
1

Processors

Shao-Yi Chien

Multimedia SoC Design Shao-Yi Chien 2

Outline
 Processor technology

 Basic architecture

 Operation

 Programmer’s view

 Developed environment

 CPU power consumption

 Application-specific instruction-set processors (ASIP)

 Co-processor

 Selecting a microprocessor

 Other trends of processor design

Multimedia SoC Design Shao-Yi Chien 3

Processor Technology
 The architecture of the computation engine used to

implement a system’s desired functionality

 Processor does not have to be programmable
 “Processor” not equal to general-purpose processor

Application-specific

Registers

Custom

ALU

DatapathController

Program memory

Assembly code

for:

total = 0

for i =1 to …

Control logic

and State

register

Data

memory

IR PC

Single-purpose (“hardware”)

DatapathController

Control

logic

State

register

Data

memory

index

total

+

IR PC

Register

file

General

ALU

DatapathController

Program

memory

Assembly code

for:

total = 0

for i =1 to …

Control

logic and

State register

Data

memory

General-purpose (“software”)

Multimedia SoC Design Shao-Yi Chien 4

Processor Technology

 Processors vary in their customization for the problem at

hand
total = 0

for i = 1 to N loop

total += M[i]

end loop

General-purpose

processor

Single-purpose

processor

Application-specific

processor

Desired

functionality

Multimedia SoC Design Shao-Yi Chien 5

General-Purpose Processors
 Programmable device used in a

variety of applications
 Also known as “microprocessor”

 Features
 Program memory

 General datapath with large register file
and general ALU

 User benefits
 Low time-to-market and NRE costs

 High flexibility

 Intel CPU is the most well-known, but
there are hundreds of others

IR PC

Register

file

General

ALU

DatapathController

Program

memory

Assembly code

for:

total = 0

for i =1 to …

Control

logic and

State register

Data

memory

Multimedia SoC Design Shao-Yi Chien 6

Single-Purpose Processors

 Digital circuit designed to execute

exactly one program

 a.k.a. coprocessor, accelerator or

peripheral

 Features

 Contains only the components needed to

execute a single program

 No program memory

 Benefits

 Fast

 Low power

 Small size

DatapathController

Control

logic

State

register

Data

memory

index

total

+

Multimedia SoC Design Shao-Yi Chien 7

Application-Specific Processors

 Programmable processor optimized

for a particular class of applications

having common characteristics

 Compromise between general-purpose

and single-purpose processors

 Features

 Program memory

 Optimized datapath

 Special functional units

 Benefits

 Some flexibility, good performance, size

and power

IR PC

Registers

Custom

ALU

DatapathController

Program

memory

Assembly code

for:

total = 0

for i =1 to …

Control

logic and

State register

Data

memory

Multimedia SoC Design Shao-Yi Chien 8

Why General-Purpose Processors

in SoCs?

 Using microprocessors is a very efficient
way to implement digital systems

 Microprocessors make it easier to design
families of products that can be built to
provide various feature sets at different
price points and can be extended to
provide new features to keep up with
rapidly changing markets

Multimedia SoC Design Shao-Yi Chien 9

Basic Architecture

 Control unit and

datapath

 Key differences to

single-purpose

processors

 Datapath is general

 Control unit doesn’t

store the algorithm –

the algorithm is

“programmed” into

the memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

Multimedia SoC Design Shao-Yi Chien 10

Datapath Operations
 Load

 Read memory
location into
register

 ALU operation
 Input certain

registers through
ALU, store back
in register

 Store
Write register to

memory location

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

10
...

...

10

+1

11

11

Multimedia SoC Design Shao-Yi Chien 11

Control Unit

 Control unit: configures the
datapath operations

 Sequence of desired
operations (“instructions”)
stored in memory – “program”

 Instruction cycle – broken into
several sub-operations, each
one clock cycle, e.g.:

 Fetch

 Decode

 Fetch operands

 Execute

 Store results

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

10
...

