

Introduction to SoC, Multimedia Systems, and ESL

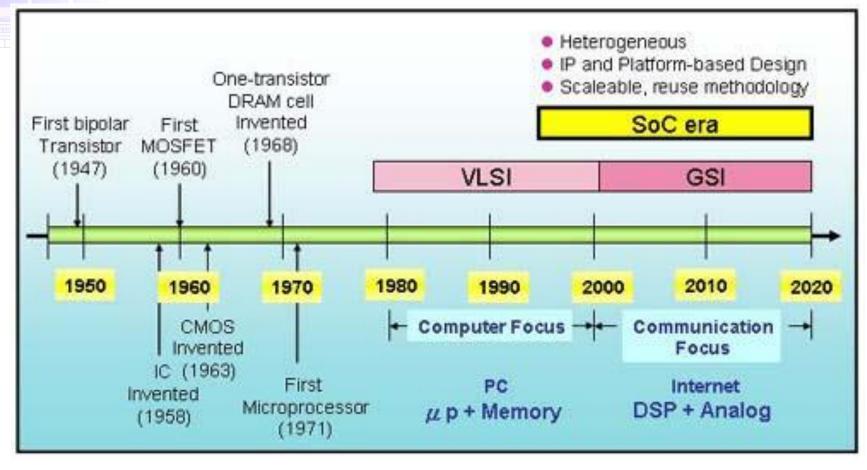
Outline

Introduction to SoC

- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

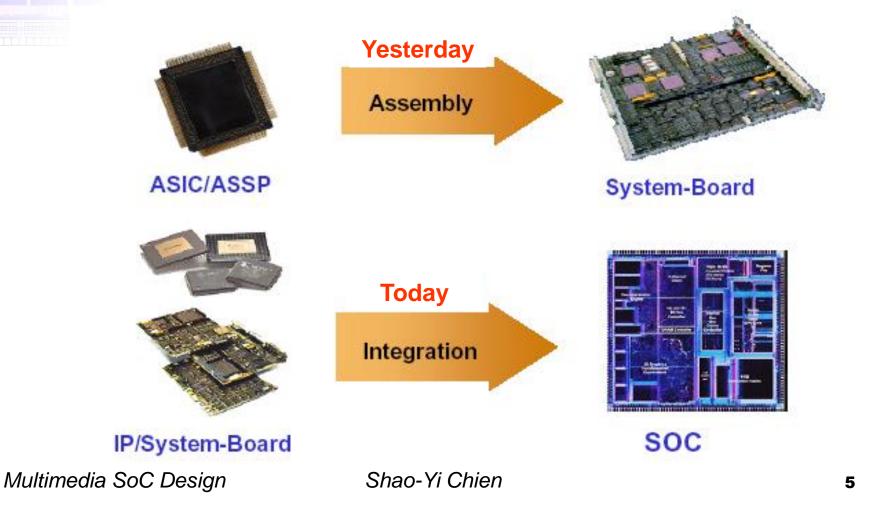
Conclusion

Outline

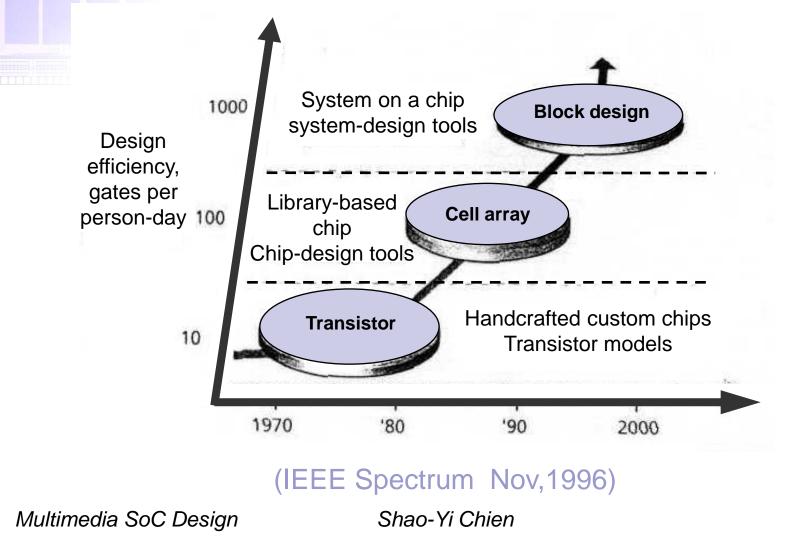

Introduction to SoC

- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

Conclusion

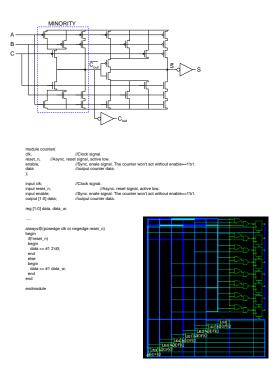


Silicon Evolution

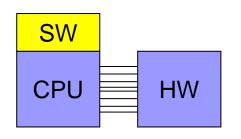


Why System-on-a-Chip? Design Paradigm Shift

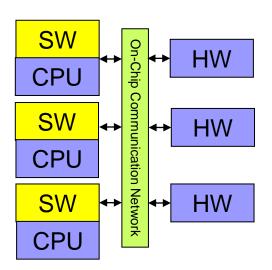
Changes in the Nature of IC Design


6

From ASIC to SoC


Yesterday

HW onlyPerfect interconnection



HeterogeneousCPU + dedicated HW

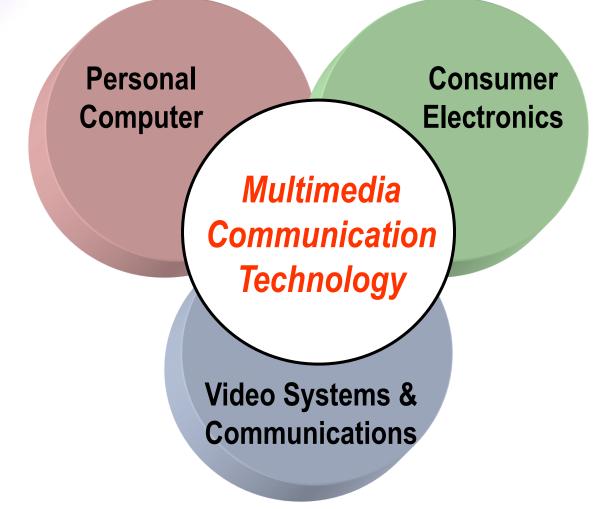
Today

Multiple SW stacksNon perfect interconnect

Multimedia SoC Design

Outline

Introduction to SoC


Relationship between SoC and multimedia systems

- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

Conclusion

Digital Convergence

Multimedia SoC Design

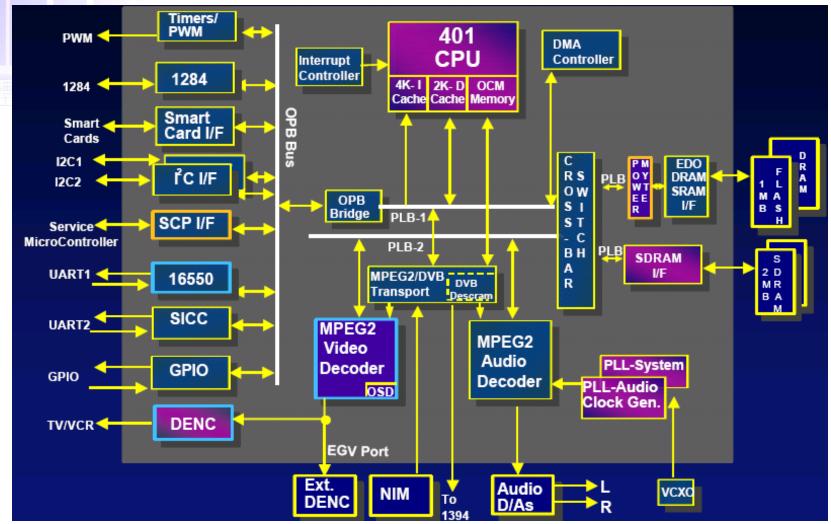
Multimedia Technology for Human Life

- From office to home and the outdoors
- From large devices to portable devices
- From specific people to everybody

Any Time Any Where At Will

Multimed

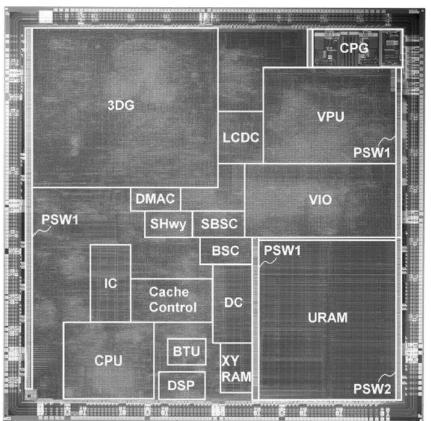
Relationship between SoC and Multimedia Systems


Multimedia systems integrate many subsystems

□ User interface

- □ Image/video/audio capturing
- □ Image/video/audio displaying
- Image/video/audio processing and coding
- Communication and storage
- High volume of the consumer electronics
- Both the factors make multimedia system a highly possible application for SoC
 - TV/STB, mobile phones, wearable devices, AR/VR, automotive electronics, multimedia players, multimedia portable players, game consoles, …

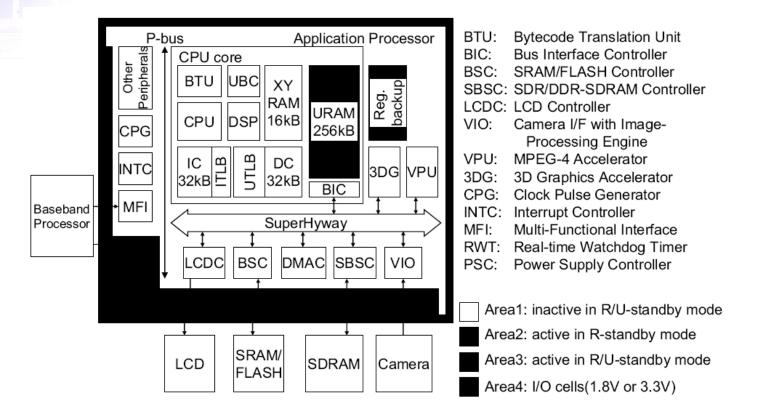
SoC Example: Set Top Box Controller



Multimedia SoC Design

SoC Example: Multimedia Mobile Phones (1)

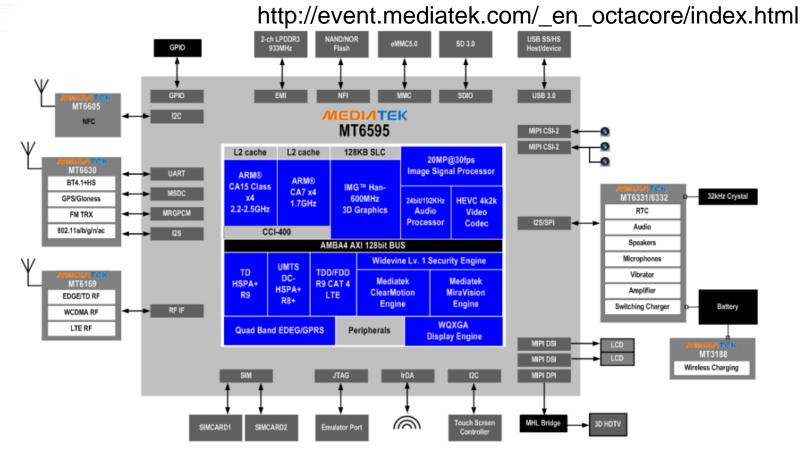
 Renesas application processor for 3G cellular phones



T. Kamei et al., "A resume-standby application processor for 3G cellular phones," *ISSCC Dig. Tech. Papers*, pp. 336—337, Feb., 2004.

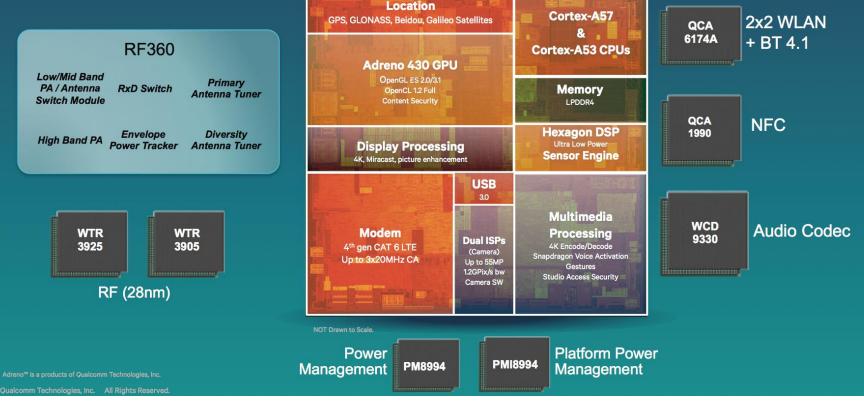
Multimedia SoC Design

SoC Example: Multimedia Mobile Phones (2)

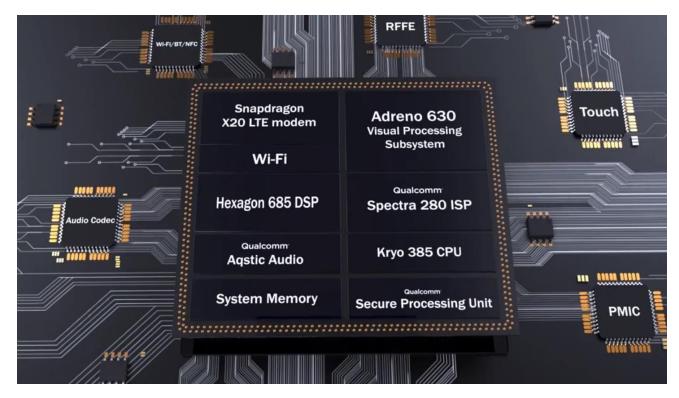


T. Kamei et al., "A resume-standby application processor for 3G cellular phones," *ISSCC Dig. Tech. Papers*, pp. 336—337, Feb., 2004.

