NTU GIEE, MULTIMEDIA SYSTEM-ON-CHIP DESIGN

Lab 1 - Zynq RTL Design Flow

Pin-Hung Kuo

May 11, 2018

1 INTRODUCTION

In this lab, we are going to build a simple Zynq system on ZedBoard. This system works as
following: the CPU sends an 8-bits integer value to our IB, then this IP shows the value by 8
PL LEDs on the board. During the lab, you will learn how to build a Zynq block design, how
the CPU of Zynq to communicate with peripherals, and how to build an IP with RTL flow. The
following steps will lead you to build such a system.

2 CREATING IP IN RTL

Vivado 2018.1 - o x

File Flow Tools Window Help | - QuickAccess

VIVADO' & XILINX

o ALL PROGRAMMABLE.
HLx Editions

Quick Start

Tasks

Manage IP >
Open Hardware Manager >
Xilinx Tcl Store >

Learning Center

Documentation and Tutorials >

Tel Console

Figure 2.1

Open Vivado, select Create New Project as Fig.2.1.

Click Nextin New Project dialogue. At the Project Name dialogue, enter Labl as the Project
name and C:/MSOC(the directory where you unzip the lab file) as Project location. Make
sure that the Create project subdirectory is ticked. Please refer to Fig.2.2 for the above step.
Click Next. Before next step, please copy the source folder in the lab file to C:/MSOC/.

New Project x

Project Name

Enter a name for your project and specify a directory where the project data files will be stored_ '

Project name: |Labh |

Project location: C/MSOC lzl
/| Create project subdirectory

Project will be created at: C/MSOC/Lab1

@ =

Figure 2.2

In Project Type, select RTL Project and do not specify sources as shown in Fig.2.3.

¢ New Project

Project Type

Specify the type of project fo create.

)

RTL Project
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this ime

Postsynthesis Project: You will be able to add sourees, iew device resources, run design analysis, planning and
implementation.

VO Planning Project
Do not specify design sources_You will be able to view partipackage resources

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado projectfrom & predefined template.

Cancel

Figure 2.3

Select Verilog as Target language in the Add Sources dialogue as in Fig.2.4. In Add Existing
IP(optional) dialogue, we can add existing IP here. As we do not have that, click Next.

The Add Constraints(optional) dialogue will open. This is the stage were any physical or
timing constraints files could be added to the project. As we do not have that, click Next.

The Default Part dialogue will open. Select Boards from the Select dialogue and ZedBoard
Zynq Evaluation and Development Kit as Fig.2.5.

Target language: | Verilog « | Simulator langvage: | Mived

Figure 2.4

¢ New Project X

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. [

Reset All Filters

Vendor: | All ~ | Name: All

Search: L A4

Display Name Vendor File

ZedBoard Zynq Evaluation and D nt Kit
Add Daughter Card Connections

em awnetcom 14

Artix-7 ACT01 Evaluation Platform
Add Daughter Card Connections

adlinx.com 14

,
& ==

Figure 2.5
Click Finish to create the project.

From the menu bard, select Tools>Create and Package New IP..., as shown in Fig.2.6

Tools Reporls Window Layout View Help

Create and Package New IP... L
H Create Interface Definition...
Enable Partial Reconfiguration...
Run Tel Seript..
Property Editor
Associate ELF Files...
latg
Generate Memory Configuration File....
Compile Simulation Libraries...
Xilinx Tel Store_..
Custom Commands 3
Q Language Templates
£+ Seftings .
<

Figure 2.6

The Create and Package New IP dialogue will launch, Click Next.

Then, select Create new AXI4 peripheral here and click Next 2.7.

- Create and Package New IP X

Create Peripheral, Package IP or Package a Block Design

Please select one of the following tasks_ '

Packaging Options

Package a specified directory
Choose a directory as the source for creating a new IP Definition.

Create AXM4 Peripheral

@ Create a new AX}4 peripheral
Create an AXM IP, driver, software test application, IP Integrator AXJ4 VIP simulation and debug demonstration design.

© =
Figure 2.7

Enter led_controller as the Name 2.8.

