
MSOC Lab #2

Yu-Sheng Lin
johnjohnlys@media.ee.ntu.edu.tw

1

Multimedia SoC Design

In Lab #2, you will learn how SystemC

works.

However, we will use Python because it has

some good language features.

Shao-Yi Chien 2

3

Example #0

Generator / Coroutine

Multimedia SoC Design

Outline

 In SystemC, you use SC_THREAD and

SC_METHOD as if they execute in parallel.

 However, they are indeed coroutines.

Coroutines look like parallel threads.

Coroutines actually execute sequentially.

Coroutines are cheap.

 Reference

 https://johnjohnlin.github.io/nicotb/concurrent.html

Shao-Yi Chien 4

https://johnjohnlin.github.io/nicotb/concurrent.html

Multimedia SoC Design

In Short

 You will learn how to implement a simple

SystemC-like library with Python.

 I think I don't have to illustrate how to

install Python. Figure it out by yourself~

Shao-Yi Chien 5

Multimedia SoC Design

Coroutine in Languages

Coroutines are very common.

Python, JS, and very likely in C++ 20

So I use Python  3 as an example.

Python is easier/more popular than C++.

Note: Python uses indentation for code 

structure, which is done by braces in C++.

The most common indentation is 4 spaces.

Shao-Yi Chien 6

Multimedia SoC Design

A Function Returning Multiple Values?

def A():

a, b = 1, 2

return a

return b

> A()

1

> A()

1

> A()

1

Shao-Yi Chien 7

The second return is useless

Multimedia SoC Design

Generator:

Function That Can Stop Temporarily

def A():

a, b = 1, 2

yield a

yield b

> A()

<generator object B at ...>

> aa = A()

> next(aa)

1

> next(aa)

2

Shao-Yi Chien 8

??

http://blog.blackwhite.tw/2013/05/python-yield-generator.html

Generator is the basic form of coroutine.

http://blog.blackwhite.tw/2013/05/python-yield-generator.html

Multimedia SoC Design

Generator v.s. wait in SystemC (1)

def f():

for i in range(5):

print("Function f, {}".format(i))

yield

print("Function f finished")

def g():

for i in range(3):

print("Function g, {}".format(i))

yield

print("Function g finished")

Shao-Yi Chien 9

SC_THREAD(f)• ; SC_THREAD(g);

What do you expect?•

• The yield is almost the same as wait? Why?

See the next page•

Multimedia SoC Design

Generator v.s. wait in SystemC (2)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 10

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

pass

Scheduler

Multimedia SoC Design

Schedule the Generators (1)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 11

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

Program entry

Multimedia SoC Design

Schedule the Generators (2)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 12

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest first goes inside f

Multimedia SoC Design

Schedule the Generators (3)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 13

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest sees the yield

and then goes into g

Multimedia SoC Design

Schedule the Generators (4)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 14

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

OK, nothing to do

Multimedia SoC Design

Schedule the Generators (5)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 15

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest doesn't schedule

anymore since it finishes

Multimedia SoC Design

In example #0, just find a machine with

Python 3 (I recommend 3.6) and run the

code.

Note: you should call main_loop()

somewhere in your code

Shao-Yi Chien 16

17

Example #1

Producer/Consumer

Revisit

Multimedia SoC Design

Producer Revisit

n_item = 0

def Producer(n):

global n_item

for i in range(n):

yield

yield

print("Put an item")

n_item +=1

Shao-Yi Chien 18

Wait 2 cycles

Multimedia SoC Design

Run the Producer

 Use the same main function in Example #0

 We do a little modification to make it more

flexible
 def main_loop(threads):

from itertools import zip_longest
for dummy in zip_longest(*threads):

print("clk")

main_loop([Producer(10)])

Shao-Yi Chien 19

Multimedia SoC Design

Consumer

def Consumer(n):
global n_item
n_get = 0
while n_get < n:

if ???:

???

main_loop([Producer(10), Consumer(10)])

Shao-Yi Chien 20

• Now use 3 yields for Producer and 2 yields for

Comsumer, such that Producer is slower than

Comsumer.