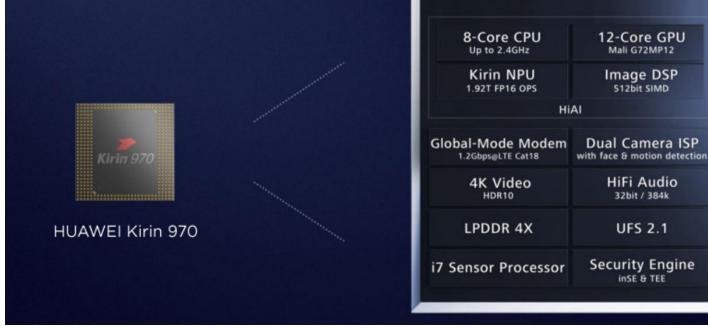
Multimedia SoC Design


MT6595 Platform Block Diagram

Multimedia SoC Design


The Complete Snapdragon 810 Platform

Multimedia SoC Design


Snapdragon 845

Multimedia SoC Design

The World's First Smartphone SoC Chipset with a Dedicated Neural-network Processing Unit

Multimedia SoC Design

Outline

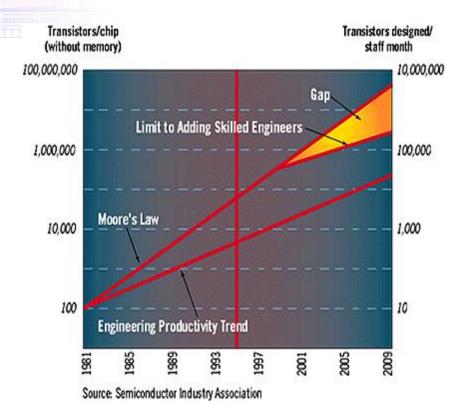
Introduction to SoC

- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

Conclusion

Multimedia SoC Design

SoC Dilemmas


While SoC complexity is increasing, the time to market of consumer products is decreasing.

IC designer lacks expertise of system developers.

How to integration of internal virtual components (VC) and external VC?

Engineering Productivity Gap

- Engineering productivity has not been keeping up with silicon gate capacity for several years.
- Companies have been using larger design teams, making engineers work longer hours, etc., but clearly the limit is being reached.

Challenges

Interoperability and Integration

- IPs (Intellectual properties) present a multitude of interoperability and integration challenges. System-Level Integration
- □ IPs may come in several forms: Hard, Soft, Firm
- Common interface between blocks?

Challenges (cont.)

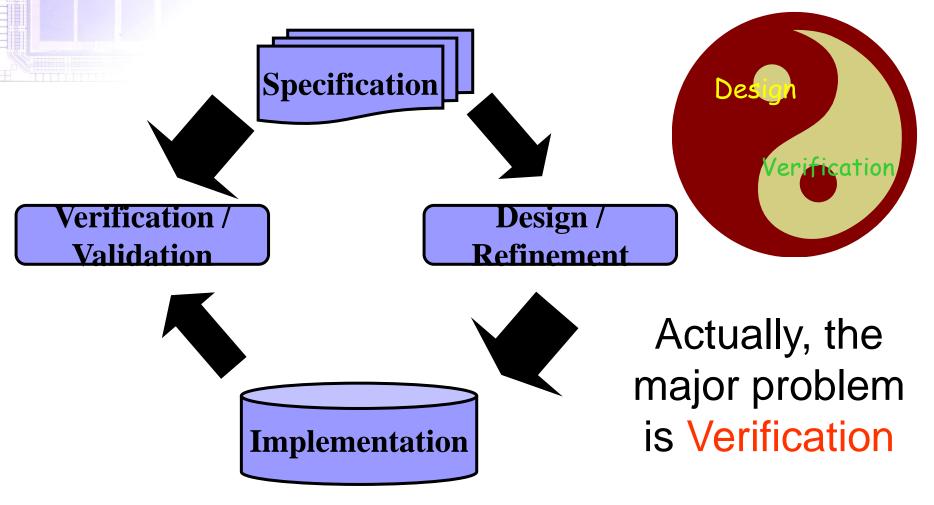
EDA Tool Interoperability

- □ These data formats may or may not be compatible.
- Standardizing these diverse data formats.

Testing an SoC

- □ An SoC's complexity requires extensive.
- □ It's necessary to test each VC separately.
- Process-Level Portability
 - Soft IP & Firm IP
 - Hard IP

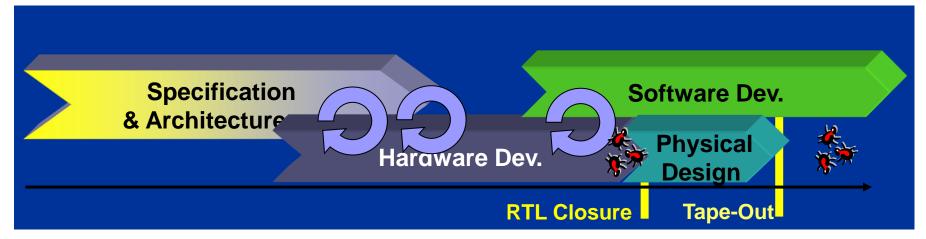
Outline


Introduction to SoC

- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

Conclusion

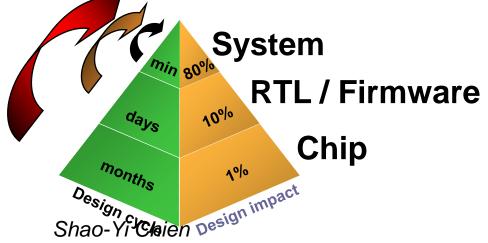
Design and Verification Step


Multimedia SoC Design

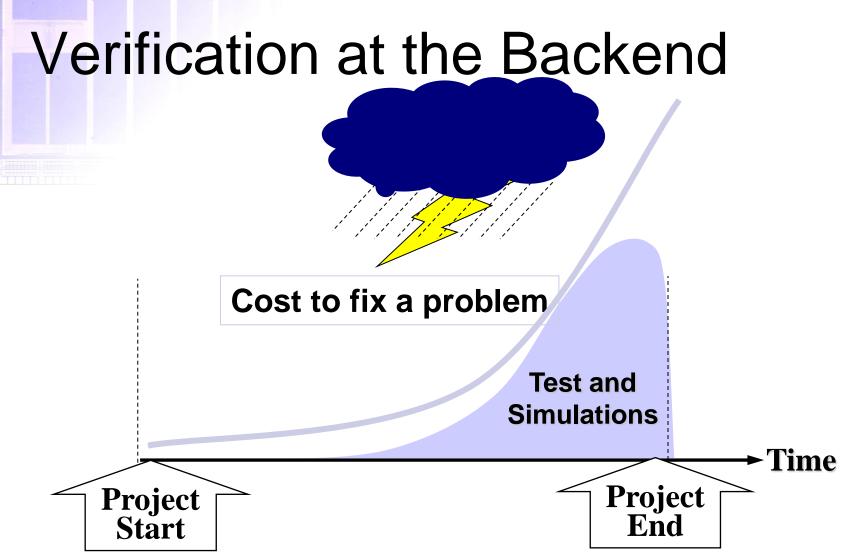
Typical SOC design flow

 Overlap in specification/architecture phase and RTL-design phase; multiple design changes
 Architecture design done informally

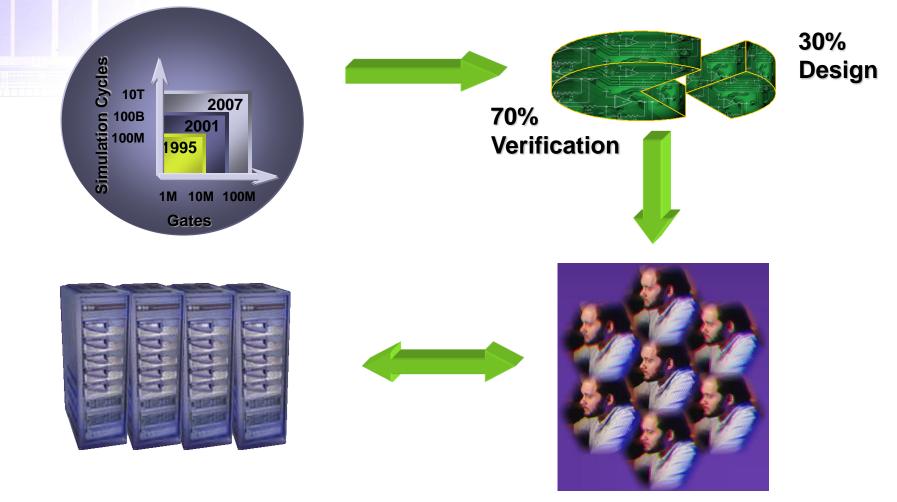
SW development starting late in the project



Multimedia SoC Design

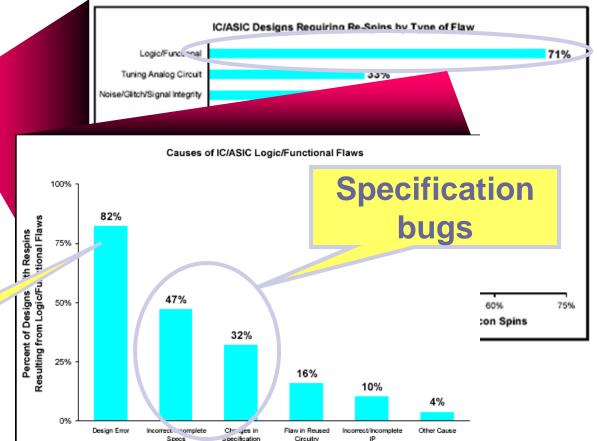

SoC Verification Gaps

Different languages are spoken At different levels of abstraction By HW / SW / systems people Problems, bottlenecks, and misunderstandings are detected too late.


Multimedia SoC Design

SoC Verification Challenges

Multimedia SoC Design


System Level Design Matters

65% in 2003

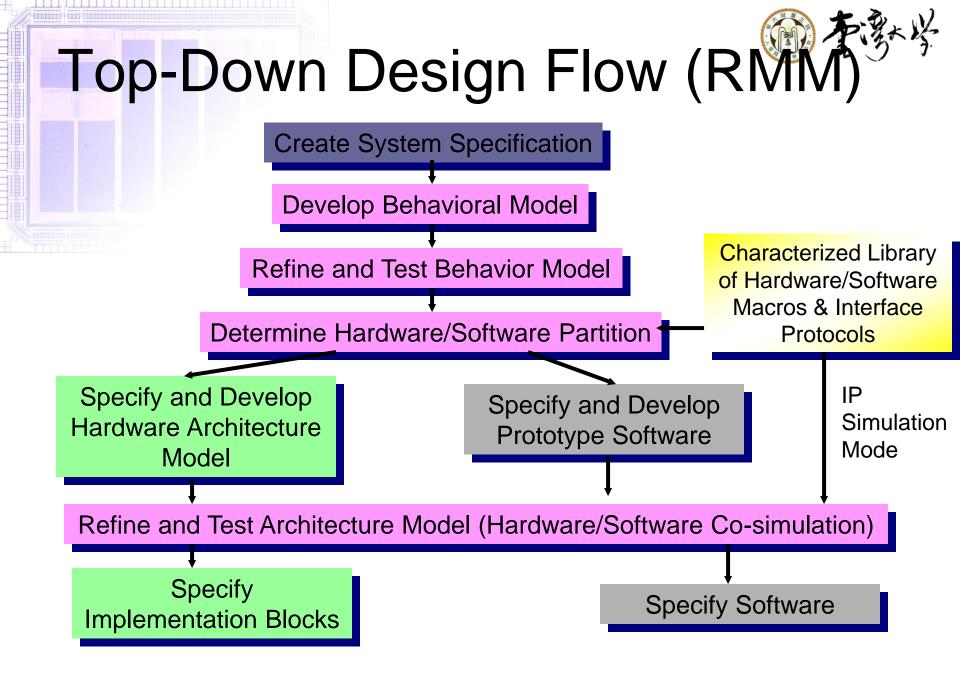
61% of IC designs require one or more re-spins

Source: 2002 Collett International

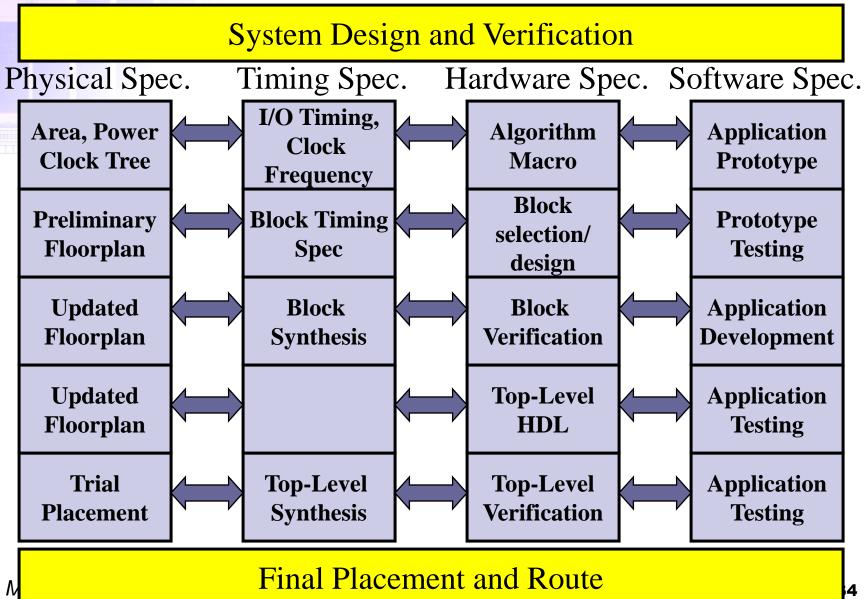
RTL bugs

Specification and RTL bugs cause re-spins!

