
MSOC Lab #2

Yu-Sheng Lin
johnjohnlys@media.ee.ntu.edu.tw

1

Multimedia SoC Design

In Lab #2, you will learn how SystemC

works.

However, we will use Python because it has

some good language features.

Shao-Yi Chien 2

3

Example #0

Generator / Coroutine

Multimedia SoC Design

Outline

 In SystemC, you use SC_THREAD and

SC_METHOD as if they execute in parallel.

 However, they are indeed coroutines.

Coroutines look like parallel threads.

Coroutines actually execute sequentially.

Coroutines are cheap.

 Reference

 https://johnjohnlin.github.io/nicotb/concurrent.html

Shao-Yi Chien 4

https://johnjohnlin.github.io/nicotb/concurrent.html

Multimedia SoC Design

In Short

 You will learn how to implement a simple

SystemC-like library with Python.

 I think I don't have to illustrate how to

install Python. Figure it out by yourself~

Shao-Yi Chien 5

Multimedia SoC Design

Coroutine in Languages

Coroutines are very common.

Python, JS, and very likely in C++ 20

So I use Python 3 as an example.

Python is easier/more popular than C++.

Note: Python uses indentation for code

structure, which is done by braces in C++.

The most common indentation is 4 spaces.

Shao-Yi Chien 6

Multimedia SoC Design

A Function Returning Multiple Values?

def A():

a, b = 1, 2

return a

return b

> A()

1

> A()

1

> A()

1

Shao-Yi Chien 7

The second return is useless

Multimedia SoC Design

Generator:

Function That Can Stop Temporarily

def A():

a, b = 1, 2

yield a

yield b

> A()

<generator object B at ...>

> aa = A()

> next(aa)

1

> next(aa)

2

Shao-Yi Chien 8

??

http://blog.blackwhite.tw/2013/05/python-yield-generator.html

Generator is the basic form of coroutine.

http://blog.blackwhite.tw/2013/05/python-yield-generator.html

Multimedia SoC Design

Generator v.s. wait in SystemC (1)

def f():

for i in range(5):

print("Function f, {}".format(i))

yield

print("Function f finished")

def g():

for i in range(3):

print("Function g, {}".format(i))

yield

print("Function g finished")

Shao-Yi Chien 9

SC_THREAD(f)• ; SC_THREAD(g);

What do you expect?•

• The yield is almost the same as wait? Why?

See the next page•

Multimedia SoC Design

Generator v.s. wait in SystemC (2)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 10

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

pass

Scheduler

Multimedia SoC Design

Schedule the Generators (1)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 11

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

Program entry

Multimedia SoC Design

Schedule the Generators (2)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 12

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest first goes inside f

Multimedia SoC Design

Schedule the Generators (3)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 13

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest sees the yield

and then goes into g

Multimedia SoC Design

Schedule the Generators (4)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 14

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

OK, nothing to do

Multimedia SoC Design

Schedule the Generators (5)

def f():

for i in range(5):

print("...")

yield

print("...")

def g():

for i in range(3):

print("...")

yield

print("...")

Shao-Yi Chien 15

def main_loop():

from itertools import zip_longest

for dummy in zip_longest(f(), g()):

print("clk")

zip_longest doesn't schedule

anymore since it finishes

Multimedia SoC Design

In example #0, just find a machine with

Python 3 (I recommend 3.6) and run the

code.

Note: you should call main_loop()

somewhere in your code

Shao-Yi Chien 16

17

Example #1

Producer/Consumer

Revisit

Multimedia SoC Design

Producer Revisit

n_item = 0

def Producer(n):

global n_item

for i in range(n):

yield

yield

print("Put an item")

n_item +=1

Shao-Yi Chien 18

Wait 2 cycles

Multimedia SoC Design

Run the Producer

 Use the same main function in Example #0

 We do a little modification to make it more

flexible
 def main_loop(threads):

from itertools import zip_longest
for dummy in zip_longest(*threads):

print("clk")

main_loop([Producer(10)])

Shao-Yi Chien 19

Multimedia SoC Design

Consumer

def Consumer(n):
global n_item
n_get = 0
while n_get < n:

if ???:

???

main_loop([Producer(10), Consumer(10)])

Shao-Yi Chien 20

• Now use 3 yields for Producer and 2 yields for

Comsumer, such that Producer is slower than

Comsumer.