¢ Create and Package Mew IP x

Peripheral Details

Specify name, version and description for the new peripheral '

Name: \ed_mntmlleﬂ |

Version: 10

Displayname: led controller vi.0

Description: My new AXI IP

IP location: C:J/MSOC/Lab1/.fip_repo II‘

Overwrite existing

0 =n
Figure 2.8

Click Next.
The Add Interface dialogue allows you to specify the AXI4 interface(s) that will be present in
your custom peripheral. Here you can specify:

e Number of interfaces

* Interface type (AXI-Lite, AXI-Stream or AXI-Full)
* Interface mode(slave or master)

* Interface data width

Features specific to individual interface types will also be available when the corresponding
type is selected.

As our peripheral is a simple controller for the LEDs, which only requires single values to
be transferred to it, an AXI-Lite slave interface is sufficient. Only one memory mapped regis-
ter is required for our simple controller, but as the minimum number that can be specified in
the dialogue is 4, we will chose that. Specify the Add Interface dialogue as shown in Fig.2.9.

¢ Create and Package Mew [P s

Add Interfaces

Add AXM4 interfaces supported by your peripheral [
Enable Interrupt Support + - Name S00 AX
Interfaces Interface Type Lite -
S00_AX
Interface Mode Slave -
Data Width (Bits) | 32 -

<
Memory Size (Bytes)

Y= 500_AXI >|Numhar of Registers |4 [4,,512]|

led_contraller_w1.0
HFRMNE

Figure 2.9

¢ Create and Package New [P x

V|VADO' Create Peripheral

i Edtions Peripheral Generation Summary
1.IP (adlinxcom:userled_controller:1.0) with 1 interface(s)
2. Driver{vl_00_a) and testapp more info
3. AXl4 VIP Simulation demonstration design more info

4. AXl4 Debug Hardware Simulation demonstration design more info

Peripheral created will be available in the catalog :
CyMSOC/Lab1/ fip_repo

Next Steps:

Add IP 1o the repository

Verify Peripheral IP using AXl4 VIP

ad Verif nerinharal IP usina JTAG interface
E XILINX cickrnisn o contie

N

Figure 2.10

Review the information in the Create Peripheral dialogue, which details the output files
which will be created. Select the option to Edit IP 2.10. This will create the IP peripheral
files and create a new Vivado project where the functionality of the peripheral can be modi-
fied in the source HDL code, and the packaged. Click Finish to close the Wizard and create
the peripheral template.

A new Vivado project, named edit_led_controller_v1_0, will open.

In the Sources pane, you should see two HDL source files (you may need to expand the file
selection):

Sources ? 00X

a = ¢ + o
w Design Sources (2)
~ 2. led_controller_wi_0 (led_controller vi_0w) (1)
@ led_controller_v1_0_S00_AX]_inst: led_confroller_v1_(
b IP-XACT (1)
» Constraints
» Simulation Sources (1)

Hierarchy Libraries Compile Order

Figure 2.11

The two source files are:
* led_controller_v1_0.v - This file instantiates all AXI-Lite interfaces. In this case, only
on interface is present.

¢ led_controller vl 0 _S00 AXI.v - This file contains the AXI4-Lite interface functional-
ity which handles the interactions between the peripheral in the PL and the software

running on the PS.

The IP Packager pane will also be open in the Workspace:

Project Summary % Package IP -led_controller

oo

Packaging Steps Identification
~ Identification Vendor: linx com
+/ Compatibility Librany: user
/ File Groups Name: led_controller

Version: 10
~/ Customization Parameters

Displayname: led_controller_v1.0
~/ Ports and Interfaces

Description: Mynew AXI IP

~/ Addressing and Memory
Vendor displayname:

+/ Customization GUI
Company url:

~/ Review and Package Root directory: c/MSOC/ip_repofled_controller_1.0

Xml file name: €IMSOC/ip_repofled_controller_1.0/componentxml

Categories
+

AXI_Peripheral

Figure 2.12

The information that we specified about our peripheral in previous steps will be visible.

We can now add the functionality to our led_controller peripheral. We will be adding a new
output port the peripheral template to allow it to connect to the LED pins on the Zynq device,
as well as assigning the value received from the Zynq PS to the new output port.