Multimedia SoC Design

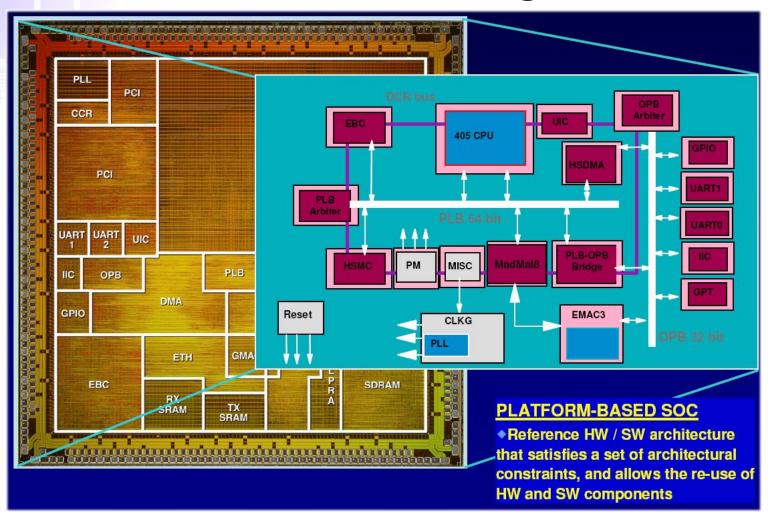


SoC Design Methodologies


System-Level IC Architecture	<u>IP Sourcing</u>	IP Integration	<u>Chip</u> Implementation	Chip Fabrication
 System Architecture Chip Architecture Technology Selection Algorithm Develop 	•In-house IP + •3rd party IP •Selection •Qualification •Licensing	 Digital logic + •Mixed-signal •Embedded Memory •Embedded Micro's 	 •FPGA •Gate array •Standard cells •Megacell library •Datapath compiler •Memory compiler + •Hand-crafted •In-house tools 	•3rd party foundry services

Note:Shaded area is the conventional ASIC development process (Dr. H. D. Lin in 8th VLSI/CAD workshop)

Multimedia SoC Design



Spiral SOC Design Flow (RMM)

Platform Based Design

Multimedia SoC Design

Platform Based Design

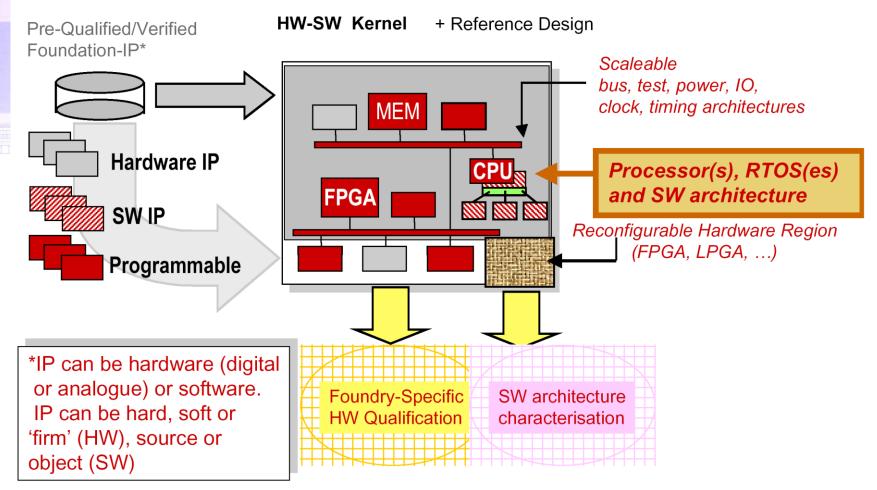
Platform

An integrated and managed set of common features, upon which a set of products or product family can be built. A platform is a virtual component (VC).

Platform-based design

An integration oriented design approach emphasizing systematic reuse, for developing complex products based upon platforms and compatible hardware and software VCs, intended to reduce development risks, costs, and time to market.

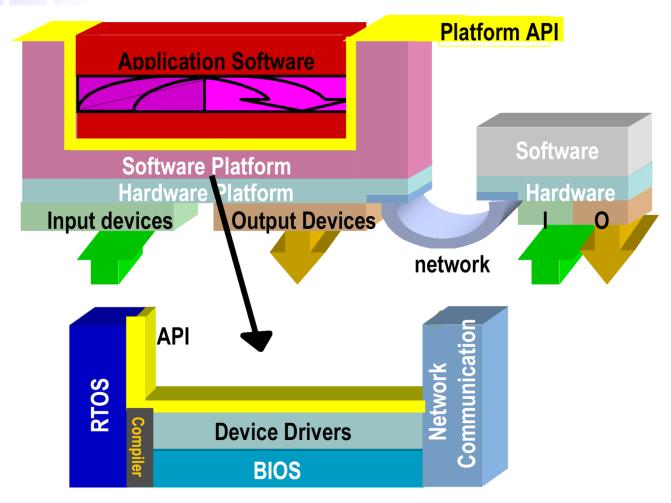
Platform Based Design


More precise definition of platform-based design

An organized method to reduce the time required and risk involved in designing and verifying a complex SoC, by heavy reuse of combinations of hardware and software IP. Rather than looking at IP reuse in a block by block manner, platform-based design aggregates groups of components into a reusable platform architecture.

System platform

A coordinated family of hardware-software architectures, satisfying a set of architectural constraints that are imposed to allow the reuse of hardware and software components


A Hardware-centric View of a Platform

Source: Grant Martin and Henry Chang, ISQED 2002 Tutorial

A Software-centric View of a Platform

Source: Grant Martin and Henry Chang, ISQED 2002 Tutorial

Multimedia SoC Design

Other Design Techniques/Problems

- Hardware/software partition
- Hardware/software co-design
- Hardware/software co-verification

The EDA tool?

Outline

Introduction to SoC

- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

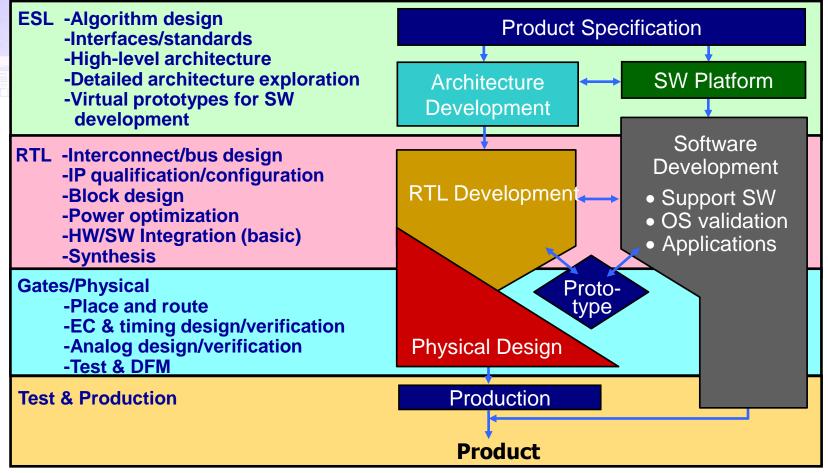
Conclusion

Emerging SoC Design Flow (1/2)

The design methodologies developed for earlier SoC technology are inadequate to the task of designing a multiprocessor SoC

Electronic system-level (ESL) design methodology has been devised to solve these problems

Virtual Prototype


- A high-speed (20MHz or more) functional model of the target chip
- Can quickly assemble, simulate, and analyze alternative architectures
- Allows software development to start many months before a hardware prototype is available

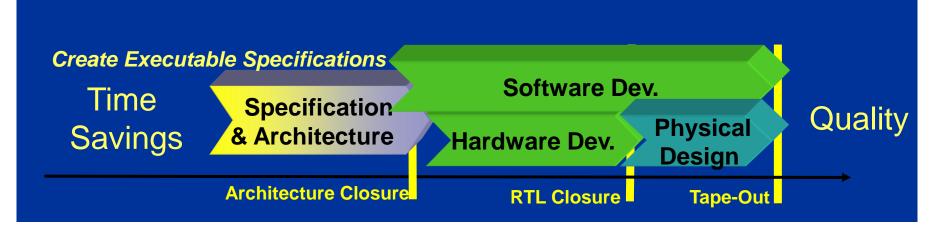
Multimedia SoC Design

Emerging SoC Design Flow (2/2)

ESL : Electronic System Level Design

Electronic System-Level (ESL) Design

A set of methodologies that enables SoC engineers to efficiently develop, optimize and verify complex system architectures and embedded software


The foundation for the continuously verifying downstream register-transfer level (RTL) implementation and subsequent software development

ESL: New SOC Design Flow

Architecture closure

- □ Achieve a reduction # of RTL iterations
- Can perform concurrent HW and SW design
- Shorten the time it takes to get to golden RTL

Architectural Closure

Model the entire system (HW & SW) to verify that it meets the performance goals optimally

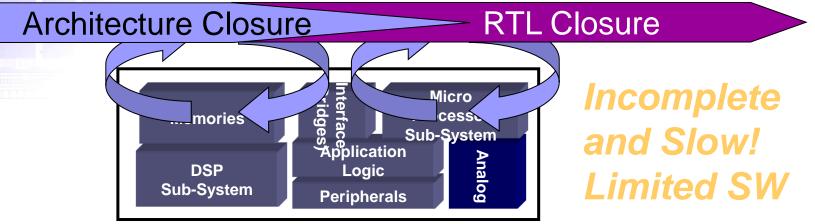
□ Validate the architecture

- Eliminate bottlenecks in Bus transactions
- Refine data buffer structure/management
- Close on HW/SW partitioning
- □ Perform software-based testing
 - Verify system setup, peripheral drivers and key application SW features
 - Optimize timing-critical tasks of the embedded software

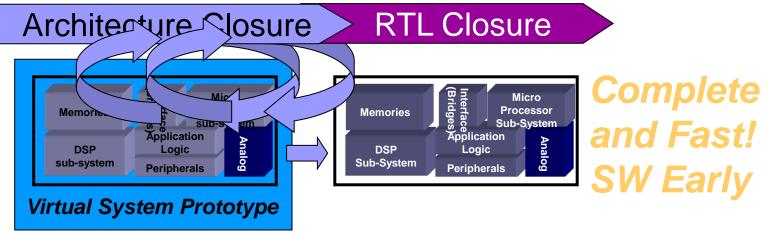
RTL Closure Goal: Implement and verify the architecture in RTL

Individual block (IP) level

- Implement/synthesize RTL blocks or
- Import (& re-validate) design IP
- "Prove" block-level functionality and performance
- Check conformance to specifications/standards


□Full chip level

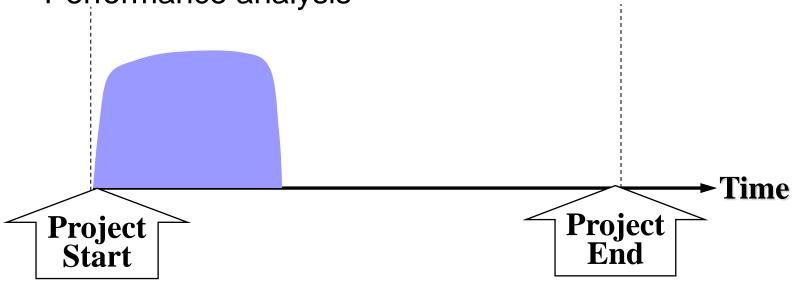
- Resolve micro-architecture corner cases (clock domains, FIFOs, handshakes, split Bus transactions)
- Integrate imported IP, show chip-level integrity
- Perform software execution (reset.....)