...

load R0, M[500]
500

501

100

inc R1, R0101

store M[501], R1102

R0 R1

Multimedia SoC Design Shao-Yi Chien 12

Control Unit Sub-Operations
 Fetch

Get next

instruction into IR

 PC: program

counter, always

points to next

instruction

 IR: holds the

fetched

instruction

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

10
...

...

load R0, M[500]
500

501

100

inc R1, R0101

store M[501], R1102

R0 R1100
load R0, M[500]

Multimedia SoC Design Shao-Yi Chien 13

Control Unit Sub-Operations
 Decode

Determine

what the

instruction

means

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

10
...

...

load R0, M[500]
500

501

100

inc R1, R0101

store M[501], R1102

R0 R1100
load R0, M[500]

Multimedia SoC Design Shao-Yi Chien 14

Control Unit Sub-Operations
 Fetch operands

Move data

from memory

to datapath

register

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

10
...

...

load R0, M[500]
500

501

100

inc R1, R0101

store M[501], R1102

R0 R1100
load R0, M[500]

10

Multimedia SoC Design Shao-Yi Chien 15

Control Unit Sub-Operations
 Execute

Move data

through the

ALU

(This example

instruction

does nothing

during this sub-

operation)

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

10
...

...

load R0, M[500]
500

501

100

inc R1, R0101

store M[501], R1102

R0 R1100
load R0, M[500]

10

Multimedia SoC Design Shao-Yi Chien 16

Control Unit Sub-Operations
 Store results

Write data from

register to

memory

(This example

instruction

does nothing

during this sub-

operation)

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control

/Status

10
...

...

load R0, M[500]
500

501

100

inc R1, R0101

store M[501], R1102

R0 R1100
load R0, M[500]

10

Multimedia SoC Design Shao-Yi Chien 17

Pipelining: Increasing

Instruction Throughput
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fetch-instr.

Decode

Fetch ops.

Execute

Store res.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Wash

Dry

Time

Non-pipelined Pipelined

Time

Time

Pipelined

pipelined instruction execution

non-pipelined dish cleaning pipelined dish cleaning

Instruction 1

Multimedia SoC Design Shao-Yi Chien 18

Superscalar and VLIW

Architectures

 Performance can be improved by:

 Faster clock (but there’s a limit)

 Pipelining: slice up instruction into many stages

Multiple ALUs to support more than one instruction

stream – superscalar

Multimedia SoC Design Shao-Yi Chien 19

Superscalar and VLIW

Architectures

 Superscalar

 Scalar: non-vector operations

 Fetches instructions in batches, executes as many as

possible

 May require extensive hardware to detect independent

instructions (dynamic)

 VLIW (Very-Long Instruction Word): each word in memory

has multiple independent instructions (static)

 Relies on the compiler to detect and schedule instructions

 Currently growing in popularity

Multimedia SoC Design Shao-Yi Chien 20

Two Memory Architectures

Processor

Program

memory

Data memory

Processor

Memory

(program and data)

Harvard Princeton

 Princeton

 Fewer memory

wires

 Harvard

 Simultaneous

program and

data memory

access

Multimedia SoC Design Shao-Yi Chien 21

Cache Memory

 Memory access may

be slow

 Cache is small but fast

memory close to

processor

Holds copy of part of

memory

Hits and misses

Processor

Memory

Cache

Fast/expensive technology, usually on

the same chip

Slower/cheaper technology, usually on

a different chip

Multimedia SoC Design Shao-Yi Chien 22

Programmer’s View

 Programmer doesn’t need understanding of architecture

in detail

 Instead, needs to know what instructions can be executed

 Two levels of instructions:

 Assembly level

 Structured languages (C, C++, Java, etc.)

 Most developments today are done using structured

languages

 But, some assembly level programming may still be necessary

 Drivers: portion of program that communicates with and/or

controls (drives) another device

Multimedia SoC Design Shao-Yi Chien 23

Assembly-Level Instructions
opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

...

Instruction 1

Instruction 2

Instruction 3

Instruction 4

 Instruction Set
 Defines the legal set of instructions for that processor

 Data transfer: memory/register, register/register, I/O, etc.