• Do not let the Comsumer consumes data when

there is no item!!

Add Consumer to scheduled threads

TODO

Multimedia SoC Design

Run the Producer

 What if we use Comsumer(11)?

Why?

 What if we swap the order in

main_loop()?
 main_loop([Consumer(10), Producer(10)])

 Is there any difference?

Do you think this is reasonable?

Shao-Yi Chien 21

22

Example #2

Event

Multimedia SoC Design

Improve Consumer by Events

 You learnt Event in SystemC of Lab#1.

 Now Consumer checks whether

something are produced every cycle.

 Can Consumer wait until something are

produced?

We need event!

Shao-Yi Chien 23

Multimedia SoC Design

A Basic Event

def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

Shao-Yi Chien 24

Give an index for each event

We trigger 0, 1, 2, 3, 0, 1, 2 in order

Multimedia SoC Design

Implement Events (1)

 We have to store which thread is waiting

on that index.

Shao-Yi Chien 25

def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

Trigger 0

Trigger 1

0 []​
1 [f()]​
2 []​
3 []​
...

1. Run

2. Yield at 1

3. Trigger 0, but

nothing happens

4. Trigger 1, let f()

continue

Multimedia SoC Design

Implement Events (2)

 We have to store which thread is waiting

on that index.

Shao-Yi Chien 26

def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

0 [f()]​
1 []​
2 []​
3 []​
...

1. Continue

2. Yield at 0

Multimedia SoC Design

A More Complex Scheduler (1)

def WaitOnNextEvent(t):
try:

waiting_on = next(t)
event_pending_on_list[waiting_on].append(t)

except StopIteration:
pass

def main_loop(threads):
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads:

WaitOnNextEvent(t)
for trigger in TRIGGER:

print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 27

The most important function

Continue/Run the threads

Make it wait on the yielded index

The thread might return

Multimedia SoC Design

A More Complex Scheduler (2)

def WaitOnNextEvent(t):
try:

waiting_on = next(t)
event_pending_on_list[waiting_on].append(t)

except StopIteration:
pass

def main_loop(threads):
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads:

WaitOnNextEvent(t)
for trigger in TRIGGER:

print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 28

Initially, all threads is pending, so

we run all of them

Implementation details: we should

use a swap since a thread can

wait on the same event twice

Run all pending threads

Multimedia SoC Design

No Hard-Coded Events (1)

def main_loop(threads):
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads:

WaitOnNextEvent(t)
for trigger in TRIGGER:

...

def MyThread(t):
TriggerEvent(22)

Shao-Yi Chien 29

But we should be able to trigger

events in our own threads.

We hard-codes the events here

Multimedia SoC Design

No Hard-Coded Events (2)

from collections import queue

TRIGGER = queue()

def main_loop(threads):
for t in threads:
WaitOnNextEvent(t)

for trigger in TRIGGER:

...

def TriggerEvent(idx):

???

def MyThread(t):

TriggerEvent(22)

Shao-Yi Chien 30

Need something like that

Multimedia SoC Design

Example: Consumer Revisits

def Consumer(n):
global n_item
n_get = 0
while n_get < n:

if XXX:

yield 33

consume an item

yield 22

def Producer(n):

...

TriggerEvent(33)

Shao-Yi Chien 31

Give the event an ID you like

Let 33 = wait FIFO write

Empty?

Wait for a cycle

Let 22 = clock

You should be familiar with that.

Multimedia SoC Design

Implement Events (3)

 If we trigger an event, we still must

process all threads pending on this event

before we wake it up.

Shao-Yi Chien 32

def Producer():

...

Trigger(33)

handling [Producer(), XX(), OO()]

22 []
33 [Consumer()]​

1-2. Here

1-1. We are here

2. Who should go first?

Multimedia SoC Design

Implement Events (4)

 Usually, events are implemented as a

queue.

Shao-Yi Chien 33

def Producer():

...