SOC Design Flows

Typical Flow: Step 1 and 2 performed on RTL model

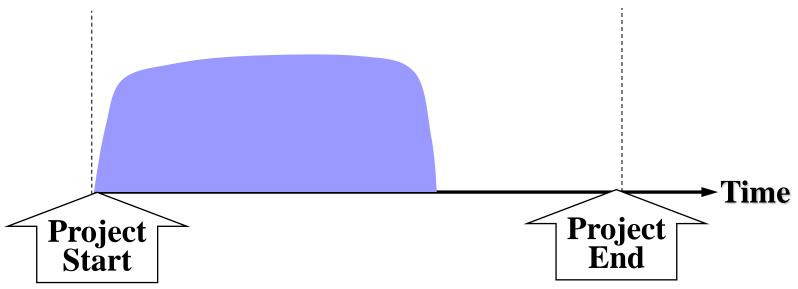
New Flow: Step 1 on transaction level, step 2 on RTL model



Continuous Verification (I)

- High Level Analysis
 - Functional verification
 - Architecture exploration
 - Performance analysis

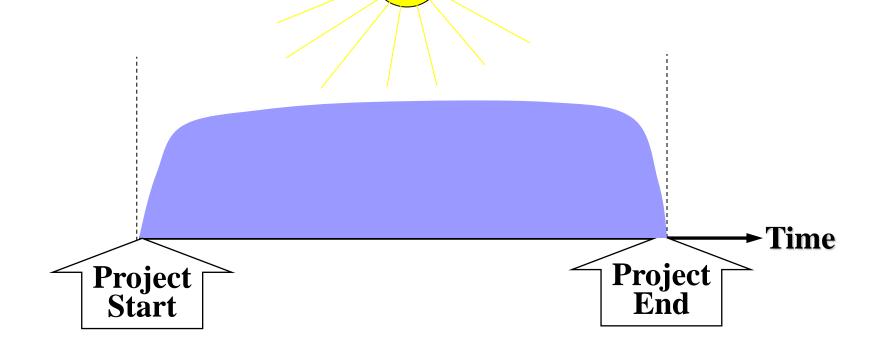
- Executable specification
- High-level testbench
- SW development platform



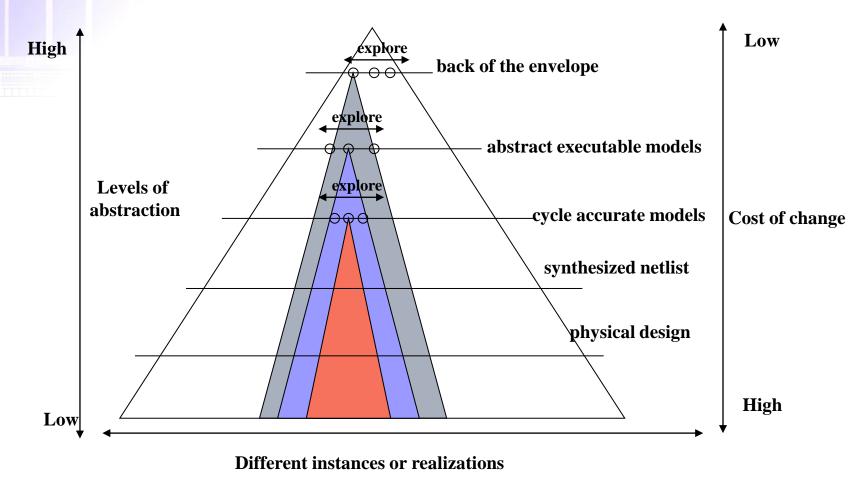
Continuous Verification (II)

- "Mixed" Level Analysis
 - Functional verification
 - Architecture validation
 - Performance validation

- Re-used IP
- Detailed design of components/subsystems
- More detailed testbench



Continuous Verification (III)


Implementation verification

- Detailed design of system
- Fully detailed testbench

Design Space Exploration

Outline

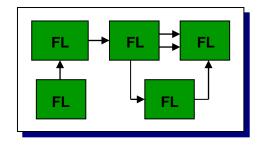
Introduction to SoC

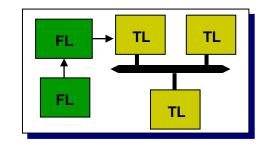
- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

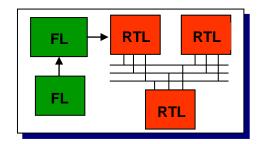
Conclusion

Multimedia SoC Design

Modeling issues

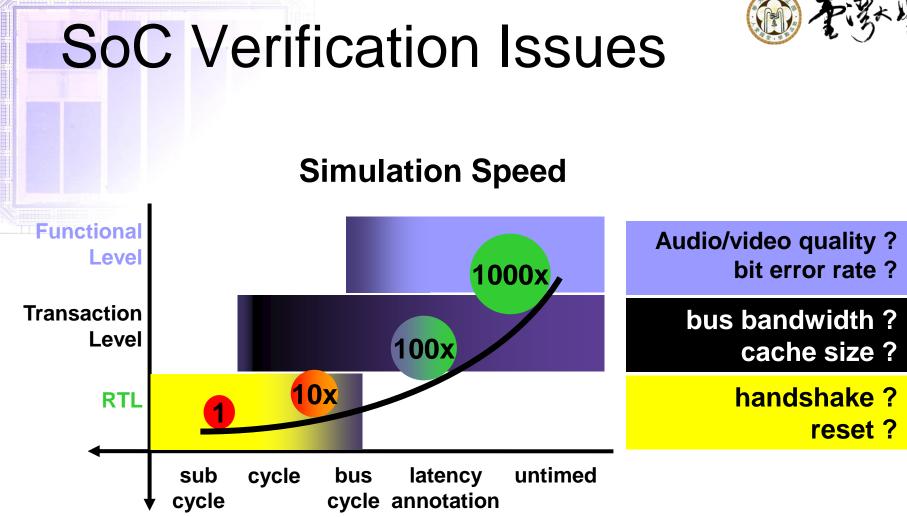

 System-level design tools will be integrated into the new SoC design flow
 Also called as Electronics System Level (ESL) tools


- Have benefits in system verification and hardware-software co-design
- Good modeling is the key for successful system-level design



Levels of Abstraction

- Functional Level
 Algorithm optimization
 Dropped calls/bit error rate
- Transaction Level
 - Architecture closure
 - Software verification
 - Bus bandwidth / cache size
- RT-Level
 - Detailed hardware design
 - handshake / timing issues



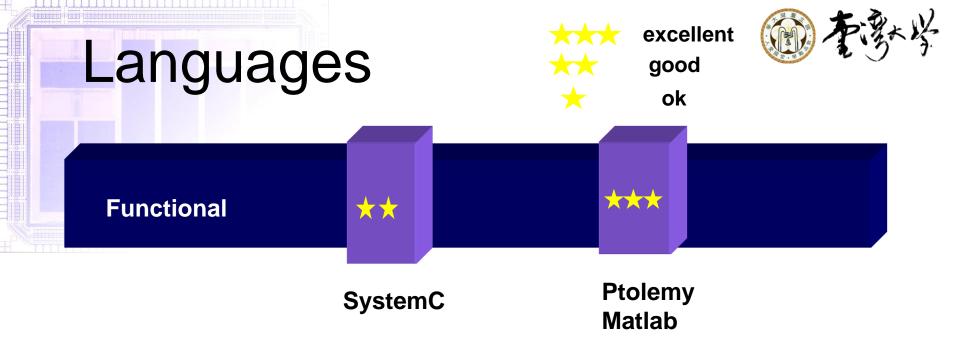
Multimedia SoC Design

Simulation speed requirements :: 100-1000x

Multimedia SoC Design

Functional Level Modeling High Performance

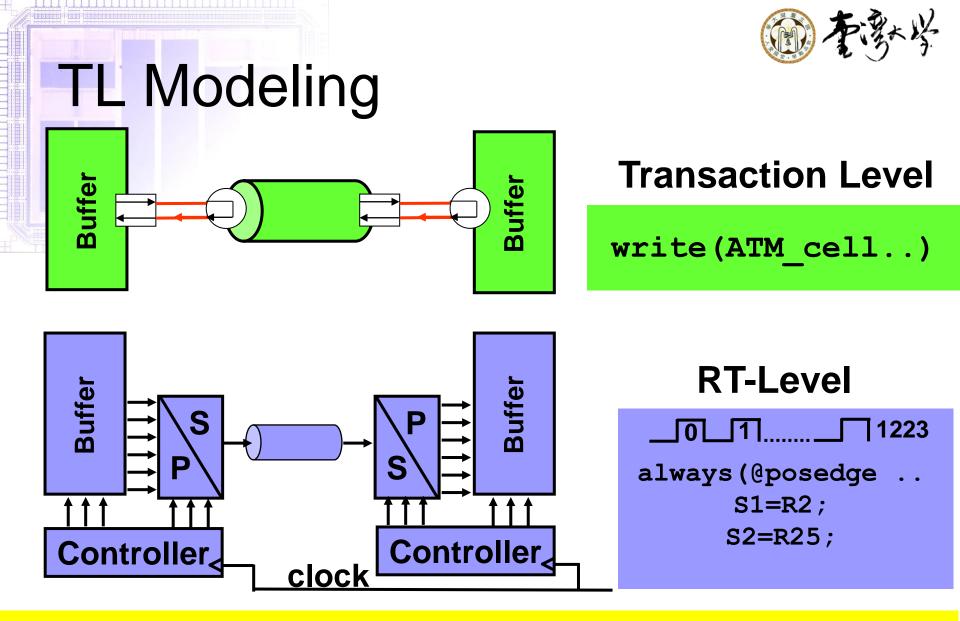
Functionality	Yes
Cycle Accurate	No
Timing	No
Pin Accuracy	No
Communication	Point to Point
Channels	FIFO
Parameters	Yes



Functional Modeling - Benefits

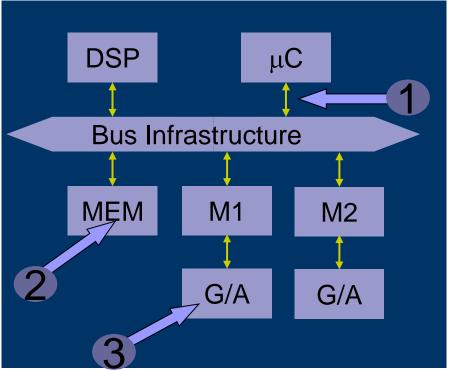
High Performance

- potential for 1000x speed over RTL
- Model the "complete" system and environment
 - provides a functional testbench that can be used during implementation
- System level analysis capabilities
- Libraries of standard protocols jumpstart modeling efforts
 - e.g., CDMA/Bluetooth reference design kits


Multimedia SoC Design

Transaction Level (TL) Modeling

Functionality	Yes
Cycle Accurate	Not necessary
Timing	No
Pin Accuracy	No
Communication	Shared
Channel	User defineable
Parameters	Yes

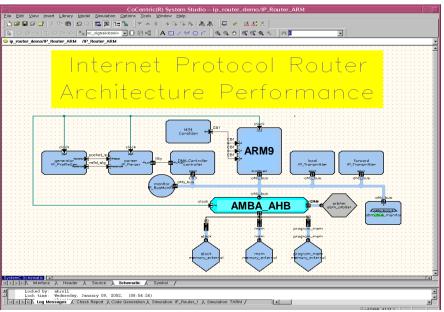


One Transaction >>>>>>> 1000 signals toggling 1000 times

TL Modeling

Transaction level modeling focuses on the communication between concurrent functional modules through the (on chip) bus infrastructure

- 1. All modules have <u>well defined</u> procedural interfaces to communicate with other modules
- 2. Modules model the function and (context sensitive) <u>latency</u> between request/response
- 3. <u>Sources</u> and <u>sinks</u> model real world data rates
 - Processor, packet streams, etc.