 Arithmetic/logical: move register through ALU and back

 Branches: determine next PC value when not just PC+1

Multimedia SoC Design Shao-Yi Chien 24

A Simple (Trivial) Instruction Set

opcode operands

MOV Rn, direct

MOV @Rn, Rm

ADD Rn, Rm

0000 Rn direct

0010 Rn

0100 RmRn

Rn = M(direct)

Rn = Rn + Rm

SUB Rn, Rm 0101 Rm Rn = Rn - Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

Assembly instruct. First byte Second byte Operation

JZ Rn, relative 0110 Rn relative PC = PC+ relative

(only if Rn is 0)

Rn

MOV direct, Rn 0001 Rn direct M(direct) = Rn

Rm M(Rn) = Rm

Multimedia SoC Design Shao-Yi Chien 25

Addressing Modes

Data

Immediate

Register-direct

Register

indirect

Direct

Indirect

Data

Operand field

Register address

Register address

Memory address

Memory address

Memory address Data

Data

Memory address

Data

Addressing

mode

Register-file

contents

Memory

contents

Multimedia SoC Design Shao-Yi Chien 26

Programmer Considerations

 Program and data memory space

 Embedded processors have often very limited

memory

 e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

 Registers: How many are there?

Only a direct concern for assembly-level

programmers

 Be aware of special-function registers

Multimedia SoC Design Shao-Yi Chien 27

Programmer Considerations

 I/O

 Two ways

 I/O instructions for parallel I/O of CPU

 Such as Intel x86

Memory-mapped I/O (through system bus)

 The most common way

Multimedia SoC Design Shao-Yi Chien 28

Programmer Considerations

 Interrupts

 Cause the processor to suspend execution of the

main program and jump to an interrupt service

routine (ISR) or interrupt handler

 After the ISR completes, the processor resumes

execution of the main program (foreground

program) by restoring the PC

 The ISR should be located at a specific address in

program memory

Multimedia SoC Design Shao-Yi Chien 29

Operating System

 Optional software layer
providing low-level services
to a program (application).
 Resource (CPU, memory, …)

management

 File management, disk access

 Keyboard/display interfacing

 Scheduling multiple programs
for execution
 Or even just multiple threads from

one program

 Program makes system calls to
the OS

DB file_name “out.txt” -- store file name

MOV R0, 1324 -- system call “open” id

MOV R1, file_name -- address of file-name

INT 34 -- cause a system call

JZ R0, L1 -- if zero -> error

. . . read the file

JMP L2 -- bypass error cond.

L1:

. . . handle the error

L2:

Multimedia SoC Design Shao-Yi Chien 30

Development Environment

 Development processor (host)

 The processor on which we write and debug our

programs

 Usually a PC

 Target processor

 The processor that the program will run on in our

embedded system

 Often different from the development processor

Development processor Target processor

Multimedia SoC Design Shao-Yi Chien 31

Software Development Process

Compiler

Linker

C File C File Asm.

File

Binary

File

Binary

File

Binary

File

Exec.

File

Assemble

r

Library

Implementation Phase

Debugger

Profiler

Verification Phase

 Typically, these tools are

combined into a single

integrated development

environment (IDE)

 Compilers

 Cross compiler

 Runs on one processor,

but generates code for

another

 Assemblers

 Linkers

 Debuggers

 Profilers

Multimedia SoC Design Shao-Yi Chien 32

Software Development Process

 Debugger
 Run on the development processor

 Support stepwise program execution

 Support breakpoints

When the program stops, the user can examine
values of various memory and register location

 Source-level debuggers: step-by-step in source
program

 Use instruction-set simulators (ISS) or virtual
machines (VM)

Multimedia SoC Design Shao-Yi Chien 33

Software Development Process

 Emulator

Support debugging of the program while it

executes on the target processor

 Microprocessor in-circuit emulator (ICE)

 A special hardware tool to emulate the behavior of

a processor

Multimedia SoC Design Shao-Yi Chien 34

Instruction Set Simulator For a

Simple Processor
#include <stdio.h>

typedef struct {

unsigned char first_byte, second_byte;

