
1

1

Original Slide by 蘇培陞 Alan P. Su
Ver.2 by C. H. Chao, 2006. 9. 21
Ver.3 by Shao-Yi Chien, Feb 27, 2008
Ver.4 by Shao-Yi Chien, Feb 25, 2009
Ver.4.5 by Shao-Yi Chien, March 3, 2017

SystemC Tutorial (I)

SLD Course Material
教育部顧問室

VLSI教育改進計畫

Ref: David C. Black and Jack Donovan, 
SystemC: From the Ground Up, 2nd Ed., 
Springer, 2009.



2

Contents

►Chapter 0   Introduction
►Chapter 1   SystemC Overview
►Chapter 2   C/C++ Basics
►Chapter 3   Module & Template
►Chapter 4   Notion of Time
►Chapter 5   Signal, Port & Binding
►Chapter 6   Concurrency



3

3

Chapter 0
Introduction

Chapter 0
Introduction

The Concept of Transaction Level 
Modeling (TLM)



4

Different Abstraction Models(1/3)

FunctionCycle-timed

A: Specification model

B: Component-assembly model

C: Bus-arbitration model

D: Bus-functional model

E: Cycle-accuracy computation model

F: RTL model

B,C,D,E are TLMs

Communication

Un-timed

Un-timed

Approximate-
timed

Cycle-timed

Approximate-
timed

A B

C

D

E

F

Source: L. Cai and D. Gajski, "Transaction Level Modeling: An Overview" CODES+ISSS’03



5

System Modeling Graph (2/3)

► X-axis: computation, y-axis: communication
► Three degrees of time accuracy

 Un-timed computation/communication 
► pure functionality of the design without any implementation details

 Approximate-timed computation/communication 
► contains system-level implementation details, such as the selected 

system architecture, the mapping relations between processes of the 
system specification and the processing elements of the system 
architecture

► the execution time is usually estimated at the system level without 
cycle-accurate RTL/ISS (instruction set simulation) level evaluation

 Cycle-timed computation/communication 
► contains implementation details at both system level and the RTL/ISS 

level, such that cycle-accurate estimation can be obtained



6

Different Abstraction Models(2/3)

► Specification model (A)
 The functionality of the system is specified in 

this abstraction level.
► Component-assembly model (B)

 The system may be composed of CPU,DSP or 
other IPs. The system architecturer can 
estimate the computational time without 
consideration of the communication time. The 
number of required processing elements is 
determined in this level.

► Bus arbitration model (C)
 The data transfer is implemented by the 

message-passing channel without cycle-
accuracy, pin-accuracy and specific detailed 
protocol.

 The IPs are specified as master or slave
completely. The bus arbiter is required when 
multiple master IPs exist. The initial arbitration 
scheme is also defined. 

Function



7

Different Abstraction Models(3/3)

► Bus functional model (D)
 The message-passing channels are replaced by protocol channels

via the procedure of protocol refinement. 
 The protocol channels are both cycle-accurate and pin-accurate

with the specific protocol.

► Cycle-accurate computation model (E)
 The processing elements (PE) or IPs are cycle-accurate and pin-

accurate which may be RTL models. 
 The converters or adapters are required to convert data transfer

between the higher abstraction channel model and lower
abstraction PE or IP models.

► RTL model (F)
 The overall system architecture is the RTL model which can be 

synthesized into gate level netlist.
 The synthesizable RTL model can be used for back-end physical IC 

design and manufacturing procedures.



8

Specification Model (A)

v2=v1+b*b;

P2

v3=v1-b*b;

P3

v4=v2+v3;

P4

v1=a*a;

P1

v2

v1

v3

P1 ,P2 ,P3 and P4: Process 
(function)

v1, v2 and v3: variables



9

Component-Assembly Model (B)

v2=v1+b*b;

P2

v3=v1-b*b;

P3

v4=v2+v3;

P4

v1=a*a;

P1

PE1

PE2

PE3

v3

ch12

ch13

ch23

Ch12, ch13 and ch23: 
channels

PE1, PE2 and P3: 
Processing elements



10

Bus Arbitration Model (C)

v2=v1+b*b;

P2

v3=v1-b*b;

P3

v4=v2+v3;

P4

v1=a*a;

P1

PE1

PE2

PE3

v3

Bus
ch12

ch13

ch23

PE4

Arbiter

3

21

1: Master interface

2: Slave interface

3: Arbiter interface



11

Generic System

CPU

Arbiter

DSP 
coprocessor

Program 
MemoryData 

Memory

Display 
I/F

TLM ASIC
TLM 

Interface

I/O

Hard 
Disk



12

Bus Functional Model (D)

1: Master interface

2: Slave interface

3: Arbiter interface

v2=v1+b*b;

P2

v3=v1-b*b;

P3

v4=v2+v3;

P4

v1=a*a;

P1

PE1

PE2

PE3

v3

PE4

Arbiter

3

21

address [15:0]

data [15:0]

ack

ready



13

1: Master interface

2: Slave interface

3: Arbiter interface

4: Wrapper/Adapter

PE1
PE3

PE4

Arbiter

4

s0

s1

s2

s3

memory

Bus
ch12

ch13

ch23

3

21

Buffer

4

s0

s1

s2

v2=v1+b*b;

P2

PE2

Cycle-Accurate Computation Model (E)



14

Cross Level Modeling with Adapter

RTL ASIC

Adapter

Pin- and cycle-
accuracy

TLM is refined to 
RTL model

CPU

Arbiter

DSP 
coprocessor

Program 
MemoryData 

Memory

Display 
I/F TLM 

Interface

I/O

Hard 
Disk



15

Timing Accuracy of Transaction Level Modeling

Model Communication Functionality

Speciation Un-timed Un-timed

Component-assembly Un-timed Approximate-timed

Bus arbitration Approximate-timed Approximate-timed

Bus functional Cycle-timed Approximate-timed

Cycle-accurate 
computation

Approximate-timed Cycle-timed

RTL Cycle-timed Cycle-timed



16

TLM Design Flow

Communication

Function

Un-timed

Un-timed

Approximate-
timed

Cycle-timed

Cycle-timedApproximate-
timed

A B

C

D

E

F
A: Specification model

B: Component-assembly model

C: Bus-arbitration model

D: Bus-functional model

E: Cycle-accuracy computation model

F: RTL model

B,C,D,E are TLMs

Start Point

End Point
How to do it?