Open led_controller_v1_0_S00_AXI.v by double-click on it in the Sources pane. The file will
be opened in the Workspace.

Add the declaration

output wire [7:0] LEDs_out,

as shown in Fig.2.13.

14 parameter integer _3_AxI_ADTIR _WIDTH= 4

Figure 2.13

And connect this output port to register slv_reg0
assign LEDs_out = slv_reg0[7:0];

as Fig.2.14.

05 axi_rdata <= reg data_out; register read data
306 end

a7 end

290 end

200
400 E
401

azzign LEDs_out = slv_regD['?:El];l
402 User] L
403
404 endmodule
405

LSEr I0ZIC €nas

Figure 2.14

Save the file by File>Save File or Ctrl+s.

Open led_controller_v1l_0.v. We must once again create a new output port to the top-level
source file, and map it to the equivalent port that we created in the AXI4-Lite interface file in
the previous step.

Asin led_controller_vl_0_S00_AXI.v, we add the declaration of LEDs_out again

output wire [7:0] LEDs_out,

as shown in Fig.2.15.

15
16
17 [Tsers to add ports here

18 output wave [7:0] LEDz out,
19 Lser ports ends

20
21
22

2z Ports of Ax Slave Bus Interface S500_AXT

g
AU UL L CNEE Y e DU L DE MU LR O

Figure 2.15

and connect to the port by

10

.LEDs_out (LEDs_out)

in the instance of led_controller_v1_0.v. Fig.2.16 shows this step.
NOTE: You should add a "," in the end of the port before LEDs_out.

A4 JE_AKT _ARADDR{=00_axi_araddr),
A5 B AKT ARPROT{=00_axi_arprot),
[31] T ARVALID=00_axi_arvalid),
a7 B AKT ARREADY(=00 axi_arreadw),
A JB_AKT RDATAC=00 axi_rdatal),
[S5 AT RRESP(=00_axi rresp),
70 SO AAT RVALIDG=00_axi_rwalid],
71 e KT RREADY (=00 axi 1 ready@
T LEDz_outiLEDs_out)
73 1
74
5 Add user Jogic here
i

Figure 2.16

Return to IP Packager by selecting the Package IP - led_controller. IP Packager will de-
tect the changes to the source files, and the areas which need refreshed will be highlighted

with the following icon: . You should see that the following three areas of interest need

¥ File Groups
¢ Customization Parameters

¢ Ports and Interfaces
refreshed :

Select Customization Parameters in the Packager pane. You should see the following infor-
mation message as the top of the pane:

_D Merge changes from Customization Parameters Wizard

Click Merge changes from Customization Parameters Wizard to update the IP Packager in-
formation to the changes made in the HDL source files. Perform the similar process to File

Groups to eliminate all 7 icon except for Review and Package.
To verify that IP Packager has updated the Ports and Interfaces area, we will open it and check.

Select Ports and Interfaces from the IP Packager pane.

11

You should notice that the LEDs_out port that we added to the source files has been added to
the IP Ports pane and has a length of 8:

The final step in creating our new IP peripheral is to package the IP. Select Review and Pack-
age from the IP Packager pane.

In the After Packaging panel, click edit packaging settings at the bottom:

After Packaging

o Create archive of IP - C:/ME0CHD_repoded _controller 1 Ofalinecom_wsr led _contoller 1.0.z1p
edit

o Project will be removed after completion

edit packaging settings

Figure 2.17

In the Automatic Behaviour panel, enable the option to Create archive of IP, Close IP Pack-
ager window and Add IP to the IP Catalog of the Current Project. You may Delete project
after packaging if you wish (but the Verilog files can still be found even you select this option)

12

Settings x

IP > Packager
Project Settings Specify settings related to IP Packager. '
General ~
Simulation Default Values
Elaboration
The following values will be automatically applied after finishing
Synthesis the IP Packager Wizard_
Implementation Vendor: silinxcom
Bitstream
P Library: user
Repository Category: /UserlP
Packager
IPlocation: _fip_repo
Tool Settings
Project Automatic Behavior
IP Defaults
Source File After Packaging
Display +| Create archive of IP
WebTalk
+'| Add IP to the IP Catalog of the current project
Help
» TextEditor /| Close IP Packager window
3rd Party Simulators Include Source project archive
> Colors
Selection Rules Edit IP in IP Packager
Shortcuts /| Delete project afler packaging
> Strategies
> Window Behavior File Extensions to Filter on Add Directory

Create a list of file extensions that will be automatically filtered when

addinm a Airastanin o Cila Ceeon

TN
(z) n Cancel Restore...

