Vivado Design Suite
User Guide

Using Constraints

UG903 (v2014.1) May 14, 2014

& XILINX

AAAAAAAAAAAAAAA .

& XILINX

ALL PROGRAMMABLE..

Revision History

Date

Version

Revision

05/14/2014

2014.1

Updates to document for Vivado® Design Suite, 2014.1 release. Updates include:
« Added information about auto-derived clock limitations, page 64.
« Added information to List of Nodes for the -through Option, page 98.

Using Constraints

www.Xilinx.com Send Feedback
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=2

& XILINX

ALL PROGRAMMABLE

Table of Contents

ReVISION HIiStOryo ittt i it ittt it ittt atenattnaetanesnnnsannsannnes 3

Chapter 1: Introduction

Migrating From UCF Constraintsto XDCConstraintscciiiiiiiiiernneernnnnnns 7
About XDC Constraintscviiiiiitintininntnereeenrensonssssossnsanssnsansasans 8

Chapter 2: Constraints Methodology

About Constraints Methodologyciiiiiiiiiii ittt ittt ieiarennenanarannss 9
Organizing Your Constraintsciiiiiiieiineetnnerenosenosssoesoosssnansonnsannssns 9
Ordering Your Constraints. ooiieiiiiiiintenineteeresonssntossossasenssnsssansans 13
Entering Constraintsiiiiiitiineiineteneesneesnoesssnssenssennsssnssannsans 19
Creating Synthesis Constraintsottt iiiiit i iietenennennenrenennennnns 32
Creating Implementation Constraintscoiiiiiiiiiiiiiininnrnnrnnesreneannas 38
CoNStraints SCOPINE . ..t i ittt ittt ittt iieeieeetennsennsssnssonssonsssasnsannsannsas 40

Chapter 3: Basics of Timing Checks

B 101 4113 o] (o -4V P 47
TimMIiNg Paths. i i it it i ittt eerasensnesnsaasanenesnenasannanss 47
Setup and Hold Analysiscoiiiiiiiiiiiiin i iiiiettneentnntessosanssnssnsnnnas 50
Recoveryand Removal Analysis ittt iiiiii it ittt ittt teneennnesnaesnnnsnns 55

Chapter 4: Defining Clocks

ABOUL ClOCKS. . oo vttt ittt ittt ittt ii it teatanssennesasanssnsnossnssnssasansanss 56
PrimMary Clocksottt i i i et e i et e e e et e e e e, 57
Virtual CloCKS . v oot i ittt ittt it ittt tneentansanssssnssnsonsossssssssasannanss 60
Generated CloCKS . . o . v vttt ittt ittt ittt ientnatessesaneanssnsossnssnssnsansas 60
ClOCK GrOUPS. - oot ittt ittt ittt eeeaeenseesneensansansnesensansansanenssneansnnnas 69
Clock Latency, Jitter,and Uncertaintycciiiiiiiiiiiiiiiininnennrnnssneneannas 73

Chapter 5: Constraining 1/0 Delay

About Constraining 1/O Delay.ccoititiiti ittt ieieeterareeenseeensanensnanaenns 76
Y o101 0 1] - 76
[0 1Ty« T 0 =1 - P 78

Using Constraints www.xilinx.com Send Feedback
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=3

& XILINX

ALL PROGRAMMABLE

Chapter 6: Timing Exceptions

About TimMIiNg EXCEPtiONS. i ittt it ittt it etieeraneraoasseensennsenassanssnnns 81
Multicycle Paths. i i i i i ittt e teerneraenasansaesnenasnananns 82
L 1L o 1 97
MiN/IMaX Delays. . oo vt ittt iittt it ettt te e e teeeneasoeensaeeneaeseensaesnsanenns 101
(0= L - Yo T 112 3 108

Chapter 7: XDC Precedence

ADOUE XDC PreCeaeNCe ..ottt ittt ittt ie et etennensesseneensessennnnssssennnnnns 109
XDC ConStraints Order. . ..o v v ittt ittt ittt ittt et tenneneeeeenneaeseeennnnnannns 109
EXCEPtions Priority.coiiiiiii ittt ettt iiiettenesenesonessnanssnnssnnsannnans 109

Chapter 8: Physical Constraints

About Physical Constraintscciiiiiiiiiiitiiieienetenneranesanesaansannnans 112
Netlist Constraintsottt iiiiiii e e teterernesnsnsnsasososssssssssensasasasns 113
0 2 0o T3 4 T 11 115
Placement Constraints.o iiiiiiiiiiii ittt ienientaeterentantonsosensansansans 117
ROUtINg CoNStraints i ittt ittt ittt iieeiineranesoensonnsonasonnsonnssonnnons 119
Configuration Constraintsiotiii ittt ittt tineeeneeenoeenneeenssenaananns 121

Chapter 9: Defining Relatively Placed Macros

About Relatively Placed Macroso iii ettt it teietenaereaesenesenneannnens 123
Defining Sets of Design Elementsoiiiiiiiiiiiiiiineinrenrenrsoressnsansans 123
Creating an RP M. ittt it ittt ttnaensnesonasonasonnssnnssnasssannsanns 124
Assigning Cells to RPIM Sets.ot ittt ittt itetienetenerenasenaeeeassaansennnans 124
Assigning Relative Locations.ottt ittt it ittt tieiietietieneenntansaasaanans 127
Assigning a Fixed Locationtoan RPM ittt iieinennrnanannnnnnns 130
XDCIMACIOS oottt tietiieetieeteeeeenaeenasesnesenssonssenntonnsennsasannsanns 131

Appendix A: Supported XDC and SDC Commands

About Supported XDCand SDC Commands.vottinttinerenereneeenaeenaeeaannnns 144
Valid Commandsinan XDCFileciuiiiiiiiiiiiiiieinetnereennransnosessnnanss 145
Supported SDC ComMMaANdSot titii ittt e eenennraneenenesnseasansansnenannnns 146
Unsupported SDC Commands. vittinetiinetnnerenereenseenesenesennsenasenanens 155

Appendix B: Additional Resources

XiliNX RESOUICES . . v v vttt ittt it ettt teeeteeneneeesenneaneeeeenenneseeannnnnannns 156
LY L1 4 0T T 0= 1 (= -3 156
3= =] =] 1 o= 156

Using Constraints www.xilinx.com Send Feedback
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=4

& XILINX

ALL PROGRAMMABLE.

