Interfacing

Shao-Yi1 Chien

Outline

m [nterfacing basics

m UP interfacing: I/O Addressing

m UP Interfacing: Interrupts

m UP Interfacing: Direct memory access
m Arbitration

m Hierarchical buses

Multimedia SoC Design Shao-Yi Chien 2

A Simple Bus

m Wires:
Uni-directional or bi-directional

One line may represent
multiple wires

m Bus

Set of wires with a single
function
m Address hus, data bus

Or, entire collection of wires
m Address, data and control

m Associated protocol: rules for

communication
Multimedia SoC Design Shao-Yi Chien

Processor

et
““““

(A

rd'/wr

[

- v/
(S

enable

addr[0-11]

»
>

data[0-7]

[
>

&
«

H_J

bus

[
»

bus structure

Memory

Basic Protocol Concepts

m Actor: master initiates, servant (slave) respond
m Direction: sender, receiver

m Addresses: special kind of data

Specifies a location in memory, a peripheral, or a
register within a peripheral

m Time multiplexing
Share a single set of wires for multiple pieces of data

Saves wires at expense of time

Multimedia SoC Design Shao-Yi Chien 4

et
‘‘‘‘‘

Example of Time Multiplexing

Time-multiplexed data transfer

Master req Servant
data(15:0) * | data(15:0)
I I I I
mux demux
data(8) |
req — “'—
data —{ 15:8 7.0

data serializing

Multimedia SoC Design

Master req Servant
addr| |data] addr| |data
I mulx delmuxI
addr/data‘ |
req — S
addr/data —| addr data |

address/data muxing

Shao-Yi Chien

UP Interfacing: I/O Addressing

m A microprocessor communicates with other devices
using some of its pins

Port-based I/O (parallel 1/0O)

m Processor has one or more N-bit ports

m Processor’s software reads and writes a port just like a register

m EX: PO = OxFF; v=P1.2; -- PO and P1 are 8-bit ports (can be
accessed bit by bit)

Bus-based I/O

m Processor has address, data and control ports that form a single
bus

s Communication protocol is built into the processor

= A single instruction carries out the read or write protocol on the
bus
Multimedia SoC Design Shao-Yi Chien 6

et
\\\\\

Compromises/Extensions

m Parallel 1/0O peripheral Processor| [Memory

When processor only
supports bus-based /O but

System bus

parallel 1/O is needed
Each port on peripheral

Parallel I/O peripheral

connected to a register I I I
within peripheral that is POrtA PortB PortC
read/written by the

Adding parallel I/O to a bus-
Processor based 1/0 processor

Multimedia SoC Design Shao-Yi Chien

Compromises/Extensions

m Extended parallel I/O

When processor supports
port-based I/O but more
ports are needed

One or more processor
ports interface with parallel
I/O peripheral extending
total number of ports
available for 1/0O

Multimedia SoC Design Shao-Yi Chien

Processor |, > Port O

<«— Portl
+«— Port 2
Port 3

Parallel I/O peripheral

]

Port A Port B Port C

Extended parallel 1/0

/) "‘f‘(i»'_‘; - \

S

Types of Bus-Based 1/O

m Processor talks to both memory and peripherals
using the same bus — two ways to talk to peripherals

Memory-mapped /O

m Peripheral registers occupy addresses in the same address space
as memory

m e.g., Bus has 16-bit address
lower 32K addresses may correspond to memory
upper 32k addresses may correspond to peripherals

Standard I/O (I/0O-mapped 1/O)

m Additional pin (M/IO) on bus indicates whether a memory or
peripheral access

m e.0., Bus has 16-bit address
all 64K addresses correspond to memory when M/IO setto O
all 64K addresses correspond to peripherals when M/IO set to 1
Multimedia SoC Design Shao-Yi Chien 9

Snk sV
Memory-Mapped I/O vs.
Standard 1/O

m Memory-mapped I/O

Requires no special instructions
s Assembly instructions involving memory like MOV and ADD
work with peripherals as well

s Standard I/O requires special instructions (e.g., IN, OUT) to
move data between peripheral registers and memory

m Standard I/O
No loss of memory addresses to peripherals

Simpler address decoding logic in peripherals

possible
s When number of peripherals is much smaller than address
space then high-order address bits can be ignored - smaller

and/or faster comparators

Multimedia SoC Design Shao-Yi Chien 10

uP Interfacing: Interrupts

m Suppose a peripheral intermittently receives
data, which must be serviced by the processor

The processor can poll the peripheral regularly to see
If data has arrived — wasteful

The peripheral can interrupt the processor when it
has data

m Requires an extra pin or pins: Int

If Int is 1, processor suspends current program, jJumps
to an Interrupt Service Routine, or ISR

Known as interrupt-driven 1/O

Essentially, “polling” of the interrupt pin is built-into
the hardware, so no extra time!