17

Component Assembly

► Based on the analysis of the 
algorithm we need to:
 partition the algorithm into 

Software/Hardware
 select the general purpose 

processor or the DSP
 design IPs or select IPs from 

library
 choose RTOS if necessary

Communication

Un-timed

Un-
timed

Approximate-timed

Cycle-timed

Approximate-
timed

A B

C

D

E

F

function

Cycle-timed



18

Communication Exploration

► We need to
 map channels to buses 

(centralized or back-door)
 assign bus-accessing properties 

for each IP (master or slave)
 decide the bus arbitration policy

Communication

Un-timed

Un-
timed

Approximate-timed

Cycle-timed

Approximate-
timed

A B

C

D

E

F

function

Cycle-timed



19

Protocol Refinement (Platform-based)

► We need to determine the 
pin- and cycle-accurate bus 
protocols.

► And the details of the bus 
control signal are contained.

Communication

Un-timed

Un-
timed

Approximate-timed

Cycle-timed

Approximate-
timed

A B

C

D

E

F

function

Cycle-timed



20

IP Refinement

► The IPs are refined to pin-
and cycle-accuracy.

► The embedded software is 
optimized to achieve high 
performance.

► The wrapper to transfer the 
data between IPs and bus  
are designed.

Communication

Un-timed

Un-
timed

Approximate-timed

Cycle-timed

Approximate-
timed

A B

C

D

E

F

function

Cycle-timed



21

IP Replacement

► Some important IPs are 
modeled with pin- or cycle-
accuracy.

► The cross level adaptors are 
required to bridge the models 
in different abstraction level.

► The IPs are replaced or 
refined one by one.Cycle-timed

Communication

Un-timed

Un-
timed

Approximate-timed

Cycle-timed

Approximate-
timed

A B

C

D

E

F

function



22

Communication Refinement

► We should decide the pin- and 
cycle-accurate bus protocol.

► The wrapper to transfer the 
data between IPs and bus are 
required.

Communication

Un-timed

Un-
timed

Approximate-timed

Cycle-timed

Approximate-
timed

A B

C

D

E

F

function

Cycle-timed



23

Other Point of View

TLM TLM RTL

TLM TLM BFM

TLM TLM TLM

SAM TLM TLM TLM

► Un-Timed (UT)
► Loosely Timed (LT)
► Approximated Timed 

(AT)
► Register Transfer Logic 

(RTL)
► Pin and Cycle Accurate 

(PCA)

Model Interface

M
o

de
l F

u
nc

tio
n

al
ity

UT LT AT PCA

UT

LT

AT

RTL

SAM: System Architecture Model



24

Loosely-timed

24

Process 1

Process 2

Process 3

Quantum Quantum Quantum Quantum

sc_time_stamp() advances in multiples of the quantum

Each process runs ahead up to quantum boundary

Deterministic communication requires explicit synchronization



25

Approximately-timed

25

Process 1

Process 2

Process 3

0 10 20 30 40 50

Annotated delays

Each process is synchronized with SystemC scheduler

Delays can be accurate or approximate



26

26

Chapter 1
SystemC Overview

Chapter 1
SystemC Overview



27

SystemC Overview

▶ The dream to realize the unison of HW/SW designing 
languages. A unified design environment.

▶ Version 1: it is just another HDL, not much to do with 
system-level designing

▶ Version 2: with the adding of channel, now it is a 
serious system-level language

▶ Version 2.1: adding some programming language 
features and simulation semantics, e.g. sc_spawn, 
before_end_of_elaboration, etc.

▶ Version 2.2: fix some bugs, match with the IEEE 
1666 SystemC Language Reference Manual

▶ Version 2.3: match with the IEEE 1666-2011 
SystemC Language Reference Manual



28

New in SystemC 2.3

►Process Control
►Stepping and Pausing the Scheduler
►sc_vector
►Integrated with TLM-2.0
►SystemC and O/S Threads



29

SystemC Overview

► Is a C++ class library and a methodology 
that one can use to effectively create cycle-
accurate models of functions, hardware 
architecture, and interfaces of the SoC and 
system-level designs.

► One can use SystemC and standard C++ 
development tools to create a system-level 
model, quickly simulate to validate and 
optimize the design, explore various 
algorithms, and provide the hardware and 
software development team with an 
executable specification of the system.



30

SystemC Highlights

► Modules: component
► Processes: functions, SC_THREAD & SC_METHOD
► Ports: I/O ports
► Signals: wires
► Rich set of port and signal types
► Rich set of data types
► Clocks
► Cycle-based simulation: ultra light-weight and fast
► Multiple abstraction levels
► Communication protocols: channel & interface
► Debugging support: runtime error checking
► Waveform tracing: VCD, WIF and ISDB formats



31

Current System Design 
Methodology

C, C++
System-level Modeling

Simulation &
Analysis

Results

Refine

Verilog/VHDL

Simulation

Synthesis

Done

To tape out, test and
product delivery



32

TLM Based Flow



33

SystemC 2.0 Language 
Architecture

Methodology-Specific
Libraries

Master/Slave Library, etc.

Layered Libraries
Verification Library
Static Dataflow, etc.

Primitive Channels
Signal, Mutex, Semaphore, FIFO, etc.

Core Language
Modules

Ports
Processes
Interfaces
Channels

Events
Event-Driven Simulation

Data Types
4-valued Logic Type

4-valued Logic Vectors
Bits and Bit Vectors

Arbitrary Precision Integers
Fixed-Point Types

C++ User-Defined Types

C++ Language Standard



34

SystemC 2.1 Language 
Architecture

Methodology-Specific
Libraries

Master/Slave Library, etc.