~

Figure 2.18

Click OK to apply the setting. Review the information provided in the Review and Package
window, and click Re-Package IP. A dialogue box will appear asking if you want to close the
project, click Yes. The changes made to the IP peripheral will be included in the repackaged
IP, and the Vivado project will close.

3 CREATE SYSTEM BLOCK

We will return to our original Vivado project Lab1 after we finish the IP creation.

To start, we will create a new Block Design and add the IP peripheral which we just created to
the design. In the Flow Navigator window, select Create Block Design from the IP Integrator
section. Enter lab_1 in the Design name box, and click OK to create the blank design.

Now, we want to add IP in the Vivado IP Integrator Diagram canvas. This can be achieved by
3 methods:

e right click anywhere and select Add IP as Fig.3.1

13

e Hot key Ctrl+i

* The tool bar at the left of the canvas as Fig.3.2

[s]
|

Figure 3.1: Right click list

Add IP_ Ctri+l
Add Module...

Pinning

IP Settings...

Validate Design

Create Hierarchy

Create Comment

Create Port__

Create Interface Port...

Regenerate Layout

Save as PDF File...

Diagram

Figure 3.2: Tool bar

Enter led in the Search box, and double-click led_controller_v1.0 to add an instance of the
LED controller IP to the design. Fig.3.3 shows the instance of our IP. To enable the peripheral
to connect to the LEDs on the ZedBoard, we must make the LEDs_out port external. This
allows the output port to be connected to specific physical pins on the Zynq device, which
are connected to the LEDs. Right click on the port LEDs_out[7:0] and select Make External.

led_controller_0

=4 S00_AXI

s00 axi aclk

s00 axi aresetn

LEDs out[7:0]

Figure 3.3: led_controller block

The block design should new resemble Fig.3.4.

led controller_v1.0 (Pre-Production)

14

led controller 0

|4 S00_AXI

s00_axi_aclk _D LEDs_out_0[7:0]

s00_axi_aresetn

led_controller v1.0 u_‘_PrU—Prucuctiér'.)
Figure 3.4: led_controller block with external port

The next step is to add a Zynq Processing System block, which stands for the PS part on the
ZedBoard. Add an instance of Zynq7 Processing System by the similar way as we add the IP
led_controller_v1.0. Type zynq in the search box to add the Zynq7 Processing System. The
Designer Assistance message at the top of the canvas will appear:

¥ Designer Assistance available. Run Block Automation Run Connection Automation

Click Run Block Automation. An information message will appear. Ensure that Apply Board
Preset is selected, and click OK. This will make all necessary modifications to the Zynq pro-
cessing system that relate to the board preset and make required external connections.

We must now connect the LED Controller to the Zynq Processing System. This step can also
be carried out using Designer Assistance.

In the Designer Assistance message, click Run Connection Automation. An information mes-
sage will appear, selectled_controller_0/S00_AXI and click OK. This will add some additional
blocks to the design which are require to connect the LED Controller to the Zynq Processing
System.

Our block design in now complete. Validate the design by selectin Tools>Validate Design
from the Menu Bar, or select Validate Design in right-click menu, or just press keyboard F6.
If we pass the validation, our block system is done.

Now we should generate the HDL files for the design.

In the Sources pane, find lab_1(lab_1.bd) under Design Sources(1). Right-click on it and

select Create HDL Wrapper. Select Let Vivado manage wrapper and auto-update as Fig.3.5
and click OK. This will create the top-level HLD file for the design.

15

¢ Create HDL Wrapper *

You can either add or copy the HDL wrapper file to the project. Use copy option if
you would like to modify this file_

Options
() Copygenerated wrapper to allow user edits

LetVivado manage wrapper and auto-update

o
Figure 3.5: Create HDL Wrapper

We must now connect the LEDs_out port of the design to the correct pins on the Zynq device.
This is done through the specification of constraints in an XDC file.