Chapter 1

Introduction

Migrating From UCF Constraints to XDC Constraints

The Xilinx® Vivado® Integrated Design Environment (IDE) uses Xilinx Design Constraints
(XDCQ), and does not support the legacy User Constraints File (UCF) format.

There are key differences between Xilinx Design Constraints (XDC) and User Constraints File
(UCF) constraints. XDC constraints are based on the standard Synopsys Design Constraints
(SDC) format. SDC has been in use and evolving for more than 20 years, making it the most
popular and proven format for describing design constraints.

If you are familiar with UCF but new to XDC, see the "Differences Between XDC and UCF
Constraints" section in the “Migrating UCF Constraints to XDC" chapter of the Vivado
Design Suite Migration Methodology Guide (UG911) [Ref 1]. That chapter also describes how
to convert existing UCF files to XDC as a starting point for creating XDC constraints.

ﬁ IMPORTANT: XDC has fundamental differences from UCF that must be understood in order to properly
constrain a design. The UCF to XDC conversion utility is not a replacement for properly understanding
and creating XDC constraints. Each XDC constraint is described in this User Guide.

Using Constraints www.xilinx.com Send Feedback 5
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=5

i: XILINX Chapter 1: Introduction

ALL PROGRAMMABLE

About XDC Constraints

XDC constraints are a combination of:

« Industry standard Synopsys Design Constraints (SDC version 1.9); and

« Xilinx proprietary physical constraints
XDC constraints have the following properties:

« They are not simple strings, but are commands that follow the Tcl semantic.
« They can be interpreted like any other Tcl command by the Vivado Tcl interpreter.

» They are read in and parsed sequentially the same as other Tcl commands.
You can enter XDC constraints in several ways, at different points in the flow.
» Store the constraints in one or more XDC files.

To load the XDC file in memory: (1) use the read_xdc command; or (2) add it to one of
your project constraints sets. XDC files accept the following built-in Tcl commands only:
set, list, and expr.

« Generate the constraints with a Tcl script.

To execute the Tcl script: (1) run the source command; or (2) add the Tcl script to one
of your project constraints sets.

ﬁ IMPORTANT: The Vivado Design Suite allows you to mix XDC files and Tcl scripts in the same
constraints set. Modified constraints are saved back to their original location only if they originally
came from an XDC file, and not from a Tcl script. A constraint generated by a Tcl script cannot be
interactively modified. For more information, see Chapter 2, Constraints Methodology.

To validate the syntax or impact of a particular constraint after loading your design in
memory, use the Tcl console and the Vivado Design Suite reporting features. This is
particularly powerful for analyzing and debugging timing constraints and physical
constraints.

Using Constraints www.xilinx.com Send Feedback 6
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=6

& XILINX

ALL PROGRAMMABLE.

Chapter 2

Constraints Methodology

About Constraints Methodology

Design constraints define the requirements that must be met by the compilation flow in
order for the design to be functional on the board. Not all constraints are used by all steps
in the compilation flow. For example, physical constraints are used only during the
implementation steps (that is, by the placer and the router).

Because the Xilinx® Vivado® Integrated Design Environment (IDE) synthesis and
implementation algorithms are timing-driven, you must create proper timing constraints.
Over-constraining or under-constraining your design makes timing closure difficult. You
must use reasonable constraints that correspond to your application requirements.

Organizing Your Constraints

The Vivado IDE allows you to use one or many constraint files. While using a single
constraint file for the entire compilation flow might seem more convenient, it can be a
challenge to maintain all the constraints as the design becomes more complex. This is
usually the case for designs that use several IP cores or large blocks developed by different
teams.

O RECOMMENDED: Xilinx recommends that you separate timing constraints and physical constraints by
saving them into two distinct files. You can also keep the constraints specific to a certain module in a
separate file.

Using Constraints www.xilinx.com Send Feedback 7
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=7

& XILINX

ALL PROGRAMMABLE-

Chapter 2: Constraints Methodology

Using Constraints
UG903 (v2014.1) May 14, 2014

Project Flows

You can add your Xilinx Design Constraints (XDC) files to a constraints set during the
creation of a new project, or later, from the Vivado IDE menus. For more information, see
the Vivado Design Suite User Guide: System-Level Design Entry (UG895) [Ref 2].

Figure 2-1, Single or Multi XDC, shows two constraint sets in a project:, Single or Multi XDC

» The first constraint set includes two XDC files.

« The second constraint set uses only one XDC file containing all the constraints.

Project Manager - project_wave_gen

I
*

Sources — O
A= el B

Messages: (1) 1 warning
—-f Design Sources (2]
+-I Verilog Header (1]
i-@8% wave_gen (wave_gen.v) (14
=i Constraints (2]
—m constrs_1 (active]
--HY wave_gen_timing.aede (target]
- -4 wave_gen_pins.xdc
1= constrs_2
Y wave_gen.xdc
+-5) Simulation Sources (1]

Hierarchy | IP Sources | Libraries | Compile Crder
& Sources | ' Templates
Figure 2-1: Single or Multi XDC

IMPORTANT: /f your project contains an IP that uses its own constraints, the corresponding constraint
file does not appear in the constraints set. Instead, it is listed along with the IP source files.

You can also add Tcl scripts to your constraints set. Tcl scripts and XDC files are loaded in
the same sequence as displayed in the Vivado IDE (if they belong to the same
PROCESSING_ORDER group) or as reported by the command report_compile_order
-constraints.

An XDC file or a Tcl script can be used in several constraints sets if needed. For more
information on how to create and add constraint files and constraints sets to your project,
see "Working with Constraints” in the Vivado Design Suite User Guide: System-Level Design
Entry (UG895) [Ref 2].

www.Xilinx.com

l Send Feedback I 8

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=8

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Non-Project Flows

In Non-Project Mode, you must read each file individually before executing the compilation
commands.

The example script below shows how to use one or more XDC files for synthesis and
implementation.

Example Script

read_verilog [glob src/*.v]

read_xdc wave_gen_timing.xdc

read_xdc wave_gen_pins.xdc

synth_design -top wave_gen -part xc7k325tffg900-2
opt_design

place_design

route_design

Synthesis and Implementation Constraint Files

By default, all XDC files and Tcl scripts added to a constraint set are used for both synthesis
and implementation. Set the used_in_synthesis and used_in_implementation
properties on the XDC file or the Tcl script to change this behavior. This property can take
the value of either TRUE or FALSE.