Multimedia SoC Design Shao-Yi Chien 11

uP Interfacing: Interrupts

m What is the address (interrupt address vector) of
the ISR?

Fixed interrupt
m Address built into microprocessor, cannot be changed

m Either ISR stored at address or a jump to actual ISR stored if
not enough bytes available

Vectored interrupt
m Peripheral must provide the address

s Common when microprocessor has multiple peripherals
connected by a system bus

Compromise: interrupt address table

Multimedia SoC Design Shao-Yi Chien 12

Interrupt-Driven 1/O using F x d
ISR Location

— |1(a): uP is executing its main program. 1(b): P1 receives input data in a
g register with address 0x8000.
2: P1 asserts Int to request
servicing by the microprocessor.
3: After completing instruction at 100, P
sees Int asserted, saves the PC’s value of /
100, and sets PC to the ISR fixed location
of 16. \
4(a): The ISR reads data from 0x8000, 4(b): After being read, P1 de-
modifies the data, and writes the resulting asserts Int.
data to Ox8001.
5: The ISR returns, thus restoring PC to
v |100+1=101, where uP resumes executing.

Multimedia SoC Design Shao-Yi Chien

Interrupt-Driven 1/O using Fixed

ISR Location

1(a): uP is executing its
main program

1(b): P1 receives input data

In a register with address
0x8000.

Multimedia SoC Design

gt
) a,

V &7 3

L] @

(AR A A

o

Program memory P Data memory
ISR
16: MOV RO, 0x8000
17: # modifies RO System
18: MOV 0x8001, RO bis
19: RETI # ISR return
o Int P1 P2
Main program
<« PC
100: instruction 0x8000 | |0x8001
101: instruction ®
o

Shao-Yi Chien

14

W2y 7 ‘%ﬁ »9)'

o

Interrupt-Driven 1/O using Fixed
ISR Location

2: P1 asserts Int to request ISRProgram memory uP Data memory
servicing by the 16: MOV RO, 0x8000
microprocessor 17: # modifies RO Sﬁﬁm

18: MOV 0x8001, RO
19: RETI # ISR return

: Int P1 P2
Main program 1
PC 0x8000 | |0x8001

A

100: instruction
101: instruction

Multimedia SoC Design Shao-Yi Chien 15

Interrupt-Driven 1/O using Fixed

ISR Location

3: After completing
instruction at 100, uP sees
Int asserted, saves the PC’s
value of 100, and sets PC
to the ISR fixed location of

16.

Multimedia SoC Design

W2y 7 ‘%ﬁ »9)'

o

Program memory uP Data memory
ISR L
16: MOV RO, 0x8000 '
17: # modifiesRO System
18: MOV 0x8001, RO ! bt
19: RETI # ISR return
o ! Int P1 P2
Main program !
100: instruction LS) 0x8000 | |Ox8001
101: instruction 100]#

Shao-Yi Chien

16

/T %\% x
Interrupt-Driven |/O using Fixed

ISR Location

4(a): The ISR reads data Program memory uP Data memory
o ISR
from Ox8000_, modifies the 16: MOV RO, 0x8000 ., ® -
data, and writes the 17: # modifies RO (@ lamzzm==-t oo
. < A 1 J
resulting data to 0x8001. 18: MOV 0x8001, RO . N |
19: RETI # ISR return v
: INt |« P1 1|1 P2
4(b): After being read, P1 Main program 0 |
deasserts Int. 100: instruction g s 0x8000 | 10x8001
101: instruction 100 o '®

Multimedia SoC Design Shao-Yi Chien 17

Wy~ “%ﬁ 3/;

o

Interrupt-Driven 1/O using Fixed
ISR Location

5: The ISR returns, thus Program memory uP Data memory
- _ ISR
+1=
restoring PC to 100+1=101, 16: MOV RO, 0x8000
where uP resumes 17: # modifies RO System
executing. 18: MOV 0x8001, RO btis

19: RETI # ISR return
e Int P1 P2

Main program .--"")
1
1/

A

PC I~ ,0X8000 | |0x8001

+

100: instruction)
101: instruction 100~

-

Multimedia SoC Design Shao-Yi Chien 18

Interrupt-Driven 1/O using
Vectored Interrupt

1(a): uP is executing its main program. 1(b): P1 receives input data in a
register with address 0x8000.

awiL

2: P1 asserts Int to request
servicing by the microprocessor.

3: After completing instruction at 100, uP
sees Int asserted, saves the PC’s value of
100, and asserts Inta.

4: P1 detects Inta and puts
interrupt address vector 16 on
the data bus.

5(a): MP jumps to the address on the bus
(16). The ISR there reads data from 0x8000, :
modifies the data, and writes the resulting 5(b): After being read, P1
data to 0x8001. deasserts Int.

LN N

y

6: The ISR returns, thus restoring PC to
100+1=101, where uP resumes executing.

v
Multimedia SoC Design Shao-Yi Chien 19

Interrupt-Driven |/O using

Vectored Interrupt

1(a): uP is executing its main
program

1(b): P1 receives input data in
a register with address
0x8000.

