
NTU GIEE, MULTIMEDIA SYSTEM-ON-CHIP DESIGN

Lab 2 - Zynq HLS Design Flow

Pin-Hung Kuo

May 18, 2018

1 INTRODUCTION

In Lab 1, we design a system display a value by LEDs. We will have a similar design in this lab,
except for that the IP will be produced by high level synthesis (HLS).

2 CREATING IP IN HLS

Open Vivado HLS. You can find it in the Start menu: Start > Programs > Xilinx Design Tools
> Vivado 201X.X > Vivado HLS > Vivado HLS 201X.X. Create a new project by click Create
New Project as shown in Fig.2.1.

1



Figure 2.1: Create New Project

A New Vivado HLS Project window will appear, type HLS_led_controller in the Project name
and change the Location to c:/MSOC as Fig.2.2.

Figure 2.2: Project Name

In Add/Remove Files dialogue, type led_controller in Top Function box. We can add source
files here if we have. In this lab, we want to create the source files by our self, so we just click
Next > here.

2



Figure 2.3: Add/Remove Source Files

You should see the dialogue as shown in Fig.2.4. As the hint, we can add testbench files here.
We skip this step in this lab, just click Next >.

3



Figure 2.4: Add/Remove Testbench Files

In Solution Configuration dialogue, leave Solution Name and Clock as default. Click . . . as
shown in Fig.2.5 to select our part.

4



Figure 2.5: Solution Configuration

Similar to the part selection in Lab 1, we choose ZedBoard Zynq Evaluation and Develop-
ment Kit in the Device Selection Dialogue.

5



Figure 2.6: Device Selection Dialogue

Click OK and Finish to enter to our Vivado HLS project.

In Lab 1, our IP is simply pass the value from AXI slave port to output LEDs_out. In this
lab, we will design a similar IP in C++.
Right-click the Source in the left-handed Explorer pane, and click New Files. . . to create a
new source file as . You should be asked to save a file. Type led_controller.cpp as the file
name.

6



Figure 2.7: New File

An empty cpp file should be opened now in Workspace. Type the following code:

#include <ap_int.h>

void led_controller(int input, ap_uint<8>* LEDs_out){

*LEDs_out = input;

}

or you can find it in the lab file. Save the file by Ctrl+s. The data type of LEDs_out is ap_uint<8>,
which is defined by Vivado HLS. This data type allow you to define a arbitrary length data

7



type. In our case, we just defined an 8-bits unsigned integer. You can realize this data type in
detail by reading ap_uint.h, which can be opened by holding Ctrl and hovering you mouse
on the ap_uint.h. The ap_uint.h will become a link, click on it to open the corresponding file.
This operation can also be used in Vivado SDK, which is very useful to find the corresponding
declarations, defines and so on.

Now, we have finished our source code. But how can we know if it works well? The testbench
is used for this purpose. If you are familiar with HDL, you may be know about testbench.
If you are not, it is OK. Testbench is also a code to include our design and test it if it works
as our expectation. In HLS, we also have to integrate such testbench to examine our design.
Right-click on the Test Bench in the Explorer pane and select New File. . . to create the test-
bench. Let the name of testbench be led_controller_tb.cpp. You should have an empty cpp
file opened in the Workspace, type the following code

#include <stdio.h>

#include <ap_int.h>

void led_controller(int input, ap_uint<8>* LEDs_out);

int main(){

ap_uint<8> LEDs_out;

int error=0;

for(int i=0;i<256;++i){

led_controller(i,&LEDs_out);

if(LEDs_out!=i)

error++;

}

if(error)

printf("There are %d errors\n",error);

else

printf("Test Pass! Congratulation!!\n");

return 0;

}

or find it in lab file. Our IP passes an 8-bits number between 0 and 255, so we test our IP with
these 256 values. As you can see, the main function in HLS is used for testbench.

Click and just click OK to simulate the source file. You should see the message as Fig.2.8.