ﬁ IMPORTANT: The DONT_TOUCH attribute does not obey the properties of used_in_synthesis and
USED_IN_IMPLEMENTATION. If you use DONT_TOUCH properties in the synthesis XDC, it is propagated
to implementation regardless of the value of USED_IN_IMPLEMENTATION.

For more information about the DONT_TOUCH attribute, refer to RTL Attributes, page 30.

For example, to use a constraint file for implementation only:

1. Select the constraint file in the Sources window.
2. In the Source File Properties window:

a. Uncheck Synthesis.

b. Check Implementation.

3. Click Apply.

Using Constraints www.xilinx.com Send Feedback 9
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=9

& XILINX

ALL PROGRAMMABLE-

Source File Properties

Chapter 2: Constraints Methodology

| s Apply

][7 Cancel]

fY4 wave_gen_pins.xdc*®

Location:
Type:

Size:
Modified:
Copied to:
Copied from:
Copied on:

Read-only:

Enabled

Implementation

4

C:f2012. 2/project_wave_gen/project_wave_gen.srd
Xpc hd

2.7KB

Tuesday 07/03/12 04: 18:02 AM

project_wawve_gen.srcsfconstrs_1fimportsfverilog

CaMXilimoc 14, 2_P28xc/14. 2/ISE_DS/Avrum fverilog/wa

Manday 05/14/12 10:33:58 AM

Mo

T r O

General | Attributes

Figure 2-2:

The equivalent Tcl commands are:

set_property used_in_synthesis false
set_property used_in_implementation true

Source File Properties Window

[get_files wave_gen_pins.xdc]
[get_files wave_gen_pins.xdc]

When running the Vivado IDE in Non-Project Mode, you can read in the constraints directly
between any steps of the flow. The properties used_in_synthesis and
used_in_implementation do not matter in this mode.

The following compilation Tcl script shows how to read two XDC files for different steps of

the flow:

read_verilog

[glob src/*.v]

read_xdc wave_gen_timing.xdc
synth_design -top wave_gen -part xc7k325tffg900-2
read_xdc wave_gen_pins.xdc

opt_design
place_design
route_design

Table 2-1: Reading XDC Files Before and After Synthesis
File Name File Placement Used For
wave_gen_timing.xdc Before synthesis + Synthesis

« Implementation

wave_gen_pins.xdc

After synthesis

« Implementation

Q

synthesis.

TIP: The constraints read in after synthesis are applied in addition to the constraints read in before

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 10

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=10

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Ordering Your Constraints

Because XDC constraints are applied sequentially, and are prioritized based on clear
precedence rules, you must review the order of your constraints carefully. For more
information, see Chapter 7, XDC Precedence.

The Vivado IDE provides full visibility into your design. To validate your constraints step by
step:

1. Run the appropriate report commands.

2. Review the messages in the Tcl Console or the Messages window.

Recommended Constraints Sequence

O RECOMMENDED: Whether you use one or several XDC files for your design, organize your constraints
in the following sequence.

Timing Assertions Section

Primary clocks

Virtual clocks

Generated clocks

Clock Groups

Input and output delay constraints

H H H H HF

Timing Exceptions Section
False Paths

Max Delay / Min Delay
Multicycle Paths

Case Analysis

Disable Timing

FH H H H HF

Physical Constraints Section
located anywhere in the file, preferably before or after the timing constraints
or stored in a separate constraint file

Start with the clock definitions. The clocks must be created before they can be used by any
subsequent constraints. Any reference to a clock before it has been declared results in an
error and the corresponding constraint is ignored. This is true within an individual
constraint file, as well as across all the XDC files (or Tcl scripts) in your design.

The order of the constraint files matters. You must be sure that the constraints in each file
do not rely on the constraints of another file. If this is the case, you must read the file that
contains the constraint dependencies last. If two constraint files have interdependencies,
you must either:

« Merge them manually into one file that contains the proper sequence, or

« Divide the files into several separate files, and order them correctly.

Using Constraints www.xilinx.com Send Feedback 11
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=11

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Constraints Sequence Editing

The Vivado IDE constraints manager saves any edited constraint back to its original location
in the XDC files, but not in Tcl scripts. Any new constraint is saved at the end of the XDC file
marked as target. In many cases, when your constraints set contains several XDC files, the
target constraint file is not the last file in the list, and will not be loaded last when opening
or reloading your design. As a consequence, the constraints sequence saved on disk can be
different from the one you had previously in memory.

f IMPORTANT: You must verify that the final sequence stored in the constraint files still works as
expected. If you must modify the sequence, you must modify it by directly editing the constraint files.
This is especially important for timing constraints.

Constraint Files Order

In a project flow without any IP, all the constraints are located in a constraints set. By
default, the order of the XDC files (or Tcl scripts) displayed in the Vivado IDE defines the
read sequence used by the tool when loading an elaborated or synthesized design into
memory. The file at the top of the list is read in first, and the bottom one is read in last. You
can change the order by simply selecting the file in the IDE, and moving it to the desired
place in the list.

For example, in Figure 2-3, Changing XDC File Order in the Vivado IDE Example, the file
wave_gen_pin.xdc was moved to before the file wave_gen_timing.xdc by using drag

and drop.
—m_w-. constrs_1 (active] —m_w-. constrs_1 (active)
-----]3] wave_gen_tipling.xdc target] N -----]3] wave_gen_p_in?xdc .
“-HY wawve_gen_pinsodc LAY wave_gen_timing.cde (target]

Figure 2-3: Changing XDC File Order in the Vivado IDE Example

The equivalent Tcl command is:

reorder_files -fileset constrs_1 -before [get_files wave_gen_timing.xdc] \
[get_files wave_gen_pins.xdc]

Table 2-2: File Order Before and After

File Order (Before) Order (After)
Wave_gen_timing.xdc 1 2
Wave_gen_pins.xdc 2 1

In Non-Project Mode, the sequence of the read_xdc calls determines the order in which the
constraint files are evaluated.

Using Constraints www.xilinx.com Send Feedback 12
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=12

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

Constraint Files Order with IP Cores

Many IP cores are delivered with one or more XDC files. When such IP cores are generated
within your RTL project, their XDC files are also used during the various design compilation
steps.