• Do not let the Comsumer consumes data when

there is no item!!

Add Consumer to scheduled threads

TODO

Multimedia SoC Design

Run the Producer

 What if we use Comsumer(11)?

Why?

 What if we swap the order in

main_loop()?
 main_loop([Consumer(10), Producer(10)])

 Is there any difference?

Do you think this is reasonable?

Shao-Yi Chien 21

22

Example #2

Event

Multimedia SoC Design

Improve Consumer by Events

 You learnt Event in SystemC of Lab#1.

 Now Consumer checks whether

something are produced every cycle.

 Can Consumer wait until something are

produced?

We need event!

Shao-Yi Chien 23

Multimedia SoC Design

A Basic Event

def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

Shao-Yi Chien 24

Give an index for each event

We trigger 0, 1, 2, 3, 0, 1, 2 in order

Multimedia SoC Design

Implement Events (1)

 We have to store which thread is waiting

on that index.

Shao-Yi Chien 25

def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

Trigger 0

Trigger 1

0 []
1 [f()]
2 []
3 []
...

1. Run

2. Yield at 1

3. Trigger 0, but

nothing happens

4. Trigger 1, let f()

continue

Multimedia SoC Design

Implement Events (2)

 We have to store which thread is waiting

on that index.

Shao-Yi Chien 26

def f():

yield 1

print("done 1")
yield 0

print("done 0")

yield 2

print("done 2")

0 [f()]
1 []
2 []
3 []
...

1. Continue

2. Yield at 0

Multimedia SoC Design

A More Complex Scheduler (1)

def WaitOnNextEvent(t):
try:

waiting_on = next(t)
event_pending_on_list[waiting_on].append(t)

except StopIteration:
pass

def main_loop(threads):
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads:

WaitOnNextEvent(t)
for trigger in TRIGGER:

print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 27

The most important function

Continue/Run the threads

Make it wait on the yielded index

The thread might return

Multimedia SoC Design

A More Complex Scheduler (2)

def WaitOnNextEvent(t):
try:

waiting_on = next(t)
event_pending_on_list[waiting_on].append(t)

except StopIteration:
pass

def main_loop(threads):
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads:

WaitOnNextEvent(t)
for trigger in TRIGGER:

print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 28

Initially, all threads is pending, so

we run all of them

Implementation details: we should

use a swap since a thread can

wait on the same event twice

Run all pending threads

Multimedia SoC Design

No Hard-Coded Events (1)

def main_loop(threads):
TRIGGER = [0, 1, 2, 3, 0, 1, 2]
for t in threads:

WaitOnNextEvent(t)
for trigger in TRIGGER:

...

def MyThread(t):
TriggerEvent(22)

Shao-Yi Chien 29

But we should be able to trigger

events in our own threads.

We hard-codes the events here

Multimedia SoC Design

No Hard-Coded Events (2)

from collections import queue

TRIGGER = queue()

def main_loop(threads):
for t in threads:
WaitOnNextEvent(t)

for trigger in TRIGGER:

...

def TriggerEvent(idx):

???

def MyThread(t):

TriggerEvent(22)

Shao-Yi Chien 30

Need something like that

Multimedia SoC Design

Example: Consumer Revisits

def Consumer(n):
global n_item
n_get = 0
while n_get < n:

if XXX:

yield 33

consume an item

yield 22

def Producer(n):

...

TriggerEvent(33)

Shao-Yi Chien 31

Give the event an ID you like

Let 33 = wait FIFO write

Empty?

Wait for a cycle

Let 22 = clock

You should be familiar with that.

Multimedia SoC Design

Implement Events (3)

 If we trigger an event, we still must

process all threads pending on this event

before we wake it up.

Shao-Yi Chien 32

def Producer():

...

Trigger(33)

handling [Producer(), XX(), OO()]

22 []
33 [Consumer()]

1-2. Here

1-1. We are here

2. Who should go first?

Multimedia SoC Design

Implement Events (4)

 Usually, events are implemented as a

queue.

Shao-Yi Chien 33

def Producer():

...

