
MSOC Lab #3

Yu-Sheng Lin
johnjohnlys@media.ee.ntu.edu.tw

1

Multimedia SoC Design

Outline

 In Lab #3, we discuss about high-level RTL

verification.

 You will learn VPI (Verilog Procedural Interface),

which can connect C with Verilog.

 Using VPI + Python-C interface + Lab #2, you

can write testbench in Python!

 Note: the environment is hard to set-up, so we

provide a workstation account for you.

Shao-Yi Chien 2

3

Example #0

RTL Used in Lab #3

Multimedia SoC Design

The Module Used in This Lab

module ToUpper(

input i_clk,

input i_rst,

input i_valid,

input [7:0] i_char,

output logic o_valid,

output logic [7:0] o_char

);

Shao-Yi Chien 4

Spec:

Convert all lower case characters to upper.

Any other characters should keep unchanged.

Convert input characters to upper case

It is in lab31_design.sv, and we leave it as a small homework.

Valid = 1: this cycle holds valid data

Valid = 0: this cycle doesn't hold valid data

The output uses the same protocol

5

Example #1

VPI

Multimedia SoC Design

Verilog Procedural Interface

 Wikipedia gives a good example
 https://en.wikipedia.org/wiki/Verilog_Procedural_Interface

 Sadly, it's very very difficult to find any other

documents.

 Fortunately, we only have to understand a very

minor part of VPI.

Shao-Yi Chien 6

https://en.wikipedia.org/wiki/Verilog_Procedural_Interface

Multimedia SoC Design

Verilog Procedural Interface

vpiHandle wire;

s_vpi_value wire_value;

int int_value;

wire_value.format = vpiIntVal;

vpi_get_value(wire, &wire_value);

int_value = wire_value.value.integer;

wire_value.value.integer = int_value + 1;

vpi_put_value(wire, &wire_value, NULL, vpiNoDelay);

Shao-Yi Chien 7

vpiHandle: "pointer" to wire

s_vpi_value: Somethine like 32'd821

vpiIntVal: You have to provide a type

such as integer, integer with z or x,

string to read or write the value.

Multimedia SoC Design

Verilog Procedural Interface

wire_value.format = vpiVectorVal;

vpi_get_value(wire, &wire_value);

int_value = wire_value.value.vector->aval;

xxx_value = wire_value.value.vector->bval;

Shao-Yi Chien 8

vpiVectorVal: use vector->aval or

bval to encode the 01xz

Multimedia SoC Design

Verilog Testbench with VPI

initial while (1) @(posedge i_clk) #0 $Lab31Cycle;

initial begin

$Lab31Start;

...

#1000

$Lab31Stop;

$finish;

end

ToUpper u_to_upper(.i_clk(i_clk), .i_rst(i_rst));

Shao-Yi Chien 9

Your module

Connect all wires to C++ and Python

Call this function every cycle

Multimedia SoC Design

The Overall Architecture

Shao-Yi Chien 10

initial

while (1) begin

@(posedge i_clk)

#0 $Lab31Cycle;

void Cycle() {

PyCall...

}

void Read() {
Vpi...

}

void Write();

from vpi import Read
def Cycle:

Schedule()

def Thread1():
Read()...

def Thread2():
Write()...

Call Cycle from Verilog > C++ > Python
Schedule() is almost the

same as Lab #2

Read and Write is visible to Python
Read and Write can access Verilog

wires (ncverilog +access+rw)

Multimedia SoC Design

The C++ Part

Shao-Yi Chien 11

initial

while (1) begin

@(posedge i_clk)

#0 $Lab31Cycle;

void Cycle() {

PyCall...

}

void Read() {
Vpi...

}

void Write();

from vpi import Read
def Cycle:

Schedule()

def Thread1():
Read()...

def Thread2():
Write()...

Multimedia SoC Design

Write Verilog Signal

s_vpi_value v;

s_vpi_vecval vecval;

s_vpi_time tm {vpiSimTime, 0, 0, 0};

v.format = vpiVectorVal;

vecval.bval = 0;

v.value.vector = ???;

PyArg_ParseTuple(args, "II", &valid, &data)

vecval.aval = 0;

vpi_put_value(v_i_valid, &v, &tm, vpiInertialDelay);

Shao-Yi Chien 12

To delay the write until all

read are done

Parse the Write(1, 2) in Python

s_vpi_value hold a pointer to s_vpi_vecval.

Write 0 to i_valid

TODO: write the valid and data to Verilog throught VPI

Multimedia SoC Design

Read Verilog Signal

unsigned valid, data;

valid = 1; data = 2;

return Py_BuildValue("II", valid, data);

Shao-Yi Chien 13

TODO here

Use VPI to get the Verilog value

Equals to return (1, 2) in Python

Multimedia SoC Design

Call Function upon Each Cycle

 How to call the "def Cycle():" in Python?

 Read the Python document, you have to

call PyObject_CallFunction.

 Callable = p_cycle_function (We prepare that for you).

 Format = an empty string "", since Cycle() accepts no argument.