For example, Figure 2-4, XDC Files in the IP Sources, shows that one of the IP cores in the
project comes with an XDC file.

M
i

Sources — O
QA= e
9= P (2
=14 @ ck_core (4]
- -0 Synthesis (3
n. D
gl o dk_core_dk_wiz.v
i L@ e dk_core.v
E +-[Instantiation Template {1
I & char_fifo (3]
-E----_:y Simulation {1
=-[3\ Synthesis (1]
. el char_fifo.vhd
+-{ Instantiation Template (1]

Higrarchy | IP Sources | Libraries | Compile Order
45 Sources | 3] Metlist | % Templates

Figure 2-4: XDC Files in the IP Sources

By default, IP XDC files are read in before the user XDC files. Processing it in this way allows
an IP to create a clock object that can be referenced in the XDC. It also allows you to
overwrite physical constraints set by an IP core because the user constraints are evaluated
after the IP. There is an exception to this order for the IP cores that have a dependency on
clock objects being created by the user or by another IP (for example, get_clocks
-of_objects [get_ports clkal). In this case, the IP XDC is read after the user files.

This behavior is controlled by the PROCESSING_ORDER property, set for each XDC file:

« EARLY: Files that must be read first
« NORMAL: Default
« LATE: Files that must be read last

An IP XDC will have its PROCESSING_ORDER property set to either EARLY or LATE. For user
XDC (or Tcl) files that belong to the same PROCESSING_ORDER group, their relative order
displayed in the Vivado IDE determines their read sequence. The order within the group can
be modified by moving the files in the Vivado IDE constraints set, or by using the
reorder_files command.

Using Constraints www.xilinx.com I Send Feedback I 13

UG903 (v2014.1) May 14, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=13

8 X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-~

For IP XDC files that belong to the same PROCESSING_ORDER group, the order is
determined by import or creation sequence of the IP cores. This order cannot be changed
once the project has been created

Finally, the relative order between user groups and IP XDC PROCESSING_ORDER groups are
as follow:

User Constraints marked as EARLY

IP Constraints marked as EARLY (default)
User Constraints marked as NORMAL

> W

IP Constraints marked as LATE (contain clock dependencies)
5. User Constraints marked as LATE

Note: 1P XDC files that have their PROCESSING_ORDER set to LATE (in order to be processed after
the user constraints) are named <IP_NAME> clocks.xdc.

Figure 2-5, shows an example of how to set the PROCESSING_ORDER property:

PROCESSING_ORDER. MNORMAL

MORMAL
LATE

aeral | Attributes
Figure 2-5: Setting the XDC File PROCESSING_ORDER Example

The equivalent Tcl command is:

set_property PROCESSING_ORDER EARLY [get_files wave_gen_pins.xdc]

@ RECOMMENDED: Use the report_compile_order -constraints command in the Tcl
console to report the XDC files read sequence determined by the tool based the properties mentioned
above, including IS_ENABLED, USED_IN_SYNTHESIS, and USED_IN_IMPLEMENTATION.

Using Constraints www.xilinx.com Send Feedback 14
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=14

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

Changing Read Order
To change the read order:

1. Select the XDC file you want to move.

2. Drag and drop the XDC file to the desired place in the list.

For the example shown in Figure 2-1, Single or Multi XDC, page 8, the equivalent Tcl
command is:

reorder_files -fileset constrs_1 -before [get_files wave_gen_timing.xdc] \
[get_files wave_gen_pins.xdc]

The same mechanism applies to Tcl scripts. In Non-Project Mode, the sequence of the
read_xdc and source commands determines the order of the constraint files.

If you use the native IP cores that come with a constraint file, the IP XDC files are loaded
after your files, in the same sequence as the IP cores are listed in the IP Sources window,
unless the file PROCESSING_ORDER properties are set to LATE. For example, Figure 2-6,
XDC Files in the IP Sources, shows that one of the project IP cores comes with an XDC file.

Sources — O ¢ =
T 3
A == e
== 1P (2)
E}--E—a dk_core (4)

= Synthesis (3)
me
i# o dk_core_dk_wiz.v
. Leg@e dk_core.
: - Instantiation Template (1)
=3 o char_fifo (3]
---_1.' Simulation (1)
= Synthesis (1]
. e char_fifo.vhd
F-{ Instantiation Template (1)

Hierarchy | IP Sources | Libraries | Compile Order
4% Sources | [Metlist | T Templates

Figure 2-6: XDC Files in the IP Sources

Using Constraints www.xilinx.com Send Feedback 15
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=15

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

When you open your design, the log file shows that the IP XDC file was loaded last:

Parsing XDC File [C:/project_wave_gen_hdl.srcs/sources_1/ip/clk_core/clk_core.xdc]
for cell 'clk_gen_i0/clk_core_i0O/inst’

Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/clk_core/clk_core.xdc] for cell
'clk_gen_1i0/clk_core_i0/inst"

Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_l/ip/char_fifo/char_fifo/char_fifo.xdc] for
cell 'char_fifo_10/U0"

Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/char_fifo/char_fifo/char_fifo.xdc] for
cell 'char_fifo_1i0/U0"

Parsing XDC File
[C:/project_wave_gen_hdl.srcs/constrs_1/imports/verilog/wave_gen_timing.xdc]
Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/constrs_1/imports/verilog/wave_gen_timing.xdc]
Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/char_fifo/char_fifo/char_fifo_clocks.xdc
] for cell 'char_fifo_10/U0"

Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/char_fifo/char_fifo/char_fifo_clocks.xdc
] for cell 'char_fifo_i0/U0"

Completed Processing XDC Constraints

Unlike with the User XDC files, you cannot directly change the read order of the IP XDC files
that belong to the same PROCESSING_ORDER group. If you must modify the order, do the

following:

1. Disable the corresponding IP XDC files (IS_ENABLED set to false).

2. Copy their content.

3. Paste the content into one of the XDC files included in your constraints set.

4. Update the copied IP XDC commands with the full hierarchical netlist object path names

wherever needed. Doing so is required because the IP XDC constraints are written in
such a manner that they can be scoped to the IP instance.

Review the get_ports queries that are processed in a special way for scoped
constraints. For more information on XDC scoping, see Constraints Scoping, page 38.