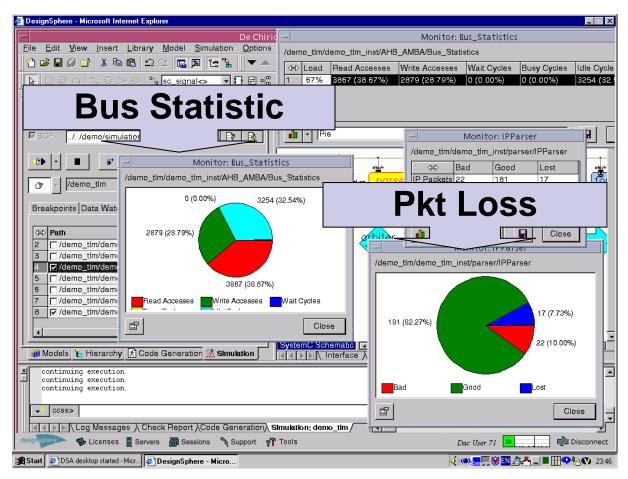

Multimedia SoC Design

Fast Architecture Verification

Design Capture

- multiple levels of abstraction
- graphical, textual
 Debug of HW & SW
 - source code debug
 - memories, buses, interrupts
- **Performance Analysis**
 - interactive traces and statistics

Closing on the Architecture at the Transaction Level reduces Risk by 80%

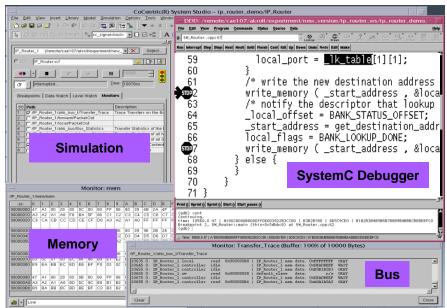

TL Modeling Bus and Memory Analysis

De Chirit Monitor: mem Die Edit View Inset Labrary Model Simulation Options Monitor: mem Options Monitor: Market Monitor: Market Options Monitor: Market Monitor: Market Options Monitor: Transfer Monitor: Transfer Monitor: Transfer Monitor: Transfer Monitor: Transfer Monitor: Transfer Monitor: Market Monitor: Market Monitor: Transfer Monitor: Market Monitor: Market Monitor: Market Monitor: Market Monitor: Transfer Monitor: Market Monitor: Transfer Market Monitor: Market Market Monitor: Market Monitor: Transfer Monitor: Transfer	DesignSphere - Microsoft Internet Explorer				
File Edit View Insert Library Model Simulation Options //demo_tim/demo_tim/inst/mem/mem //demo_tim/demo_tim/inst/mem/mem //demo_tim/demo_tim/inst/mem/mem //demo_tim/demo_tim/inst/mem/mem //demo_tim/demo_tim/inst/mem/mem //demo_tim/demo_tim/inst/mem/mem //demo_tim/demo_tim/inst/demo_single s //demo_tim/inst/demo_single s //demo_tim/inst/demo_tim/inst/demo_single s //demo_tim/inst/demo_tim/inst/demo_single s //demo_tim/inst/demo_tim/inst/demo_single s //demo_tim/inst/demo_t	De Chiri	Monitor: mem	· -		
		/demo_tlm/demo_tlm_inst/mem/mem	1		
Image: Second	1 🖆 🖬 🕼 🖆 👗 🛍 🛍 🗅 📿 🛄 🗖 🖽 🦹 🔍 🔺				
demo_tim (ids/chome/dac/dac/71/dem X Seject.) # SCF: // demo/simulation/demo_single.s # SCF: // demo/simulation/demo/single.s # SCF: // demo/simulation/demo/singl		المتعاد الأعاما الأعامة الأخاصة الأدامي الأدامي الأدامي الأدامي الأدامي الأدامي الأدامي المتعاد الات	-		
demo_tim (idds/choms/dac/dac71/dem X Select # SCF //./demo/simulation/demo_single s > # SCF //./demo_tim > > > > > # Geno_tim Imme ><					
Clear Clear Clear Clear Clear		00001020 09 0A 0B 0C 0D 0E 0F 10 13 12 11 10 11 11 11			
M SGP J. demo/simulation/demo_single.s Image: Simulation/demo_single.s Image: Simulation/d	demo_tlm (/ids/chome/dac/dac71/dem 🔨 X Select	00001030 00 00 00 00 00 00 00 00 00 00 00 00	1 1		
00001050 00 00 00 00 00 00 00 00 00 00 00 00	🛛 🖉 SCE 🔢 / /demo/simulation/demo. single s 😑 🕞 🕞		bout		
Image: Stress			route.		
Image: Sevent					
Breakpoints Data Watch Level Watch Montors Ital S: /demo_tlm/demo_tlm_inst/AHB_AMBA/Transfer_Trace Ital S: /demo_tlm/demo_tlm_inst/controller idle Ital S: /demo_tlm/demo_tlm_inst/controller idle <td></td> <td></td> <td></td>					
Breakpoints Data Watch Level Watch Montors 00001040 00 00 00 00 00 00 00 00 00 00 00 00					
Breakpoints [Data vrach] Evel vrach Nonitors Image: State vrach Nonitors					
G: Path Image: Close Image: Close Image: Close Image: Close Image:	Breakpoints Data Watch Level Watch Monitors		AHU ANGA AHU		
Line Close C					
Amountain and a second seco		🖬 🔹 Line 🔽 🖬 Close			
/demo_tlm/demo_tlm_inst/AHB_AMBA/Transfer_Trace 102.5: /demo_tlm/demo_tlm_inst/sw read addr: 0x0000102c; /demo_tlm/demo_tlm_inst/mem data value: 0xffffffff [ABM_0KAY] 103.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 104.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 105.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/amm_data value: no value 105.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/amm_data value: no value 107.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/amm_data value: no value 108.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/amm_data value: no value 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 110.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/mem_data value: 0x10111213 [ABM_0KAY] 110.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/mem_data value: no value 111.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/mem_data value: no value 111.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm					
102.5: /demo_tlm/demo_tlm_inst/sw read addr: 0x0000102c; /demo_tlm/demo_tlm_inst/mem data value: 0xffffffff [ABM_0KAY] 103.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/mem data value: 0xffffffff [ABM_0KAY] 104.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/mem data value: 0xffffffff [ABM_0KAY] 105.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/sw read addr: 0x00001028; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 106.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/sw read addr: 0x00001028; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value 108.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/sw read addr: 0x00001028; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/sw read addr: 0x00001028; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/smem data value: 0x10111213 [ABM_0KAY] 110.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/smem data value: 0x10111213 [ABM_0KAY] 111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm_demo_tlm_inst/AHB_AMBA/default_slave data value: no value 111.5: /demo_tlm/demo_tlm_inst/local read addr: 0x0000105c; /demo_tlm_demo_tlm_inst/mem data value: 0x1111111 [ABM_0KAY] I112.5: /demo_tlm/demo_tlm_inst/local read addr: 0x0000105c; /demo_t					
103.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/mem data value: 0xffffffff [[AFM_OKAY] 104.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 105.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/aHB_AMBA/default_slave data value: no value 105.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/aHB_AMBA/default_slave data value: no value 106.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 108.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 110.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 110.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000105c; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_112.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 112.5: /demo_tl	/demo_tlm/demo_tlm_inst/AHB_AMBA/Transfer_Trace				
103.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/mem data value: 0xffffffff [AEM_OKAY] 104.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 105.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 105.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 106.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 108.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 108.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 110.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 111.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_III.2.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x00000105c; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slav	102.5: /demo tlm/demo tlm inst/sw read addr: 0x0000102c;	/demo tlm/demo tlm inst/mem data value: 0xffffffff [ABM 0KAY]			
105.5: /demo_tlm/demo_tlm_inst/sw read addr: 0x00001028; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_106.5: /demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_107.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_110.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tl	103.5: /demo_tlm/demo_tlm_inst/controller idle	; /demo_tlm/demo_tlm_inst/mem_data_value: 0xffffffff [ABM_			
107.5: /demo_tlm/inst/controller idle ; /demo_tlm/inst/AHB_AMBA/default_slave data value: no value 108.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x00001028; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_109.5:/demo_tlm/demo_tlm_inst/sw data value: 0x0011123 109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/sw data value: 0x0011123 [ABM_0KAY] 110.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value 111.5: /demo_tlm/demo_tlm_inst/local read addr: 0x0000105c; /demo_tlm_/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm_inst/local read addr: 0x0000105c; /demo_tlm_inst/mem_data value: 0x1111111 Clear Close desorptioner © Licenses @ Servers @ Sessions `Support ? Tools Dac User 71 @ Description	104.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value 105.5: /demo_tlm/demo_tlm_inst/sw read addr: 0x00001028; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value ABM				
108.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x00001028; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_109.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_110.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_111.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_112.5: /demo_tlm/demo_tlm_inst/local read addr: 0x0000105c; /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: no value [ABM_112.5: /demo_tlm/demo_tlm_inst/AHB_AMBA/default_slave data value: 0x1111111 [ABM_0KAY] Image: Ima	106.5: /demo_tlm/demo_tlm_inst/controller idle ; /demo_tlm_inst/mem_data_value: 0x00010203 [ABM_0KAY]				
110.5: /demo_tlm_inst/controller idle ; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value 111.5: /demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value 112.5: /demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value 112.5: /demo_tlm_inst/local read addr: 0x0000105c; /demo_tlm_inst/AHB_AMBA/default_slave data value: no value Interview Interview Clear Close design@neme Servers Servers Sessions Support Tools Dac User 71 Disconnect	108.5: /demo tlm/demo tlm inst/sw write addr: 0x00001028; /demo tlm/demo tlm inst/AHB AMBA/default slave data value: no value [ABM				
111.5: /demo_tlm/demo_tlm_inst/sw write addr: 0x0000102c; /demo_tlm/demo_tlm_inst/AHE_AMBA/deFault_slave data value: no value [ABM_112.5: /demo_tlm/demo_tlm_inst/local read addr: 0x0000105c; /demo_tlm/demo_tlm_inst/mem data value: 0x1111111 [ABM_0KAY] 112.5: /demo_tlm/demo_tlm_inst/local read addr: 0x0000105c; /demo_tlm/demo_tlm_inst/mem data value: 0x1111111 [ABM_0KAY] Image: transform the state of the state	109.5: /demo tlm/demo tlm inst/controller idle ; /demo tlm/demo tlm inst/mem data value: 0x10111213 [ABM OKAY] 110 5: /demo tlm/demo tlm inst/controller idle ; /demo tlm/demo tlm inst/ATH ANRA/default slave data value				
Clear Clear Close Close Close Close Close Close Close Close Close Close Close Close Close Close Close	111.5: /demo tlm/demo tlm inst/sw write addr: 0x0000102c; /demo tlm/demo tlm inst/AHB AMBA/default slave data value: no value [ABM]				
Clear Close	112.5: /demo_tim/demo_tim_inst/local read addr: uxuuuuuuusc	;; /demo_tim/demo_tim_inst/mem data value: UXIIIIIII [ABM_UKAY]			
designsphere & Licenses Servers Sessions Support Tools Dac User 71 20 Disconnect			•		
designsphere & Licenses Sessions Support Tools Dac User 71 20 Disconnect	Chara I				
🙀 Start 🖉 DSA desktop started - Micr 🖉 DesignSphere - Micro	designsphere 🍽 Licenses 📓 Servers 🗃 Sessions 🌂 Support 👘	Tools Dac User 71 20	Disconnect		
	Start 🖉 DSA desktop started - Micr 🍘 DesignSphere - Micro		₩♀₩ 23:06		

Multimedia SoC Design

TL Modeling System performance analysis

Multimedia SoC Design


Early Software Verification

SW running on workstation with

 annotated time or HW synchronized

SW development

- Algorithm
- Target indep. code
- Target code

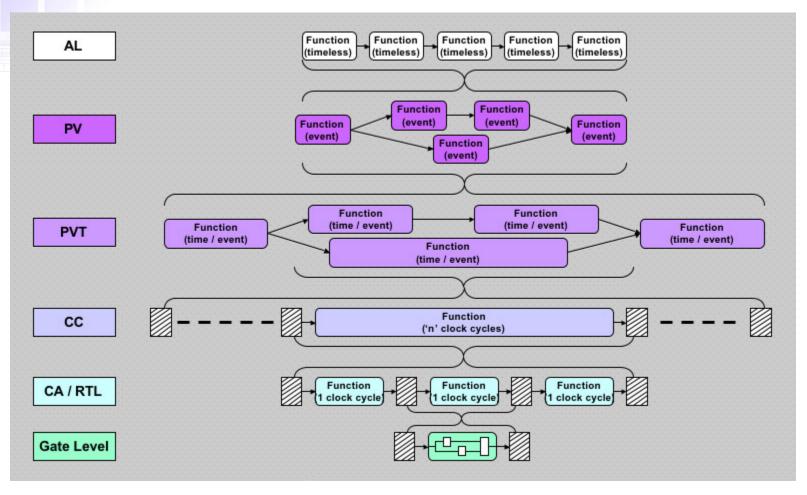
Early SW Verification significantly shortens Integration and Validation

TL Modeling - Benefits

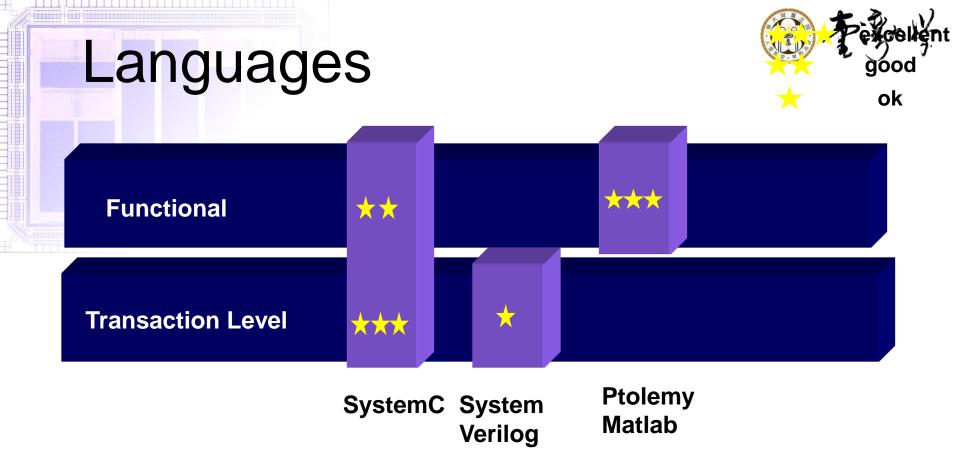
High Performance

- potential for 100x speed over RTL
- Early architectural closure
 - □ A platform for software developers to write code
 - Model for early system analysis
- Reuse of functional test bench
- Architecture Verification
 - □ Analysis of cache/memory architecture
 - □ System latency
- TL model library