} instruction;

instruction program[1024]; //instruction memory

unsigned char memory[256]; //data memory

void run_program(int num_bytes) {

int pc = -1;

unsigned char reg[16], fb, sb;

while(++pc < (num_bytes / 2)) {

fb = program[pc].first_byte;

sb = program[pc].second_byte;

switch(fb >> 4) {

case 0: reg[fb & 0x0f] = memory[sb]; break;

case 1: memory[sb] = reg[fb & 0x0f]; break;

case 2: memory[reg[fb & 0x0f]] =

reg[sb >> 4]; break;

case 3: reg[fb & 0x0f] = sb; break;

case 4: reg[fb & 0x0f] += reg[sb >> 4]; break;

case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break;

case 6: pc += sb; break;

default: return –1;

}

}

return 0;

}

int main(int argc, char *argv[]) {

FILE* ifs;

If(argc != 2 ||

(ifs = fopen(argv[1], “rb”) == NULL) {

return –1;

}

if (run_program(fread(program,

sizeof(program) == 0) {

print_memory_contents();

return(0);

}

else return(-1);

}

Multimedia SoC Design Shao-Yi Chien 35

Testing and Debugging

Implementation

Phase
Implementation

Phase

Verification

Phase

Verification

Phase

Emulator

Debugger

/ ISS

Programmer

Development processor

(a) (b)

External tools

 ISS

 Gives us control over
time – set breakpoints,
look at register values, set
values, step-by-step
execution, ...

 But, doesn’t interact with
real environment

 Download to board

 Use device programmer

 Runs in real environment,
but not controllable

 Compromise: emulator

 Runs in real environment,
at real-time speed or near

 Supports some
controllability from the PC

Multimedia SoC Design Shao-Yi Chien 36

Software Development Process

 Conventional stages of development
 Debugging using an ISS

 Emulation using an emulator

 Field testing by downloading the program directly into
the target processor

 Different levels of simulation
 Instruction-level simulator

 Cycle-level simulator

 Hardware/software co-simulator

Multimedia SoC Design Shao-Yi Chien 37

CPU Power Consumption

 Most modern CPUs are designed with power

consumption in mind to some degree

 Voltage drops: power consumption proportional

to V2

 Toggling: more activity means more power

 Leakage: basic circuit characteristics; can be

eliminated by disconnecting power

Multimedia SoC Design Shao-Yi Chien 38

CPU Power-Saving Strategies

 Reduce power supply voltage

 Run at lower clock frequency

 Disable function units with control signals

when not in use

 Disconnect parts from power supply when

not in use

Multimedia SoC Design Shao-Yi Chien 39

Power management styles

 Static power management: does not

depend on CPU activity.

Example: user-activated power-down mode.

 Dynamic power management: based on

CPU activity.

Example: disabling off function units.

Dynamic Voltage Frequency Scaling (DVFS)

Multimedia SoC Design Shao-Yi Chien 40

Application: PowerPC 603

Energy Features

 Provides doze, nap, sleep modes.

 Dynamic power management features:

Uses static logic.

Can shut down unused execution units.

Cache organized into subarrays to minimize

amount of active circuitry.

Multimedia SoC Design Shao-Yi Chien 41

PowerPC 603 Activity

 Percentage of time when units are idle for

SPEC integer/floating-point:
unit Specint92 Specfp92

D cache 29% 28%

I cache 29% 17%

load/store 35% 17%

fixed-point 38% 76%

floating-point 99% 30%

system register 89% 97%

Multimedia SoC Design Shao-Yi Chien 42

Power-Down Costs

 Going into a power-down mode costs:

 time;

energy.

 Must determine if going into mode is

worthwhile.

 Can model CPU power states with power

state machine.

Multimedia SoC Design Shao-Yi Chien 43

Application: StrongARM SA-

1100 Power Saving

 Processor takes two supplies:

VDD is main 3.3V supply.

VDDX is 1.5V.

 Three power modes:

Run: normal operation.

 Idle: stops CPU clock, with logic still powered.