Using Constraints www.xilinx.com I Send Feedback I 16

UG903 (v2014.1) May 14, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=16

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Entering Constraints

The Vivado IDE provides several ways to enter constraints. Unless you directly edit the XDC
file in a text editor, you must open a design database (elaborated, synthesized or
implemented) in order to access the constraints windows in the Vivado IDE.

Saving Constraints in Memory

You must have a design in memory to validate your constraints during editing. When you
edit a constraint using the Vivado IDE user interface, the equivalent XDC command is issued
in the Tcl Console in order to apply it in memory. An edited timing constraint must be
applied in memory before it can be saved to the XDC file.

Before you can run synthesis or implementation, you must save the constraints in memory
back to an XDC file that belongs to the project. The Vivado IDE prompts you to save your
constraints whenever necessary.

To manually save your constraints:

« Click Save Constraints, or

» Select File > Save Constraints.
Running these commands:

« Saves all new constraints to the XDC file marked target in the constraints set
associated with your design.

« Saves all edited constraints back to the XDC file from which they originated.

Note: The constraints management system preserves the original XDC files format as much as
possible.

Constraints Editing Flow Options

Figure 2-7, Constraints Editing Flow, page 18, shows the recommended flow options. Do
not use both options at the same time. Mixing these options may cause you to lose
constraints. The recommended flow options are:

« User Interface Option

+ Hand Edit Option

Using Constraints www.xilinx.com Send Feedback 17
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=17

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

User Interface Option

Because the Vivado IDE manages your constraints, you must not edit your XDC files at the
same time. When the Vivado IDE saves the memory content:

« The modified constraints replace the original constraints in their original file.
« The new constraints are appended to the file marked as target.

« All manual edits in the XDC files are overwritten.

Hand Edit Option

When you use the Hand Edit option, you are in charge of editing and maintaining the XDC
files. While you will probably use the Tcl Console to verify the syntax of some constraints,
you must discard the changes made in memory when closing or reloading your design.

In case of a conflict when saving the constraints, you are prompted to choose among:

« Discarding the changes made in memory, or
« Saving the changes in a new file, or

« Overwriting the XDC files.

Load your design in memory

Y

‘[Vivado
" | Database

Y

Use Vivado IDE editors Analvze vour desian 1. Edit XDC files in Text Editor
(Device/Physical/Timing/ (schemat)ilcs/gevice/Rg orts) 2. Save your XDC files
Others...) or Tcl Console P 3. Reload your design

Need more
constraints?

YES (GUI Option) YES (Hand Edit Option)

Close your design / Run compilation:
GUI Option: save changes to XDC file(s) (new or existing)
Hand Edit Option : do nothing (or discard any changes)

X12983

Figure 2-7: Constraints Editing Flow

Using Constraints www.xilinx.com Send Feedback 18
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=18

& XILINX

ALL PROGRAMMABLE-

Chapter 2: Constraints Methodology

Constraints creation is iterative. You can use IDE editors in some cases, and hand edit the
constraint files in others.

Within each iteration described on Figure 2-7, Constraints Editing Flow, do not use both
options at the same time.

If you switch between the two options, you must first save your constraints or reload your
design, to ensure that the constraints in memory are properly synchronized with the XDC

files.

Pin Assighment

To create and edit existing top-level ports placement when using the RTL Analysis,
Synthesis, or Implementation views:

1. Select the I/O Planning pre-configured layout.

59 Dief aulk Layaut -

02 Diefaulk Layout
02 1P Catalog

= 10 Planning

02 Clock Planning
22 Floarplanning
02 Diebug
02 Tirning Analysis
05 Save As Mew Layout, .,
Reset Lawout F5

Figure 2-8: 10 Planning Layout

2. Open the windows shown in Table 2-3, Creating and Editing Existing Top-Level Ports

Placement.

Table 2-3: Creating and Editing Existing Top-Level Ports Placement

Window Function
Device View and edit the location of the ports on the device floorplan.
Package View and edit the location of the ports on the device package.
I/O Ports Select a port, drag and drop it to a location on the Device or Package view, as
well as review current assignment and properties of each port.
Package Pins View the resource utilization in each I/O bank.

For more information on Pin Assignment, see the Vivado Design Suite User Guide: I/0 and
Clock Planning (UG899) [Ref 3].

Using Constraints

UG903 (v2014.1) May 14, 2014

www.Xilinx.com l Send Feedback l 19

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=19

& XILINX

ALL PROGRAMMABLE-

Chapter 2: Constraints Methodology

Clock Resources Assignment

To view and edit the placement of your clock trees when using the RTL Analysis, Synthesis,
or Implementation views:

1. Select the Clock Planning pre-configured layout.

59 Defaulk Layouk -

03 Defaulk Layouk
0C 1P Cakalog
00 1) Planning

= Clock Planming
02 Flaorplanning
02 Diebug
03 Timing Analysis
05 Save As Mew Layout..,
Reset Lawouk F5

Figure 2-9: Clock Planning Layout

2. Open the windows shown in Table 2-4, Viewing and Editing the Placement of Clock

Trees.

Table 2-4: Viewing and Editing the Placement of Clock Trees

Window

Function

Clock Resources

» View the connectivity between the clock resources in the architecture.
» View where your clock tree cells are currently located.

Netlist

» Drag and drop the clock resources from your netlist to a specific location in

the Clock Resources window or Device window.

For more information on Clock Resources Assignment, see the Vivado Design Suite User

Guide: I/0 and Clock Planning (UG899) [Ref 3].

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com l Send Feedback l

20

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=20

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

Floorplanning
To create and edit Pblocks when using the RTL Analysis, Synthesis, or Implementation views:

1. Select the Floorplanning pre-configured layout.

0O Defaulk Layout -

59 Dief aulk Layaut
0O P Catalog

00 1/ Planning
55 Tack Planning

+= Floorplanning
00 Miebug
59 Timing Analysis

0E Save As Mew Lavout.,,
Reset Layout Fa

Figure 2-10: Floorplanning Layout

2. Open the windows shown in Table 2-5, Creating and Editing Pblocks.

Table 2-5: Creating and Editing Pblocks

Window Function

Netlist Select the cells to be assigned to a Pblock.

Physical Constraints Review the existing Pblocks and their properties.

Device Create or edit the shape and location of your Pblocks in the device.

