripherals
 Memory-mapped I/O

 Peripheral registers occupy addresses in the same address space 
as memory

 e.g., Bus has 16-bit address

 lower 32K addresses may correspond to memory

 upper 32k addresses may correspond to peripherals

 Standard I/O (I/O-mapped I/O)
 Additional pin (M/IO) on bus indicates whether a memory or 

peripheral access

 e.g., Bus has 16-bit address

 all 64K addresses correspond to memory when M/IO set to 0

 all 64K addresses correspond to peripherals when M/IO set to 1
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Memory-Mapped I/O vs. 

Standard I/O
 Memory-mapped I/O

 Requires no special instructions
 Assembly instructions involving memory like MOV and ADD 

work with peripherals as well

 Standard I/O requires special instructions (e.g., IN, OUT) to 
move data between peripheral registers and memory

 Standard I/O
 No loss of memory addresses to peripherals

 Simpler address decoding logic in peripherals 
possible
 When number of peripherals is much smaller than address 

space then high-order address bits can be ignored  smaller 
and/or faster comparators
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uP Interfacing: Interrupts

 Suppose a peripheral intermittently receives 
data, which must be serviced by the processor
 The processor can poll the peripheral regularly to see 

if data has arrived – wasteful

 The peripheral can interrupt the processor when it 
has data

 Requires an extra pin or pins: Int
 If Int is 1, processor suspends current program, jumps 

to an Interrupt Service Routine, or ISR

 Known as interrupt-driven I/O

 Essentially, “polling” of the interrupt pin is built-into 
the hardware, so no extra time!
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uP interfacing: Interrupts

 What is the address (interrupt address vector) of 

the ISR?

 Fixed interrupt

 Address built into microprocessor, cannot be changed

 Either ISR stored at address or a jump to actual ISR stored if 

not enough bytes available

 Vectored interrupt

 Peripheral must provide the address

 Common when microprocessor has multiple peripherals 

connected by a system bus

 Compromise: interrupt address table
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Interrupt-Driven I/O using Fixed 

ISR Location
1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000.

2: P1 asserts Int to request 

servicing by the microprocessor.

3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and sets PC to the ISR fixed location 

of 16. 

4(a): The ISR reads data from 0x8000, 

modifies the data, and writes the resulting 

data to 0x8001. 

5: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing.

4(b): After being read, P1 de-

asserts Int.

T
im

e
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Interrupt-Driven I/O using Fixed 

ISR Location

1(a): P is executing its 

main program

1(b): P1 receives input data 

in a register with address 

0x8000.

μP

P1 P2

System 

bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC
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Interrupt-Driven I/O using Fixed 

ISR Location

2: P1 asserts Int to request 

servicing by the 

microprocessor

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

IntInt

1
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Interrupt-Driven I/O using Fixed 

ISR Location

3: After completing 

instruction at 100, P sees 

Int asserted, saves the PC’s 

value of 100, and sets PC 

to the ISR fixed location of 

16.

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int

100100
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μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction

instruction 

...

Main program
...

Program memory

PC

Int

Interrupt-Driven I/O using Fixed 

ISR Location

4(a): The ISR reads data 

from 0x8000, modifies the 

data, and writes the 

resulting data to 0x8001.

4(b): After being read, P1 

deasserts Int.
100

Int
0

P1

System 

bus

P1

0x8000

P2

0x8001
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Interrupt-Driven I/O using Fixed 

ISR Location

5: The ISR returns, thus 

restoring PC to 100+1=101, 

where P resumes 

executing.

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction

instruction 

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

100
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Interrupt-Driven I/O using 

Vectored Interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000.

2: P1 asserts Int to request 

servicing by the microprocessor.3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and asserts Inta.

5(a): μP jumps to the address on the bus 

(16). The ISR there reads data from 0x8000, 

modifies the data, and writes the resulting 

data to 0x8001. 

6: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing.

5(b): After being read, P1 

deasserts Int.

