

Jiin Lai 賴瑾 Shao-Yi Chien 簡韶逸

Fall 2020 Graduate Institute of Electronics Engineering National Taiwan University

Motivation (1)

- System-on-a-Chip (SoC): system or chip?
- System know-how forms a high entry barrier for chip designers
 - Related algorithm (ex: Machine learning/DSP/image processing/video processing/computer vision/communication algorithms...)
 - Architecture design
 - Chip design flow
 - Verification method
 - Computer architecture
 - Embedded system design
 - Embedded software development
 - ...

Motivation (2)

- Need new design methodology to conquer the high complexity:
 - □ System level design and verification
 - □ Hardware/software partition
 - □ Hardware/software co-design
 - □ Hardware/software co-simulation
- New methodologies: Electronics System Level (ESL), hardware/software co-verification, highlevel synthesis (HLS)...
- Important next step of Taiwan's IC design industry

Introduction

- This course will introduce the concepts and design techniques of multimedia SoC design
- The focus is on system design, and we take multimedia system as an example
- The following topics will be covered
 - ☐ Architecture design
 - □ Embedded system design/SoC architecture design
 - □ Multimedia system design
 - ☐ HLS for FPGA
 - □ HLS for FPGA instance on cloud servers.
- The course consists of
 - □ 1/2 Lecture
 - □ 1/2 Tutorial labs

Outline (1)

- System design concept
 - Introduction to SoC/ESL/Multimedia Systems
 - Platform-based design/Introduction to system design flow
 - Architecture design
 - Processors
 - Memory
 - Peripherals
 - Interfacing
 - ☐ Hardware/software partition
 - Multimedia hardware accelerators

Outline (2)

- High level synthesis
 - Platforms
 - Xilinx Vivado HLS
 - Pynq-Zedboard
 - AWS
 - □ Labs/tutorials/projects
 - Xilinx lab examples, application note, tutorials
 - Text book pp4fpga
 - Rosetta benchmark program with open sources
 - Open source from various application area finance, bioinformatics, ML, video, Database, Signal processing, Security ...
 - □ Final projects
 - Real applications

Schedule

Wee	k	Date	Lecture
1		9/18	Introduction/HLS Session 1
2	-	9/25	Introduction to SoC design/Architecture Design Basics
3	}	10/2	中秋節
4	ļ	10/9	國慶日連假
5		10/16	HLS Session 2
6	;	10/23	Processor
7	•	10/30	HLS Session 3
8	3	11/6	Bus/AMBA
9)	11/13	HLS Session 4
10	0	11/20	Peripherals and Interfacing
11	1	11/27	HLS Session 5
12	2	12/4	Memory
13	3	12/11	HLS Session 6
14	4	12/18	Midterm
15	5	12/25	Hardware accelerator design
16	6	1/1	元旦
17	7	1/8	Hardware/software verification / Low-power design
18	8	1/15	No class
19	9	1/22	Final project presentation

HLS Sessions

session	Date	Suggest lecture title - self-paced	pdf	video	In-classs discussion topics	Assignment
1	18-Sep	Course Introduction	<u>§</u>	§		HLS flow
		Introduction PYNQ & Lab2	§	§		ug871 labs ug871-[1:7]
		Vitis OpenCL XRT and Lab3	§	§		Lab1: Tool Installation
		Introduction to FPGA				Lab2: PYNQ axi-m & stream
						Lab3: OpenCL/XRT
2	16-Oct	Kernal IO Interface	§	§	ug871 Labs ug871-[1:7]	Xlinx Training Lab -xtrain-[1:13]
		Introduction to High Level Synthesis		§	HLS, Vivado, Vitis usage experience	Xilinx HLS Coding Style
		FPGA - CLB	§	§	Lab1, Lab2, Lab3 sharing	Xilinx HLS Design - xdesign-[1:15]
		FPGA - Memory	§	§		
			§	§		
3	30-Oct	System Optimization - Host	§	§	Xlinx Training Lab -xtrain-[1:13]	Vitis Tutorial - vitis-[1:7]
		System Optimizatin - Kernel	§	§	Xilinx HLS Design - xdesign-[1:15]	UCSD Lab ucsd-[1:5]
		FPGA - DSP	§	§		Cornell - ECE5775 cornell-[1:4]
		FPGA - Interconnect	§	§		
4	13-Nov	Kernel Optimization - Area	§	§	Vitis Tutorial - vitis-[1:7]	pp4fpga-[1:8]
-	13 1101	Kernel Optimization - Latency	§	§	UCSD Lab ucsd-[1:5]	Xilinx HLx Examples xhls-[1:18]
		Kernel Optimization - Pipeline	§	§	Cornell - ECE5775 cornell-[1:4]	Amin's Tiex Examples Ams [2:20]
		nerner optimization i ripeline	3	1	Corner Eccorro corner [1.4]	
5	27-Nov	Design Examples	§	§	pp4fpga-[1:8]	
		Application Cases	§	§	Xilinx HLx Examples xhls-[1:18]	Xilinx Application Notes xapp-[1:1
6	11-Dec				All topics	Final Project
						Refer to project resource weight=1
	22 1-5	Final Desirat agreements in a				
	22-Jan	Final Project presentation				