Layered Libraries
Verification Library,

TLM Library, etc.

Primitive Channels
Signal, Mutex, Semaphore, FIFO, etc.

Core Language
Modules

Ports
Interfaces
Channels

Data Types
4-valued Logic Type

4-valued Logic Vectors
Bits and Bit Vectors

Arbitrary Precision Integers
Fixed-Point Types

Event-Driven Simulation
Events, Processes

C++ Language Standards



35

SystemC Language Architecture



36

Basic Structure

►Basic Structure of SystemC model
 Module
 Port, interface and channel
 Process

Channel

Module

Process
(Threads or 
Methods )

Port

Interface

Module

Process
(Threads or 
Methods )

System



37

SystemC Component



38

SystemC & C++

▶ SystemC is a set of C++ class and 
definitions a methodology for using these 
classes.

▶ C++ class definition means systemc.h and 
the matching library.

▶ Methodology means the use of simulation 
kernel and modeling.

▶ You can use all of the C++ syntax, 
semantics, run time library, STL and such.

▶ However you need to follow SystemC
methodology closely to make sure the 
simulation executes correctly.



39

SystemC & HDL

▶ SystemC is a Hardware Description 
Language (HDL) from system-level down to 
gate level.

▶ Modules written in traditional HDLs like 
Verilog and VHDL can be translated into 
SystemC, but not vise versa. Reason: 
Verilog and VHDL do not support 
transaction-level.

▶ System-Verilog is Verilog plus assertion, 
which is an idea borrowed from 
programming languages. And SystemC 
supports assertion as well through the C++ 
syntax and semantics.



40

SystemVerilog vs. SystemC

▶ SystemVerilog is Verilog plus verification 
(assertion).

▶ Actually the above statement is not fair 
but it is the truth now.

▶ SystemVerilog and SystemC work together 
to complete the design platform from 
system-level to gate-level.

▶ SystemC deals with whatever above RTL.
▶ SystemVerilog deals with RTL and below.



41

SystemC Myth I



42

SystemC Myth II

▶ It is a language to unify the design 
environment, SW and HW. A unified design 
environment.

▶ Well, this is a dream in the academy. In 
industry, this is a long way to go and as of 
today, SystemC is not the answer. Notice, 
SystemC is an HDL, it itself does not 
support software performance measure 
mechanism.

▶ Will the day that an unified design language 
be realized? We just don’t know. But people 
are talking about UML, the Unified Modeling 
Language.



43

Note

SystemC
model software.

It is an HDL. 



44

Note

SystemC does not
run faster, higher 
abstraction level 
does.



45

System-Level Language

▶ To be categorized as a system-level 
language, the simulation SPEED is the 
key.

▶ The simulation speed should take no 
1,000 times slower than the real HW. In 
another word, 1 second of HW 
execution time equals 16 minutes and 
40 seconds simulation time

▶ To achieve this kind of performance, 
the system is best modeled in 
transaction level, e.g. token based



46

UML

►UML is a meta-language to model all levels 
of abstraction.

►However, it is currently used as a adaptor to 
link tools in different languages.

►Mentor Graphics xtUML in Nucleus.
►Cadence funded UC Berkeley research: 

Metropolis.
►XML



47

47

Chapter 2
C/C++ Basics

Chapter 2
C/C++ Basics



48

Program Structure
main (int argc , char* argv)
{

int i, j, k;

scanf(“Input i = %d,”, i);
scanf(“ j = %d”, j);
k = sum (i, j);
printf(“Output i + j = %d\n”, k);

return 0;
}

int sum(int l, m)
{

return l + m;

}



49

Data Types

►int: integer
►long: double word integer
►short: 2-byte integer
►float: single precision floating point
►double: double precision floating point
►char: character
►*: pointer
 e.g. int* pointer of int, char* pointer of char



50

Operators

► Arithmetic:
+, -, *, /: add, subtract, multiply, divide
%: modular, the remainder of a division: 9 % 2 = 1

► Relational
>, >=, <, <=, == (equal to), != (not equal to)

► Logical
&& (and), || (or)

► Bitwise
& (AND), | (OR), ^ (XOR), 
<< (left shift), >> (right shift)
~ (1’s compliment)



51

Flow Control Statements

►Condition: a == b, a!= b, c && d, e || f, 
etc

►if ( condition ) {
…
} else if ( condition ) {
…
} else {
…
}

►for ( i = 0; i < 10, i++ ) { … }



52

Flow Control Statements – Cont.

► do { … } while ( condition );
► break: break out of the for or (do) while loop
► continue: skip to the next for or (do) while loop
► switch ( c ) {

case ‘0’:
printf(“c is 0\n”);

case ‘1’:
printf(“c is 1\n”);

default:
printf(“c is not 0 nor 1\n”);

}



53

C++ Basics

► Class: an object, contains data and function 
members, must include constructor and 
destructor
class cup {

float volume; // data member
cup(float vol); // constructor
~cup(); // destructor
fill(float vol); // function member
drink(float vol);

};



54

54

Chapter 3
Module and Template

Chapter 3
Module and Template

SC_MODULE



55

Starting Point: sc_main

► C/C++
int main(int argc, char* argv[])
{

BODY_OF_PROGRAM
return EXIT_CODE; //Zero indicates success

}

► SystemC
int sc_main(int argc, char* argv[])
{

ELABORATION
sc_start(); // Simulation begins & ends in this function
[POST-PROCESSING]
return EXIT_CODE; //Zero indicates success

}



56

Basic Unit of Design: SC_MODULE

► A SystemC module is the smallest container of 
functionality with state, behavior, and structure for 
hierarchical connectivity

► Syntax
#include <systemc.h>
SC_MODULE (module_name) {

MODULE_BODY
};

