
NTU GIEE, MULTIMEDIA SYSTEM-ON-CHIP DESIGN

Lab 1 - Zynq RTL Design Flow

Pin-Hung Kuo

May 11, 2018

1 INTRODUCTION

In this lab, we are going to build a simple Zynq system on ZedBoard. This system works as
following: the CPU sends an 8-bits integer value to our IP, then this IP shows the value by 8
PL LEDs on the board. During the lab, you will learn how to build a Zynq block design, how
the CPU of Zynq to communicate with peripherals, and how to build an IP with RTL flow. The
following steps will lead you to build such a system.

1



2 CREATING IP IN RTL

Figure 2.1

Open Vivado, select Create New Project as Fig.2.1.
Click Next in New Project dialogue. At the Project Name dialogue, enter Lab1 as the Project
name and C:/MSOC(the directory where you unzip the lab file) as Project location. Make
sure that the Create project subdirectory is ticked. Please refer to Fig.2.2 for the above step.
Click Next. Before next step, please copy the source folder in the lab file to C:/MSOC/.

Figure 2.2

2



In Project Type, select RTL Project and do not specify sources as shown in Fig.2.3.

Figure 2.3

Select Verilog as Target language in the Add Sources dialogue as in Fig.2.4. In Add Existing
IP(optional) dialogue, we can add existing IP here. As we do not have that, click Next.

The Add Constraints(optional) dialogue will open. This is the stage were any physical or
timing constraints files could be added to the project. As we do not have that, click Next.

The Default Part dialogue will open. Select Boards from the Select dialogue and ZedBoard
Zynq Evaluation and Development Kit as Fig.2.5.

Figure 2.4

3



Figure 2.5

Click Finish to create the project.

From the menu bard, select Tools>Create and Package New IP..., as shown in Fig.2.6

Figure 2.6

The Create and Package New IP dialogue will launch, Click Next.

Then, select Create new AXI4 peripheral here and click Next 2.7.

4



Figure 2.7

Enter led_controller as the Name 2.8.

Figure 2.8

Click Next.
The Add Interface dialogue allows you to specify the AXI4 interface(s) that will be present in
your custom peripheral. Here you can specify:

5



• Number of interfaces

• Interface type (AXI-Lite, AXI-Stream or AXI-Full)

• Interface mode(slave or master)

• Interface data width

Features specific to individual interface types will also be available when the corresponding
type is selected.

As our peripheral is a simple controller for the LEDs, which only requires single values to
be transferred to it, an AXI-Lite slave interface is sufficient. Only one memory mapped regis-
ter is required for our simple controller, but as the minimum number that can be specified in
the dialogue is 4, we will chose that. Specify the Add Interface dialogue as shown in Fig.2.9.

Figure 2.9

6



Figure 2.10

Review the information in the Create Peripheral dialogue, which details the output files
which will be created. Select the option to Edit IP 2.10. This will create the IP peripheral
files and create a new Vivado project where the functionality of the peripheral can be modi-
fied in the source HDL code, and the packaged. Click Finish to close the Wizard and create
the peripheral template.

A new Vivado project, named edit_led_controller_v1_0, will open.

In the Sources pane, you should see two HDL source files (you may need to expand the file
selection):

7



Figure 2.11

The two source files are:

• led_controller_v1_0.v - This file instantiates all AXI-Lite interfaces. In this case, only
on interface is present.

• led_controller_v1_0_S00_AXI.v - This file contains the AXI4-Lite interface functional-
ity which handles the interactions between the peripheral in the PL and the software
running on the PS.

The IP Packager pane will also be open in the Workspace:

8



Figure 2.12

The information that we specified about our peripheral in previous steps will be visible.

We can now add the functionality to our led_controller peripheral. We will be adding a new
output port the peripheral template to allow it to connect to the LED pins on the Zynq device,
as well as assigning the value received from the Zynq PS to the new output port.
Open led_controller_v1_0_S00_AXI.v by double-click on it in the Sources pane. The file will
be opened in the Workspace.
Add the declaration

output wire [7:0] LEDs_out,

as shown in Fig.2.13.