Multimedia SoC Design

/

f
g;‘@
L

Program memory
ISR

16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO
19: RETI # ISR return

Maln program

100 instruction
101: instruction

A

Inta

Int

PC

100

Data memory

Shao-Yi Chien

System bus
P1 P2
16
0x8000 | | Ox8001
o
[
20

Interrupt-Driven 1/O using

Vectored Interrupt

2: P1 asserts Int to request
servicing by the
microprocessor

Multimedia SoC Design

Program memory uP Data memory
ISR
16: MOV RO, 0x8000 < ;
17: # modifies RO ystem bus

18: MOV 0x8001, RO
19: RETI # ISR return

: Inta P1 P2
Main program Int<=

100: instruction
101: instruction 100

0x8000 | | Ox8001

Shao-Yi Chien 21

Interrupt-Driven 1/O using

Vectored Interrupt

3: After completing instruction
at 100, yP sees Int asserted,

saves the PC’s value of 100,

and asserts Inta

Multimedia SoC Design

Program memory uP Data memory
ISR
16: MOV RO, 0x8000 b
17: # modifies RO System bus
18: MOV 0x8001, RO
19: RETI # ISR return
Inta—— pq P2
Main program Int
PC |~ 16
100: !nstruct!on ," 0x8000 0X8001
101: instruction 100 |V

Shao-Yi Chien

22

Interrupt-Driven 1/O using

Vectored Interrupt

4: P1 detects Inta and puts ISRProgram memory

Interrupt address vector 16 16: MOV RO, 0x8000

on the data bus 17: # modifies RO
18: MOV 0x8001, RO

19: RETI # ISR return
Main program

100: instruction
101: instruction

MP

16

Inta

Int

PC

100

Data memory

Multimedia SoC Design Shao-Yi Chien

< _ | System bus
P1! P2
16 | .
0x8000 | | 0x8001

23

Interrupt-Driven 1/O using

Vectored Interrupt

5(a): PC jumps to the address
on the bus (16). The ISR
there reads data from 0x8000,
modifies the data, and writes
the resulting data to 0x8001.

5(b): After being read, P1
deasserts Int.

Multimedia SoC Design

‘‘‘‘‘‘‘‘‘‘

ISR

16:
17:
18:
19:

Main program !

100:
101:

Program memory

-
MOV RO, 0x8000
modifies RO

MOV 0x8001, RO |
RETI # ISR returry

-~

S _——_——

Inta
Int

instruction
instruction

PC

100

Shao-Yi Chien

Data memory
__________ System bus
< A \‘\ A >
A L pp— -— '

PL i | P2
ol[16] | !

! \%
0x8000!| | 0x8001

o} [@

24

Interrupt-Driven |/O using
Vectored Interrupt

6: The ISR returns, thus
restoring the PC to
100+1=101, where the yP
resumes

Multimedia SoC Design

/

/
g;‘@’
S

Program memory
ISR
16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO
19: RETI # ISR return

Maln program 2

100: instruction
101: instruction

A

Int

PC

-

100~

Shao-Yi Chien

+1

Data memory

System
bts
P1 P2
0x8000 | | Ox8001
25

et
““““

Interrupt Address Table

m Compromise between fixed and vectored
Interrupts
One interrupt pin

Table in memory holding ISR addresses (maybe 256
words)

Peripheral doesn’t provide ISR address, but rather
iIndex into table

s Fewer bits are sent by the peripheral

m Can move ISR location without changing peripheral

Multimedia SoC Design Shao-Yi Chien 26

Interrupt Table

Processor

A

\ 4

MASK \
IDXO
DXL)

=— Priority Arbiter

(—
e (Interrupt

MEMORY

1

ENABLE— — Controller)

\ \/

DATA Peripheral 1 || Peripheral 2 [

I

e

l

Jump Table

Memory Bus

Multimedia SoC De

sign

Shao-Yi Chien

Fixed priority: i.e., Peripherall
has the highest priority
Keyword “_at_” followed by
memory address forces
compiler to place variables in
specific memory locations
e.g., memory-mapped
registers in arbiter (interrupt
controller), peripherals
A peripheral’s index into
interrupt table is sent to
memory-mapped register in
arbiter (interrupt controller)

Peripherals receive external
data and raise interrupt

27

Interrupt Table

void main () {

unsigned char ARBITER MASK REG

unsigned char ARBITER CHO INDEX REG
unsigned char ARBITER CH1 INDEX REG
unsigned char ARBITER ENABLE REG

unsigned char PERIPHERALI DATA REG
unsigned char PERIPHERALZ2 DATA REG
unsigned void* INTERRUPT LOOKUP TABLE[256]

InitializePeripherals();

for(;;) {} // main program goes here

at

at
at
at
at

at

at

Oxfff0;
Oxfffl;
Oxfff2;
Oxfff3;
Oxffel;
Oxffel;
0x0100;

