
MSOC Lab #3

Yu-Sheng Lin
johnjohnlys@media.ee.ntu.edu.tw

1

Multimedia SoC Design

Outline

 In Lab #3, we discuss about high-level RTL

verification.

 You will learn VPI (Verilog Procedural Interface),

which can connect C with Verilog.

 Using VPI + Python-C interface + Lab #2, you

can write testbench in Python!

 Note: the environment is hard to set-up, so we

provide a workstation account for you.

Shao-Yi Chien 2

3

Example #0

RTL Used in Lab #3

Multimedia SoC Design

The Module Used in This Lab

module ToUpper(

input i_clk,

input i_rst,

input i_valid,

input [7:0] i_char,

output logic o_valid,

output logic [7:0] o_char

);

Shao-Yi Chien 4

Spec:

Convert all lower case characters to upper.

Any other characters should keep unchanged.

Convert input characters to upper case

It is in lab31_design.sv, and we leave it as a small homework.

Valid = 1: this cycle holds valid data

Valid = 0: this cycle doesn't hold valid data

The output uses the same protocol

5

Example #1

VPI

Multimedia SoC Design

Verilog Procedural Interface

 Wikipedia gives a good example
 https://en.wikipedia.org/wiki/Verilog_Procedural_Interface

 Sadly, it's very very difficult to find any other

documents.

 Fortunately, we only have to understand a very

minor part of VPI.

Shao-Yi Chien 6

https://en.wikipedia.org/wiki/Verilog_Procedural_Interface

Multimedia SoC Design

Verilog Procedural Interface

vpiHandle wire;

s_vpi_value wire_value;

int int_value;

wire_value.format = vpiIntVal;

vpi_get_value(wire, &wire_value);

int_value = wire_value.value.integer;

wire_value.value.integer = int_value + 1;

vpi_put_value(wire, &wire_value, NULL, vpiNoDelay);

Shao-Yi Chien 7

vpiHandle: "pointer" to wire

s_vpi_value: Somethine like 32'd821

vpiIntVal: You have to provide a type

such as integer, integer with z or x,

string to read or write the value.

Multimedia SoC Design

Verilog Procedural Interface

wire_value.format = vpiVectorVal;

vpi_get_value(wire, &wire_value);

int_value = wire_value.value.vector->aval;

xxx_value = wire_value.value.vector->bval;

Shao-Yi Chien 8

vpiVectorVal: use vector->aval or

bval to encode the 01xz

Multimedia SoC Design

Verilog Testbench with VPI

initial while (1) @(posedge i_clk) #0 $Lab31Cycle;

initial begin

$Lab31Start;

...

#1000

$Lab31Stop;

$finish;

end

ToUpper u_to_upper(.i_clk(i_clk), .i_rst(i_rst));

Shao-Yi Chien 9

Your module

Connect all wires to C++ and Python

Call this function every cycle

Multimedia SoC Design

The Overall Architecture

Shao-Yi Chien 10

initial

while (1) begin

@(posedge i_clk)

#0 $Lab31Cycle;

void Cycle() {

PyCall...

}

void Read() {
Vpi...

}

void Write();

from vpi import Read
def Cycle:

Schedule()

def Thread1():
Read()...

def Thread2():
Write()...

Call Cycle from Verilog > C++ > Python
Schedule() is almost the

same as Lab #2

Read and Write is visible to Python
Read and Write can access Verilog

wires (ncverilog +access+rw)

Multimedia SoC Design

The C++ Part

Shao-Yi Chien 11

initial

while (1) begin

@(posedge i_clk)

#0 $Lab31Cycle;

void Cycle() {

PyCall...

}

void Read() {
Vpi...

}

void Write();

from vpi import Read
def Cycle:

Schedule()

def Thread1():
Read()...

def Thread2():
Write()...

Multimedia SoC Design

Write Verilog Signal

s_vpi_value v;

s_vpi_vecval vecval;

s_vpi_time tm {vpiSimTime, 0, 0, 0};

v.format = vpiVectorVal;

vecval.bval = 0;

v.value.vector = ???;

PyArg_ParseTuple(args, "II", &valid, &data)

vecval.aval = 0;

vpi_put_value(v_i_valid, &v, &tm, vpiInertialDelay);

Shao-Yi Chien 12

To delay the write until all

read are done

Parse the Write(1, 2) in Python

s_vpi_value hold a pointer to s_vpi_vecval.

Write 0 to i_valid

TODO: write the valid and data to Verilog throught VPI

Multimedia SoC Design

Read Verilog Signal

unsigned valid, data;

valid = 1; data = 2;

return Py_BuildValue("II", valid, data);

Shao-Yi Chien 13

TODO here

Use VPI to get the Verilog value

Equals to return (1, 2) in Python

Multimedia SoC Design

Call Function upon Each Cycle

 How to call the "def Cycle():" in Python?

 Read the Python document, you have to

call PyObject_CallFunction.

 Callable = p_cycle_function (We prepare that for you).

 Format = an empty string "", since Cycle() accepts no argument.