Figure 2.13

9



And connect this output port to register slv_reg0

assign LEDs_out = slv_reg0[7:0];

as Fig.2.14.

Figure 2.14

Save the file by File>Save File or Ctrl+s.

Open led_controller_v1_0.v. We must once again create a new output port to the top-level
source file, and map it to the equivalent port that we created in the AXI4-Lite interface file in
the previous step.
As in led_controller_v1_0_S00_AXI.v, we add the declaration of LEDs_out again

output wire [7:0] LEDs_out,

as shown in Fig.2.15.

Figure 2.15

and connect to the port by

10



.LEDs_out(LEDs_out)

in the instance of led_controller_v1_0.v. Fig.2.16 shows this step.
NOTE: You should add a "," in the end of the port before LEDs_out.

Figure 2.16

Return to IP Packager by selecting the Package IP - led_controller. IP Packager will de-
tect the changes to the source files, and the areas which need refreshed will be highlighted

with the following icon: . You should see that the following three areas of interest need

refreshed :
Select Customization Parameters in the Packager pane. You should see the following infor-
mation message as the top of the pane:

Click Merge changes from Customization Parameters Wizard to update the IP Packager in-
formation to the changes made in the HDL source files. Perform the similar process to File

Groups to eliminate all icon except for Review and Package.

To verify that IP Packager has updated the Ports and Interfaces area, we will open it and check.

Select Ports and Interfaces from the IP Packager pane.

11



You should notice that the LEDs_out port that we added to the source files has been added to
the IP Ports pane and has a length of 8:

The final step in creating our new IP peripheral is to package the IP. Select Review and Pack-
age from the IP Packager pane.
In the After Packaging panel, click edit packaging settings at the bottom:

Figure 2.17

In the Automatic Behaviour panel, enable the option to Create archive of IP, Close IP Pack-
ager window and Add IP to the IP Catalog of the Current Project. You may Delete project
after packaging if you wish (but the Verilog files can still be found even you select this option)

12



Figure 2.18

Click OK to apply the setting. Review the information provided in the Review and Package
window, and click Re-Package IP. A dialogue box will appear asking if you want to close the
project, click Yes. The changes made to the IP peripheral will be included in the repackaged
IP, and the Vivado project will close.

3 CREATE SYSTEM BLOCK

We will return to our original Vivado project Lab1 after we finish the IP creation.

To start, we will create a new Block Design and add the IP peripheral which we just created to
the design. In the Flow Navigator window, select Create Block Design from the IP Integrator
section. Enter lab_1 in the Design name box, and click OK to create the blank design.
Now, we want to add IP in the Vivado IP Integrator Diagram canvas. This can be achieved by
3 methods:

• right click anywhere and select Add IP as Fig.3.1

13



• Hot key Ctrl+i

• The tool bar at the left of the canvas as Fig.3.2

Figure 3.1: Right click list Figure 3.2: Tool bar

Enter led in the Search box, and double-click led_controller_v1.0 to add an instance of the
LED controller IP to the design. Fig.3.3 shows the instance of our IP. To enable the peripheral
to connect to the LEDs on the ZedBoard, we must make the LEDs_out port external. This
allows the output port to be connected to specific physical pins on the Zynq device, which
are connected to the LEDs. Right click on the port LEDs_out[7:0] and select Make External.

Figure 3.3: led_controller block

The block design should new resemble Fig.3.4.

14



Figure 3.4: led_controller block with external port

The next step is to add a Zynq Processing System block, which stands for the PS part on the
ZedBoard. Add an instance of Zynq7 Processing System by the similar way as we add the IP
led_controller_v1.0. Type zynq in the search box to add the Zynq7 Processing System. The
Designer Assistance message at the top of the canvas will appear:

Click Run Block Automation. An information message will appear. Ensure that Apply Board
Preset is selected, and click OK. This will make all necessary modifications to the Zynq pro-
cessing system that relate to the board preset and make required external connections.