Multimedia SoC Design

Shao-Yi Chien

28

Interrupt Table

void Peripherall ISR (void) {
unsigned char data;
data = PERIPHERAL1 DATA REG;
// do something with the data

voild Peripheral2 ISR (void) {
unsigned char data;
data = PERIPHERALZ DATA REG;
// do something with the data

void InitializePeripherals (void) {
ARBITER MASK REG = 0x03; // enable both channels
ARBITER CHO INDEX REG = 13;
ARBITER CH1 INDEX REG = 17;

INTERRUPT LOOKUP TABLE[13] = (void*)Peripherall ISR;
INTERRUPT LOOKUP TABLE[17] = (void*)Peripheral2 ISR;

ARBITER ENABLE REG = 1;

Multimedia SoC Design Shao-Yi Chien

29

Interrupt Controller

m A Slave device
m Support

multiple interrupt
sources

Vectored interrupt
Software interrupt
Priority filtering
Masking

Programmable for

Some Cases

Multimedia SoC Design

AHB Interface

X = number of slave selects that the slave requires

<

a = Width of address bus
d = Width of data bus, which is same width as AHB_DATA_WIDTH

* = optional signals

Shao-Yi Chien

et
‘‘‘‘‘

\f@j

- v/
(S

helk —p|
hresetn —p

hsel —|
haddr[a—1:0] |
htrans[1:0]
hsize[2:0] |
hwdata[d—1:0] =
hready <

hresp[1:0] <
hrdata[d—1:0] <€+

\ hready_resp 4

Interrupt
Controller

<4 scan_mode”
< irg_intsrc
<« fig_intsrc*
—» irq*

—» fig*

—» irq_n*

_y fig_n*

30

Additional Interrupt Issues

m Maskable vs. non-maskable interrupts

Maskable: programmer can set bit that causes
processor to ignore interrupt
= Important when in the middle of time-critical code

Non-maskable: a separate interrupt pin that can’t be

masked

m Typically reserved for drastic situations, like power failure
requiring immediate backup of data to non-volatile memory

Multimedia SoC Design Shao-Yi Chien 31

Additional Interrupt Issues

m Jump to ISR

Some microprocessors treat jump the same as call of
any subroutine
s Complete state saved (PC, registers) — may take hundreds of
cycles
Others only save partial state, like PC only

= Thus, ISR must not modify registers, or else must save them
first

s Assembly-language programmer must be aware of which
registers stored

Multimedia SoC Design Shao-Yi Chien 32

\-',
§

Sources of Interrupt Overhead

m Handler execution time

m Interrupt mechanism overhead
m Register save/restore

m Pipeline-related penalties

m Cache-related penalties

Multimedia SoC Design Shao-Yi Chien

33

ARM Interrupts

m ARMY7 supports two types of interrupts:
Fast interrupt requests (FIQs).
Interrupt requests (IRQS).

m Interrupt vector address

FIQ: 0x0000001C
IRQ: 0x00000018

Multimedia SoC Design Shao-Yi Chien 34

et
‘‘‘‘‘

ARM Interrupt Procedure

m CPU actions:

Save PC. Copy CPSR (current program status
register) to SPSR (saved program status register)

Force bits in CPSR to record interrupt
Force PC to vector

m Handler responsibilities:
Restore proper PC

Restore CPSR from SPSR
Clear interrupt disable flags

Multimedia SoC Design Shao-Yi Chien 35

ARM Interrupt Latency

m \Worst-case latency to respond to FIQ Is 28
cycle:
Three cycles to synchronize external request

Up to 20 cycles to complete current
Instruction

Three cycles for data abort
Two cycles to enter interrupt handling state

m The best case Is 4 cycle

Multimedia SoC Design Shao-Yi Chien 36

et
‘‘‘‘‘

Direct Memory Access (DMA)

m Buffering
Temporarily storing data in memory before processing
Data accumulated in peripherals commonly buffered

m Microprocessor could handle this with ISR
Storing and restoring microprocessor state (interrupt overhead)
IS inefficient
Regular program must wait

m DMA controller is more efficient

Separate single-purpose processor

Microprocessor relinquishes control of system bus to DMA
controller

Multimedia SoC Design Shao-Yi Chien 37

Y

Direct Memory Access (DMA)

Microprocessor can meanwhile execute its
regular program

= No inefficient storing and restoring state due to ISR
call

m Regular program needs not to wait unless it
requires the system bus

Harvard architecture — processor can fetch and execute
Instructions as long as they don’t access data memory —
If they do, processor stalls

A system with separate bus between the microprocessor
and cache (or TCM) may be able to execute when DMA
IS working

Multimedia SoC Design Shao-Yi Chien 38

Peripheral to Memory Transfer

without DMA

v

Multimedia SoC Design

awi]

=l |1(a): uP is executing its main program.