8



Figure 2.8: Simulation result

The simulation is to verify if your code is valid to be synthesized. Once we finish the simula-

tion, we can now click the icon to synthesize the HDL code from our cpp file. Once the
synthesis is finished, a synthesis report should be opened in the Workspace. You can check
the synthesis results here. Expand the solution1 in the Explorer pane, you can find that the
systemc, vhdl and verilog code of our IP have already been generated (under syn and impl). In
RTL design flow, we usually take advantage of wave form for debugging. Vivado HLS provides

this feature too. Click to run the co-simulation. In co-simulation dialogue, selection
your HDL language, where we choose verilog, and set the Dump Trace as all as shown in
Fig.2.9.

9



Figure 2.9: Co-simulation dialogue

The co-simulation tests the synthesized HDL code by our testbench cpp. After the co-simulation,

you can observe that the is activated. Click this icon to observe the waveform.
A Wave Viewer window will be opened. Select the module you want to observed in the Name
pane at the left-hand, and select the ports you want to observe in Objects pane in the middle
of the window. Right-click the selected ports and click Add To Wave Window to observe the
waveform as Fig.2.10. This Wave Viewer is very similar to the Synopsis Verdi/nWave, which is
commonly used for RTL debugging.

10



Figure 2.10: Waveform

Close the Wave Viewer and discard the waveform. Although we finished the synthesis few
minutes ago, we have not added constraints/directives to our design. We are going to back to
do this now.

Double click the led_controller.cpp in the Explorer pane to open the source file. Then se-
lect the Directive tab at the right-handed pane as shown in Fig.2.11

11



Figure 2.11: Directive

Right click on the led_controller in Directive pane and select Insert Directive. A Vivado HLS
Directive Editor dialogue will show up. Select Directive as INTERFACE in the drop-down
menu and set mode(optional) as s_axilite. The directive should be as that of Fig.2.12.

12



Figure 2.12: HLS Directive Editor

Click OK. We have to define our IP as having a ap_ctrl_none interface to remove unneeded
control signals. Right-click on led_controller in Directive pane, and select Insert Directive.
As before, select INTERFACE again. This time, we set the mode as ap_ctrl_none and click
OK.
By the similar way, we set the input as s_axilite and the LEDs_out as ap_none. Check your
Directive pane if it is same as Fig.2.13

13



Figure 2.13: All Directives

With directives, we can now generate an IP. Although we did that few minutes ago, that is for
co-simulation. This time we will generate the IP can be used in Vivado. It is worth noting that
once we add the directives, the co-simulation will fail.

Now we run synthesis again by clicking . After the synthesis, now we can package our

IP. Click to export RTL. A Export RTL Dialogue will show up, click OK leaving the sets be
default.
Now we just finish the HLS IP creation. We will integrate this IP into our system.

3 INTEGRATE HLS IP

Because it is very close to Lab 1, we will roughly go through the steps which we did once in
the last lab.
Create a new Vivado project Lab2. Create Block Design. Now we have to integrate the HLS
IP into our system. Click Settings in the tool bar as shown in Fig.3.1

Figure 3.1: IP Settings

In IP defaults, click under IP Catalog to add our IP as Fig. 3.2. Select c:/MSOC/HLS_led_controller
and click OK.

14



Figure 3.2: IP Repository

Click OK to return to our design.
Add our IP by the same method as Lab 1.
Our IP will be added to the diagram as Fig.3.3.

NOTE! Unfortunately, there is a bug in the newest Vivado 2018.1. If you cannot find the
led_controller in IP Catalog as Fig.3.3, you can fix it by following steps:
1. Close your project.
2. Delete your project folder, e.g. c:/MSOC/Lab2/
3. Create a Lab2 project again
4. Now you can find the IP, Magic!

15



Figure 3.3: HLS_led_controller

Now, follow the steps as Lab 1.

Note that the port name of our HLS IP is a little different from that of Lab 1, therefore you
should modify port name from LEDs_out_0 into LEDs_out_V_0 in the constraints file. Or
you can find it in the lab2 zip file. Observe the difference between wrapper.v files of these two
labs.

After the bitsream being generated, launch SDK.

Please create a new project Lab2. All files you need can be found in the lab zip file.

Find the difference between the source file of Lab 1 and that of Lab 2.
In the Xilinx Tools > Repositories step, please choose C:/MSOC/HLS_led_controller folder.

Run the application, and you should have the same result as Lab 1.

16


	Introduction
	Creating IP in HLS
	Integrate HLS IP