T
im

e

4: P1 detects Inta and puts 

interrupt address vector 16 on 

the data bus.
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Interrupt-Driven I/O using 

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Int
Inta

16

1(a): P is executing its main 

program

1(b): P1 receives input data in 

a register with address 

0x8000.
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Interrupt-Driven I/O using 

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Inta

16

2: P1 asserts Int to request 

servicing by the 

microprocessor

Int

1

Int
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Interrupt-Driven I/O using 

Vectored Interrupt

3: After completing instruction 

at 100, μP sees Int asserted, 

saves the PC’s value of 100, 

and asserts Inta

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int
Inta

16

100100

1
Inta
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μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int
Inta

16

Interrupt-Driven I/O using 

Vectored Interrupt

100

4: P1 detects Inta and puts 

interrupt address vector 16

on the data bus 16

16

System bus
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Interrupt-Driven I/O using 

Vectored Interrupt

5(a): PC jumps to the address 

on the bus (16).  The ISR 

there reads data from 0x8000, 

modifies the data, and writes 

the resulting data to 0x8001.

5(b): After being read, P1 

deasserts Int.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0 

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

Program memory

PC

Int
Inta

16

100

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

P1 P2

0x8000 0x8001

System bus

0

Int
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Interrupt-Driven I/O using 

Vectored Interrupt

6: The ISR returns, thus 

restoring the PC to 

100+1=101, where the μP 

resumes

μP

P1 P2

System 

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI  # ISR return

ISR 

100:

101:

instruction

instruction 

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000 
17: # modifies R0 

18: MOV 0x8001, R0 

19: RETI  # ISR return

ISR 

100:

101:

instruction 

instruction 

...

Main program
...

100
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Interrupt Address Table

 Compromise between fixed and vectored 

interrupts

 One interrupt pin

 Table in memory holding ISR addresses (maybe 256 

words)

 Peripheral doesn’t provide ISR address, but rather 

index into table

 Fewer bits are sent by the peripheral

 Can move ISR location without changing peripheral
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Jump Table

M
e

m
o

ry
 B

u
s

Processor

Peripheral 1 Peripheral 2

Priority Arbiter

(Interrupt

Controller)

MASK

IDX0

IDX1

ENABLE

DATA

MEMORY

Interrupt Table
 Fixed priority: i.e., Peripheral1 

has the highest priority

 Keyword “_at_” followed by 

memory address forces 

compiler to place variables in 

specific memory locations

 e.g., memory-mapped 

registers in arbiter (interrupt 

controller), peripherals

 A peripheral’s index into 

interrupt table is sent to 

memory-mapped register in 

arbiter (interrupt controller)

 Peripherals receive external 

data and raise interrupt
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Interrupt Table

void main() {

InitializePeripherals();

for(;;) {} // main program goes here

}

unsigned char ARBITER_MASK_REG _at_ 0xfff0;

unsigned char ARBITER_CH0_INDEX_REG _at_ 0xfff1;

unsigned char ARBITER_CH1_INDEX_REG _at_ 0xfff2;

unsigned char ARBITER_ENABLE_REG _at_ 0xfff3;

unsigned char PERIPHERAL1_DATA_REG _at_ 0xffe0;

unsigned char PERIPHERAL2_DATA_REG _at_ 0xffe1;

unsigned void* INTERRUPT_LOOKUP_TABLE[256] _at_ 0x0100;



Multimedia SoC Design Shao-Yi Chien 29

Interrupt Table

void Peripheral1_ISR(void) {

unsigned char data;

data = PERIPHERAL1_DATA_REG;

// do something with the data

}

void Peripheral2_ISR(void) {

unsigned char data;

data = PERIPHERAL2_DATA_REG;

// do something with the data

}

void InitializePeripherals(void) {

ARBITER_MASK_REG = 0x03; // enable both channels

ARBITER_CH0_INDEX_REG = 13;

ARBITER_CH1_INDEX_REG = 17;

INTERRUPT_LOOKUP_TABLE[13] = (void*)Peripheral1_ISR;

INTERRUPT_LOOKUP_TABLE[17] = (void*)Peripheral2_ISR;

ARBITER_ENABLE_REG = 1;

}



Multimedia SoC Design Shao-Yi Chien 30

Interrupt Controller

 A Slave device

 Support
 multiple interrupt 

sources

 Vectored interrupt

 Software interrupt

 Priority filtering

 Masking

 Programmable for 
some cases

Interrupt

Controller
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Additional Interrupt Issues

 Maskable vs. non-maskable interrupts
 Maskable: programmer can set bit that causes 

processor to ignore interrupt
 Important when in the middle of time-critical code