Course Information (1)

- Classroom
 - □ EEII-143 or PC room B (in EEII, for labs)
- Course Texts: Required
 - R. Kastner, J. Matai, and S. Neuendorffer, Parallel Programming for FPGAs, arXiv, 2018
 - ☐ Xilinx ug902
- Supplementary Materials: Optional (various references listed in lecture slides)
 - Reference Papers
 - Manual/Datasheets
 - Selected chapters from books

Course Information (2)

Website:

- □ http://media.ee.ntu.edu.tw/courses/msoc
- □ https://cool.ntu.edu.tw/courses/3773
- \Box TA
 - 翁華揚 (BL-421) <u>huayang@media.ee.ntu.edu.tw</u>
 - 陳柏穎 (BL-421) byc@media.ee.ntu.edu.tw
 - Arthur Hsiao givenchy5168@gmail.com

Prerequisite

- ☐ Knowledge of C/C++
- Basic concept of digital logic, computer architecture
- Knowledge of basic algorithm, and data structures
- Experiences with RTL design for ASIC or FPGA would be helpful, but not required

References

- 李昆忠、簡韶逸、鄺獻榮、邱瀝毅、郭致宏,電子系統層級設計教授,教育部顧問室 「超大型積體電路與系統設計教育改進」計畫SLD聯盟。
- ITRI/STC, Alan P. Su, System Design with ESL.
- Slides of System-Level Modeling for System-on-a-Chip Design Workshop, http://lina.ee.ntu.edu.tw/SLD.htm
- Website of Open SystemC Initiative (OSCI), http://www.accellera.org
- CIC, CoWare ConvergenSC training material
- Documents of CoWare, http://www.synopsys.com
- ARM, http://www.arm.com
- David C. Black and Jack Donovan, SystemC: From the Ground Up, 2nd Ed., Springer, 2009.
- F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concept and Applications for Embedded Systems, Springer, 2005.
- J. Bhasker, A SystemC Premier, Star Galaxy Publishing, 2004.
- T. Grotker, S. Liao, G. Martin, and S. Swan, System Design with SystemC, Kluwar Academic Publishers, 2002.
- B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification, Morgan Kaufmann Publishers, 2007
- W. Wolf, Computers as Components: Principles of Embedded Computing System Design, Morgan Kaufmann Publishers, 2001.
- F. Vahid and T. Givargis, *Embedded System Design: a Unified Hardware/Software Introduction*, John Wiley & Sons, 2002.
- P. Rashinkar, P. Paterson, and L. Singh, *System-on-a-Chip Verification: Methodology and Techniques*, Kluwar Academic Publishers, 2001.

Grading Policy

- High level synthesis 70%
 - □ There are three ways to earn credits
 - Turn-in Lab/Assignment
 - Give class Presentation
 - Work on Final project, presentation, and publication (github submit)
 - □ Final score is derived by normalizing the credits
- Mid-term exam 30%

Action Items

- Take this course with groups. 3 members in one group. Upper limit: 25 groups
- Please form your group and send the list to Prof. Chien
 - □ sychien@ntu.edu.tw, with the title "MSOC Group"
 - □ With name, email, affiliation (grade), and advisor
 - □ 3 members in each team
 - ☐ Send before 10:00AM 24 Sept.

Acceptance Priority

- GIEE, PhD
- GIEE, M2
- GIEE, M1
- Graduate students in related research groups
- Undergraduate students having projects with professors of GIEE
- Others