
1

Interfacing

Shao-Yi Chien

Multimedia SoC Design Shao-Yi Chien 2

Outline

 Interfacing basics

 uP interfacing: I/O Addressing

 uP interfacing: Interrupts

 uP interfacing: Direct memory access

Arbitration

Hierarchical buses

Multimedia SoC Design Shao-Yi Chien 3

A Simple Bus

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

 Wires:

 Uni-directional or bi-directional

 One line may represent

multiple wires

 Bus

 Set of wires with a single

function

 Address bus, data bus

 Or, entire collection of wires

 Address, data and control

 Associated protocol: rules for

communication

Multimedia SoC Design Shao-Yi Chien 4

Basic Protocol Concepts

 Actor: master initiates, servant (slave) respond

 Direction: sender, receiver

 Addresses: special kind of data
 Specifies a location in memory, a peripheral, or a

register within a peripheral

 Time multiplexing
 Share a single set of wires for multiple pieces of data

 Saves wires at expense of time

Multimedia SoC Design Shao-Yi Chien 5

Example of Time Multiplexing

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer

Multimedia SoC Design Shao-Yi Chien 6

uP Interfacing: I/O Addressing

 A microprocessor communicates with other devices

using some of its pins

 Port-based I/O (parallel I/O)

 Processor has one or more N-bit ports

 Processor’s software reads and writes a port just like a register

 Ex: P0 = 0xFF; v = P1.2; -- P0 and P1 are 8-bit ports (can be

accessed bit by bit)

 Bus-based I/O

 Processor has address, data and control ports that form a single

bus

 Communication protocol is built into the processor

 A single instruction carries out the read or write protocol on the

bus

Multimedia SoC Design Shao-Yi Chien 7

Compromises/Extensions

 Parallel I/O peripheral

 When processor only

supports bus-based I/O but

parallel I/O is needed

 Each port on peripheral

connected to a register

within peripheral that is

read/written by the

processor

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-

based I/O processor

Multimedia SoC Design Shao-Yi Chien 8

Compromises/Extensions

 Extended parallel I/O

 When processor supports

port-based I/O but more

ports are needed

 One or more processor

ports interface with parallel

I/O peripheral extending

total number of ports

available for I/O

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Extended parallel I/O

Multimedia SoC Design Shao-Yi Chien 9

Types of Bus-Based I/O
 Processor talks to both memory and peripherals

using the same bus – two ways to talk to peripherals
 Memory-mapped I/O

 Peripheral registers occupy addresses in the same address space
as memory

 e.g., Bus has 16-bit address

 lower 32K addresses may correspond to memory

 upper 32k addresses may correspond to peripherals

 Standard I/O (I/O-mapped I/O)
 Additional pin (M/IO) on bus indicates whether a memory or

peripheral access

 e.g., Bus has 16-bit address

 all 64K addresses correspond to memory when M/IO set to 0

 all 64K addresses correspond to peripherals when M/IO set to 1

Multimedia SoC Design Shao-Yi Chien 10

Memory-Mapped I/O vs.

Standard I/O
 Memory-mapped I/O

 Requires no special instructions
 Assembly instructions involving memory like MOV and ADD

work with peripherals as well

 Standard I/O requires special instructions (e.g., IN, OUT) to
move data between peripheral registers and memory

 Standard I/O
 No loss of memory addresses to peripherals

 Simpler address decoding logic in peripherals
possible
 When number of peripherals is much smaller than address

space then high-order address bits can be ignored  smaller
and/or faster comparators

Multimedia SoC Design Shao-Yi Chien 11

uP Interfacing: Interrupts

 Suppose a peripheral intermittently receives
data, which must be serviced by the processor
 The processor can poll the peripheral regularly to see

if data has arrived – wasteful

 The peripheral can interrupt the processor when it
has data

 Requires an extra pin or pins: Int
 If Int is 1, processor suspends current program, jumps

to an Interrupt Service Routine, or ISR

 Known as interrupt-driven I/O

 Essentially, “polling” of the interrupt pin is built-into
the hardware, so no extra time!

Multimedia SoC Design Shao-Yi Chien 12

uP interfacing: Interrupts

 What is the address (interrupt address vector) of

the ISR?