Sleep: shuts off most of chip activity; 3 steps,

each about 30 ms; wakeup takes > 10 ms.

Multimedia SoC Design Shao-Yi Chien 44

SA-1100 Power State Machine

run

idle sleep

Prun = 400 mW

Pidle = 50 mW Psleep = 0.16 mW

10 ms

10 ms

90 ms

160 ms

90 ms

Multimedia SoC Design Shao-Yi Chien 45

Selecting a Microprocessor

 Issues

 Technical: speed, power, size, cost

 Other: development environment, prior expertise, licensing, etc.

 Speed: how to evaluate a processor’s speed?

 Clock speed – but instructions per cycle may differ

 Instructions per second – but work per instr. may differ

 Dhrystone: Synthetic benchmark, developed in 1984. Dhrystones/sec.

 MIPS: 1 MIPS = 1757 Dhrystones per second (based on Digital’s VAX
11/780). A.k.a. Dhrystone MIPS. Commonly used today.

 So, 750 MIPS = 750*1757 = 1,317,750 Dhrystones per second

 SPEC: set of more realistic benchmarks, but oriented to desktops

 EEMBC – EDN Embedded Benchmark Consortium, www.eembc.org

 Suites of benchmarks: automotive, consumer electronics, networking, office
automation, telecommunications

http://www.eembc.org/

Multimedia SoC Design Shao-Yi Chien 46

General Purpose Processors
Processor Clock speed Periph. Bus Width MIPS Power Trans. Price

General Purpose Processors

Intel PIII 1GHz 2x16 K

L1, 256K

L2, MMX

32 ~900 97W ~7M $900

IBM
PowerPC

750X

550 MHz 2x32 K
L1, 256K

L2

32/64 ~1300 5W ~7M $900

MIPS

R5000

250 MHz 2x32 K

2 way set assoc.

32/64 NA NA 3.6M NA

StrongARM
SA-110

233 MHz None 32 268 1W 2.1M NA

Microcontroller

Intel

8051

12 MHz 4K ROM, 128 RAM,

32 I/O, Timer, UART

8 ~1 ~0.2W ~10K $7

Motorola
68HC811

3 MHz 4K ROM, 192 RAM,
32 I/O, Timer, WDT,

SPI

8 ~.5 ~0.1W ~10K $5

Digital Signal Processors

TI C5416 160 MHz 128K, SRAM, 3 T1
Ports, DMA, 13

ADC, 9 DAC

16/32 ~600 NA NA $34

Lucent

DSP32C

80 MHz 16K Inst., 2K Data,

Serial Ports, DMA

32 40 NA NA $75

Sources: Intel, Motorola, MIPS, ARM, TI, and IBM Website/Datasheet; Embedded Systems Programming, Nov. 1998

Multimedia SoC Design Shao-Yi Chien 47

Application-Specific Instruction-

Set Processors (ASIPs)
 General-purpose processors

 Sometimes too general to be effective in demanding
applications
 e.g., video processing – requires huge video buffers and

operations on large arrays of data, inefficient on a GPP

 But single-purpose processor has high NRE, not
programmable

 ASIPs – targeted to a particular domain
 Contain architectural features specific to that domain

 e.g., embedded control, digital signal processing, video
processing, network processing, telecommunications, etc.

 Still programmable

Multimedia SoC Design Shao-Yi Chien 48

A Common ASIP:

Microcontroller
 For embedded control applications

 Reading sensors, setting actuators

 Mostly dealing with events (bits): data is present, but not in huge
amounts

 e.g., VCR, disk drive, digital camera, washing machine,
microwave oven

 Microcontroller features
 On-chip peripherals

 Timers, analog-digital converters, serial communication, etc.

 Tightly integrated for programmer, typically part of register space

 On-chip program and data memory

 Direct programmer access to many of the chip’s pins

 Specialized instructions for bit-manipulation and other low-level
operations

Multimedia SoC Design Shao-Yi Chien 49

Co-Processor

 Co-processor: added function unit that is called by

instruction

 Floating-point units are often structured as co-processors

 Tightly-coupled to the CPU

 When receiving a co-processor instruction, the CPU

must activate the co-processor and pass it the relevant

instructions

 Co-processor: can load/store co-processor registers and

CPU registers

 To provide compatibility, the function of co-processor

can be emulated with software interrupt handler

 ARM allows up to 16 designer-selected co-processors.