1(b): P1 receives input data in a
register with address 0x8000.

\ 4

A\ 4

3: After completing instruction at 100, uP
sees Int asserted, saves the PC’s value of
100, and asserts Inta.

'

2: P1 asserts Int to request
servicing by the microprocessor.

5(a): uP jumps to the address on the bus
(16). The ISR there reads data from 0x8000
and then writes it to 0x0001, which is in
memory.

\J4: P1 detects Inta and puts

interrupt address vector 16 on the
data bus.

5(b): After being read, P1
deasserts Int.

6: The ISR returns, thus restoring PC to
100+1=101, where uyP resumes executing.

Shao-Yi Chien

39

Peripheral to Memory Transfer
without DMA

1(8.)1]JP IS executing its main Program memory WP Data memory
ISR 0x0000 0x0001
program 16: MOV RO, 0x8000
17: # modifies RO
. : . . 18: MOV 0x0001, RO System bus
1(b): _Pl receives input data in 19 BETI £ 198 return
a register with address s |
t
0x8000. ain program Tn? P1
100: instruction 16
101: instruction 7 PC 0x8000
[J
o

Multimedia SoC Design Shao-Yi Chien 40

Peripheral to Memory Transfer
without DMA

2. P1 asserts Int to request Program memory WP Data memory
. . bv th ISR 0x0000 0x0001
servicing by the 16: MOV RO, 0x8000
Mmicroprocessor 17: # modifies RO
18: MOV 0x0001, RO System bus
19: RETI # ISR return
Main program Inta P1
Int <
100: instruction 16
. - <« PC 1
101: instruction 0x8000

100

Multimedia SoC Design Shao-Yi Chien 41

Peripheral to Memory Transfer

without DMA

3: After completing instruction
at 100, uP sees Int asserted,
saves the PC’s value of 100,
and asserts Inta.

Multimedia SoC Design

Program memory WP Data memory

ISR 0x0000 0x0001

16: MOV RO, 0x8000

17: # modifies RO

18: MOV 0x0001, RO System bus

19: RETI # ISR return

1
Main program Intal—| p1
100: instruction 16
101: instruction T PC ™, 0x8000
100 | ¥

Shao-Yi Chien 42

Peripheral to Memory Transfer
without DMA

4: P1 detects Inta and puts Program memory WP Data memory
. ISR 0x0000 0x0001
interrupt address vector 16 on 16: MOV RO. 0x8000
the data bus. 17: # modifies RO
18: MOV 0x0001, RO 16 L< ------ . System bU§
19: RETI # ISR return b 4 ! "
Main program Inta Pvl .:
100: instruction nt 16 |-
101: instruction < PC 0x8000
100

Multimedia SoC Design Shao-Yi Chien 43

AR\ Ko \

Peripheral to Memory Transfer

without DMA

5(a): uP jumps to the address
on the bus (16). The ISR there
reads data from 0x8000 and
then writes it to 0x0001, which

IS iIn memory.

5(b): After being read, P1 de-
asserts Int.

Multimedia SoC Design

uP Data memory

ISR

Program memory
£

16: MOV RO, 0x8000
17: # modifies RO
18: MOV 0x0001, RO

19! RETI # ISR return
Main program

100: instruction
101: instruction

-

\
|
1
1
)
1
)
)
)
1
1
1
I
I
)
I
1
|

\ -

'

0x0000 0x0001

L @ |

’I System bus

‘\ —————— — - <

A\ 4
Inta P1

Int |« 16

A

O 1
i 0x8000

Shao-Yi Chien

44

; @ Ehy
Peripheral to Memory Transfer
without DMA

6: The ISR returns, thus . Program memory uP ; ooogazja gqoeoniory
. ISR X X
restoring PC to 100+1=101, 16: MOV RO, 0x8000
where uP resumes executing. 17: # modifies RO
18: MOV 0x0001, RO System bus
19: RETI # ISR return
Main program Inta P1
100: instruction Lf’/”‘: nt 16
101: instruction O RS " +1 0x8000

Multimedia SoC Design Shao-Yi Chien 45

Peripheral to Memory Transfer
with DMA

awiL

v

1(a): uP is executing its main
program. It has already configured
the DMA ctrl registers.

1(b): P1 receives input
data in a register with
address 0x8000.

4. After executing instruction 100,
WP sees Dreq asserted, releases
the system bus, asserts Dack, and
resumes execution. uP stalls only if
it needs the system bus to continue
executing.

\

3: DMA ctrl asserts
Dreq to request control
of system bus.

A 4

5: (a) DMA ctrl asserts
ack (b) reads data from
0x8000 and (b) writes
that data to 0x0001.

2: P1 asserts req to
request servicing by

DMA ctrl.

'

7(a): uP de-asserts Dack and
resumes control of the bus.

6.. DMA de-asserts
Dreq and ack
completing handshake
with P1.

Multimedia SoC Design

Shao-Yi Chien

7(b): P1 de-asserts req.