Shao-Yi Chien 14

https://docs.python.org/3.6/c-api/object.html

Multimedia SoC Design

The Python Part

Shao-Yi Chien 15

initial

while (1) begin

@(posedge i_clk)

#0 $Lab31Cycle;

void Cycle() {

PyCall...

}

void Read() {
Vpi...

}

void Write();

from vpi import Read
def Cycle:

Schedule()

def Thread1():
Read()...

def Thread2():
Write()...

Multimedia SoC Design

Interfaces in Python

 You can use Python to control Verilog signals.

 import lab31_vpi as V
V.WriteBus(1, 100)
V.ReadBus() # return 1, 20

 And this make this thread wait for a cycle

 yield

 This is our test data.

 TEST_STRING = "JUST Monika, Hello moNIka"

 GOLD_STRING = "JUST MONIKA, HELLO MONIKA"

Shao-Yi Chien 16

Multimedia SoC Design

Cycle Function

def CycleGenerator():

from itertools import zip_longest, repeat

yield from zip_longest(Write(), Check())

yield from repeat(None)

CycleObject = CycleGenerator()

def Cycle():

???

Shao-Yi Chien 17

Infinite loop The actual testbench.

You should implement them!

(You should be familiar with that in Lab #2)

TODO, advance the CycleObject generator here (HOW?)

Multimedia SoC Design

A Sample Output

 In Write you call V.WriteBus

every cycle to drive the

input ports of module.

 In Check you call V.ReadBus

to read whether the datum is

valid and value is correct.

 Remember to yield to wait

for a cycle in both of them.

Shao-Yi Chien 18

19

Example #2

Use Existing Frameworks

Multimedia SoC Design

Python is Good, But...

 The wire names are hard-coded in C++.

We have to modify that every time.

 We have to implement every basic protocol.

Can we use the existing "transactors"?

 Co-simulation frameworks

 cocotb is useful.

 But there's also nicotb developed by TA that provide

the same functionalities.

 Surely I will use this as an example /lol/.

Shao-Yi Chien 20

https://github.com/potentialventures/cocotb
https://github.com/johnjohnlin/nicotb

Multimedia SoC Design

About Example #2

 No need to write C++!

 It requires a different testbench to run, but

you can almost use the same testbenches

across different simulations.

Shao-Yi Chien 21

Multimedia SoC Design

Testbench Set-Up (Verilog)

`Pos(rst_out, rst)

`PosIf(ck_ev, clk, rst)

always #1 clk = ~clk;

initial begin

$fsdbDump...

clk = 0; rst = 1;

#1 $NicotbInit();

....

#1000

$NicotbFinal();

$finish;

end

ToUpper u_to_upper(.i_clk(clk), .i_rst(rst));

Shao-Yi Chien 22

Multimedia SoC Design

Testbench Set-Up (Python)

iv, ic, ov, oc = CreateBuses([

(("u_to_upper", "i_valid"),),

(("u_to_upper", "i_char"),),

(("u_to_upper", "o_valid"),),

(("u_to_upper", "o_char"),),

])

RegisterCoroutines([

main(),

])

Shao-Yi Chien 23

You don't to write the scheduler now. Just

let the scheduler know to schedule it.

Connect the wire through the

API, not hard-coded

Multimedia SoC Design

Use The Transactor in main()

master = OneWire.Master(iv, ic, ck_ev)

value = master.values

value.i_char[0] = 100

yield from master.Send(value)

slave = OneWire.Slave(ov, oc, ck_ev, callbacks=[Check])

def Check(slave_data):

value = slave_data.values

print(value.o_char[0])

Shao-Yi Chien 24

callback ~ SC_METHOD, which

is called every time a valid datum

is observed at the output.

This is the transactor for input ports.

Hint: You will need these Python functions.

ord("A") == 65

chr(65) == "A"

You can access the

value in this way

The transactor provide good functions for

operating the ports without knowing about

the low-level wires.

Yet another transactor for output ports.

Multimedia SoC Design

A Sample Output

 Almost the same with Example #1

 The framework itselves also output some lines.

Shao-Yi Chien 25

Assignment #3

Requirements

26

Multimedia SoC Design

Take-Home HW (Example #0)

 Implement the RTL module that you will use later.

 Submission:

 lab31_design.sv

Shao-Yi Chien 27

Multimedia SoC Design

Take-Home HW (Example #1)

 Command to run the lab

 tool 2 (only type once every time you login)

make lab31

 Note: your submission is considered invalid

if it outputs something like Expect 'X' != Get 'Y'!

 Submission:

 lab31_py.py

 lab31.cpp

Shao-Yi Chien 28

Multimedia SoC Design

Take-Home HW (Example #2)

Shao-Yi Chien 29

 Command to run the lab

 make lab32

 The framework provides

randomness and asserts X

when signals are not valid.

 Submission

 lab32_py.py

Multimedia SoC Design

Grading Rule

 Example #0 (10%)

 Example #1 (45%)

 Example #2 (45%)

Shao-Yi Chien 30