More Details about More General Transaction-Level Modeling


Abstractions

- □ Algorithmic level (AL)
 - Architecture/implementation independent
- □ Programmers View (PV)
 - Bit-true representation of the HW, register accurate, no detailed timing
- Programmer View + Timing (PVT)
 - Same as PV plus detailed timing and synchronization (cycle approximate in most cases)
- □ Cycle Accurate (CA)
 - Clocked abstraction, interfaces and transactions
- 🗆 RTL
 - Clocked abstraction, actual chip signals


Multimedia SoC Design

Transaction-Level Modeling Abstractions

Multimedia SoC Design

Register Transfer Level Modeling

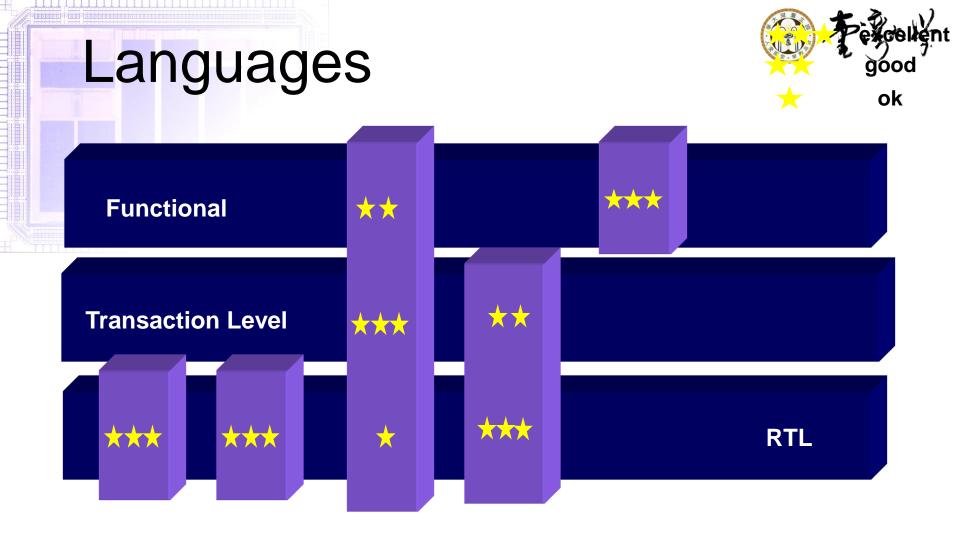
Functionality	Yes
Cycle Accuracy	Yes
Timing	Yes
Pin Accuracy	Yes
Communication	Shared
Channel	Signals only
Parameters	Yes

RT Level Models

Functionality of the device

All signal interactions with the bus

- Databus
- Address bus
- Control
 - signal characteristics (active high/low)
 - reset characteristics
 - bus responses
 - arbitration protocols


Accurate timing information of signals

RTL - Benefits

- Well understood semantics
- Popular languages
 - □ Verilog, VHDL
 - □ SystemC (not primarily targeted at RTL)
- Synthesize-ability
 - well defined synthesis tools and methodology
- Analysis capabilities
 - accurate timing analysis and verification tools
- RTL models can be plugged into TL models with adaptors

Multimedia SoC Design

VHDL Verilog

Multimedia SoC Design

SystemC System Verilog Shao-Yi Chien Ptolemy Matlab

System-C or SystemVerilog?

System-C

- A library
- □ Built on C++

SystemVerilog

- Can be support by your C compiler
- For advanced tools, will be supported by Cadence, Coware, MentorGrahics, Synopsys, …
- SystemVerilog
 - □ A new language
 - Next generation of Verilog
 - Supported by your Verilog simulator and synthesizer

SystemC

http://www.systemc.org

- 1997: Scenic Design Framework (Synopsys, UC Irvine, DAC'97)
- 1999: Open SystemC Initiative (Synopsys, CoWare)
- 1999: SystemC v0.9, C++ class library
- 2000: SystemC 1.0
- 2000: Cadence joins OSCI
- 2001: Mentor Graphics joins OSCI
- 2001: SystemC Release 2.0
 - □ higher levels of abstraction
 - □ interfaces, channels, ports
 - stepwise refinement
- 2002: SystemC Release 2.0.1

Multimedia SoC Design

SystemC

http://www.systemc.org http://www.accellera.org/

2003: SystemC Verification Library

- Cadence TestBuilder
- Constrained randomization
- □ Weighted randomization
- □ Introspection
- □ begin of standard for HDL integration
- 2005: SystemC 2.1 and TLM 1.0
- 2005: IEEE approves the IEEE 1666[™] -2005 standard for SystemC
- 2007: SystemC 2.2
- 2008: TLM 2.0
- 2009: TLM 2.0.1
- 2010: AMS 1.0
- 2011: IEEE approves the IEEE 1666–2011 standard for System
- 2011: Accellera and Open SystemC Initiative (OSCI) approve merger, unite to form Accellera Systems Initiative
- 2012: SystemC 2.3
- 2014: SystemC 2.3.1

Multimedia SoC Design

SystemVerilog (1) http://www.systemverilog.org

- 1984: Gateway Design Automation introduced Verilog
- 1989: Gateway merged into Cadence Design Systems
- 1990: Cadence put Verilog HDL into the public domain
- 1993: OVI enhanced the Verilog language not well accepted
- 1995: IEEE standardized the Verilog HDL (IEEE 1364-1995)
- 2001: IEEE standardized the Verilog IEEE Std1364-2001
- 2002: IEEE standardized the Verilog IEEE Std1364.1-2002
- 2002: Accellera standardized SystemVerilog 3.0
 Accellera is the merged replacement of OVI & VHDL International (VI)
- 2003: Accellera standardized SystemVerilog 3.1
- 2005: IEEE approves the IEEE 1800[™] -2005 Unified Hardware Design, Specification and Verification Language."

SystemVerilog (2)

SystemVerilog is *revolutionary evolution* of Verilog

- Verilog 1.0 IEEE 1364-1995 "Verilog-1995" standard
 The first IEEE Verilog standard
- Verilog 2.0 IEEE 1364-2001 "Verilog-2001" standard
 - □ The second generation IEEE Verilog standard
 - □ Significant enhancements over Verilog-1995
- SystemVerilog 3.x Accellera extensions to Verilog-2001
 - □ A third generation Verilog standard
 - □ DAC-2002 SystemVerilog 3.0
 - □ DAC-2003 SystemVerilog 3.1
 - □ DAC-2004 SystemVerilog 3.1a offered to IEEE P1800

SystemVerilog (3)

	——————————————————————————————————————	nVerilog				
assertions	mailboxes		classes	dynamic arrays		
test program blocks	semaphores	1	inheritance	associative arrays		
clocking domains process control	constrained randon direct C function ca		strings	references	from C/C++	
interfaces nested hierarchy unrestricted ports automatic port connect enhanced literals time values and units specialized procedures	dynamic processes 2- state modeling packed arrays array assignments enhanced event control unique/ priority case/ if root name space access		int shortint longint byte shortreal void alias	globals enum typedef structures unions casting const	break continue return do? while ++ += -= *= /= >>= <<<= &= = ^= %=	
	———— Verilog	g 2001				
ANSI C style ports	standard file I/ O		(* attributes *)	••• m	ulti dimensional arrays	
generate	<pre>\$value\$ plusargs</pre>		configurations	sig	gned types	
localparam	`ifndef `elsif `line		memory part selects automatic			
constant functions	@*		variable part select ** (power operator			
	Verilog	g 1995				
modules	\$finish \$fopen \$fclose	initial	wire reg	begin er	+ = * /	
parameters	\$display \$write	disable	integer real	while	%	
function/tasks	\$monitor	events	time	for fore	ver >> <<	
always @	`define `ifdef `else	wait #@	packed arrays	if else		
always @	`include `timescale	fork? join	2D memory			

Multimedia SoC Design

SystemC

Not a new language

- A special class library
- Based on C++
 - □ Includes all the advantages/disadvantages of C++
- Good reference implementation
- C++ compatibility supports SW compatibility
- Only limited path to implementation
- TLM methodology and experience exists
- Oriented towards HDS verification, architecture exploration, and fast higher level simulation

SystemVerilog

- System level extension of Verilog towards system and transaction level modeling
- Relevant semantics part of the language
- Clean and concise
- Excellent LRM (language reference manual)
- Elaboration and compiler can do multiple checks
- Verilog compatibility guarantees legacy compatibility and full path to implementation
- No programming language
- Co-existence with C++

A General Thinking of SystemC and SystemVerilog

	SystemC	SystemVerilog		
Architectural Design	🌋 🌋			
Architectural Verification				
& HW/SW Co-Verification				
RTL-to-Gates Design		🧱 🌋		
RTL-to-Gates Verification	<u>**</u>	兆 兆		

Outline

Introduction to SoC

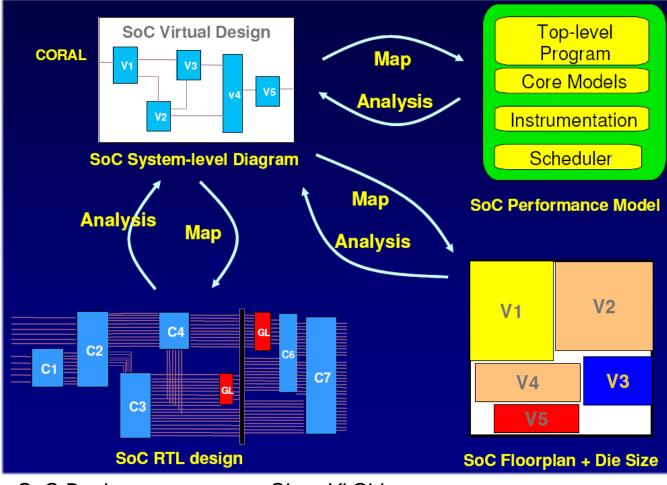
- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools
 - IBM SEAS
 - □ Synopsys's solution
 - □ ARM's solution
 - □ High level synthesis tools
- Conclusion

ESL Toolset Should Consist of

- Formal system requirement capture, analysis, and traceability tools
- Architectural modeling, analysis, optimization, and verification environment
- Simulators and abstract processor models for software validation
- High-level synthesis and configurable IP approaches to fixed-function hardware development
- Architectural development, synthesis, and configurable IP design approaches to programmable hardware development
- Diverse design aids such as system-level modeling libraries and model generation tools

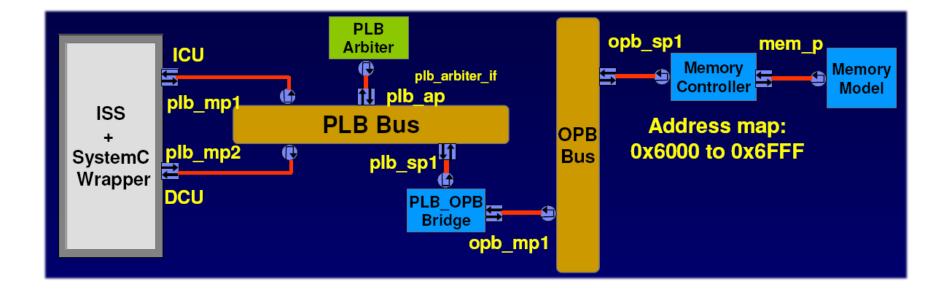
ESL Flow Supported by the Tools

- Specifications and modeling
- Pre-partitioning analysis
- Partitioning
 - □ Hardware/software partition
 - Hardware partition
 - Software partition
- Post-partition analysis and debug
- Post-partition verification
- Hardware implementation
- Software implementation
- Hardware/software co-verification

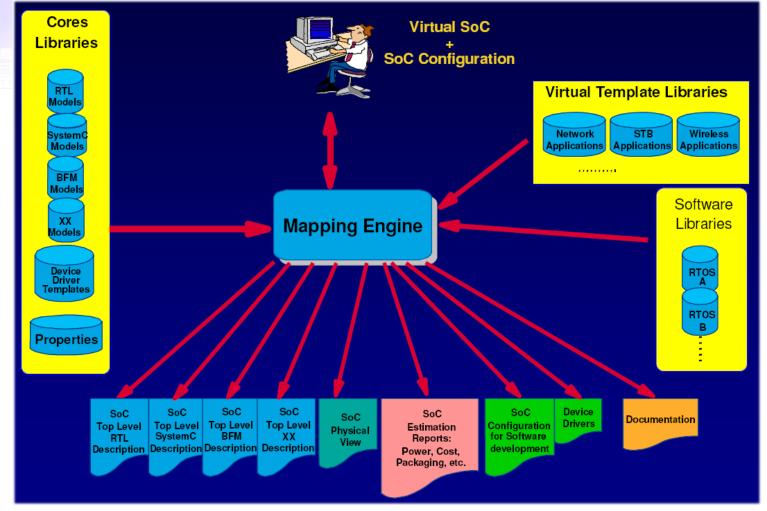

Some Existing System-Level Design Tools

IBM SEAS

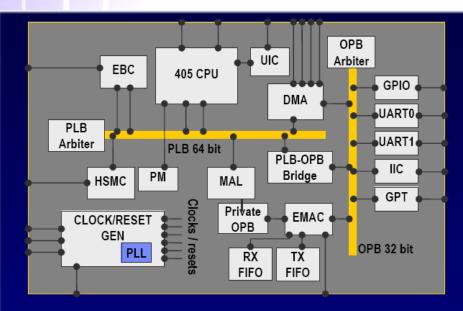
- Synopsys's solution
- ARM's solution
- High level synthesis tools