► SC_MODULE is a simple cpp macro
#define SC_MODULE(module_name) \
struct module_name: public sc_module



57

MODULE BODY

►Ports
►Member channel instances
►Member data instances
►Member module instances (sub-designs)
►Constructor
►Destructor
►Process member functions (processes)
►Helper functions



58

Constructor: SC_CTOR

SC_CTOR(module_name)
: Initialization
{
Subdesign_Allocation
Subdesign_Connectivity
Process_Registration
Miscellaneous_Setup
}

► SystemC process
 void PROCESS_NAME(void)



59

Registering the Simple Process: 
SC_THREAD

►SC_THREAD: like initial in Verilog

►In simple_process_ex.h

#include <systemc.h>

SC_MODULE(simple_process_ex) {

SC_CTOR(simple_process_ex) {

SC_THREAD(my_thread_process);

}

void my_thread_process(void);

};



60

Implementation

►In simple_process_ex.cpp

#include "simple_process_ex.h"

void simple_process_ex::my_thread_process(void) {

std::cout << "my_thread_process executed within "

<< name() 

<< std::endl;

}



61

Main Function

►In main.cpp

#include "simple_process_ex.h"
int sc_main(int argc, char* argv[]) {
simple_process_ex my_instance("my_instance");
sc_start();
return 0;

}



62

Alternative Constructors: 
SC_HAS_PROCESS

►Can transfer more than instance name to 
configure the module
 My_memory instance(“instance”, 1024);



63

Alternative Constructors: 
SC_HAS_PROCESS



64

64

Chapter 4
Notion of Time

Chapter 4
Notion of Time



65

sc_time

► Unit
 SC_SEC //seconds
 SC_MS //milliseconds
 SC_US //microseconds
 SC_NS //nanoseconds
 SC_PS //picoseconds
 SC_FS //femtoseconds

► Syntax
 sc_time name…;
 sc_time name(magnitude, timeunits)…;

► Examples
 sc_time t_PERIOD(5, SC_NS);
 sc_start(60.0, SC_SEC);



66

wait(sc_time)

►Example



67

Other Time Related Functions

►double sc_simulation_time()
►sc_set_time_resolution(value, tunit)
►sc_set_default_time_unit(value, tunit)



68

68

Chapter 5
Port, Signal and Binding

Chapter 5
Port, Signal and Binding



69

Ports

►sc_in<data_type>; — input port
►sc_out<data_type>; — output port
►sc_inout<data_type>; — input/output port
►If data_type is a type with size declaration, 

a space is needed before the closing bracket
sc_in<sc_uint<10> >;



70

Fast Port Binding

►While using HW port-to-port binding is not 
intuitive at system-level and slow. Starting 
2.1, SC_EXPORT is supported for fast port 
binding.

►Generally used at the inner-most, lowest 
level models to replace SC_PORT.

►The purpose is to simplify the port binding 
between layers.



71

Signal

►Is a un-directional wire
►The flow of data is determined by the ports 

a signal connects to
►Example:

sc_signal<sc_uint<32> >;



72

Port & Signal Connection

► Named Mapping
#include “systemc.h”
#include “mult.h”
#include “coeff.h”
#include “sample.h”
SC_MODULE(filter) {

sample *s1;
coeff *c1;
mult *m1;
sc_signal<sc_uint<32> > q, s, c;
SC_CTOR(filter) {

s1 = new sample(“s1”);
s1->din ( q );
s1->dout ( s );
c1 = new coeff(“c1”);
c1->out ( c );
m1 = new mult(“m1”);
m1->a ( s );
m1->b ( c );
m1->q ( q );

}
};

m1

c1

s1



73

Port & Signal Connection – Cont.

► Positional Mapping
#include “systemc.h”
#include “mult.h”
#include “coeff.h”
#include “sample.h”
SC_MODULE(filter) {

sample *s1;
coeff *c1;
mult *m1;
sc_signal<sc_uint<32> > q, s, c;
SC_CTOR(filter) {

s1 = new sample(“s1”);
(*s1) ( q,s );
c1 = new coeff(“c1”);
(*c1) ( c );
m1 = new mult(“m1”);
(*m1) ( s, c, q );

}
};

m1

c1

s1



74

Process First Look

► Processes are the basic unit of execution within 
SystemC. Processes are called to emulate the 
behavior of the target device or system.

► The real work of a module is performed in processes.
► Processes are functions that are identified to the 

SystemC kernel and called/activated whenever 
signals these processes are sensitive to.

► These statements are executed sequentially until the 
end of the process, or being suspended by a wait() 
statement.

► SC_METHOD, SC_THREAD, SC_CTHREAD



75

Module Example

#include “systemc.h”

SC_MODULE(timer) {

sc_inout<bool> start; // ports

sc_out<bool> timeout;

sc_in<bool> clock;

int count; // data and function members

void runtimer();

SC_CTOR(timer) { // constructor

SC_THREAD(runtimer);

sensitive_pos << clock; // sensitivity list

sensitive << start;

count = 0;

}

}; // do not forget the final semi-column



76

Clock

► Synopsis
class sc_clock : public sc_signal_in_if<bool>,

public sc_module
{
public:

sc_clock();
explicit sc_clock( sc_module_name name_ );
sc_clock( sc_module_name name_,

const sc_time& period_,
double duty_cycle_ = 0.5,
const sc_time& start_time_ = SC_ZERO_TIME,
bool pos_edge_first = true);

…
};

► Example:
sc_clock clock1(“clock1”, 20, 0.50, 2, true);



77

Clock – Difference in 2.0 and 2.1

►sc_clock was derived from sc_module in 
2.0

►In 2.1, sc_clock is derived from 
sc_signal<bool>.