Multimedia SoC Design Shao-Yi Chien 50

Another Common ASIP: Digital

Signal Processors (DSP)
 For signal processing applications

 Large amounts of digitized data, often streaming

 Data transformations must be applied fast

 e.g., cell-phone voice filter, digital TV, music synthesizer

 DSP features

 Several instruction execution units

 Multiply-accumulate single-cycle instruction, other instrs.

 Efficient vector operations

 e.g., add two arrays vector ALUs, loop buffers, etc.

Multimedia SoC Design Shao-Yi Chien 51

Trend: Even More Customized

ASIPs
 In the past, microprocessors were acquired as

chips

 Today, we increasingly acquire a processor as
Intellectual Property (IP)
 e.g., synthesizable VHDL model

 Opportunity to add a custom datapath hardware
and a few custom instructions, or delete a few
instructions
 Can have significant performance, power and size

impacts

Multimedia SoC Design Shao-Yi Chien 52

Trend: Even More Customized

ASIPs

 Problem: need compiler/debugger for customized ASIP

 Remember, most development uses structured languages

 One solution: automatic compiler/debugger generation

 e.g., www.tensillica.com (acquired by Cadence)

 Another solution: retargettable compilers

 Modern solution: automatic hardware/compiler/debugger

generation with a processor architecture design language

 CoWare LISATek  Synopsys Processor Designer

 ARM MaxCore

http://www.tensillica.com/

Multimedia SoC Design

Multimedia SoC Design

Multimedia SoC Design

Multimedia SoC Design

Signal Processing is Migrating to

the Host

Multimedia SoC Design

CoreExtend
– User Defined Instructions (UDI) for even Higher

Performance

 Performance tuning, design reuse and
production differentiation

 Add instruction (UDI) without architecture license

 As close to the microprocessor core as you can
get
 Tightly integrated to pipeline and the GPR

 Accelerates from 2x to hardwired-like speed

 Supported by newer MIPS cores: 4KE family,
M4K, 4KSd, 24K

Multimedia SoC Design

Users Execute Block Diagram

Multimedia SoC Design

CorExtendTM Instruction

Development Flow

Multimedia SoC Design

CORXpert – Automating

CorExtendTM UDIs

Multimedia SoC Design

CorExtend/UDI Application

Examples

 VoIP simple example
 2X total speed up over optimized code with 7K gates

 802.11a/b/g/l/e lower MAC high throughput wire-
speed examples
 30X AES (128-bit key) speed up with 10.5K gates +

20x64bit round key RAM

 ADSL2 + SIMD reuse example
 >=40X RS decode speed up over optimized code with

8K gates

 JPEG decode acceleration

Multimedia SoC Design

Trend: Multi-core
Comes from Low Power Demands

Satoshi Matsushitam, "Low Power Multi-Core Chips for Mobile

Embedded Applications," Mlti-core Processor Forum Notes, ISSCC2006.

Multimedia SoC Design

Multimedia SoC Design S. Torii et al., “A 600MIPS 120mW 70uA Leakage Triple-CPU Mobile Application

Processor Chip,” ISSCC Dig. Tech. Papers, pp.136-137, 2005. (NEC)

Multimedia SoC Design

Multimedia SoC Design

Multimedia SoC Design

Multimedia SoC Design Shao-Yi Chien 68

Multimedia SoC Design

Trend: Heterogeneous System

Architecture (HSA)

 Target: power, performance,

programmability and portability.

69

Multimedia SoC Design 70

Multimedia SoC Design 71

Multimedia SoC Design 72

Multimedia SoC Design 74

Multimedia SoC Design

Key Founders of HSA Foundation

75

Multimedia SoC Design

HSA Solution Stack

76

Multimedia SoC Design

Example: New ARM

Architecture

77