IBM SEAS: a System for Early Analysis of SoCs

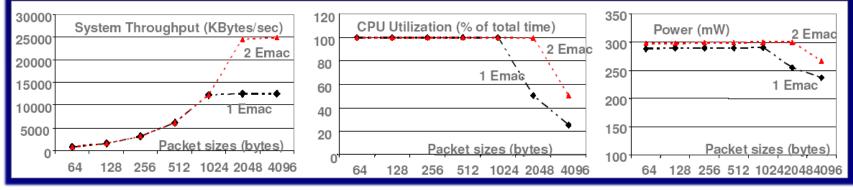
Multimedia SoC Design



SEAS Architecture (1)

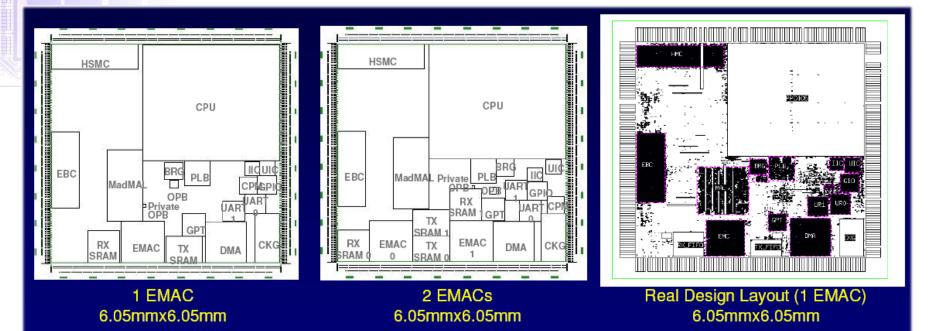

SEAS Architecture (2)

Multimedia SoC Design


SEAS Experiment

405PBD

- Ethernet Subsystem
 - 1 EMAC
 - 1 Madmal
- Change to improve performance
 - Added an extra EMAC + Fifos

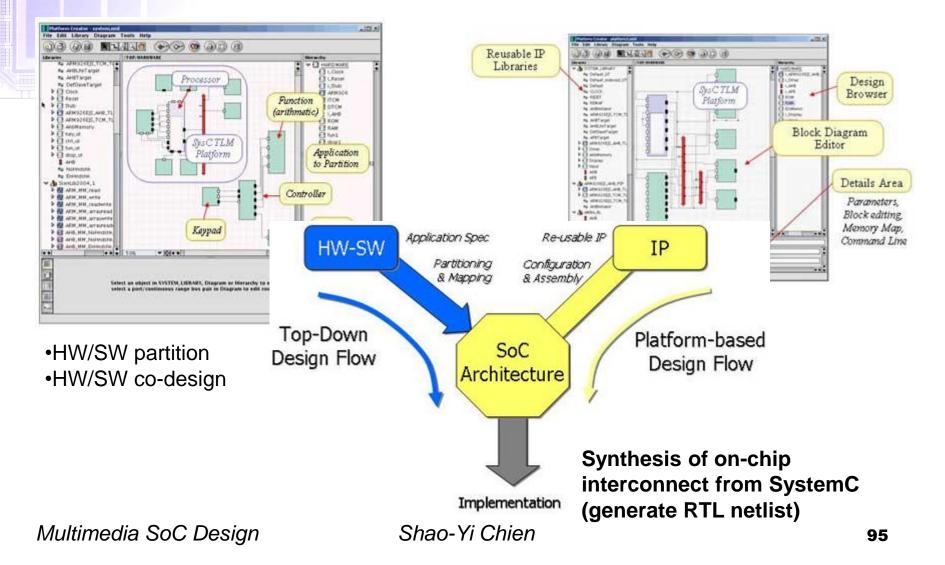

 Measure effects on die-size, fp, timing, power

Multimedia SoC Design

SEAS Experiment

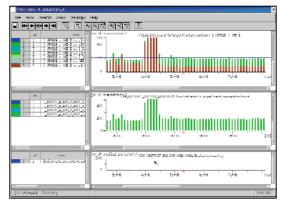
Results

- Two Emac solution delivered the required performance
- Could fit in the same die-size as the original one
- Met the same timing requirements as the original one

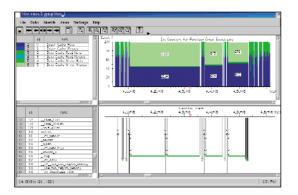


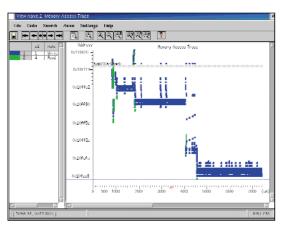
Synopsys's Solutions

- High-level block design
 - System Studio, SPW, Synphony C compiler, Processor Designer, …
- Architecture design
 - Platform Architect
- Virtual platform
 - Innovator, Platform Architect
- FPGA-based prototyping
 HAPS, Certify, Synplify Premier, Identify

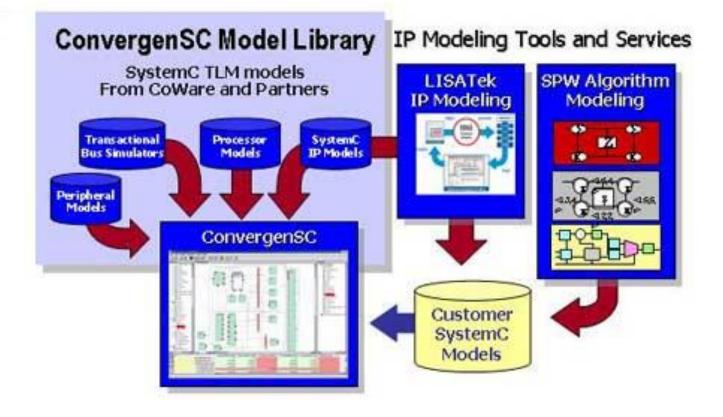


Platform Creator

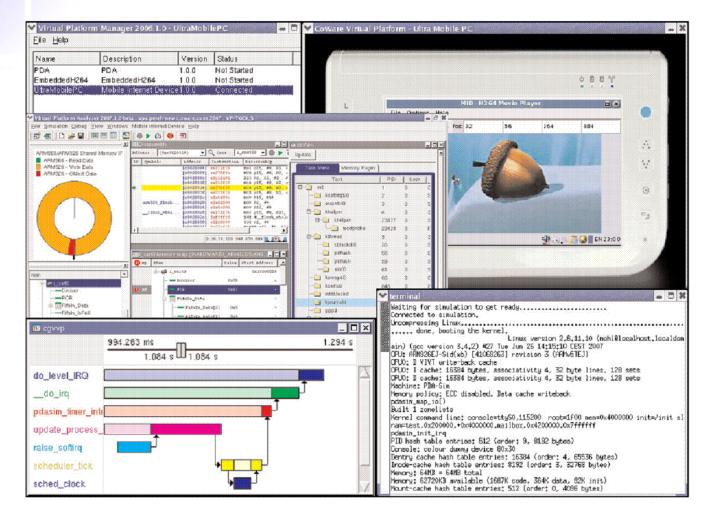



System-Level Analysis

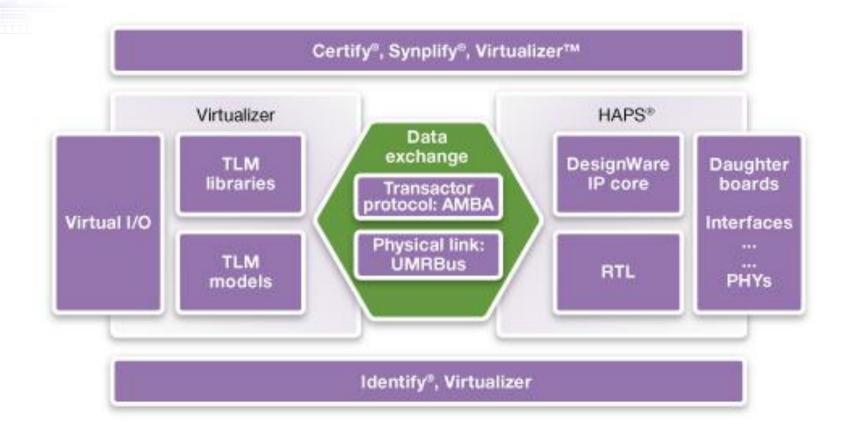
Transaction Counts and Bus Contention — "Which masters and slaves should be on which bus layer?"


Cache Hits/Misses and SW Task Gantt — "Is the cache size correct?"

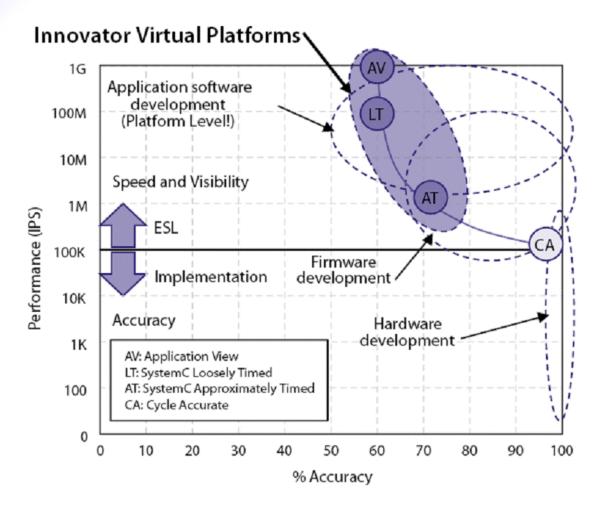
Memory Reads and Writes — "Is the memory architecture optimal?"