78

Example of Adder

►Behavioral model of adder

sc_main (top module)

Adder
sc_in
(port)

sc_in
sc_out
(port)

SC_METHOD
(process)



79

Source Code

►SC_MODULE macro for declaration

Adder.h

main.cpp

sc_main (top module)

Adder

SC_METHOD
(process)

Adder.cpp



80

80

A Not Simple ExampleA Not Simple Example



81

Specification

transmit
M

S

S

M

Application/
Stimuli receiver Application/

Sink
Data

Data

Data

Acknowledge



82

C/C++ Model

frame data; //global data frame storage for Channel
void transmit(void) { //transmits frames to Channel

int framenum; // sequence number for framces
frams s; // Local frame
packet buffer; // Buffer to hold intermediate data
event_t event; // Event to trigger actions in transmit

framenum = 1; // Initialize sequence numbers
get_data_fromApp(&buffer); // Get initial data from Application
while (true) { // Runs forever

s.info = buffer; // Put data into frame to be sent
s.seq = framenum; // Set sequence number of frame
send_data_toChannel(&s); // Pass frame to Channel to be sent
start_timer(s.seq); // Start timer to wait for acknowledge
// If timer times out packet was lost
wait_for_event(&event); // Wait for events from channel and timer
if (event == new_frame) { // Got a new frame

get_data_fromChannel(s) // Read frame
if (s.ack == framenum) { // Did we get the correct acknowledge

get_data_fromApp(&buffer); // Yes, get more data
inc(framenum); // Increase framenum

}
}

}
}



83

C/C++ Model - Cont.

void receiver(void) { // Gets frames from channel

int framenum; // Scratchpad frame number

frame r,s; // Temp frames to save information

event_t event; // Event to cause actions in receiver

framenum = 1; // Start framenum at 1

while (true) { // Runs forever

wait_for_event(&event); // Wait for data from Channel

if (event == new_frame) { // A new frame has arrived

get_data_fromChannel( r ); // Get the data from the Channel

if (r.seq == framenum) { // Is this the frame we expected

send_data_toApp(&r.info); // Yes, then send data to application

inc(framenum); // Get ready for the next frame

}

s.ack = framenum – 1; // Send back an acknowledge that frame was received

send_data_toChannel(&s); // Send acknowledge

}

}

}



84

SystemC Model

transmit
M

S

S

M
receiverbus

Data

Acknowledge

timer

display



85

SystemC Model – packet

// pakcet.h file

#ifndef PACKETINC

#define PACKETINC

#include “systemc.h”

struct packet_type {

long info;

int seq;

int retry;

inline bool operator == (const packet_type& rhs) const 
{

return (rhs.info == info && rhs.seq == seq &&

rhs.retry == retry);

}

};

extern

void sc_trace(sc_trace_file *tf, const packet_type& v,

const sc_string& name);

#endif

// packet.cpp file

#include “packet.h”

void sc_trace(sc_trace_file *tf, const packet_type& v,

const sc_string& NAME) {

sc_trace(tf, v.info, NAME + “.info”);

sc_trace(tf, v.seq, NAME + “.seq”);

sc_trace(tf, v.retry, NAME + “.retry”);

}



86

SystemC Model – transmit
// transmit.h
#include “packet.h”

SC_MODULE (transmit) {
sc_in<packet_type> tpackin;
sc_in<bool> timeout;
sc_out<packet_type> tpackout;
sc_inout<bool> start_timer;
sc_in<bool> clock;

int buffer;
int framenum;
packet_type packin, tpackold;
packet_type s;
int retry;
bool start;

void send_data();
int get_data_fromApp();

// Constructor
SC_CTOR(transmit) {

SC_METHOD(send_data);
sensitive << timeout;
sensitive_pos << clock;
framenum = 1;
retry = 0;
start = false;
buffer = get_data_fromApp();

}
};

// transmit.cpp
#include “transmit.h”
int transmit::get_data_fromApp() {

int result;
result = rand();
cout << “Generate: Sending Data Value = “ << result << “\n”;
return result;

}
void transmit::send_data() {

if (timeout) {
s.info = buffer;
s.seq = framenum;
s.retry = retry;
retry++;
tpackout = s;
start_timer = true;
cout << “Transmit:Sending packet no. “ << s.seq << endl;

} else {
packin = tpackin;
if (!(packin == tpackold)) {

if (packin.seq == framenum) {
buffer = get_data_fromApp();
framenum++;
retry = 0;

}
tpackold = tpackin;
s.info = buffer;
s.seq = framenum;
s.retry = retry;
retry++;
tpackout = s;
start_timer = true;
cout << “Transmit:Sending packet no. “ << s.seq << endl;

} } }



87

SystemC Model – noisybus

// noisybus.h

#include “packet.h”

SC_MODULE (noisybus) {

sc_in<packet_type> tpackin;

sc_in<packet_type> rpackin;

sc_out<packet_type> tpackout;

sc_out<packet_type> rpackout;

packet_type packin;

packet_type packout;

packet_type ackin;

packet_type ackout;

void receive_data();

void send_ack();

// Constructor

SC_CTOR(noisybus) {

SC_METHOD(receive_data);

sensitive << tpackin;

SC_METHOD(send_ack);

sensitive << rpackin;

}

};

// noisybus.cpp
#include “noisybus.h”

void noisybus::receive_data() {
int i;
packin = tpackin;
cout << “Noisybus: Received packet seq no. = “ << packin.seq 
<< endl;
i = rand();
packout = packin;
cout << “Noisybus: Random number = “ << i << endl;
if ((i > 1000) && (i < 5000)) {

packout.seq = 0;
}
rpackout = packout;

}

void noisybus::send_ack() {
int i;
ackin = rpackin;
cout << “Noisybus: Received Ack for packet = “ << ackin.seq << 
endl;
i = rand();
ackout = ackin;
if ((i > 10) && (i < 500)) {

ackout.seq = 0;
}
tpackout = ackout;

}



88

SystemC Model – receiver

// receiver.h
#include “packet.h”

SC_MODULE(receiver) {
sc_in<packet_type> rpackin;
sc_out<packet_type> rpackout;
sc_out<long> dout;
sc_in<bool> rclk;

int framenum;
packet_type packin, packold;
packet_type s;
int retry;

void receive_data();