 Fixed interrupt

 Address built into microprocessor, cannot be changed

 Either ISR stored at address or a jump to actual ISR stored if

not enough bytes available

 Vectored interrupt

 Peripheral must provide the address

 Common when microprocessor has multiple peripherals

connected by a system bus

 Compromise: interrupt address table

Multimedia SoC Design Shao-Yi Chien 13

Interrupt-Driven I/O using Fixed

ISR Location
1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the microprocessor.

3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and sets PC to the ISR fixed location

of 16.

4(a): The ISR reads data from 0x8000,

modifies the data, and writes the resulting

data to 0x8001.

5: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

4(b): After being read, P1 de-

asserts Int.

T
im

e

Multimedia SoC Design Shao-Yi Chien 14

Interrupt-Driven I/O using Fixed

ISR Location

1(a): P is executing its

main program

1(b): P1 receives input data

in a register with address

0x8000.

μP

P1 P2

System

bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Multimedia SoC Design Shao-Yi Chien 15

Interrupt-Driven I/O using Fixed

ISR Location

2: P1 asserts Int to request

servicing by the

microprocessor

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

IntInt

1

Multimedia SoC Design Shao-Yi Chien 16

Interrupt-Driven I/O using Fixed

ISR Location

3: After completing

instruction at 100, P sees

Int asserted, saves the PC’s

value of 100, and sets PC

to the ISR fixed location of

16.

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100100

Multimedia SoC Design Shao-Yi Chien 17

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

Interrupt-Driven I/O using Fixed

ISR Location

4(a): The ISR reads data

from 0x8000, modifies the

data, and writes the

resulting data to 0x8001.

4(b): After being read, P1

deasserts Int.
100

Int
0

P1

System

bus

P1

0x8000

P2

0x8001

Multimedia SoC Design Shao-Yi Chien 18

Interrupt-Driven I/O using Fixed

ISR Location

5: The ISR returns, thus

restoring PC to 100+1=101,

where P resumes

executing.

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Multimedia SoC Design Shao-Yi Chien 19

Interrupt-Driven I/O using

Vectored Interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the microprocessor.3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and asserts Inta.

5(a): μP jumps to the address on the bus

(16). The ISR there reads data from 0x8000,

modifies the data, and writes the resulting

data to 0x8001.

6: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

5(b): After being read, P1

deasserts Int.

T
im

e

4: P1 detects Inta and puts

interrupt address vector 16 on

the data bus.

Multimedia SoC Design Shao-Yi Chien 20

Interrupt-Driven I/O using

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Int
Inta

16

1(a): P is executing its main

program

1(b): P1 receives input data in

a register with address

0x8000.

Multimedia SoC Design Shao-Yi Chien 21

Interrupt-Driven I/O using

Vectored Interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Inta

16

2: P1 asserts Int to request

servicing by the

microprocessor

Int

1

Int

Multimedia SoC Design Shao-Yi Chien 22

Interrupt-Driven I/O using

Vectored Interrupt

3: After completing instruction

at 100, μP sees Int asserted,

saves the PC’s value of 100,

and asserts Inta

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

100100

1
Inta

Multimedia SoC Design Shao-Yi Chien 23

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

Interrupt-Driven I/O using

Vectored Interrupt

100

4: P1 detects Inta and puts

interrupt address vector 16

on the data bus 16

16

System bus

Multimedia SoC Design Shao-Yi Chien 24

Interrupt-Driven I/O using

Vectored Interrupt

5(a): PC jumps to the address

on the bus (16). The ISR

there reads data from 0x8000,

modifies the data, and writes

the resulting data to 0x8001.

5(b): After being read, P1

deasserts Int.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

100

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

P1 P2

0x8000 0x8001

System bus

0

Int

Multimedia SoC Design Shao-Yi Chien 25

Interrupt-Driven I/O using

Vectored Interrupt

6: The ISR returns, thus

restoring the PC to

100+1=101, where the μP

resumes

μP

P1 P2

System

bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Multimedia SoC Design Shao-Yi Chien 26

Interrupt Address Table

 Compromise between fixed and vectored

interrupts

 One interrupt pin

 Table in memory holding ISR addresses (maybe 256

words)

 Peripheral doesn’t provide ISR address, but rather

index into table

 Fewer bits are sent by the peripheral

 Can move ISR location without changing peripheral

Multimedia SoC Design Shao-Yi Chien 27

Jump Table

M
e

m
o

ry
 B

u
s

Processor

Peripheral 1 Peripheral 2

Priority Arbiter

(Interrupt

Controller)