We must now connect the LED Controller to the Zynq Processing System. This step can also
be carried out using Designer Assistance.

In the Designer Assistance message, click Run Connection Automation. An information mes-
sage will appear, select led_controller_0/S00_AXI and click OK. This will add some additional
blocks to the design which are require to connect the LED Controller to the Zynq Processing
System.
Our block design in now complete. Validate the design by selectin Tools>Validate Design
from the Menu Bar, or select Validate Design in right-click menu, or just press keyboard F6.
If we pass the validation, our block system is done.
Now we should generate the HDL files for the design.

In the Sources pane, find lab_1(lab_1.bd) under Design Sources(1). Right-click on it and
select Create HDL Wrapper. Select Let Vivado manage wrapper and auto-update as Fig.3.5
and click OK. This will create the top-level HLD file for the design.

15



Figure 3.5: Create HDL Wrapper

We must now connect the LEDs_out port of the design to the correct pins on the Zynq device.
This is done through the specification of constraints in an XDC file.

In the Flow Navigator window, select Add Sources from the Project Manager section. The
Add Sources dialogue will open. Select Add or Create Constraints, and click Next. Click the

symbol and the click Create File . . . as shown in Fig.3.6.

Figure 3.6: Add or Create Constraints Dialogue Window

16



The Create Constraints File dialogue will open. Select XDC as the File type and enter led_constraints
as the File name. Click OK.

Click Finish to create the file and close the dialogue.

In the Sources tab, expand the Constraints entry and open the newly created XDC file by
double-clicking on led_constraints.xdc. The file will open in the Workspace. Add the follow-
ing constraints into the file. You can find the same constraints code in c:/MSOC/source/Lab1/
led_constraints.xdc.

set_property PACKAGE_PIN T22 [get_ports {LEDs_out_0[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[0]}]

set_property PACKAGE_PIN T21 [get_ports {LEDs_out_0[1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[1]}]

set_property PACKAGE_PIN U22 [get_ports {LEDs_out_0[2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[2]}]

set_property PACKAGE_PIN U21 [get_ports {LEDs_out_0[3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[3]}]

set_property PACKAGE_PIN V22 [get_ports {LEDs_out_0[4]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[4]}]

set_property PACKAGE_PIN W22 [get_ports {LEDs_out_0[5]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[5]}]

set_property PACKAGE_PIN U19 [get_ports {LEDs_out_0[6]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[6]}]

set_property PACKAGE_PIN U14 [get_ports {LEDs_out_0[7]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out_0[7]}]

This constrains connect each individual bit of the LEDs_out port to a specific pin on the Zed-
Board and specify the voltage of these pins.

Save the XDC file. Now, we have already finished our system architecture. The next step is to
put our design on the ZedBoard. Select Generate Bitsream in Flow Navigator. If a dialogue
appears prompting you to save your design, click Save. A dialogue window may requesting
that you launch synthesis and implementation before starting the Generate Bitstream pro-
cess. Click Yes if the request appears. It may take several minutes for synthesis, implementa-
tion and bitstream generation, you can take a break.

When bitstream generation is complete, a dialogue window will open to inform you. Select
Open Implemented Design, and Click OK. You can observe how the FPGA resources are used
by your design here.

Now, we just finished hardware part of our design. The next step is to write our software
executed on the Zynq ARM Cortex-A9 CPU.

17



Select File>Export>Export Hardware. . . from the Menu Bar. The Export Hardware for SDK
dialogue window will open. Ensure that the option to Include bitstream is selected, and click
OK. Launch the SDK in Vivado by selecting File>Launch SDK from the Menu Bard and click
OK.
The SDK will launch.