Trigger(33)

event queue [22, 13, 1, 33]
handling [Producer(), XX(), OO()]

22 []
33 [Consumer()]

Trigger = add it to the queue

There might be also other

pending events

Assume we are handling 22

Multimedia SoC Design

Scheduler with Event (1)

def WaitOnNextEvent(t):
try:

waiting_on = next(t)
event_pending_on_list[waiting_on].append(t)

except StopIteration:
pass

def main_loop(threads):
for t in threads:

WaitOnNextEvent(t)
while ???:

trigger = ???
print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 34

No modification!!

TODO

No more hard-coded events

Multimedia SoC Design

Scheduler with Event (2)

INIT_EVENT, WRITE_EVENT, CLOCK = 10, 20, 30

from collections import deque
TRIGGER = deque()
TRIGGER.append(INIT_EVENT)

def main_loop(threads):
for t in threads:

WaitOnNextEvent(t)
while ???:

trigger = ???
print("handling {}".format(trigger))
handling, pending[trigger] = pending[trigger], list()
for t in handling:

WaitOnNextEvent(t)

Shao-Yi Chien 35

Queue type in Python.

We add an auto initialization event

before the whole simulation.

We name the events.

TODO:

Now we have to obtain an event from

the event queue TRIGGER.

Multimedia SoC Design

Scheduler with Event (3)

INIT_EVENT, WRITE_EVENT, CLOCK = 10, 20, 30

def Clock(n):
yield INIT_EVENT
???

def Consumer(n):
...
if ???:

yield WRITE_EVENT
...

main_loop([Clock(100), Producer(10), Consumer(10)])

Shao-Yi Chien 36

This one generates 100 cycles

after the initialization phase.

Wait if FIFO is empty.

This read is always valid.

We have 3 threads now.

Multimedia SoC Design

Simplify the Interface

def Consumer(n):
...
if ???:

yield WRITE_EVENT
...

Shao-Yi Chien 37

This is too complex.

Remember that we don't want to care

about the low-level things like what

happens in every cycle?

def Consumer(n):
n_get = 0
while n_get < n:

yield from GetAnItem()
n_get += 1

def GetAnItem():
...
if ???:

yield WRITE_EVENT
...

It can be such simple!

Note: an yield from is required

for calling a generator.

Cut from Consumer.

Congrats, you just implement

sc_fifo::read() from zero!

38

Example #3

dont_initialize

Multimedia SoC Design

Example #3 Bonus Part

 (Bonus part!!!)

 Think about this: What is dont_initialize in

SystemC?

 Actually you can implement based on

Example #2 easily.

Hint: what is the effect of yield INIT_EVENT in

Example #2?

Shao-Yi Chien 39

Assignment #2

Requirements

40

Multimedia SoC Design

Lab Requirement (Example #0)

 Build and run it, an example is shown here.

 Discuss in report.pdf

 Please draw a complete program

execution flow.

 Also, we use the zip_iterator to

schedule generators, please explain

how it works.

 Do not just copy the document!

 (in Python2, its name is izip_iterator)

Shao-Yi Chien 41

Multimedia SoC Design

Lab Requirement (Example #1)

 Submission:

 1_prod_con.py

 Discuss in report.pdf

 What if we use Comsumer(11)?

 What if we swap the order in

main_loop()?

 (See also the last page of Example #1)

Shao-Yi Chien 42

Multimedia SoC Design

Lab Requirement (Example #2)

Shao-Yi Chien 43

Implement all TODOs in 2_2_event_fifo.py

Python 3 deque document

Submission

 2_2_event_fifo.py

https://docs.python.org/2/library/collections.html

Multimedia SoC Design

Take-Home HW (Example #3)

 (Bonus part!!!)

 Think about this: what is dont_initialize in SystemC?

 Submission

 3_dont.py (based your example #2)

 Discuss in report.pdf:

 What does dont_initizlize mean in SystemC?

 How do you implement it?

 Give an example about the difference with/without dont_initialize.

 You won't get any bonus if you do not submit a report.

Shao-Yi Chien 44

Multimedia SoC Design

Grading Rule

 Example #0 (0/15%)

 Example #1 (20/20%)

 Example #2 (45/0%)

 Example #3 (20/20%)

 (Program Score/Report Score)

Shao-Yi Chien 45