MASK

IDX0

IDX1

ENABLE

DATA

MEMORY

Interrupt Table
 Fixed priority: i.e., Peripheral1

has the highest priority

 Keyword “_at_” followed by

memory address forces

compiler to place variables in

specific memory locations

 e.g., memory-mapped

registers in arbiter (interrupt

controller), peripherals

 A peripheral’s index into

interrupt table is sent to

memory-mapped register in

arbiter (interrupt controller)

 Peripherals receive external

data and raise interrupt

Multimedia SoC Design Shao-Yi Chien 28

Interrupt Table

void main() {

InitializePeripherals();

for(;;) {} // main program goes here

}

unsigned char ARBITER_MASK_REG _at_ 0xfff0;

unsigned char ARBITER_CH0_INDEX_REG _at_ 0xfff1;

unsigned char ARBITER_CH1_INDEX_REG _at_ 0xfff2;

unsigned char ARBITER_ENABLE_REG _at_ 0xfff3;

unsigned char PERIPHERAL1_DATA_REG _at_ 0xffe0;

unsigned char PERIPHERAL2_DATA_REG _at_ 0xffe1;

unsigned void* INTERRUPT_LOOKUP_TABLE[256] _at_ 0x0100;

Multimedia SoC Design Shao-Yi Chien 29

Interrupt Table

void Peripheral1_ISR(void) {

unsigned char data;

data = PERIPHERAL1_DATA_REG;

// do something with the data

}

void Peripheral2_ISR(void) {

unsigned char data;

data = PERIPHERAL2_DATA_REG;

// do something with the data

}

void InitializePeripherals(void) {

ARBITER_MASK_REG = 0x03; // enable both channels

ARBITER_CH0_INDEX_REG = 13;

ARBITER_CH1_INDEX_REG = 17;

INTERRUPT_LOOKUP_TABLE[13] = (void*)Peripheral1_ISR;

INTERRUPT_LOOKUP_TABLE[17] = (void*)Peripheral2_ISR;

ARBITER_ENABLE_REG = 1;

}

Multimedia SoC Design Shao-Yi Chien 30

Interrupt Controller

 A Slave device

 Support
 multiple interrupt

sources

 Vectored interrupt

 Software interrupt

 Priority filtering

 Masking

 Programmable for
some cases

Interrupt

Controller

Multimedia SoC Design Shao-Yi Chien 31

Additional Interrupt Issues

 Maskable vs. non-maskable interrupts
 Maskable: programmer can set bit that causes

processor to ignore interrupt
 Important when in the middle of time-critical code

 Non-maskable: a separate interrupt pin that can’t be
masked
 Typically reserved for drastic situations, like power failure

requiring immediate backup of data to non-volatile memory

Multimedia SoC Design Shao-Yi Chien 32

Additional Interrupt Issues

 Jump to ISR

 Some microprocessors treat jump the same as call of

any subroutine

 Complete state saved (PC, registers) – may take hundreds of

cycles

 Others only save partial state, like PC only

 Thus, ISR must not modify registers, or else must save them

first

 Assembly-language programmer must be aware of which

registers stored

Multimedia SoC Design Shao-Yi Chien 33

Sources of Interrupt Overhead

 Handler execution time

 Interrupt mechanism overhead

 Register save/restore

 Pipeline-related penalties

 Cache-related penalties

Multimedia SoC Design Shao-Yi Chien 34

ARM Interrupts

 ARM7 supports two types of interrupts:

Fast interrupt requests (FIQs).

 Interrupt requests (IRQs).

 Interrupt vector address

FIQ: 0x0000001C

 IRQ: 0x00000018

Multimedia SoC Design Shao-Yi Chien 35

ARM Interrupt Procedure

 CPU actions:

 Save PC. Copy CPSR (current program status

register) to SPSR (saved program status register)

 Force bits in CPSR to record interrupt

 Force PC to vector

 Handler responsibilities:

 Restore proper PC

 Restore CPSR from SPSR

 Clear interrupt disable flags

Multimedia SoC Design Shao-Yi Chien 36

ARM Interrupt Latency

 Worst-case latency to respond to FIQ is 28
cycle:

Three cycles to synchronize external request

Up to 20 cycles to complete current
instruction

Three cycles for data abort

Two cycles to enter interrupt handling state

 The best case is 4 cycle

Multimedia SoC Design Shao-Yi Chien 37

Direct Memory Access (DMA)

 Buffering
 Temporarily storing data in memory before processing

 Data accumulated in peripherals commonly buffered

 Microprocessor could handle this with ISR
 Storing and restoring microprocessor state (interrupt overhead)

is inefficient

 Regular program must wait

 DMA controller is more efficient
 Separate single-purpose processor

 Microprocessor relinquishes control of system bus to DMA
controller

Multimedia SoC Design Shao-Yi Chien 38

Direct Memory Access (DMA)

Microprocessor can meanwhile execute its

regular program

 No inefficient storing and restoring state due to ISR

call

 Regular program needs not to wait unless it

requires the system bus

 Harvard architecture – processor can fetch and execute

instructions as long as they don’t access data memory –

if they do, processor stalls

 A system with separate bus between the microprocessor

and cache (or TCM) may be able to execute when DMA

is working

Multimedia SoC Design Shao-Yi Chien 39

Peripheral to Memory Transfer

without DMA
1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the microprocessor.
3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and asserts Inta.

5(a): μP jumps to the address on the bus

(16). The ISR there reads data from 0x8000

and then writes it to 0x0001, which is in

memory.

6: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

5(b): After being read, P1

deasserts Int.

T
im

e

4: P1 detects Inta and puts

interrupt address vector 16 on the

data bus.

Multimedia SoC Design Shao-Yi Chien 40

Peripheral to Memory Transfer

without DMA

1(a): P is executing its main

program

1(b): P1 receives input data in

a register with address

0x8000.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

Multimedia SoC Design Shao-Yi Chien 41

Peripheral to Memory Transfer

without DMA

2: P1 asserts Int to request

servicing by the

microprocessor

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction
1

Int

100

Multimedia SoC Design Shao-Yi Chien 42

Peripheral to Memory Transfer

without DMA

3: After completing instruction

at 100, P sees Int asserted,

saves the PC’s value of 100,

and asserts Inta.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

100

Inta
1

100

Multimedia SoC Design Shao-Yi Chien 43

Peripheral to Memory Transfer

without DMA

4: P1 detects Inta and puts

interrupt address vector 16 on

the data bus.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

100

16

16
System bus

Multimedia SoC Design Shao-Yi Chien 44

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction

Inta

Peripheral to Memory Transfer

without DMA

5(a): P jumps to the address

on the bus (16). The ISR there

reads data from 0x8000 and

then writes it to 0x0001, which

is in memory.

5(b): After being read, P1 de-

asserts Int.
100

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

System bus

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

0x8000

P1

Data memory

0x0001

Int

0

Multimedia SoC Design Shao-Yi Chien 45

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction

Inta

Peripheral to Memory Transfer

without DMA

6: The ISR returns, thus

restoring PC to 100+1=101,

where P resumes executing.

100100
+1

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

Multimedia SoC Design Shao-Yi Chien 46

Peripheral to Memory Transfer

with DMA
1(a): μP is executing its main

program. It has already configured

the DMA ctrl registers.

1(b): P1 receives input

data in a register with

address 0x8000.

2: P1 asserts req to

request servicing by

DMA ctrl.

7(b): P1 de-asserts req.

T
im

e

3: DMA ctrl asserts

Dreq to request control

of system bus.

4: After executing instruction 100,

μP sees Dreq asserted, releases

the system bus, asserts Dack, and

resumes execution. μP stalls only if

it needs the system bus to continue

executing.
5: (a) DMA ctrl asserts

ack (b) reads data from

0x8000 and (b) writes

that data to 0x0001.

6:. DMA de-asserts

Dreq and ack

completing handshake

with P1.
7(a): μP de-asserts Dack and

resumes control of the bus.

Multimedia SoC Design Shao-Yi Chien 47

Peripheral to Memory Transfer

with DMA

1(a): P is executing its main

program. It has already

configured the DMA ctrl registers

1(b): P1 receives input data in a

register with address 0x8000.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Multimedia SoC Design Shao-Yi Chien 48

Peripheral to Memory Transfer

with DMA

2: P1 asserts req to request

servicing

by DMA ctrl.