//Constructor
SC_CTOR(receiver) {

SC_METHOD(receive_data);
sensitive_pos << rclk;
framenum = 1;
retry = 1;

}
};

// receiver.cpp
#include “receiver.h”

void receiver::receive_data() {
packin = rpackin;
if (packin == packold) return;
cout << “Receiver: got packet no. = “ << packin.seq << endl;
if (packin.seq == framenum) {

dout = packin.info;
framenum++;
retry++;
s.retry = retry;
s.seq = framenum – 1;
rpackout = s;

}
packold = packin;

}



89

SystemC Model – timer

// timer.h

#include “systemc.h”

SC_MODULE(timer) {

sc_inout<bool> start;

sc_out<bool> timeout;

sc_in<bool> clock;

int count;

void runtimer();

// Constructor

SC_CTOR(timer) {

SC_THREAD(runtimer);

sensitive_pos << clock;

sensitive << start;

count = 0;

}

};

// timer.cpp
#include “timer.h”

void timer::runtimer() {
while(true) {

if (start) {
cout << “Timer: timer start detected “ << endl;
count = 5;
timeout = false;
start = false;

} else {
if (count > 0) {

count--;
timeout = false;

} else {
timeout = true;

}
}
wait();

}
}



90

SystemC Model – display

// display.h

#include “packet.h”

SC_MODULE(display) {

sc_in<long> din;

void print_data();

// Constructor

SC_CTOR(display) {

SC_METHOD(print_data);

sensitive << din;

}

};

// display.cpp
#include “display.h”

void display::print_data() {
cout << “Display: Data value received, Data = “ << din << endl;

}



91

SystemC Model – main
// main.cpp

#include “packet.h”

#include “timer.h”

#include “transmit.h”

#include “noisybus.h”

#include “receiver.h”

#include “display.h”

int sc_main(int argc, char* argv[]) {

sc_signal<packet_type> PACKET1, PACKET2,

PACKET3, PACKET4;

sc_signal<long> DOUT;

sc_signal<bool> TIMEOUT, START;

sc_clock CLOCK(“clock”, 20); // transmit clock

sc_clock RCLK(“rclk”, 15); // receiver clock

transmit t1(“transimit”); // transmit instantiation

t1.tpackin(PACKET2); // port to signal binding

t1.timeout(TIMEOUT);

t1.tpackout(PACKET1);

t1.start_timer(START);

t1.clock(CLOCK); // clocking

noisybus n1(“noisybus”); // noisybus instantiation

n1.tpackin(PACKET1); // connect to transmit

n1.rpackin(PACKET3); // port to signal binding

n1.tpackout(PACKET2); // connect to transmit

n1.rpackout(PACKET4); // port to signal binding

receiver r1(“receiver”); // receiver instantiation

r1.rpackin(PACKET4); // connect to noisybus

r1.rpackout(PACKET3); // connect to noisybus

r1.dout(DOUT); // port to signal binding

r1.rclk(RCLK); // clocking

display d1(“display”); // display instantiation
d1 << DOUT; // signal to port connection

timer tm1(“timer”); // timer instantiation
tm1 << START << TIMEOUT << CLOCK.signal();

// signal to port connections

// tracing:
// trace file creation, with VCD type output
sc_trace_file *tf = sc_create_vcd_trace_file(“simplex”);
// External signals
sc_trace(tf, CLOCK.signal(), “clock”);
sc_trace(tf, TIMEOUT, “timeout”);
sc_trace(tf, START, “start”);
sc_trace(tf, PACKET1, “packet1”);
sc_trace(tf, PACKET2, “packet2”);
sc_trace(tf, PACKET3, “packet3”);
sc_trace(tf, PACKET4, “packet4”);
sc_trace(tf, DOUT, “dout”);

sc_start(10000); // simulate for 10000 time steps 
// default is ps

sc_close_vcd_trace_file(tf);

return(0);
}



92

92

Chapter 6
Concurrency

Chapter 6
Concurrency

Process and Event



93

Basics

► In a typical programming language, 
processes are executed sequentially as 
control is transferred from one process to 
another to perform the desired function.

► Processes are not hierarchical, so no process 
can call another process directly. Processes 
can call methods and functions that are not 
processes.

► Processes have sensitivity lists. The process is 
called, or activated, whenever any values in 
the sensitivity lists are changed.



94

Basics – Cont.

►However, hardware components and 
devices (including wires) are executed in 
parallel.

►To mimic the hardware behavior, at each 
time period, or on the trigger of an event, 
ready processes are called to simulate the 
behavior at that moment, till before the 
next time period, or the next wait().



95

Event-Driven Simulation in 
Verilog HDL Simulator

► Example code
always@ ( in_1 or in_2 )  // model a combinational circuit

out = in_1 + in_2; // Adder

always@ ( posedge clk )  // model a sequential circuit
q <= d; // D-FF

always@ ( event_1 ) // rarely used for HW modeling
……
@( event_2 )
……
@( event_3 )
……

always a simulation instance runs 
endlessly

@ event-driven keyword

Why does event-driven code (always block) simulate 
faster than continuous assignment code (assign) ?



96

Event-Driven Simulation in 
SystemC Simulation Kernel

Δ0



97

sc_event

►An event is something that happens at a 
specific point in time. An event has no value 
and no duration

►You can perform only two actions with an 
sc_event: wait for it or cause it to occur

►SystemC lets processes wait for an event by 
using a dynamic or static sensitivity



98

Events

► An event is an object and its synopsis is:
class sc_event {
public:

sc_event();
~sc_event();
void cancel();
void notify();
void notify( const sc_time& );
void notify( double, sc_time_unit );
sc_event_or_list& operator | (const sc_event& ) const;
sc_event_and_list& operator & (const sc_event& ) const;

private:
sc_event (const sc_event&);
sc_event& operator = ( const sc_event& );

}



99

Process and Event Pools

Caused by 
event 

notification

Suspends 
(call wait())



100

Thread

► SC_THREAD
► Like initial in Verilog
► Thread is a process that always alive. Unlike 

method, its local variables are alive throughout the 
simulation.