In the Flow Navigator window, select Add Sources from the Project Manager section. The
Add Sources dialogue will open. Select Add or Create Constraints, and click Next. Click the

+

symbol and the click Create File ... as shown in Fig.3.6.

¢ Add Sources x

Add or Create Constraints

Specifyor create constraint files for physical and timing constraint fo add to your project. '
Specify constraint set: | = constrs_1 (active) w
+‘
Add Files...
Create File_..

Use Add Files or Create File buttons below

Add Files | | Create File

~

Figure 3.6: Add or Create Constraints Dialogue Window

16

The Create Constraints File dialogue will open. Select XDC as the File type and enter led_constraints
as the File name. Click OK.

Click Finish to create the file and close the dialogue.
In the Sources tab, expand the Constraints entry and open the newly created XDC file by

double-clicking on led_constraints.xdc. The file will open in the Workspace. Add the follow-
ing constraints into the file. You can find the same constraints code in c:/MSOC/source/Lab1/

led_constraints.xdc.

set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property

PACKAGE_PIN T22 [get_ports {LEDs_out_0[0]}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[0]}]
PACKAGE_PIN T21 [get_ports {LEDs_out_O[1]}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[1]}]
PACKAGE_PIN U22 [get_ports {LEDs_out_0[2]}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[2]}]
PACKAGE_PIN U21 [get_ports {LEDs_out_O[3]}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_O[3]}]
PACKAGE_PIN V22 [get_ports {LEDs_out_O[4]}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[4]}]
PACKAGE_PIN W22 [get_ports {LEDs_out_O[5]2}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_O[5]}]
PACKAGE_PIN U19 [get_ports {LEDs_out_O[6]2}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[6]}]
PACKAGE_PIN U14 [get_ports {LEDs_out_O[7]}]
IOSTANDARD LVCMOS33 [get_ports {LEDs_out_O[7]}]

This constrains connect each individual bit of the LEDs_out port to a specific pin on the Zed-
Board and specify the voltage of these pins.

Save the XDC file. Now, we have already finished our system architecture. The next step is to
put our design on the ZedBoard. Select Generate Bitsream in Flow Navigator. If a dialogue
appears prompting you to save your design, click Save. A dialogue window may requesting
that you launch synthesis and implementation before starting the Generate Bitstream pro-
cess. Click Yes if the request appears. It may take several minutes for synthesis, implementa-
tion and bitstream generation, you can take a break.

When bitstream generation is complete, a dialogue window will open to inform you. Select
Open Implemented Design, and Click OK. You can observe how the FPGA resources are used

by your design here.

Now, we just finished hardware part of our design. The next step is to write our software
executed on the Zynq ARM Cortex-A9 CPU.

17

Select File>Export>Export Hardware... from the Menu Bar. The Export Hardware for SDK
dialogue window will open. Ensure that the option to Include bitstream is selected, and click
OK. Launch the SDK in Vivado by selecting File>Launch SDK from the Menu Bard and click
OK.

The SDK will launch.

3.1 SOFTWARE APPLICATION

Once the SDK has launched, create a new Application Project by selectin File > New > Ap-
plication Project from the Menu Bar. In the New Project dialogue, enter Labl as shown in
Fig.3.7. You can notice that at the bottom of New Project dialogue is Board Support Pack-
age(BSP). We choose Create New here to let SDK generate the necessary support package (or
drivers) depending on our hardware in the previous steps. We can also generate a full BSP by
File > New > Board Support Package before we create a new application project. Click Next>
and select Empty Application in Available Template window as Fig.3.8. Click Finish.

B new Praject O X
Application Project p
Create a managed make application project. .._* /

Project name: |Lab1| |

Use default location
CAMSOC\Lab1\Lab1.sdk\Lab1 Browse...

default

05 Platform: | standalone w
Target Hardware
Hardware Platform: | lab_1_wrapper_hw_platform_0 ~| | New...

Processor: ps7_cortexad_0 ~

Target Software
Language: ®C (DOC++
32-bit

MN/A

Board Support Package: @ Create New |Lab1_bsp

Use existing

l/?:' < Back Next > Cancel

Figure 3.7: Create Application Project

18

B New Project] x

Templates >
Create one of the available templates to generate a fully-functioning @

application project.