To create cell placement constraints on a particular BEL or SITE:

1. Select the cell in the Netlist view.

2. Drag and drop the cell to the target location in the Device view.

For more information on Floorplanning, see the Vivado Design Suite User Guide: Design
Analysis and Closure Techniques (UG906) [Ref 4].

Using Constraints www.xilinx.com Send Feedback 21
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=21

& XILINX

ALL PROGRAMMABLE

Chapter 2: Constraints Methodology

Timing Constraints Window

The Timing Constraints window is available for Synthesized and Implemented designs only.
For elaborated design constraints, you must use and edit XDC files directly. For more
information, see Creating Synthesis Constraints.

You can open the Timing Constraints window using one of the following three options, as
shown in Figure 2-11, Multiple Methods for Opening the Timing Constraints Window:

« Select Window > Timing Constraints.

« In the Synthesis section of the Flow Navigator panel, select Synthesized Design > Edit
Timing Constraints.

« In the Implementation section of the Flow Navigator panel, select Implemented
Design > Edit Timing Constraints.

Window | Layout

View Help

4 Synthesis

z

B
&b

BB E ~ & -

L7

& B

Project Summary
Sources

Language Templates
Properties

Selection

Metlist

Physical Constraints
Timing Constraints
Package Pins

I/O Ports

Clock Regions
Debug

Metrics

Figure 2-11:

@. Synthesis Settings
$ Run Synthesis
4 El Synthesized Design
Ctrl+E @‘ Edit Timing Constraints I

(:f} Report Timing Summary
L, Report Clock Metworks
5] Report Clock Interaction
(@) Report DRC

[Report Moise

Report Utilization

%]j Report Power

] schematic

4 Implementation

{E} Implementation Settings
[» Run Implementation
4 |3 Implemented Design

£ Edit Timing Constraints I

Q} Report Timing Summary
., Report Clock Netwarks
&1 Report Clock Interaction
(D ReportDRC

@ Report Noise

Report Utilization

%]'j Report Power

Multiple Methods for Opening the Timing Constraints Window

The Timing Constraints editor displays the timing constraints in memory, in either:

« The same sequence as in the XDC files and Tcl scripts, or

« The same sequence in which you entered them in the Tcl Console.

Using Constraints

UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 22

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=22

8 X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-~

| Timing Constraints — O e x|
E % | Create Clock
locks (5) a’. Position Clock Mame Period {ns) Rise At {ns) Fall At {ns) Add Clock Source Objects Source File Scoped Cell
--reae Generatd Clock ())(': =) 1 C|.kjinj 5.000 [get_ports clk_pin_p] cIk_core.xdc. clk_gen_i0fclk_core_i0finst
5t Clock Latency (0) a 3 wrtual_clo_ck 6.000 . E wave_gen_timing, xdc
St Clack Uncerkainty (1) Double click ko create & Creabe Clock constraint
-Set Clock Groups (0
-Set Input Jitker (1)
-5k System Jitker (0)
-5et External Delay (0)
nputs (4
L.Set Input Delay (4)
ukputs (4
-Set Oukput Delay (4)
ssertions [0
-5et Data Check (0)
weceptions (23)
-5et Case Analysis (0]
-5et False Path (5)
-Set Multicycle Path (&)
-Set Maximum Delay (12)
~Set Minimurn Delay (0
ther (0}
-Group Path (0)
-5et Disable Timing (0}
All Constraints
BY clk_core.xdc (scoped to: clk_gen_iofclk_core_i0finst) (c: fwave/project_wave,srcsfsaurces_1ipfclk_corefclk_core,xdc)
&% 1, create_clock -period 5,000 -name clk_pin_p [get_ports clk_pin_p] I
&% 2, set_input_jitter clk_pin_p 0,050 ‘
HY wave_gen_timing.xdc (C:fwave project_wave.srcs/constrs_1fimports)verilogwave_gen_timing, xdc) =
[- 3, create_clock -period 6,000 -name virtual _clock
L— - 4, set_input_delay -clock clk_pin_p 0.0 [get_ports rxd_pin]
b - 5. set_input_delay -clock clk_pin_p -min -0.5 [get_ports rxd_pin] e
- 6, set_input_delay -clock virtual_clock -max 0.0 [get_ports Ib_sel_pin]
- 7. set_input_delay -clock virtual_clack -min -0.5 [get_ports |b_sel_pin]
, set_output_delay -clock virtual_clock 0.0 [get_ports {txd_pin spi_clk_pin led_pins[*]}]
L T B B B B B B P | B B P e o I T B e S I | P o |
| =

W Aoty R cancel

Figure 2-12: Timing Constraints Window

Some of the constraints cannot be edited from this window. They are marked with the XDC
No Edit icon &,

Using Constraints www.xilinx.com Send Feedback 23
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=23

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Timing Constraints Spreadsheet

The timing constraints spreadsheet displays the details of all existing constraints of a
specific type. Use the timing constraints spreadsheet to review and edit constraint options.

Create Clock

|

Iz [Position Clock Mame Period {ns) Rise At {ns) Fall ak ins) Add Clock Source Objects Source File Scoped Cell

e 1 clk_pin_p 5,000 [get_ports clk_pin_p] clk_core,xdc clk_gen_i0jclk_caore_idfinst
=% 3 wirtual_clock 6,000 [l wave_gen_timing. xdc

Dowuble dick ko create 3 Creabe Clock constraint

Figure 2-13: Timing Constraints Spreadsheet
The two last columns of the panel show:

» Source File: The name of the XDC file or Tcl script the constraint comes from

+ Scoped Cell: The name of the current instance when the constraint was applied. This
name usually corresponds to an IP instance which is delivered with dedicated
constraints. For more information, see Constraints Scoping, page 38.

A new constraint of the selected type can be created by double clicking the last line of the
spreadsheet. The corresponding constraint creation dialog opens and lets you fill in the
details of the new constraint. Click OK to apply the constraint in memory and close the
window. A new line in the spreadsheet shows the new constraint information.

You can edit any existing constraint by modifying the values directly in the spreadsheet.
Once you have finished editing, click Apply to apply the modified constraints in memory.

f IMPORTANT: Applying a new or modified constraint does not save it in the XDC file. You must click
Save Constraints to save it.

ﬁ IMPORTANT: /P constraints cannot be edited or deleted. In order to modify a constraint delivered with
an IP, you must: (1) disable the corresponding IP XDC file; (2) copy the constraint to your XDC file; and
(3) edit the constraint as desired.