 Non-maskable: a separate interrupt pin that can’t be 
masked
 Typically reserved for drastic situations, like power failure 

requiring immediate backup of data to non-volatile memory
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Additional Interrupt Issues

 Jump to ISR

 Some microprocessors treat jump the same as call of 

any subroutine

 Complete state saved (PC, registers) – may take hundreds of 

cycles

 Others only save partial state, like PC only

 Thus, ISR must not modify registers, or else must save them 

first

 Assembly-language programmer must be aware of which 

registers stored
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Sources of Interrupt Overhead

 Handler execution time

 Interrupt mechanism overhead

 Register save/restore

 Pipeline-related penalties

 Cache-related penalties
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ARM Interrupts

 ARM7 supports two types of interrupts:

Fast interrupt requests (FIQs).

 Interrupt requests (IRQs).

 Interrupt vector address

FIQ: 0x0000001C

 IRQ: 0x00000018
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ARM Interrupt Procedure

 CPU actions:

 Save PC. Copy CPSR (current program status 

register) to SPSR (saved program status register)

 Force bits in CPSR to record interrupt

 Force PC to vector

 Handler responsibilities:

 Restore proper PC

 Restore CPSR from SPSR

 Clear interrupt disable flags
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ARM Interrupt Latency

 Worst-case latency to respond to FIQ is 28 
cycle: 

Three cycles to synchronize external request

Up to 20 cycles to complete current 
instruction

Three cycles for data abort

Two cycles to enter interrupt handling state

 The best case is 4 cycle
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Direct Memory Access (DMA)

 Buffering
 Temporarily storing data in memory before processing

 Data accumulated in peripherals commonly buffered

 Microprocessor could handle this with ISR
 Storing and restoring microprocessor state (interrupt overhead) 

is inefficient

 Regular program must wait

 DMA controller is more efficient
 Separate single-purpose processor

 Microprocessor relinquishes control of system bus to DMA 
controller
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Direct Memory Access (DMA)

Microprocessor can meanwhile execute its 

regular program

 No inefficient storing and restoring state due to ISR 

call

 Regular program needs not to wait unless it 

requires the system bus

 Harvard architecture – processor can fetch and execute 

instructions as long as they don’t access data memory –

if they do, processor stalls

 A system with separate bus between the microprocessor 

and cache (or TCM) may be able to execute when DMA 

is working
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Peripheral to Memory Transfer 

without DMA
1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000.

2: P1 asserts Int to request 

servicing by the microprocessor.
3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and asserts Inta.

5(a): μP jumps to the address on the bus 

(16). The ISR there reads data from 0x8000 

and then writes it to 0x0001, which is in 

memory. 

6: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing.

5(b): After being read, P1 

deasserts Int.

T
im

e

4: P1 detects Inta and puts 

interrupt address vector 16 on the 

data bus.
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Peripheral to Memory Transfer 

without DMA

1(a): P is executing its main 

program

1(b): P1 receives input data in 

a register with address 

0x8000.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 
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Peripheral to Memory Transfer 

without DMA

2: P1 asserts Int to request 

servicing by the 

microprocessor

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 
1

Int

100
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Peripheral to Memory Transfer 

without DMA

3: After completing instruction 

at 100, P sees Int asserted, 

saves the PC’s value of 100, 

and asserts Inta.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 

100

Inta
1

100
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Peripheral to Memory Transfer 

without DMA

4: P1 detects Inta and puts 

interrupt address vector 16 on 

the data bus.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction 

100

16

16
System bus
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μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction 

Inta

Peripheral to Memory Transfer 

without DMA

5(a): P jumps to the address 

on the bus (16).  The ISR there 

reads data from 0x8000 and 

then writes it to 0x0001, which 

is in memory.

5(b): After being read, P1 de-

asserts Int.
100

16: MOV R0, 0x8000 

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR 

100:

101: instruction 

...

Main program
...

instruction 

RETI  # ISR return

System bus

16: MOV R0, 0x8000 

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR 

100:

101: instruction 

...

Main program
...

instruction 

RETI  # ISR return

0x8000

P1

Data memory

0x0001

Int

0
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μP

P1

System bus

0x8000

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19: RETI  # ISR return

ISR 

100:

101: instruction 

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction 

Inta

Peripheral to Memory Transfer 

without DMA

6: The ISR returns, thus 

restoring PC to 100+1=101, 

where P resumes executing.