Available Templates:
= Ablank C project.

IwlP Echo Server

IwiP TCP Perf Client

IwiIP TCP Perf Server
IwiP UDP Perf Client

IwiP UDP Perf Server
Memory Tests
OpenAMP echo-test
OpenAMP matrix multiplication Deme
OpenAMP RPC Demo
Peripheral Tests

RSA Authentication App
Zyng DRAM tests

Zynq FSBL

@ < Back Next > Cancel

Figure 3.8: Empty Application

Although we get most drivers when SDK create BSP for us, the driver of the IP created by our-
self cannot be generated by SDK. So we have to add this first.

Navigate to Xilinx > Repositories in Menu Bar. In the Repositories Preferences windows, click
on New, as shown in Fig.3.9.

19

B preferences [m] X
type filter text Add, remove or change the order of SDK's software repositories. = =
gfgfrjl Local Repositories (available to the current e)
Help New...
Install/Update
Remote Development Remove
Remote Systems U
Run/Debug d
Team Down
Terminal
Tracing Relative
v Xilirnx SDK.
B o (availabl —
Boot Image Global Rep (acro
BSP Preferences New...
Flash Programming
Hardware Specificatio Remove
Log Information Level U
Repositories P
SDK Capabilities Down
Toolchain Pref
SDK Installation Repositories
C:/Xilinx/SDK/2018.1/data/embeddedsw
Rescan Repositories
Note: Local repository settings take dence over global repository settings.
Restore Defaults Apply
< >
® oo

Figure 3.9: SDK Repository Peripherals window

HEZHE

Choose a repository directory. A repository directory
typically contains the ‘drivers’, 'bsp’ or 'sw_services'
sub-directories.

Browse to the directory: ¢:/MSOC/ip_repo/led_controller_1.0 as Fig.3.10.

X

MinGW
v MSOC
w ip_repo

v led_controller_1.0
bd
drivers
example_designs
hdl
xgui

HE%(): led_controller_1.0

BRI B M)

x|

Figure 3.10: led_controller repository selection

20

The system.mss tab should be open in the Workspace. If it is not, open it by expanding
Lab1_bsp in Project Explorer and double-clicking on system.mss.
At the top left of the system.mss tab, click Modify this BSP’s Settings Fig.3.11.

g system.hdf T system.mss 2 = 8

Lab1_bsp Board Support Package -

Modify this BSP's Settings || Re-generate BSP Sources

Target Information
This Board Support Package is compiled to run on the following target.

Hardware Specification: CAMSOC\Lab1\Lab1 sdk\lab_1_wrapper_hw_platform_O\system.hdf
Target Processor. ps7_cortexad_0

Operating System
Board Support Package OS.
Name: standalone
Version: 6.6

Description: Standalone is a simple, low-level software layer. It provides access to basic processor features such as caches, intemupts and exceptions as well as the basic features
of a hosted environment, such as standard input and output, profiling, abort and exit.
Documentation: standalone v6 6

Peripheral Drivers
Drivers present in the Board Support Package.
led_controller_0 led_controller
ps7_afi_0 generic
ps7_afi_1 generic
ps7_afi 2 generic
ps7_afi3 generic
ps7_coresight_comp_0 coresightps_dcc Documentation

ps7_ddr_0 ddrps Documentation
ps7_ddrc_0 generic
ps7_dev_cfg_0 devefg Documentation Import Examples
ps7_dma_ns dmaps Documentation Import Examples
ps7_dma_s dmaps Documentation Import Examples
ps7_ethemet_ 0 emacps Documentation Import Examples
ps7_globaltimer_0 generic
ps7_gpio_0 gpiops Documentation Import Examples

ps7_gpv.0 generic
psi_intc_dist 0 generic
ps7_jop_bus_config 0 generic
ps7_l2cachec_0 generic

Figure 3.11
The Board Support Package Settings window will open. Select driver from the left-hand

menu. From the list of components in the Drivers pane, identify led_controller_0 and en-

sure led_controller is selected from the drop-down menu in the Driver column, as shown in
Fig.3.12.