46

Peripheral to Memory Transfer

with DMA

1(a): uP is executing its main
program. It has already
configured the DMA ctrl registers

1(b): P1 receives input data in a
register with address 0x8000.

Multimedia SoC Design

Program memory

No ISR needed!

Main program
100: instruction
101: instruction

Dack
Dreq

‘]|PC

100

Data memory
0x0000 0x0001

Shao-Yi Chien

System bus
DMA ctrl P1
0x0001 | ack
0x8000 req 0x8000
4
o
a7

; @ Ehy
Peripheral to Memory Transfer
with DMA

. puP Data memory
2: P:_L gsserts req to request Program memory 0x0000 0x0001
servicing
No ISR needed!
by DMA ctrl. System bus
3: DMA ctrl asserts Dreq to Dack
t trol of t b Main program Dac DMA ctrl Pl
request control o1 system Dbus req<1— 0x0001 | ack
100: instruction «— PC
101: instruction 100 0x8000 | ™9 T 0x8000

Multimedia SoC Design Shao-Yi Chien 48

Peripheral to Memory Transfer

with DMA

4: After executing instruction
100, uP sees Dreq asserted,
releases the system bus, asserts
Dack, and resumes execution,
uP stalls only if it needs the
system bus to continue
executing.

Multimedia SoC Design

Program memory

No ISR needed!

Main program
100: instruction
101: instruction

A

puP

Dack
Dreq

100

1
—

Shao-Yi Chien

Data memory
0x0000 0x0001

System bus
DMA ctrl P1
0x0001 | ack
0x8000 | "1 1= 9x8000

49

_ Gy
Peripheral to Memory Transfer
with DMA

5: DMA ctrl (a) asserts ack, (b) Program memory uP 0000 28 memory
reads data from 0x8000, and (c) [@® |

writes that data to 0x0001. No ISR needed T syembus

(Meanwhile, processor still ack| ot - t | p1 \‘

. . ; 1 ctr 1

executing if not stalled!) Main program Dreq|«—| oot e L2 |

100: instruction I pc E i .:

101: instruction :I , 0x8000; €4 0x8000:!

10 [0

Multimedia SoC Design Shao-Yi Chien 50

Peripheral to Memory Transfer
with DMA

. - uP Data memory

6: DMA _de asserts Dreq and_ack Program memory 00000 o el

completing the handshake with

P1 No ISR needed!

) System bus
Main program Df;‘gq - DMA ctrl 0 P1
OO o || 0x0001 | ack —»

100: instruction 1 pC re
101: instruction 100 0x8000 q 0x8000

Multimedia SoC Design Shao-Yi Chien 51

Arbitration: Priority Arbiter

m Consider the situation where multiple peripherals request
service from single resource (e.g., microprocessor, DMA
controller, memory controller) simultaneously - which
gets serviced first?

m Arbiter

Single-purpose processor

Peripherals make requests to arbiter, arbiter makes
requests to resource

Arbiter connected to system bus for configuration only
m Priority arbiter

The arbiter grants the request according to a priority
list
Multimedia SoC Design Shao-Yi Chien 52

et
‘‘‘‘‘

Arbitration

m The arbitration process plays a crucial role in
determining the performance of the system

m [t assigns the priorities with which processor are
granted the access to the shared communication
resource

m Arbitration become more and more important

Increasing integration levels of SoC - increase
contention = violate real-time constraints 2 need
efficient contention resolution scheme

Multimedia SoC Design Shao-Yi Chien 53

Arbitration: Priority Arbiter

m Types of priority
Fixed priority
Time division multiple access (TDMA)

Rotating priority (round-robin)
m Priority changed based on history of servicing

m Better distribution of servicing especially among
peripherals with similar priority demands

Slot reservation
LOTTERYBUS

Multimedia SoC Design Shao-Yi Chien 54

Better Arbiter?

m A good arbiter should be able to provide

Proportional allocation of communication
pandwidth

_ow latency communication for high priority
data transfer

Multimedia SoC Design Shao-Yi Chien 55

Fixed Priority

m Each peripheral has a unique rank
m Highest rank is chosen first with simultaneous requests
m Preferred when clear difference in rank between

peripherals

m May lead to starvation for the low priority components

-

o

BURST SIZE
PRIORITY M
PRIORITY M
PRIORITY M
PRIORITY M
WIDTH=64,

FREQ=66Mhz, . . .

=/

- (221

 SRTTURY S
o nonou
B R W R

/

<

M1 M2 M3 || | M4
BUS I/F BUS I/F BUS VF BUS I/F
Shared bus D>
BUSTF] (BUSVF] (BUSIVF] (BUSWF] [BusTE |
S1 S2 S3 S4

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-
performance communication architecture for System-on-Chip designs,” DAC 2001.