Shao-Yi Chien 14

https://docs.python.org/3.6/c-api/object.html

Multimedia SoC Design

The Python Part

Shao-Yi Chien 15

initial

while (1) begin

@(posedge i_clk)

#0 $Lab31Cycle;

void Cycle() {

PyCall...

}

void Read() {
Vpi...

}

void Write();

from vpi import Read
def Cycle:

Schedule()

def Thread1():
Read()...

def Thread2():
Write()...

Multimedia SoC Design

Interfaces in Python

 You can use Python to control Verilog signals.

 import lab31_vpi as V
V.WriteBus(1, 100)
V.ReadBus() # return 1, 20

 And this make this thread wait for a cycle

 yield

 This is our test data.

 TEST_STRING = "JUST Monika, Hello moNIka"

 GOLD_STRING = "JUST MONIKA, HELLO MONIKA"

Shao-Yi Chien 16

Multimedia SoC Design

Cycle Function

def CycleGenerator():

from itertools import zip_longest, repeat

yield from zip_longest(Write(), Check())

yield from repeat(None)

CycleObject = CycleGenerator()

def Cycle():

???

Shao-Yi Chien 17

Infinite loop The actual testbench.

You should implement them!

(You should be familiar with that in Lab #2)

TODO, advance the CycleObject generator here (HOW?)

Multimedia SoC Design

A Sample Output

 In Write you call V.WriteBus

every cycle to drive the

input ports of module.

 In Check you call V.ReadBus

to read whether the datum is

valid and value is correct.

 Remember to yield to wait

for a cycle in both of them.

Shao-Yi Chien 18

19

Example #2

Use Existing Frameworks

Multimedia SoC Design

Python is Good, But...

 The wire names are hard-coded in C++.

We have to modify that every time.

 We have to implement every basic protocol.

Can we use the existing "transactors"?

 Co-simulation frameworks

 cocotb is useful.

 But there's also nicotb developed by TA that provide

the same functionalities.

 Surely I will use this as an example /lol/.

Shao-Yi Chien 20

https://github.com/potentialventures/cocotb
https://github.com/johnjohnlin/nicotb

Multimedia SoC Design

About Example #2

 No need to write C++!

 It requires a different testbench to run, but

you can almost use the same testbenches

across different simulations.

Shao-Yi Chien 21

Multimedia SoC Design

Testbench Set-Up (Verilog)

`Pos(rst_out, rst)

`PosIf(ck_ev, clk, rst)

always #1 clk = ~clk;

initial begin

$fsdbDump...

clk = 0; rst = 1;

#1 $NicotbInit();

....

#1000

$NicotbFinal();

$finish;

end

ToUpper u_to_upper(.i_clk(clk), .i_rst(rst));

Shao-Yi Chien 22

Multimedia SoC Design

Testbench Set-Up (Python)

iv, ic, ov, oc = CreateBuses([

(("u_to_upper", "i_valid"),),

(("u_to_upper", "i_char"),),

(("u_to_upper", "o_valid"),),

(("u_to_upper", "o_char"),),

])

RegisterCoroutines([

main(),

])

Shao-Yi Chien 23

You don't to write the scheduler now. Just

let the scheduler know to schedule it.

Connect the wire through the

API, not hard-coded

Multimedia SoC Design

Use The Transactor in main()

master = OneWire.Master(iv, ic, ck_ev)

value = master.values

value.i_char[0] = 100

yield from master.Send(value)

slave = OneWire.Slave(ov, oc, ck_ev, callbacks=[Check])

def Check(slave_data):

value = slave_data.values

print(value.o_char[0])

Shao-Yi Chien 24

callback ~ SC_METHOD, which

is called every time a valid datum

is observed at the output.

This is the transactor for input ports.

Hint: You will need these Python functions.

ord("A") == 65

chr(65) == "A"

You can access the

value in this way

The transactor provide good functions for

operating the ports without knowing about

the low-level wires.

Yet another transactor for output ports.

Multimedia SoC Design

A Sample Output

 Almost the same with Example #1

 The framework itselves also output some lines.

Shao-Yi Chien 25

Assignment #3

Requirements

26

Multimedia SoC Design

Take-Home HW (Example #0)

 Implement the RTL module that you will use later.

 Submission:

 lab31_design.sv

Shao-Yi Chien 27

Multimedia SoC Design

Take-Home HW (Example #1)

 Command to run the lab

 tool 2 (only type once every time you login)

make lab31

 Note: your submission is considered invalid

if it outputs something like Expect 'X' != Get 'Y'!

 Submission:

 lab31_py.py

 lab31.cpp

Shao-Yi Chien 28

Multimedia SoC Design

Take-Home HW (Example #2)

Shao-Yi Chien 29

 Command to run the lab

 make lab32

 The framework provides

randomness and asserts X

when signals are not valid.

 Submission

 lab32_py.py

Multimedia SoC Design

Grading Rule

 Example #0 (10%)

 Example #1 (45%)

 Example #2 (45%)

Shao-Yi Chien 30