CoWare Model Library

Multimedia SoC Design


CoWare Virtual Platform

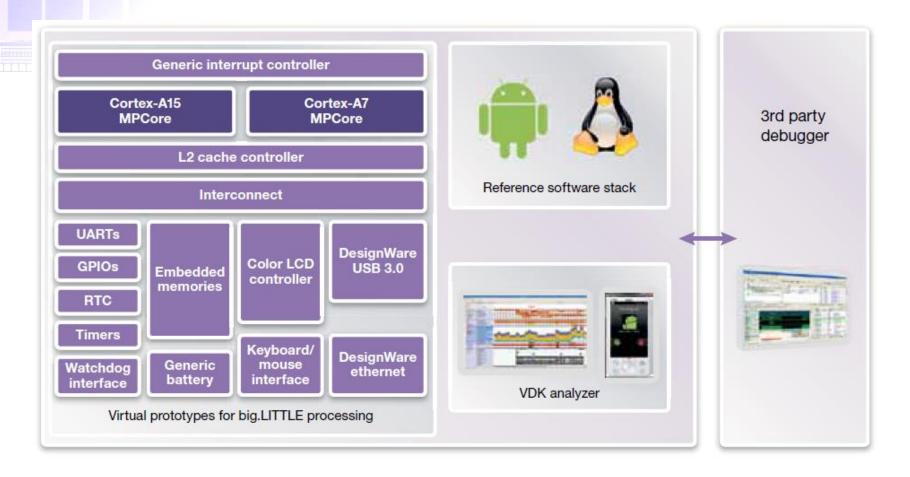
Multimedia SoC Design


Synopsys's Solution

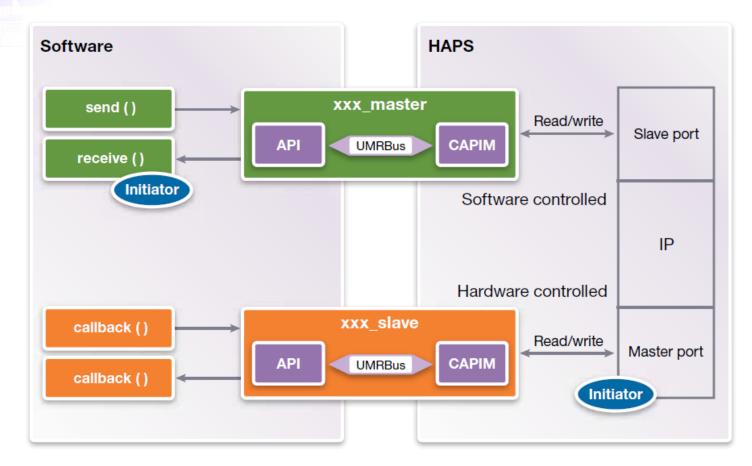
Multimedia SoC Design

Synopsys Virtualizer

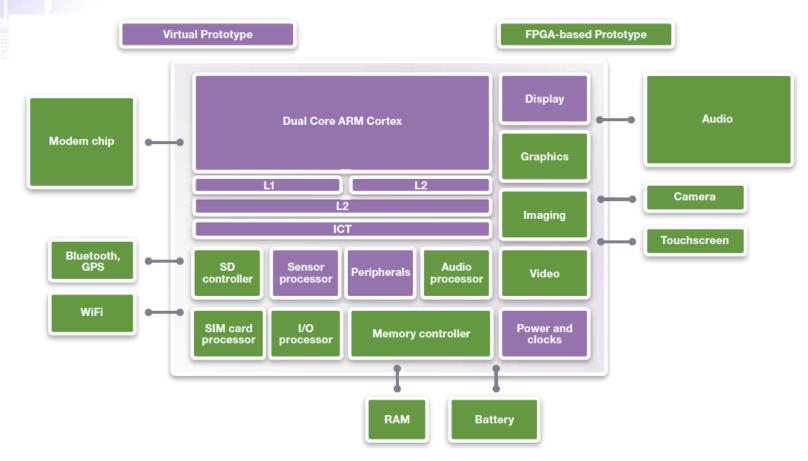
Multimedia SoC Design



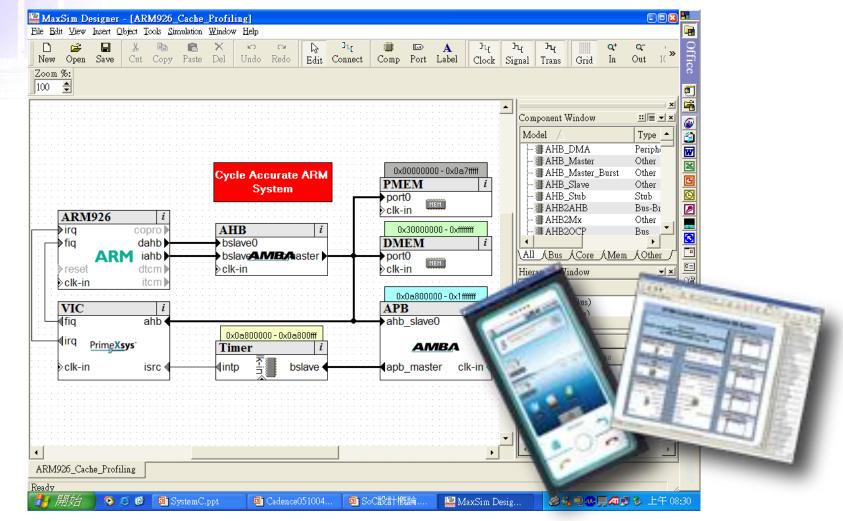
Synopsys Virtualizer



Example VDK for ARMv7


Synopsys Hybrid Prototype System

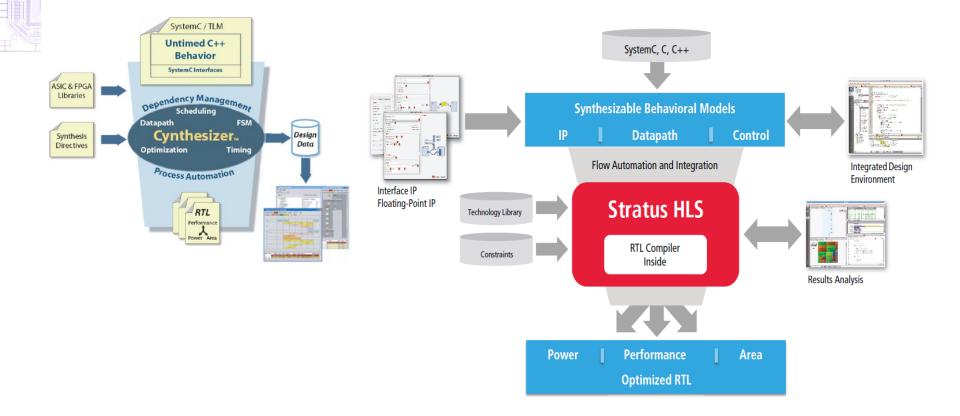
Multimedia SoC Design



Synopsys Hybrid Prototype System

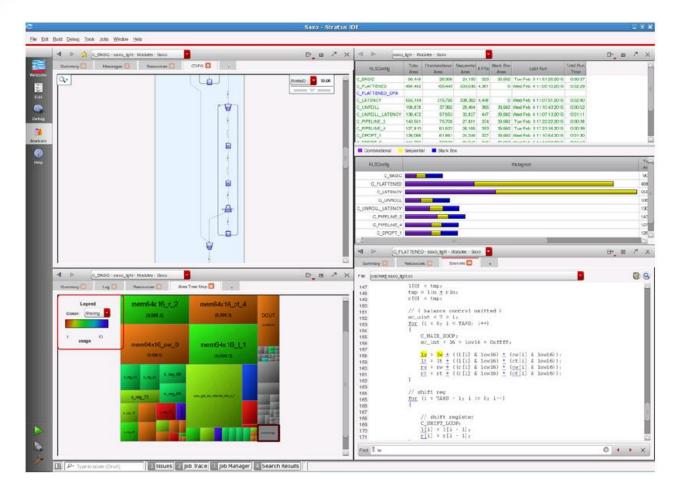
ARM Fast Models Carbon SoC Designer

Multimedia SoC Design

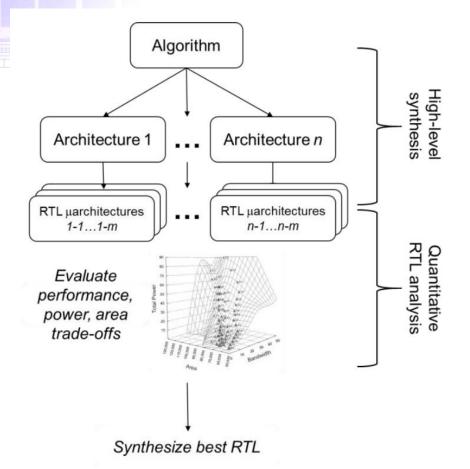

High Level Synthesis Tools

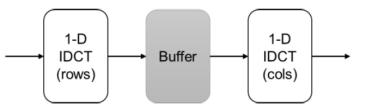
- Mentor Graphics→Calypt: Catapult C (Acquiqred by Calypto)→ Mentor Graphics Catapult C
- Forte Design System: Cynthesizer (Acquired by Cadence)
- Synopsys: Synphony C compiler
- Cadence: C2Silicon→Startus HLS
- ChipVision: PowerOpt?
- Xilinx: Vivado
- NEC CyberWorkBench

Multimedia SoC Design


Cynthesizer \rightarrow Startus HLS

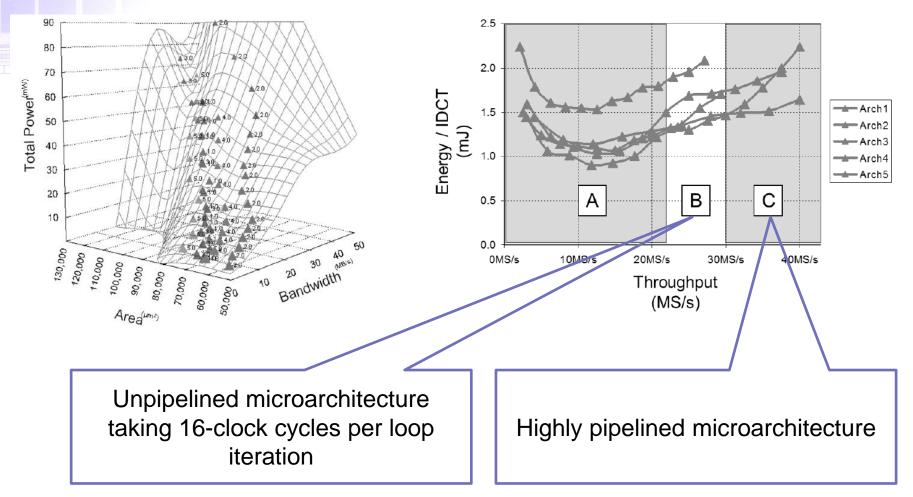
Multimedia SoC Design


Cynthesizer → Startus HLS



Multimedia SoC Design

New Design Methodology with HLS

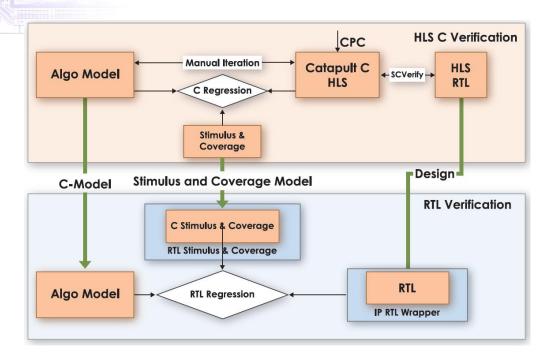


- Implement the 2-D DCT with 61 different microarchitectures
 - □ Buffer architecture
 - □ Latency
 - Loop pipelining
 - Clock frequency

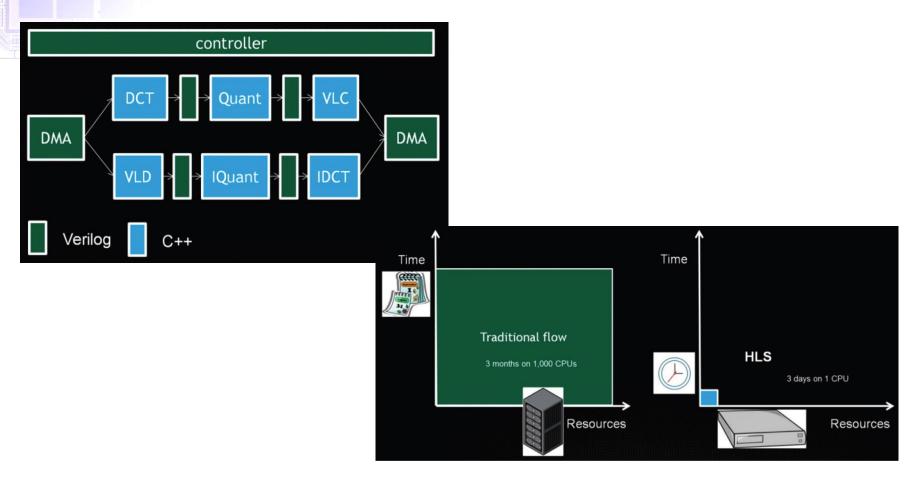
Multimedia SoC Design



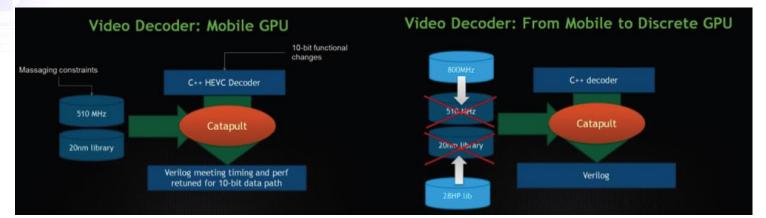
New Design Methodology with HLS



Menter Graphics Catapult


Example from Qualcomm

- The HLS design code space is much smaller at the C-level than at the RTL, making it easier to verify and correct; the 100x faster simulation speeds enable us to detect problems and close coverage magnitudes faster than in RTL
- With the HLS methodology, what is verified in C stays verified in the RTL domain. As a result, most of the bugs are found and corrected in C.
- When HLS/HLV is done, the remaining work in the RTL environment is mostly at the interface level.


Example from NVIDIA (Image Decoder)

Multimedia SoC Design

Example from NVIDIA (Image Decoder)

QoR - Area & Timing

Design	Display module #1		Display module #2		Camera module #1		Camera module #2	
	RTL	HLS	RTL	HLS	RTL	HLS	RTL	HLS
Area	3434	2876	8796	10960	2762	2838	49390	50247
Timing	0	0	-0.36	-0.33	0	0	0	0
Perf	3 pixels / 3 cycles		3 pixels / 3 cycles		2 pixels / cycle		2 pixels /cycle	
Latency	3 cycles		3 cycles		unconstrained		unconstrained	

Multimedia SoC Design

Outline

Introduction to SoC

- Relationship between SoC and multimedia systems
- Challenges for SoC Design
- SoC design methodologies
- New SoC design methodologies: ESL
- Modeling issues
- Some existing system-level design tools

Conclusion

Multimedia SoC Design

Conclusion (1)

Multimedia systems will be one of the most important applications of SoC

- SoC can be designed efficiently with System-Level Design methodology
 - □ Can reduce iterations
 - Quick architecture closure
 - □ Hardware/Software co-design in early stage

Conclusion (2)

Modeling is important in System-Level Design

- Among different levels, Transaction-Level Modeling is the most important
- Many languages can be used to develop the models

SystemC and SystemVerilog can be used for different levels

Conclusion (3)

Many commercial ESL tools are available
 Synopsys's solution
 High level synthesis tools
 In-house tools can also be developed

References

- 李昆忠、簡韶逸、鄺獻榮、邱瀝毅、郭致宏,電子系統層級設計教授,教育 部顧問室「超大型積體電路與系統設計教育改進」計畫SLD聯盟。
- Y.-A. Chen, "Functional verification for system-on-chip (SoC) designs," Slides of System-Level Modeling for System-on-a-Chip Design Workshop.
- R. Bergamaschi, "System-level design in practice," Slides of System-Level Modeling for System-on-a-Chip Design Workshop.
- 董蘭榮, "晶片系統簡介," 教育部晶片系統設計概論教材.
- M. Keating and P. Bricaud, Reuse Methedology Manual, 3rd Ed., Kluwer Academic Publishers, 2002.
- G. Martin and H. Chang Ed., Wining the SoC Revolution, Kluwer Academic Publishers, 2003.
- Documents from ARM, <u>http://www.arm.com</u>
- Documents from Synopsys, <u>http://www.synopsys.com</u>