Shao-Yi Chien

Multimedia SoC Design

56

SoC SoC SoC SoC

Master1 Master2 Master3 Master4
Inferface Inferface Interface Interface

Fixed Priority Ests sl S0 N

inferface interface
Shared Memory Arbiter

100%
80% 1

[1C4
60% 1

L]cC3

40% 1

20% 1

Bandwidth Fraction

0%

X Q2o TLad A AN ADN LA WN YN 6L ADN YN
%@ m%%u\u\@mu\m\mm NN
X PR XX N ek o ol RN T B R R w2 /

Priority Assignments to C1-C4 (4 =hi, 1=lo)

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-
performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 57

Fixed Priority

m The fraction of bandwidth a component
receives Is extremely sensitive to the
priority value it is assigned

m Low priority component get a negligible
fraction of the bus bandwidth - |leads to

starvation for the low priority
component

Multimedia SoC Design Shao-Yi Chien 58

(TDMA)

m Guarantee bandwidth for each component
m Long latencies for high priority components

m Sometimes, two-level arbitration protocol is used:

Timing wheel, each slot is statically reserved for a
unique master

To alleviate the problem of wasted slots, a second
level of arbitration issues a grant to the next
reguesting master in a round-robin fashion if the
assigned master does not have a pending
communication request

Multimedia SoC Design Shao-Yi Chien 59

(TDMA)

Current slot

equest map
Timing M2
wheel M3
reservations M3

M4

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-
performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 60

(R - \

TDMA

Well time-aligned -
low latency

Resvns. ;Z 1 2 3 1 2 3 1 2
Request 4

Tracel _}?_ T® T® T® _J?_ T® T® T® T®
Wait=1 Wait=1

Bus Trace | [1[1[1[1[1[1 21202{2120233331331]11[1]11|[22}21221233313(331 /111 [1]1 222222

'?facl; l::_rSt 1Q T@ T@ T@ ‘[‘@ T@ 13 T@ T@
s Taces IR
Bus Trace2

11111 2llof2iioia3iatat3iaf 1111 i |oloflolofiaiaialatatal 1[1[11]12lolj2bl

Not well time- | <— Wait=13 — «— Wait=13 —
aligned - high Time
|atenCy Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 61

Rotating Priority (Round-Robin)

m Priority changed based on history of servicing

m Better distribution of servicing especially among
peripherals with similar priority demands

m High bus utilization
m \Worst-case waiting time is reliably predictable
m The actual bandwidth is uncertain

Multimedia SoC Design Shao-Yi Chien 62

llllllll %%ﬂ/
LOTTERYBUS Communlcatlon

Architecture

m Lottery manager t'ekﬂSJ o B || ticketss,
Randomly choose ' kﬂc:;z;yer?' .

one master to be the
winner of the lottery | shared

system

B A maximum transfer [bus
size limits to
prevent a master

from monopolizing

the bus Source: K. Lahiri, A. Raghunathan, and G.
Lakshminarayana, “LOTTERYBUS, a new high-
performance communication architecture for
System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 63

et
- o

EnE sV
LOTTERYBUS Communication

Architecture

m The master to be - o=
]] Ticket Request Map T[1]=C3
granted Is chosen ina === T(21-C3
- . 1 T[3]=C3
randomized way with T N | LT TCOEE) vy B
_yt . C3 | 1_Imanagen l—)T[5]=C4 >
probability of granting s =1 oo
component. : r \m]:xx
T[9]=XX
Probability of grating component C;: P(Ci) — nri 1
r.-t.
j=1 1]

Multimedia SoC Design Shao-Yi Chien 64

LOTTERYBUS:
Bandwidth Allocation

100%

®
o
2

] ca
3

60% |

40% 1

20%

Bandwidth Fraction

0% 'Dt DD N D
ST Qe bc AR
RUUAE Q)% rib,b%

Ticket Asmgnments to C1-C4 (4=hi, 1=lo)

IR ke

Q/
fb"fb"fbrbfbrbfb oD B B B e B 1

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-
performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 65

 LOTTERYBUS:
Latency

[4+]
23]
1

4+]
(=]
|

NN NN N

h
42
1

[] tdma
I lottery

—
o
1

-
o
|

Average latency (bus cycles/word)
o S

o

1 2 3 4
Components

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-
performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 66

Slot Reservation

m TDMA + round-robin

m Only one master Is periodically allocated a
slot for the contention-free access

The length of the time slot is adjustable

m For the Inter-slot time, the contention
among the remaining masters is managed
In a round-robin fashion

Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration
policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8,
pp. 189—210, 2003.

Multimedia SoC Design Shao-Yi Chien 67

Important Notes

m The optimal bus arbitration policy Is not
unigue, but strongly depends on the traffic
conditions

m There exists a trade-off between
contention-avoidance bus arbitration
policies and contention-resolution bus
protocols

Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration
policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8,
pp. 189—210, 2003.