► When an SC_THREAD process exits, it is gone 
forever, therefore SC_THREAD typically contains 
an infinite loop containing at least one wait

► Thread can be suspended and reactivated. A 
thread can contain wait() statements that suspend 
the process until an event occurs on one of the 
signals the process is sensitive to.



101

SC_THREAD::wait()

Dynamic

► Ex:
…
sc_event ack_event, bus_error_event;
…
wait(t_MAX_DELAY, ack_event | bus_error_event);
if(timed_out()) break;
…



102

An Example

Process_A() {
//@ t0
stmtA1;
stmtA2;
wait(d1);
stmtA3;
stmtA4;
wait(d2);
stmtA5;
stmtA6;
wait(d3);

}

Process_B() {
//@ t0
stmtB1;
stmtB2;
wait(d1);
stmtB3;
stmtB4;
wait(d2);
stmtB5;
stmtB6;
wait(d3);

}

Process_C() {
//@ t0
stmtC1;
stmtC2;
wait(d1);
stmtC3;
stmtC4;
wait(d2);
stmtC5;
stmtC6;
wait(d3);

}

Process_D() {
//@ t0
stmtD1;
stmtD2;
wait(d1);
stmtD3;
wait(SC_ZERO_TIME); 
stmtD4;  
wait(d2+d3);

}



103

Perceived Simulation Activity

d1 d2 d3



104

Actual Simulated Activity

d1 d2 d3



105

Simulated Activity with 
Simulator Time Expanded

d1 d2 d3



106

Template of SC_THREAD with 
Static Sensitivity

SC_MODULE(synchronous_module) {
sc_in<bool> clock;

void thread();

SC_CTOR(synchronous_module) { // registration the constructor
SC_THREAD(thread); // registration thread as a process
sensitive << clock.pos(); // sensitivity list

}
...

};

void synchronous_module::thread() { // Member function called once only
for (;;) {

wait(); // Resume on positive edge of clock
...

}
}



107

Triggering Events: .notify()

►Cancel event
 event_name.cancel();



108

Event

A

B

C

D

A, B & C: Processes
D: Channel

Event Notify B Notify C



109

Notify an Event

► 3 ways to notify an event:
 Immediate: the event is triggered in the current 

evaluation phase of the current delta-cycle; notify() 
 Delta-cycle delayed: the event will be triggered 

during the evaluate phase of the next delta-cycle; 
notify(0, SC_NS) or notify(SC_ZERO_TIME)

 Timed: the event will be triggered at the specified 
time in the future; notify(10, SC_NS)

sc_event my_event;
sc_time t(10, SC_NS); // a 10ns time interval
my_event.notify(); // immediate
my_event.notify(0); // delta-cycle delayed
my_event.notify(t); // notification in 10ns



110

Multiple Event Notification

► Earlier notification will always override one 
scheduled to occur later, and an immediate 
notification is always earlier than any delta-
cycle delayed or timed notification.

► Notice a potential non-deterministic situation:

► If A first then B, C will be executed at both 
current and next delta-cycle.

► However if B first then A, C will execute once 
only at the current delta-cycle

Process A{ Process B { Process C {

my_event.notify();
}

my_event.notify(0);
}

wait(my_event);
}



111

Canceling Event Notifications

► A pending delayed event notification may be 
canceled using cancel(). However immediate 
event cannot be canceled.
sc_event a, b, c;
sc_time t(10, SC_MS);
a.notify();
notify(0, b);
notify(t, c);

a.cancel(); // Error!
b.cancel(); // Canceled!
c.cancel(); // Canceled!



112

Multiple Pending Events

►While sc_event() can only allow a single 
pending event, sc_event_queue() can 
handle multiple pending events.



113

Method

►SC_METHOD
►Method is just SystemC ways of saying 

function, or subroutine. Therefore it inherits 
the behavior of a function.

►A process is called to execute and returns 
the execution back to the calling mechanism 
when completed.

►A locally declared variable is not permanent. 
Meaning, the value of a local variable is no 
longer valid after the end of a method.



114

More about SC_METHOD

►SC_METHOD process is similar to Verilog 
always@ block or VHDL process

►SC_METHOD process cannot issue a wait()
or any other blocking methods. Only 
SC_THREAD / SC_CTHREAD process can.

►Be carefull when you use read()/write() 
methods of sc_fifo data type (A kind of 
channel). These are blocking methods!



115

Dynamic Sensitivity for 
SC_METHOD: next_trigger();



116

Template of SC_METHOD

SC_MODULE(module)
{

sc_in<bool> input_signal;

void method();

SC_CTOR(module) { // registration the constructor
SC_METHOD(method); // registration method as a process
sensitive << input_signal; // sensitivity list

}
...

};

void module::method() { // called whenever sensitive signal is changed
… // actions

}



117

Clocked Thread

► SC_CTHREAD

► Clocked thread is a special case of a thread 
process. The difference lies in that a clocked 
thread is only sensitive to one edge of a clock 
cycle (positive or negative).

► We suggest not to use clock threads. It can 
be fully replaced by a normal thread.

► wait_until() is a function only can be used in 
clocked threads. It halts the execution of the 
process until a specific event has occurred.



118

Template of SC_CTHREAD

SC_MODULE( synchronous_module ) {
sc_in<bool> clock;
sc_in<bool> reset;

void CT();

SC_CTOR( synchronous_module ) {
SC_CTHREAD( CT, clock.pos() );
reset_signal_is(reset, true); // add this if reset is required

}
...