3: DMA ctrl asserts Dreq to

request control of system bus

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

reqreq

1

P1
Dreq

1

DMA ctrl P1

Multimedia SoC Design Shao-Yi Chien 49

Peripheral to Memory Transfer

with DMA

4: After executing instruction

100, P sees Dreq asserted,

releases the system bus, asserts

Dack, and resumes execution,

P stalls only if it needs the

system bus to continue

executing.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Dack
1

Multimedia SoC Design Shao-Yi Chien 50

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack

req

Peripheral to Memory Transfer

with DMA

5: DMA ctrl (a) asserts ack, (b)

reads data from 0x8000, and (c)

writes that data to 0x0001.

(Meanwhile, processor still

executing if not stalled!)
ack

1

Multimedia SoC Design Shao-Yi Chien 51

Peripheral to Memory Transfer

with DMA

6: DMA de-asserts Dreq and ack

completing the handshake with

P1.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

ack
0Dreq

0

Multimedia SoC Design Shao-Yi Chien 52

Arbitration: Priority Arbiter

 Consider the situation where multiple peripherals request
service from single resource (e.g., microprocessor, DMA
controller, memory controller) simultaneously - which
gets serviced first?

 Arbiter
 Single-purpose processor

 Peripherals make requests to arbiter, arbiter makes
requests to resource

 Arbiter connected to system bus for configuration only

 Priority arbiter
 The arbiter grants the request according to a priority

list

Multimedia SoC Design Shao-Yi Chien 53

Arbitration

 The arbitration process plays a crucial role in
determining the performance of the system

 It assigns the priorities with which processor are
granted the access to the shared communication
resource

 Arbitration become more and more important
 Increasing integration levels of SoC  increase

contention  violate real-time constraints  need
efficient contention resolution scheme

Multimedia SoC Design Shao-Yi Chien 54

Arbitration: Priority Arbiter

 Types of priority

Fixed priority

Time division multiple access (TDMA)

Rotating priority (round-robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among

peripherals with similar priority demands

Slot reservation

LOTTERYBUS

Multimedia SoC Design Shao-Yi Chien 55

Better Arbiter?

 A good arbiter should be able to provide

Proportional allocation of communication

bandwidth

Low latency communication for high priority

data transfer

Multimedia SoC Design Shao-Yi Chien 56

Fixed Priority
 Each peripheral has a unique rank

 Highest rank is chosen first with simultaneous requests

 Preferred when clear difference in rank between

peripherals

 May lead to starvation for the low priority components

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 57

Fixed Priority

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

C1

C4

Multimedia SoC Design Shao-Yi Chien 58

Fixed Priority

 The fraction of bandwidth a component

receives is extremely sensitive to the

priority value it is assigned

 Low priority component get a negligible

fraction of the bus bandwidth  leads to

starvation for the low priority

component

Multimedia SoC Design Shao-Yi Chien 59

Time Division Multiple Access

(TDMA)

 Guarantee bandwidth for each component

 Long latencies for high priority components

 Sometimes, two-level arbitration protocol is used:

 Timing wheel, each slot is statically reserved for a

unique master

 To alleviate the problem of wasted slots, a second

level of arbitration issues a grant to the next

requesting master in a round-robin fashion if the

assigned master does not have a pending

communication request

Multimedia SoC Design Shao-Yi Chien 60

Time Division Multiple Access

(TDMA)

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 61

TDMA

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Well time-aligned 

low latency

Not well time-

aligned  high

latency

Multimedia SoC Design Shao-Yi Chien 62

Rotating Priority (Round-Robin)

 Priority changed based on history of servicing

 Better distribution of servicing especially among

peripherals with similar priority demands

 High bus utilization

 Worst-case waiting time is reliably predictable

 The actual bandwidth is uncertain

Multimedia SoC Design Shao-Yi Chien 63

LOTTERYBUS Communication

Architecture

 Lottery manager

 Randomly choose

one master to be the

winner of the lottery

 A maximum transfer

size limits to

prevent a master

from monopolizing

the bus Source: K. Lahiri, A. Raghunathan, and G.

Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for

System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 64

LOTTERYBUS Communication

Architecture

 The master to be

granted is chosen in a

randomized way with

probability of granting

component.
t r

 





n

j jj

ii
i

tr

tr
CP

1

)(Probability of grating component Ci:

Multimedia SoC Design Shao-Yi Chien 65

LOTTERYBUS:

Bandwidth Allocation

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 66

LOTTERYBUS:

Latency

Source: K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS, a new high-

performance communication architecture for System-on-Chip designs,” DAC 2001.