Using Constraints www.xilinx.com Send Feedback 24
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=24

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

Constraints Creation, Grouped by Category

When you select a constraint type, the corresponding spreadsheet appears on the right
sub-window panel. This allows you to view all the constraints of the same type that have
already been created.

= = |

[=-Clocks (52

S _reate Clock (2]

-Create Generaked Clock (2]

-5et Clock Latency (00

--Get Clock Uncertainky (00

--aet Clack Groups (100

-5ek Input Jitker (1)

~-Seb System Jitker (0)
--aet External Delay (07

[=-Inputs (4)

..gat Input Delay (4]

E-Cukputs (4]

L.Set Cutput Delay (4)

S-fssertions (o)

‘...5et Data Check (0

[=-Exceptions (23

--Set Case Analvsis (1)

--aet False Path (5]

-5et Multicycle Path (&)

--Get Maximur Delay (12)

--Get Minimum Delay (07

[=-Ckher (07

--Graup Path ()

--aet Disable Timing (00

Figure 2-14: Timing Constraints Categories

To create a new constraint, double click the name of the target constraint. A dialog box
allows you to specify the value for each option. When you click OK, the tool:

Validates the syntax.
Applies it to the memory.

Adds the new constraint at the end of the spreadsheet.

> wohoe

Adds the new constraint at the end of your complete list of constraints.

Using Constraints www.xilinx.com Send Feedback 25
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=25

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

All Constraints

The bottom of the window displays the complete list of constraints loaded in memory, in
the same sequence as they were applied. The constraints are grouped in accordance with
the XDC file or the Tcl script from which they originated. When an XDC file is scoped to a
particular hierarchical cell, the cell name is displayed next to the file name.

All Constraints

a, El ﬂ_‘j clk_core. xdc (scoped to: clk_gen_i0fclk_core_i0finst) (o fwave/project_wave,srosfsources_1fipfclk_carejclk_core.xdc)

& 1. create_clock -period 5,000 -name clk_pin_p [get_paorts clk_pin_p]

L@ 2, set_jnput_jitter clk_pin_p 0,050

wave_gen_timing.xdc {C: lwave/project_wave sresfconstrs_1fimportsfverilogfwawe_gen_timing.xdc)

3 3. create_dock -period 6,000 -name virtual_clock

[, 4, set_input_delay -clock clk_pin_p 0.0 [get_parts red_pin]

X - [, 5. set_input_delay -clack clk_pin_p -min -0.5 [get_ports rxd_pin]

(&, 6. set_input_delay -clock virtual_clock -max 0.0 [get_parts lb_sel_pin]

&, 7. set_input_delay -clock virtual_clock -min -0.5 [get_parts lb_sel_pin]

(&, 8. set_output_delay -clock virtual_clock 0.0 [get_parts {kxd_pin spi_clk_pin led_pins[*]}]

[, 9, set_oukput_delay ~clack virkual_clock -clock_fall -add_delay 0.0 [get_parts spi_clk_pin]

3 10, set_false_path -tise_From [get_clocks clk_rx_clk_core] -through [get_ports spi_clk_pin] -Fall_to [get_clocks virtual_clock]
3 11, set_Ffalse_path -Fall_from [get_clocks clk_tx_clk_care] -through [get_parts spi_dlk_pin] -rise_to [get_clocks virtual_clock]

3 12, create_generated_dock -name spi_clk -source [get_pins dac_spi_i0fout_ddr_Flop_spi_clk_i0fODOR _inskfC] -divide_be 1 -irevert [get_por !

B TR Y SRR WAy SRt P [P
=

m

T | I N 4 IEY WO gy Y e pppaoger

ol e ok e i i e)

< [m

I Apply B Cancel
Figure 2-15: Timing Constraints All Constraints List (Example One)

You can expand and collapse the constraints by the associated source file, or completely by
clicking the two corresponding button on the left side of the panel.

All Constraints

Q, g clk_core.xdcfscoped to: olk_gen_iojdk_core_infinstifc: fwave praject_wave.sresfsources_1fipjclk_corefclk_core.xdc)

o | BY wave_gen_timing.xdc {C:wave/project_wave.sros/constrs_1 fimports/verilog/wave_gen_timing, xdc)
=2\ B8 char_fifo.xdcfscoped to: char_Fifo_io/U0fc: wavelproject_wave.sresfsources _tip/char_fifo/char_fifojchar_fifo,xdc)
=
2
Figure 2-16: Timing Constraints All Constraints List (Example Two)
O TIP: The collapsed view provides a compact overview of which constraints file are loaded in memory,

and where the scoping mechanism is used. The same information is available through the
report_compile_order -constraints command.

Ek
De-select the Group by Source icon = to switch the view to a table in which the source
constraint file and the scoped cell information appears in the two right columns.

Using Constraints www.xilinx.com

Send Feedback 26
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=26

& XILINX

ALL PROGRAMMABLE-

All Constraints

Chapter 2: Constraints Methodology

X
B

« To delete a constraint, select it and click X.

«~ it H P
X

B

Mame

£ 11, set_false_path -Fall_From [get_clocks clk_tx_clk_core] -through [get_ports spi_clk_pin] -tise_to [get_clocks virtual_clock] wave_gen_timing, xdc
£ 12, create_generated_clock -name spi_clk -source [get_pins dac_spi_i0fout_ddr_Flop_spi_clk_i0/O0DR_inst/C] -divide_by 1 -inve.. wave_gen_timing. xdc
£ 13, set_output_delay -clock spi_clk -max 1.0 [get_ports {spi_mosi_pin dac_cs_n_pin dac_clr_n_pin}] wave_gen_timing, xdc r
£ 14, set_output_delay -clock spi_clk -min -1.0 [get_ports {spi_mosi_pin dac_cs_n_pin dac_clr_n_pint] wave_gen_timing. xdc =

. create_clock -period 5,000 -name clk_pin_p [get_ports clk_pin_p]

. seb_jinput_jitter clk_pin_p 0.050

. create_clock -period 6,000 -name virbual _clock

. set_input_delay -clock clk_pin_p 0.0 [get_ports rxd_pin]

. set_input_delay -clock clk_pin_p -min -0.5 [get_ports rxd_pin]