100100
+1

16: MOV R0, 0x8000 

17: # modifies R0 

18: MOV 0x0001, R0 

19:

ISR 

100:

101: instruction 

...

Main program
...

instruction 

RETI  # ISR return
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Peripheral to Memory Transfer 

with DMA
1(a): μP is executing its main 

program. It has already configured 

the DMA ctrl registers.

1(b): P1 receives input 

data in a register with 

address 0x8000.

2: P1 asserts req to 

request servicing by 

DMA ctrl.

7(b): P1 de-asserts req.

T
im

e

3: DMA ctrl asserts 

Dreq to request control 

of system bus.

4: After executing instruction 100, 

μP sees Dreq asserted, releases 

the system bus, asserts Dack, and 

resumes execution. μP stalls only if 

it needs the system bus to continue 

executing.
5: (a) DMA ctrl asserts 

ack (b) reads data from 

0x8000 and (b) writes 

that data to 0x0001. 

6:. DMA de-asserts 

Dreq and ack 

completing handshake 

with P1. 
7(a): μP de-asserts Dack and 

resumes control of the bus.
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Peripheral to Memory Transfer 

with DMA

1(a): P is executing its main 

program. It has already 

configured the DMA ctrl registers

1(b): P1 receives input data in a 

register with address 0x8000.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req
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Peripheral to Memory Transfer 

with DMA

2: P1 asserts req to request 

servicing

by DMA ctrl.

3: DMA ctrl asserts Dreq to 

request control of system bus

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

reqreq

1

P1
Dreq

1

DMA ctrl P1
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Peripheral to Memory Transfer 

with DMA

4: After executing instruction 

100, P sees Dreq asserted, 

releases the system bus, asserts 

Dack, and resumes execution, 

P stalls only if it needs the 

system bus to continue 

executing.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Dack
1
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Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack

req

Peripheral to Memory Transfer 

with DMA

5: DMA ctrl (a) asserts ack, (b) 

reads data from 0x8000, and (c) 

writes that data to 0x0001.

(Meanwhile, processor still 

executing if not stalled!)
ack

1



Multimedia SoC Design Shao-Yi Chien 51

Peripheral to Memory Transfer 

with DMA

6: DMA de-asserts Dreq and ack

completing the handshake with 

P1.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction 

instruction 

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

ack
0Dreq

0
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Arbitration: Priority Arbiter

 Consider the situation where multiple peripherals request 
service from single resource (e.g., microprocessor, DMA 
controller, memory controller) simultaneously - which 
gets serviced first?

 Arbiter
 Single-purpose processor

 Peripherals make requests to arbiter, arbiter makes 
requests to resource

 Arbiter connected to system bus for configuration only

 Priority arbiter
 The arbiter grants the request according to a priority 

list
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Arbitration

 The arbitration process plays a crucial role in 
determining the performance of the system

 It assigns the priorities with which processor are 
granted the access to the shared communication 
resource

 Arbitration become more and more important
 Increasing integration levels of SoC  increase 

contention  violate real-time constraints  need 
efficient contention resolution scheme



Multimedia SoC Design Shao-Yi Chien 54

Arbitration: Priority Arbiter

 Types of priority

Fixed priority

Time division multiple access (TDMA)

Rotating priority (round-robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among 

peripherals with similar priority demands

Slot reservation

LOTTERYBUS
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Better Arbiter?

 A good arbiter should be able to provide

Proportional allocation of communication 

bandwidth

Low latency communication for high priority 

data transfer
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Fixed Priority
 Each peripheral has a unique rank

 Highest rank is chosen first with simultaneous requests

 Preferred when clear difference in rank between 

peripherals

 May lead to starvation for the low priority components

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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Fixed Priority

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

C1

C4
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Fixed Priority

 The fraction of bandwidth a component 

receives is extremely sensitive to the 

priority value it is assigned

 Low priority component get a negligible 

fraction of the bus bandwidth  leads to 

starvation for the low priority 

component
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Time Division Multiple Access 

(TDMA)

 Guarantee bandwidth for each component

 Long latencies for high priority components

 Sometimes, two-level arbitration protocol is used:

 Timing wheel, each slot is statically reserved for a 

unique master

 To alleviate the problem of wasted slots, a second 

level of arbitration issues a grant to the next 

requesting master in a round-robin fashion if the 

assigned master does not have a pending 

communication request
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Time Division Multiple Access 

(TDMA)

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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TDMA

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Well time-aligned 

low latency

Not well time-

aligned  high 

latency
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Rotating Priority (Round-Robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among 

peripherals with similar priority demands

 High bus utilization

 Worst-case waiting time is reliably predictable

 The actual bandwidth is uncertain
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LOTTERYBUS Communication 

Architecture

 Lottery manager

 Randomly choose 

one master to be the 

winner of the lottery

 A maximum transfer 

size limits to 

prevent a master 

from monopolizing 

the bus Source: K. Lahiri, A. Raghunathan, and G. 

Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for 

System-on-Chip designs,” DAC 2001.
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LOTTERYBUS Communication 

Architecture

 The master to be 

granted is chosen in a 

randomized way with 

probability of granting 

component.
t r

 





n

j jj
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i

tr

tr
CP

1

)(Probability of grating component Ci:
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LOTTERYBUS:

Bandwidth Allocation

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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LOTTERYBUS:

Latency

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.
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Slot Reservation

 TDMA + round-robin

 Only one master is periodically allocated a 

slot for the contention-free access

The length of the time slot is adjustable

 For the inter-slot time, the contention 

among the remaining masters is managed 

in a round-robin fashion
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration 

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8, 

pp. 189—210, 2003.
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Important Notes

 The optimal bus arbitration policy is not 

unique, but strongly depends on the traffic 

conditions

 There exists a trade-off between 

contention-avoidance bus arbitration 

policies and contention-resolution bus 

protocols
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration 

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8, 

pp. 189—210, 2003.
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Arbitration: Daisy-Chain 

Arbitration
 Arbitration is done by peripherals

 Built into peripheral or external logic added
 req input and ack output are added to each peripheral

 Peripherals are connected to each other in 
daisy-chain manner
 One peripheral connected to resource, all others 

connected “upstream”

 Peripheral’s req flows “downstream” to resource, 
resource’s ack flows “upstream” to requesting 
peripheral

 Closest peripheral has highest priority
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Arbitration: Daisy-Chain Arbitration

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Higher priority Lower priority
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Arbitration: Daisy-Chain 

Arbitration

 Pros/cons

Easy to add/remove peripheral - no system 

redesign needed

Does not support rotating priority

One broken peripheral can cause the loss of 

accessing to other peripherals
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Network-Oriented Arbitration

 When multiple microprocessors share a bus (sometimes 

called network-on-chip, NoC)

 Arbitration typically built into bus protocol

 Separate processors may try to write simultaneously causing 

collisions

 Data must be resent

 Don’t want to start sending again at the same time

 Statistical methods can be used to reduce chances

 Typically used for connecting multiple IPs

 Trend – use to connect multiple on-chip processors
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Multilevel Bus Architectures

 Single bus is not enough for all communication
 Peripherals would need high-speed, processor-specific bus 

interface
 Excess gates, power consumption, and cost; less portable

 Too many peripherals slows down bus

 Processor-local bus
 High speed, wide, most frequent communication

 Connects microprocessor, cache, memory controllers, etc.

 Peripheral bus
 Lower speed, narrower, less frequent communication

 Typically industry standard bus (ISA, PCI) for portability

 Bridge
 Single-purpose processor converts communication between 

busses
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Multilevel Bus Architectures

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

BridgePeripheralPeripheralPeripheral

Peripheral bus



Multimedia SoC Design Shao-Yi Chien 75

Multi-Layer AHB

 Multi-layer AHB

 Enables parallel access paths between multiple 

masters and slaves by an interconnection matrix (bus 

matrix)

 Increase the overall bus bandwidth

 More flexible system architecture

 Make slaves local to a particular layer

 Make multiple slaves appear as a single slave to the 

interconnection matrix

 Multiple masters on a single layer 
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Multi-Layer AHB

 A simple multi-layer system
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Multi-Layer AHB
 Local slaves

 Slave #4 and Slave #5 can only be accessed by 

Master #2
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Multi-Layer AHB

 Multiple slaves on 

one slave port
 Combine low-bandwidth 

slaves together

 Combine salves usually 

accessed by the same 

master together
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Multi-Layer AHB

 Multiple masters on 

one layer
 Combine masters which 

have low-bandwidth 

requirements together

 Combine special masters 

together
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Multi-Layer AHB

 Multi-port slaves
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Example