};

void synchronous_module::CT() {
if (reset) {

... // reset actions
}
while(true) {

wait(1); // Wait for 1 clock cycle
... // clocked actions

}
}



119

Clocked Thread Example:
Bus Controller

SC_MODULE(bus) {

sc_in_clk clock;

sc_in<bool> newaddr;

sc_in<sc_uint<32> > addr;

sc_in<bool> ready;

sc_out<sc_uint<32> > data;

sc_out<bool> start;

sc_out<bool> datardy;

sc_inout<sc_uint<8> > 
data8;

sc_uint<32> tdata;

sc_uint<32> taddr;

void xfer();

SC_CTOR(bus) {
SC_CTHREAD(xfer, 

clock.pos());

datardy = true; 

}

};

Bus
Cntrlr

Mem
Cntrlr

addr 32

newaddr start

data8
ready

data 32

datardy



120

Clocked Thread Example:
Bus Controller (cont’d)

void bus::xfer() {

while (true) {

wait_until( 
newaddr.delayed() == 
true);

taddr = addr.read();

datardy = false; 

data8 = taddr.range(7,0);

start = true; 

wait();

data8 = taddr.range(15,8);

start = false;

wait();

data8 = taddr.range(23,16);

wait();

data8 = taddr.range(31,24);

wait();

wait_until(ready.delayed() 
== true);

tdata.range(7,0)=data8;

wait();

tdata.range(15,8)=data8;

wait();

tdata.range(23,16)=data8;

wait();

tdata.range(31,24)=data8;

data = tdata;

datardy = true;

}

}



121

More about SC_THREAD and 
SC_CTHREAD (1)

► A function associated with such process instance is called 
once and only once by the kernel, except when a clocked 
thread process is reset.

► Only thread or clocked thread process can call the function 
wait(). Such a call causes the calling process to suspend 
execution. Method process will result in runtime error.

► The process instance is resumed when the kernel causes 
the process to continue execution starting with the 
statement immediately following the most recent call to 
function wait().

► When a thread or clocked thread process is resumed, the 
process executes until it reaches the next call to function 
wait(). Then, the process is suspended once again.



122

More about SC_THREAD and 
SC_CTHREAD (2)

► A thread process instance may have static sensitivity, or 
may call function wait to create dynamic sensitivity. A 
clocked thread process instance is statically sensitive only 
to a single clock.

► Each thread process requires its own execution stack. As a 
result, context switching between thread processes may 
impose a simulation overhead when compared with 
method processes.

► If the thread or clocked thread process executes the entire 
function body or executes a return statement and thus 
returns control to the kernel, the associated function shall 
not be called again for that process instance. The process 
instance is then said to be terminated.



123

Example – Gas Station

SC_MODULE(gas_station) {

…
sc_event e_request1, e_request2;
sc_event e_filled;

// Constructor
SC_CTOR(gas_station){

SC_THREAD(customer1_thread);
sensitive(e_filled);

SC_THREAD(customer2_thread);

SC_METHOD(attendant_method);
sensitive << e_request1 << e_request2;
dont_initialize();

}//endconstructor gas_station

// Declare processes
void customer1_thread(void);
void customer2_thread(void);
void attendant_method(void);

};



124

Implementation

...
void gas_station::customer1_thread(void) {

for (;;) {
// Simulate gas tank emptying time
wait(EMPTY_TIME);
cout << " Customer1 needs gas" << 
endl;

m_tank1 = 0;
do {

e_request1.notify(); // I need fillup! 
wait(); // use static sensitivity
// Somebody got filled

} while (m_tank1 == 0);
// We got filled

}//endforever
}//end customer1_thread()
...

void gas_station::attendant_method(void) {
if (!m_filling) {

...
cout << " Filling tank" << endl;
next_trigger(FILL_TIME);
m_filling = true;
...    

} else {
...

}//endif

e_filled.notify(SC_ZERO_TIME); // We 
finished filling!

m_filling = false; // go back to waiting
}//endif

}//endif
}//end attendant_method()



125

Simulation Semantics

► The scheduler controls the timing and order of 
process execution, handles event notifications
and manages updates to channels.

► The scheduler supports the notion of delta-
cycle, which consists of an evaluate phase and 
update phase.

► Processes are non-preemptive, meaning for a 
thread process, codes between two wait() will 
execute without any other process interruption 
and a method process completes its execution 
without interrupted by another process.



126

Initialization Phase

► The first step in the simulator scheduler. Each method 
process is executed once during initialization and each 
thread process is executed until a wait statement is 
encountered.

► To turn off initialization for a particular process, call 
dont_initialize() after the SC_METHOD or SC_THREAD 
process declaration inside a module constructor.

► The order of processes’ execution is unspecified. 
However the execution order between processes is 
determined. This only means every two simulation runs 
to the same code always have the same execution 
ordering to yield identical results.



127

Comparison on Processes

SC_METHOD SC_THREAD SC_CTHREAD

Execution When trigger Always execute Always execute

Suspend & 
resume No Yes Yes

Static sensitivity By sensitive list By sensitive list By signal edge

Dynamic 
sensitivity next_trigger() wait() wait_until(), 

watching()

Applied model RTL, 
synchronize Behavioral Clocked 

behavior



128

References
► SystemC Version 2.0 User’s Guide, Update for SystemC 2.0.1
► SystemC 2.0.1 Language Reference Manual
► Draft Standard SystemC Language Reference Manual –SystemC 

2.1 LRM, 4/25/2005
► TLM Library
► L. M. Ayough, A. H. Abutalebi, O. F. Nadjarbashi, S. Hessabi, 

“Verilog2SC: A Methodology for Converting Verilog® HDL to 
SystemC”

► http://www.systemc.org
► David C. Black and Jack Donovan, SystemC: From the Ground 

Up, Springer, 2004.
► L. Cai and D. Gajski, “Transaction Level Modeling: an overview,”

CODES+ISSS’03.
► 李昆忠、簡韶逸、鄺獻榮、邱瀝毅、郭致宏，電子系統層級設計
教授，教育部顧問室「超大型積體電路與系統設計教育改進」計
畫SLD聯盟。


