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Multimedia SoC Design

In Lab #2, you will learn how SystemC

works.

However, we will use Python because it has 

some good language features.
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Example #0

Generator / Coroutine
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Outline

 In SystemC, you use SC_THREAD and 

SC_METHOD as if they execute in parallel.

 However, they are indeed coroutines.

Coroutines look like parallel threads.

Coroutines actually execute sequentially.

Coroutines are cheap.

 Reference

 https://johnjohnlin.github.io/nicotb/concurrent.html
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https://johnjohnlin.github.io/nicotb/concurrent.html
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In Short

 You will learn how to implement a simple 

SystemC-like library with Python.

 I think I don't have to illustrate how to 

install Python. Figure it out by yourself~
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Coroutine in Languages

Coroutines are very common.

Python, JS, and very likely in C++ 20

So I use Python  3 as an example.

Python is easier/more popular than C++.

Note: Python uses indentation for code 

structure, which is done by braces in C++.

The most common indentation is 4 spaces.
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A Function Returning Multiple Values?

def A():

a, b = 1, 2

return a

return b

> A()

1

> A()

1

> A()

1
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The second return is useless
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Generator:

Function That Can Stop Temporarily

def A():

a, b = 1, 2

yield a

yield b

> A()

<generator object B at ...>

> aa = A()

> next(aa)

1

> next(aa)

2
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??

http://blog.blackwhite.tw/2013/05/python-yield-generator.html

Generator is the basic form of coroutine.

http://blog.blackwhite.tw/2013/05/python-yield-generator.html
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Generator v.s. wait in SystemC (1)

def f():

for i in range(5):

print("Function f, {}".format(i))

yield

print("Function f finished")

def g():

for i in range(3):

print("Function g, {}".format(i))

yield

print("Function g finished")
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SC_THREAD(f)• ; SC_THREAD(g);

What do you expect?•

• The yield is almost the same as wait? Why?

See the next page•
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Generator v.s. wait in SystemC (2)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")
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def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

pass

Scheduler
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Schedule the Generators (1)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")
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def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

Program entry
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Schedule the Generators (2)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 12

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest first goes inside f
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Schedule the Generators (3)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")
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def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest sees the yield 

and then goes into g
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Schedule the Generators (4)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")
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def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

OK, nothing to do
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Schedule the Generators (5)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")
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def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest doesn't schedule 

anymore since it finishes
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In example #0, just find a machine with 

Python 3 (I recommend 3.6) and run the 

code.

Note: you should call main_loop() 

somewhere in your code

Shao-Yi Chien 16
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Example #1

Producer/Consumer

Revisit
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Producer Revisit

n_item = 0

def Producer(n):

global n_item

for i in range(n):

yield

yield

print("Put an item")

n_item +=1
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Wait 2 cycles
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Run the Producer

 Use the same main function in Example #0

 We do a little modification to make it more

flexible
 def main_loop(threads):

from itertools import zip_longest
for dummy in zip_longest(*threads):

print("clk")

main_loop([Producer(10)])
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Consumer

def Consumer(n):
global n_item
n_get = 0
while n_get < n:

if ???:

???

main_loop([Producer(10), Consumer(10)])
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• Now use 3 yields for Producer and 2 yields for 

Comsumer, such that Producer is slower than 

Comsumer.

• Do not let the Comsumer consumes data when 

there is no item!!

Add Consumer to scheduled threads

TODO



Multimedia SoC Design

Run the Producer

 What if we use Comsumer(11)?

Why?

 What if we swap the order in

main_loop()?
 main_loop([Consumer(10), Producer(10)])

 Is there any difference?

Do you think this is reasonable?
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Example #2

Event
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Improve Consumer by Events

 You learnt Event in SystemC of Lab#1.

 Now Consumer checks whether 

something are produced every cycle.

 Can Consumer wait until something are 

produced?

We need event!
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A Basic Event

def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")
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Give an index for each event

We trigger 0, 1, 2, 3, 0, 1, 2 in order



Multimedia SoC Design

Implement Events (1)

 We have to store which thread is waiting 

on that index.
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def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

Trigger 0

Trigger 1

0 []
1 [f()]
2 []
3 []
...

1. Run

2. Yield at 1

3. Trigger 0, but 

nothing happens

4. Trigger 1, let f() 

continue
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Implement Events (2)

 We have to store which thread is waiting 

on that index.
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def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

0 [f()]
1 []
2 []
3 []
...

1. Continue

2. Yield at 0
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A More Complex Scheduler (1)

def WaitOnNextEvent(t): 
try: 

waiting_on = next(t) 
event_pending_on_list[waiting_on].append(t) 

except StopIteration: 
pass 

def main_loop(threads): 
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads: 

WaitOnNextEvent(t)
for trigger in TRIGGER: 

print("handling {}".format(trigger)) 
handling, pending[trigger] = pending[trigger], list() 
for t in handling: 

WaitOnNextEvent(t)
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The most important function

Continue/Run the threads

Make it wait on the yielded index

The thread might return
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A More Complex Scheduler (2)

def WaitOnNextEvent(t): 
try: 

waiting_on = next(t) 
event_pending_on_list[waiting_on].append(t) 

except StopIteration: 
pass 

def main_loop(threads): 
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads: 

WaitOnNextEvent(t) 
for trigger in TRIGGER: 

print("handling {}".format(trigger)) 
handling, pending[trigger] = pending[trigger], list() 
for t in handling: 

WaitOnNextEvent(t)
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Initially, all threads is pending, so 

we run all of them

Implementation details: we should 

use a swap since a thread can 

wait on the same event twice

Run all pending threads
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No Hard-Coded Events (1)

def main_loop(threads): 
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads: 

WaitOnNextEvent(t) 
for trigger in TRIGGER:

...

def MyThread(t):
TriggerEvent(22)
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But we should be able to trigger 

events in our own threads.