21

B Board Support Package Settings x

Board Support Package Settings ﬁ
Control various settings of your Board Support Package.
~ Overview
standalone .
v drivers DEES
ps7_cortexa9_0 The table below lists all the components found in your hardware system. You can modify the driver (or its version) assigned foreach
component. If you do not want to assign a driver to a component or peripheral, please choose ‘none’.
Component Component Type Driver Dri...
9.0 ps7_cortexa9 cpu_cortexa9 26
led_controller led_controller 1.0
fi generic 20
generic 20
generic 20
generic 20
coresightps dec 14
ddrps 1.0
generic 20
devcfg 35
dmaps 23
dmaps 23
emacps 37
generic 20
gpiops 33
generic 20
intc_dist generic 20
iop_bus _config 0 iop_bus_config generic 2.0
12cachec_0 generic 20
generic 20
generic 20
generic 20
qspips 34
generic 20
generic 20
generic 20
generic 20
scugic 39
scutimer 21
scuwdt 21
sdps 34
generic 20
tteps 35
uanps 36
usbps 24
xadcps 22
© o

Figure 3.12: led_controller repository selection

Click OK.

Now we prepare all the necessary drivers for our system. The last step is to prepare our soft-
ware to be run on CPU.

In fact, this software is already written for you. In Project Explorer, right click on Labl and
select import. An Import window will be opened, expand General and double-click on File
System as Fig.3.13.

22

BB Import O >

Select
Import resources from the local file system into an existing project. I E < 5 I

Select an import wizard:
type filter text

v [= General
& Archive File
(=% Existing Projects into Workspace
[File System
[Preferences
[Projects from Folder or Archive
= CfC++
= Git
= Install
= Remote Systems
= Run/Debug
= Team
= Tracing

WOW W W W W W

@ < Back Finish Cancel

Figure 3.13: Import file

Click Next. Type c¢:/MSOC/Labl/source/ in From directory box or click Browse... to find this
route. Select led_controller.c as in Fig.3.14.

23

BB Import O >

File system

Import resources from the local file system.

From directory: |C!\MSOC\Lab1\source

[m] (= source

[1 £ led_controller vi_0v
[£] led_controller.c

Filter Types... Select All Deselect All

Into folder: |Lab1 Browse...

Options
] Overwrite existing resources without waming
[] Create top-level folder

Advanced >>

@' < Back Next > Cancel

Figure 3.14: led_controller.c

Click Finish.

Before we execute our software, have our ZedBoard ready to connect to PC. Plug the power
cable, connect J17 and J14 ports on the ZedBoard to PC with mirco-USB cables. The J14
port is used to communicate between PC and ZedBoard. Turn on the ZedBoard power now.
If your PC asks you for driver installation, select Cypress CY7C64225 chipset. If there is any
problem in installation of the driver, please refer to Cypress Chipset.

Now you need to open the terminal in SDK. Type terminal in the Quick Access box at the
top-right as Fig.3.15 to add a terminal tab.

24

http://zedboard.org/sites/default/files/documentations/CY7C64225_Setup_Guide_1_3.pdf

Views E1 SDK Terminal (Xilirnx)
/Bl Terminal (Terminal)
/B Terminals (Remote Systems)

| Commands @

Launch Terminal

Preferences (Terminal) - Open the
Show In (SDK Terminal)

Show In (Terminal)

Show In (Terminals)

Show View (SDK Terminal) - Shows
Show View (Terminal) - Shows a p:

¢e e 00 eR®

Preferences

Terminal

Results per category are limited. Press 'Ctrl+3' to see all

Figure 3.15: Quick Access

Find the Terminal tab as shown in Fig.3.16, it may appear at the bottom, bottom-right or top-

right of SDK window. Click the ¥? to connect the PC and the board through the UART. The
Terminal Settings dialogue will appears, select your UART port (default COM3) and set the

other options as Fig.3.17

[E|SDKLog | @ Terminal 1 22
Mo Connection Selected

B Iz &E|

Connecticon

Figure 3.16: Terminal

25

B8 Terminal Settings X
View Settings:
View Title: |Tem1ina| 1 |
Encoding: | ISO-8859-1 v]
Connection Type:

| serial v}
Settings:
Port: COM3 v
Baud Rate: 115200 w
Data Bits: 8 v
Stop Bits: 1 v
Parity: None w
Flow Control: Nene w

Tmeowe[s |

Gores

Figure 3.17: Terminal Settings

Click OK to initiate the new Terminal connection.