Trigger(33)

event queue [22, 13, 1, 33]
handling [Producer(), XX(), OO()]

22 []
33 [Consumer()]

Trigger = add it to the queue

There might be also other

pending events

Assume we are handling 22

Multimedia SoC Design

Scheduler with Event (1)

def WaitOnNextEvent(t):
try:

waiting_on = next(t)
event_pending_on_list[waiting_on].append(t)

except StopIteration:
pass

def main_loop(threads):
for t in threads:

WaitOnNextEvent(t)
while ???:

trigger = ???
print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 34

No modification!!

TODO

No more hard-coded events

Multimedia SoC Design

Scheduler with Event (2)

INIT_EVENT, WRITE_EVENT, CLOCK = 10, 20, 30

from collections import deque
TRIGGER = deque()
TRIGGER.append(INIT_EVENT)

def main_loop(threads):
for t in threads:

WaitOnNextEvent(t)
while ???:

trigger = ???
print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 35

Queue type in Python.

We add an auto initialization event

before the whole simulation.

We name the events.

TODO:

Now we have to obtain an event from

the event queue TRIGGER.

Multimedia SoC Design

Scheduler with Event (3)

INIT_EVENT, WRITE_EVENT, CLOCK = 10, 20, 30

def Clock(n):
yield INIT_EVENT
???

def Consumer(n):
...
if ???:

yield WRITE_EVENT
...

main_loop([Clock(100), Producer(10), Consumer(10)])

Shao-Yi Chien 36

This one generates 100 cycles

after the initialization phase.

Wait if FIFO is empty.

This read is always valid.

We have 3 threads now.

Multimedia SoC Design

Simplify the Interface

def Consumer(n):
...
if ???:

yield WRITE_EVENT
...

Shao-Yi Chien 37

This is too complex.

Remember that we don't want to care

about the low-level things like what

happens in every cycle?

def Consumer(n):
n_get = 0
while n_get < n:

yield from GetAnItem()
n_get += 1

def GetAnItem():
...
if ???:

yield WRITE_EVENT
...

It can be such simple!

Note: an yield from is required

for calling a generator.

Cut from Consumer.

Congrats, you just implement

sc_fifo::read() from zero!

38

Example #3

dont_initialize

Multimedia SoC Design

Example #3 Bonus Part

 (Bonus part!!!)

 Think about this: What is dont_initialize in

SystemC?

 Actually you can implement based on

Example #2 easily.

Hint: what is the effect of yield INIT_EVENT in

Example #2?

Shao-Yi Chien 39

Assignment #2

Requirements

40

Multimedia SoC Design

Lab Requirement (Example #0)

 Build and run it, an example is shown here.

 Discuss in report.pdf

 Please draw a complete program

execution flow.

 Also, we use the zip_iterator to

schedule generators, please explain

how it works.

 Do not just copy the document!

 (in Python2, its name is izip_iterator)

Shao-Yi Chien 41

Multimedia SoC Design

Lab Requirement (Example #1)

 Submission:

 1_prod_con.py

 Discuss in report.pdf

 What if we use Comsumer(11)?

 What if we swap the order in

main_loop()?

 (See also the last page of Example #1)

Shao-Yi Chien 42

Multimedia SoC Design

Lab Requirement (Example #2)

Shao-Yi Chien 43

Implement all TODOs in  2_2_event_fifo.py

Python  3 deque document

Submission

 2_2_event_fifo.py

https://docs.python.org/2/library/collections.html

Multimedia SoC Design

Take-Home HW (Example #3)

 (Bonus part!!!)

 Think about this: what is dont_initialize in SystemC?

 Submission

 3_dont.py (based your example #2)

 Discuss in report.pdf:

 What does dont_initizlize mean in SystemC?

 How do you implement it?

 Give an example about the difference with/without dont_initialize.

 You won't get any bonus if you do not submit a report.

Shao-Yi Chien 44

Multimedia SoC Design

Grading Rule

 Example #0 (0/15%)

 Example #1 (20/20%)

 Example #2 (45/0%)

 Example #3 (20/20%)

 (Program Score/Report Score)

Shao-Yi Chien 45