Multimedia SoC Design Shao-Yi Chien 68

et
\\\\\

Arbitration: Daisy-Chain
Arbitration

m Arbitration is done by peripherals

Built into peripheral or external logic added
= req input and ack output are added to each peripheral

m Peripherals are connected to each other in
daisy-chain manner

One peripheral connected to resource, all others
connected “upstream”

Peripheral’s req flows “downstream” to resource,
resource’s ack flows “upstream” to requesting
peripheral

Closest peripheral has highest priority

Multimedia SoC Design Shao-Yi Chien 69

Y

Arbitration: Daisy-Chain Arbitration

~ Higher priority Lower priority
uP
System bus
Peripherall Peripheral2
Inta _ :
— | Ack_in Ack_ out Ack in Ack out >
Int « ' Req out Req_in |+ Reg_out Req_in [« 0
Daisy-chain aware peripherals

Multimedia SoC Design Shao-Yi Chien 70

Arbitration: Daisy-Chain
Arbitration

m Pros/cons

Easy to add/remove peripheral - no system
redesign needed

Does not support rotating priority

One broken peripheral can cause the loss of
accessing to other peripherals

Multimedia SoC Design Shao-Yi Chien 71

Y

Network-Oriented Arbitration

m \WWhen multiple microprocessors share a bus (sometimes
called network-on-chip, NoC)
Arbitration typically built into bus protocol

Separate processors may try to write simultaneously causing
collisions

m Data must be resent

m Don’t want to start sending again at the same time
Statistical methods can be used to reduce chances

m Typically used for connecting multiple IPs
Trend — use to connect multiple on-chip processors

Multimedia SoC Design Shao-Yi Chien 72

Gy
Multilevel Bus Architectures

m Single bus is not enough for all communication

Peripherals would need high-speed, processor-specific bus
Interface
m EXcess gates, power consumption, and cost; less portable

Too many peripherals slows down bus

m Processor-local bus
High speed, wide, most frequent communication
Connects microprocessor, cache, memory controllers, etc.

m Peripheral bus
Lower speed, narrower, less frequent communication
Typically industry standard bus (ISA, PCI) for portability

m Bridge
Single-purpose processor converts communication between
busses

Multimedia SoC Design Shao-Yi Chien 73

*
e

Multilevel Bus Architectures

i

Micro- Cache Memory DMA
processor controller controller
A A A A
\ 4 A\ 4 \ 4 \ 4 »
A ”
Processor-local bus
\ 4
Peripheral Peripheral | |Peripheral Bridge
A A A A
A\ 4 A\ 4 >
Peripheral bus
Shao-Yi Chien

Multimedia SoC Design

Multi-Layer AHB

m Multi-layer AHB

Enables parallel access paths between multiple
masters and slaves by an interconnection matrix (bus
matrix)

Increase the overall bus bandwidth

More flexible system architecture
m Make slaves local to a particular layer

s Make multiple slaves appear as a single slave to the
Interconnection matrix

= Multiple masters on a single layer

Multimedia SoC Design Shao-Yi Chien 75

Interconnect >
Multi-L AHB
y Master) > \‘x’/::/ < | stave
. - s p g Slave
m A simple multi-layer system |....—
« =Slave
Interconnect matrix
Decoder Arbiter
Layer 1 JT
Master1 Y Input Slave1
stage /J
Decoder Arbiter
L 2 Jj
Master2 Al Input SlaveZ2
stage)

Multimedia SoC Design Shao-Yi Chien

Multi-Layer AHB

m Local slaves
Slave #4 and Slave #5 can only be accessed by

Master #2 (" ntrcomnect)
Matrix
—
Master Layer 1
#
Slave
! #2
Master Layer 2
#2
I Slave
__ ®
N Slave
#4

> Slave
#5

Multimedia SoC Design Shao-Yi Chien 77

(7R - \

Multi-Layer AHB

m Multiple slaves on B e
one slave port
Combine low-bandwidth | %" —= . s
slaves together
Combine salves usually
accessed by the same | — i
master together -
\-_ J Slave

Multimedia SoC Design Shao-Yi Chien 78

Multi-Layer AHB

m Multiple masters on
one layer -

Combine masters which
have low-bandwidth y
requirements together
Combine special masters
together

Multimedia SoC Design Shao-Yi Chien

¥

¥

¥

Layer 1

Layer2

¥

ATy
S N

()

79

N

Multi-Layer AHB

m Multi-port slaves

Master1

Layer 1

Master2

Multimedia SoC Design

e S SR

Dual-

port

slave
Slave1

Interconnect
matrix
— Slave?2
Shao-Yi Chien

80

Example

CPU1

e |2 /ET 1 _I

CPU2

DMA
engine

Layer 2

Multimedia SoC Design

| Dedicated
SRAM
» Dual ported | External
memory > memo
. interface Y
Shared
SRAM
Slave1
Interconnect
® » matrix
LCD _I->S|ave2
controller
Slave3
Slaved
Shao-Yi Chien

81