Before we execute our application, we have one last thing to do: Program FPGA by the bit-

stream generated by Vivado. Select Xilinx > Program FPGA from the Menu Bar. Click Pro-

gram.

After the bitstream being loaded into the FPGA, the blue LED LD12 on the board will be
turned on. We can execute our last step now.

Right click on the Labl1 in the Project Explorer in the left-hand pane. Select Run As > Launch

on Hardware(GDB) as shown in Fig.3.18.

26

M Labisdk - C/C++ - Lab1_bsp/system mas - Xilinx SDK
File Edit Navigate Search Project Run

= -

[Project Explorer 52
v (#F lab_1_wrapper_hw_platform_0
(= drivers
|2 lab_1_wrapper.bit
[€ ps7_init_gpl.c
ps7_init_gplh
[&] ps7_initec
ps7_inith
@ ps7_inithtml
|2 ps7_inittcl

| system.hdf
5~k

il |

New >
Go Into

Open in New Window

Ctrd+C
Paste Ctrl+V
Delete Delete

Source »

= Copy

Move...

Rename... F2

Import...
Export...

EE

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Projects

F5

Build Configurations >

Run As >
Debug As »
Compare With »
Restore from Local History...

C/C++ Build Settings

Generate Linker Script

Change Referenced BSP

Create Boot Image

T

T R
=3
(=3
=

Team »
Configure >

Properties Alt+Enter

Xilink Window Help
| B~ R -@itt-O- DB @E it
E‘¢=-{>|? v = g5

GSov o

g systemn_hdf |, system.mss 23

Lab1_bsp Board Support Packag

Modify this BSP's Settings Re-generat
Target Information
This Board Support Package is compiled t

Hardware Specification: C\MSOC\Lab1"
Target Processor: ps7_cortexa9_0

Operating System
Board Support Package OS.

Mame: standalone
Version: 6.6
Description: Standalone is a simple,
of a hosted environmer
Documentation: standalone vé 6

Peripheral Drivers
Drivers present in the Board Support Packi
led_controller_0 led_controller

ps7_afi_0 generic

ps7_afi_1 generic

psi_afi_2 generic

ps7_afi_3 generic
ps7_coresight comp_0 coresightps_dec |
ps7_ddr 0 ddrps 1

ps7_ddrc_0 generic
ps7_dev_cfg_0 devcfg 1
ps7_dma_ns dmaps
ps7_dma_s dmaps

% 1 Launch on Hardware (System Debugger)
9 2 Start Performance Analysis
1. 3 Launchon Hardware (System Debugger on QEMU)
% 4Llaunchon Hardware (GDB)
[€] 5 Local C/C++ Application
Run Configurations...
—_— T
=ﬁ JE = O *! Problems Tasks E Console %3
Program FPGA

Figure 3.18: Run Application on hardware

This application sends an 8-bits integer value to PL part, and the LEDs on the board show
this value. The value will also displayed on the terminal as Fig.3.19. The LEDs turn on or off

27

depending on the corresponding bit.

67 ¢ H g RE| &2~ B ~
Serial: (COM3, 115200, 8, 1, Mone, None - CONNECTED) -
led_controller IP test begin.

LED value: @
LED value: 1
LED value: 2
LED value: 3
LED value: 4
LED value: 5
LED value: 6
LED value: 7
LED value: 8
LED value: 8
LED value: 1@
LED value: 11
LED value: 12
LED value: 13
LED value: 14
LED value: 15
LED value: 16
LED value: 17
LED value: 18
LED value: 18
LED value: 2@
LED value: 21
LED value: 22
LED value: 23
LED value: 24

Figure 3.19: Run Application on hardware

28

	Introduction
	Creating IP in RTL
	Create System Block
	Software Application