3.1 SOFTWARE APPLICATION

Once the SDK has launched, create a new Application Project by selectin File > New > Ap-
plication Project from the Menu Bar. In the New Project dialogue, enter Lab1 as shown in
Fig.3.7. You can notice that at the bottom of New Project dialogue is Board Support Pack-
age(BSP). We choose Create New here to let SDK generate the necessary support package (or
drivers) depending on our hardware in the previous steps. We can also generate a full BSP by
File > New > Board Support Package before we create a new application project. Click Next>
and select Empty Application in Available Template window as Fig.3.8. Click Finish.

Figure 3.7: Create Application Project

18



Figure 3.8: Empty Application

Although we get most drivers when SDK create BSP for us, the driver of the IP created by our-
self cannot be generated by SDK. So we have to add this first.

Navigate to Xilinx > Repositories in Menu Bar. In the Repositories Preferences windows, click
on New, as shown in Fig.3.9.

19



Figure 3.9: SDK Repository Peripherals window

Browse to the directory: c:/MSOC/ip_repo/led_controller_1.0 as Fig.3.10.

Figure 3.10: led_controller repository selection

20



The system.mss tab should be open in the Workspace. If it is not, open it by expanding
Lab1_bsp in Project Explorer and double-clicking on system.mss.
At the top left of the system.mss tab, click Modify this BSP’s Settings Fig.3.11.

Figure 3.11

The Board Support Package Settings window will open. Select driver from the left-hand
menu. From the list of components in the Drivers pane, identify led_controller_0 and en-
sure led_controller is selected from the drop-down menu in the Driver column, as shown in
Fig.3.12.

21



Figure 3.12: led_controller repository selection

Click OK.
Now we prepare all the necessary drivers for our system. The last step is to prepare our soft-
ware to be run on CPU.
In fact, this software is already written for you. In Project Explorer, right click on Lab1 and
select import. An Import window will be opened, expand General and double-click on File
System as Fig.3.13.

22



Figure 3.13: Import file

Click Next. Type c:/MSOC/Lab1/source/ in From directory box or click Browse. . . to find this
route. Select led_controller.c as in Fig.3.14.

23



Figure 3.14: led_controller.c

Click Finish.
Before we execute our software, have our ZedBoard ready to connect to PC. Plug the power
cable, connect J17 and J14 ports on the ZedBoard to PC with mirco-USB cables. The J14
port is used to communicate between PC and ZedBoard. Turn on the ZedBoard power now.
If your PC asks you for driver installation, select Cypress CY7C64225 chipset. If there is any
problem in installation of the driver, please refer to Cypress Chipset.
Now you need to open the terminal in SDK. Type terminal in the Quick Access box at the
top-right as Fig.3.15 to add a terminal tab.

24

http://zedboard.org/sites/default/files/documentations/CY7C64225_Setup_Guide_1_3.pdf


Figure 3.15: Quick Access

Find the Terminal tab as shown in Fig.3.16, it may appear at the bottom, bottom-right or top-

right of SDK window. Click the to connect the PC and the board through the UART. The
Terminal Settings dialogue will appears, select your UART port (default COM3) and set the
other options as Fig.3.17

Figure 3.16: Terminal

25



Figure 3.17: Terminal Settings

Click OK to initiate the new Terminal connection.
Before we execute our application, we have one last thing to do: Program FPGA by the bit-
stream generated by Vivado. Select Xilinx > Program FPGA from the Menu Bar. Click Pro-
gram.
After the bitstream being loaded into the FPGA, the blue LED LD12 on the board will be
turned on. We can execute our last step now.

Right click on the Lab1 in the Project Explorer in the left-hand pane. Select Run As > Launch
on Hardware(GDB) as shown in Fig.3.18.

26



Figure 3.18: Run Application on hardware

This application sends an 8-bits integer value to PL part, and the LEDs on the board show
this value. The value will also displayed on the terminal as Fig.3.19. The LEDs turn on or off

27



depending on the corresponding bit.

Figure 3.19: Run Application on hardware

28


	Introduction
	Creating IP in RTL
	Create System Block
	Software Application