We hard-codes the events here
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No Hard-Coded Events (2)

from collections import queue

TRIGGER = queue()

def main_loop(threads): 
for t in threads: 
WaitOnNextEvent(t) 

for trigger in TRIGGER:

...

def TriggerEvent(idx):

???

def MyThread(t):

TriggerEvent(22)
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Need something like that
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Example: Consumer Revisits

def Consumer(n):
global n_item
n_get = 0
while n_get < n:

if XXX:

yield 33

# consume an item

yield 22

def Producer(n):

...

TriggerEvent(33)
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Give the event an ID you like

Let 33 = wait FIFO write

Empty?

Wait for a cycle

Let 22 = clock

You should be familiar with that.
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Implement Events (3)

 If we trigger an event, we still must 

process all threads pending on this event 

before we wake it up.
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def Producer():

...

Trigger(33)

handling [Producer(), XX(), OO()]

22 []
33 [Consumer()]

1-2. Here

1-1. We are here

2. Who should go first?
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Implement Events (4)

 Usually, events are implemented as a 

queue.
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def Producer():

...

Trigger(33)

event queue [22, 13, 1, 33]
handling [Producer(), XX(), OO()]

22 []
33 [Consumer()] 

Trigger = add it to the queue

There might be also other 

pending events

Assume we are handling 22
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Scheduler with Event (1)

def WaitOnNextEvent(t): 
try: 

waiting_on = next(t) 
event_pending_on_list[waiting_on].append(t) 

except StopIteration: 
pass 

def main_loop(threads): 
for t in threads: 

WaitOnNextEvent(t) 
while ???:

trigger = ???
print("handling {}".format(trigger)) 
handling, pending[trigger] = pending[trigger], list() 
for t in handling: 

WaitOnNextEvent(t)
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No modification!!

TODO

No more hard-coded events



Multimedia SoC Design

Scheduler with Event (2)

INIT_EVENT, WRITE_EVENT, CLOCK = 10, 20, 30

from collections import deque
TRIGGER = deque()
TRIGGER.append(INIT_EVENT)

def main_loop(threads): 
for t in threads: 

WaitOnNextEvent(t) 
while ???:

trigger = ???
print("handling {}".format(trigger)) 
handling, pending[trigger] = pending[trigger], list() 
for t in handling: 

WaitOnNextEvent(t)
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Queue type in Python.

We add an auto initialization event 

before the whole simulation.

We name the events.

TODO:

Now we have to obtain an event from 

the event queue TRIGGER.
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Scheduler with Event (3)

INIT_EVENT, WRITE_EVENT, CLOCK = 10, 20, 30

def Clock(n):
yield INIT_EVENT
???

def Consumer(n):
...
if ???:

yield WRITE_EVENT
...

main_loop([Clock(100), Producer(10), Consumer(10)])
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This one generates 100 cycles 

after the initialization phase.

Wait if FIFO is empty.

This read is always valid.

We have 3 threads now.
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Simplify the Interface

def Consumer(n):
...
if ???:

yield WRITE_EVENT
...
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This is too complex.

Remember that we don't want to care 

about the low-level things like what 

happens in every cycle?

def Consumer(n):
n_get = 0
while n_get < n:

yield from GetAnItem()
n_get += 1

def GetAnItem():
...
if ???:

yield WRITE_EVENT
...

It can be such simple!

Note: an yield from is required 

for calling a generator.

Cut from Consumer.

Congrats, you just implement 

sc_fifo::read() from zero!
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Example #3

dont_initialize
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Example #3 Bonus Part

 (Bonus part!!!)

 Think about this: What is dont_initialize in 

SystemC?

 Actually you can implement based on 

Example #2 easily.

Hint: what is the effect of yield INIT_EVENT in 

Example #2?
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Requirements

40
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Lab Requirement (Example #0)

 Build and run it, an example is shown here.

 Discuss in report.pdf

 Please draw a complete program

execution flow.

 Also, we use the zip_iterator to

schedule generators, please explain

how it works.

 Do not just copy the document!

 (in Python2, its name is izip_iterator)
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Lab Requirement (Example #1)

 Submission:

 1_prod_con.py

 Discuss in report.pdf

 What if we use Comsumer(11)?

 What if we swap the order in

main_loop()?

 (See also the last page of Example #1)
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Lab Requirement (Example #2)
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Implement all TODOs in  2_2_event_fifo.py

Python  3 deque document

Submission

 2_2_event_fifo.py

https://docs.python.org/2/library/collections.html
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Take-Home HW (Example #3)

 (Bonus part!!!)

 Think about this: what is dont_initialize in SystemC?

 Submission

 3_dont.py (based your example #2)

 Discuss in report.pdf:

 What does dont_initizlize mean in SystemC?

 How do you implement it?

 Give an example about the difference with/without dont_initialize.

 You won't get any bonus if you do not submit a report.
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Grading Rule

 Example #0 (0/15%)

 Example #1 (20/20%)

 Example #2 (45/0%)

 Example #3 (20/20%)

 (Program Score/Report Score)
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