Multimedia SoC Design Shao-Yi Chien 67

Slot Reservation

 TDMA + round-robin

 Only one master is periodically allocated a

slot for the contention-free access

The length of the time slot is adjustable

 For the inter-slot time, the contention

among the remaining masters is managed

in a round-robin fashion
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8,

pp. 189—210, 2003.

Multimedia SoC Design Shao-Yi Chien 68

Important Notes

 The optimal bus arbitration policy is not

unique, but strongly depends on the traffic

conditions

 There exists a trade-off between

contention-avoidance bus arbitration

policies and contention-resolution bus

protocols
Source: F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance analysis of arbitration

policies for SoC communication architectures,” Design Automation for Embedded Systems, vol. 8,

pp. 189—210, 2003.

Multimedia SoC Design Shao-Yi Chien 69

Arbitration: Daisy-Chain

Arbitration
 Arbitration is done by peripherals

 Built into peripheral or external logic added
 req input and ack output are added to each peripheral

 Peripherals are connected to each other in
daisy-chain manner
 One peripheral connected to resource, all others

connected “upstream”

 Peripheral’s req flows “downstream” to resource,
resource’s ack flows “upstream” to requesting
peripheral

 Closest peripheral has highest priority

Multimedia SoC Design Shao-Yi Chien 70

Arbitration: Daisy-Chain Arbitration

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Higher priority Lower priority

Multimedia SoC Design Shao-Yi Chien 71

Arbitration: Daisy-Chain

Arbitration

 Pros/cons

Easy to add/remove peripheral - no system

redesign needed

Does not support rotating priority

One broken peripheral can cause the loss of

accessing to other peripherals

Multimedia SoC Design Shao-Yi Chien 72

Network-Oriented Arbitration

 When multiple microprocessors share a bus (sometimes

called network-on-chip, NoC)

 Arbitration typically built into bus protocol

 Separate processors may try to write simultaneously causing

collisions

 Data must be resent

 Don’t want to start sending again at the same time

 Statistical methods can be used to reduce chances

 Typically used for connecting multiple IPs

 Trend – use to connect multiple on-chip processors

Multimedia SoC Design Shao-Yi Chien 73

Multilevel Bus Architectures

 Single bus is not enough for all communication
 Peripherals would need high-speed, processor-specific bus

interface
 Excess gates, power consumption, and cost; less portable

 Too many peripherals slows down bus

 Processor-local bus
 High speed, wide, most frequent communication

 Connects microprocessor, cache, memory controllers, etc.

 Peripheral bus
 Lower speed, narrower, less frequent communication

 Typically industry standard bus (ISA, PCI) for portability

 Bridge
 Single-purpose processor converts communication between

busses

Multimedia SoC Design Shao-Yi Chien 74

Multilevel Bus Architectures

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

BridgePeripheralPeripheralPeripheral

Peripheral bus

Multimedia SoC Design Shao-Yi Chien 75

Multi-Layer AHB

 Multi-layer AHB

 Enables parallel access paths between multiple

masters and slaves by an interconnection matrix (bus

matrix)

 Increase the overall bus bandwidth

 More flexible system architecture

 Make slaves local to a particular layer

 Make multiple slaves appear as a single slave to the

interconnection matrix

 Multiple masters on a single layer

Multimedia SoC Design Shao-Yi Chien 76

Multi-Layer AHB

 A simple multi-layer system

Multimedia SoC Design Shao-Yi Chien 77

Multi-Layer AHB
 Local slaves

 Slave #4 and Slave #5 can only be accessed by

Master #2

Multimedia SoC Design Shao-Yi Chien 78

Multi-Layer AHB

 Multiple slaves on

one slave port
 Combine low-bandwidth

slaves together

 Combine salves usually

accessed by the same

master together

Multimedia SoC Design Shao-Yi Chien 79

Multi-Layer AHB

 Multiple masters on

one layer
 Combine masters which

have low-bandwidth

requirements together

 Combine special masters

together

Multimedia SoC Design Shao-Yi Chien 80

Multi-Layer AHB

 Multi-port slaves

Multimedia SoC Design Shao-Yi Chien 81

Example