. set_input_delay -clock virbual _clock -max 0.0 [get_ports [b_sel_pin]
. set_input_delay -clock virbual _clock -min -0.5 [get_ports [b_sel_pin]
. set_output_delay -clock virtual_clock 0.0 [get_ports {txd_pin spi_clk_pin led_pins[*]+]

. set_output_delay -clock virtual _clock -clock_fall -add_delay 0.0 [get_ports spi_clk_pin]

. set_false_path -rise_from [get_clocks clk_rx_clk_core] -through [get_ports spi_clk_pin] -Fall_to [get_clocks virbual _clock]

Source File
clk_core.xdc
clk_core.xdc
wave_gen_timing, xdc
wave_gen_timing. xdc
wave_gen_timing, xdc
wave_gen_timing. xdc
wave_gen_timing, xdc
wave_gen_timing. xdc
wave_gen_timing, xdc
wave_gen_timing. xdc

Scoped Cell
clk_gen_iofclk_core_i0finst

clk_gen_iofclk_core_i0finst |

-

m

W Apply

B Cancel

Figure 2-17: Timing Constraints All Constraints List (Example Three)

« To edit a constraint that is not read-only, use the spreadsheet view. Once your changes
have been registered by the tool, you must click Apply to refresh the constraints in
memory.

« To add new constraints, use the dialog boxes as previously described, or type the
constraints in the Tcl console. The new constraint appears at the end of the list in a

group named <unsaved_constraints>.

All Constraints

x [b4 P

. set_False_path -from [get_clocks clk_rx_clk_core] -to [get_clocks clk_tx_clk_core]

E|]ﬁ char _Fifo, xdc (su:u:upeu:l ko char FlFu:u U0y (u: ,l'wa\-'e,l'prc']ect WaVE, srcs,l'su:uuru:es lll'lpll'char _Fifo/char_fifofchar_Fifo.xdc)

. seb_False_path -from [get_cells [list {char_Fifo_i0fU0finst_fifo_gen/gconyfifo, rffgrf offrstblk/ngwr drst.grsk v _rsk_reg_req[
. set_false_path -fram [get_cells [list {char_fifo_infudfinst_fifo_genfgconwfifa. rffgrf of frstbll ngurdrst.grst.rd_rst_req_req[:
. seb_max_delay -datapath_only -From [get_cells [list {char_fifo_i0fuofinst_fifo_genfgconwfifa. rffgrf. vf fgnty_ar_sync_fifo,g
. sek_max_delay -datapath_only -From [get_cells [list {char_Fifo_i0fU0finst_fifo_genfgconsfifo, rffgrf . rf fgnty_or_sync_fifo.ge

-

W Apply

o Cancel

Figure 2-18: Timing Constraints All Constraints List (Example Four)

When saving the constraints, the new constraints are saved at the end of the XDC file
marked as target. If there is no target XDC file in the constraint set associated with the

design in memory, or if there is only a Tcl script in the constraint set, you are prompted to
specify where to save the constraints.

Regularly save your constraints. Click Save, or select File > Save Constraints.

f IMPORTANT: New and modified constraints cannot be saved back to a Tcl script.

& CAUTION! Do not enter new constraints in the Tcl Console if any constraints in the Timing Constraints

editor have not yet been applied. The final constraints order in the editor can become different from the
constraints order in memory. In order to avoid any confusion, you must re-apply all constraints each

time you edit an existing constraint.

Using Constr

aints

www.Xilinx.com

UG903 (v2014.1) May 14, 2014

| Send Feedback I

27

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=27

g: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

XDC Templates

You can access XDC templates by selecting Window > Language Templates.

Window | Layout Wiew Help

£ Project Surnrmary

b Sources

Language Termplates

& Properties Ctrl+E

Selection

Figure 2-19: XDC Templates

XDC Template Contents
The XDC templates include:

« The most common timing constraints such as:
o Clock definitions
o Jitter
- Input/output delay
- Exceptions
« Physical constraints

« Configuration constraints
Using XDC Templates

To use an XDC template:

Select the template you want to use.
Copy the text displayed in the Preview window.
Paste the text in your XDC file.

Bl S

Replace the generic strings with actual names from your design or with appropriate
values.

Using Constraints www.xilinx.com Send Feedback 28
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=28

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

Advanced XDC Templates

Some advanced templates such as System Synchronous and Source Synchronous I/O delay
constraints require you to set some Tcl variables to capture the design requirements. The Tcl
variables are used in the actual set_input_delay and set_output_delay constraints.

You must verify that all necessary values have been filled instead of using the default
values.

l_i‘_|--1-—.- Input Delay Constrainks

-- | System Synchronous

fl_}-q-—. Source Svnchronous

Bl Center-Aligned

-2 Single Daka Rate (SDR), Rising Edge
| 5|ngle Data Rate (SDRL Falling Edge

(=] Edge Allgned (Clcu:k W|th MMCM)

-2 Single Data Rate (SOR), Rising Edge
-2 Single Daka Rate (SOR), Faling Edge
-2 Dual Data Rate (DOR)

= Edge Aligned {Clock directly to FF)

-2 Single Daka Rate (SDR), Rising Edge
-2 Single Daka Rate (SOR), Faling Edge
-2 Dual Data Rate (DOR)

[#I=) Simple single-clock, compared ko UCF

m

|':'|..

=1+ Qutput Delay Constraints
-- | System Svnchronous
lj 1= Source Synchronous
EI = Skew Based
Single Daka Rate (SDR, Rising Edge
-5 Single Daka Rate (SDR), Faling Edge
- % Dual Daka Rate (DOR)
=8] Setup,l'HoId Based
(% Single Diata Rake (SOR), Rising Edge
% Single Data Rake (SDR), Falling Edge
----- [Dual Daka Rate (DOR) ==
[irnnle cinnle-clack comnarad bo | CE IE'
Presvies
2Rz
10 # input -
11 # clock | |
12 # | I =
13# dv_bre | dv_are dv_bfe | dv_afe =
14 % Lmmm - |- ——mm = Lm—m - | —m— =
15 % B [I _
16 # data _¥O3_ PRise _Data X023 Fall Data OO0
17 # %4
4 m 3

3 Metlist | &% Sources | [Properties- &' Templates

Figure 2-20: 10 Delay Constraint Templates

Using Constraints www.xilinx.com Send Feedback 29
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=29

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Creating Synthesis Constraints

The Vivado IDE synthesis engine transforms the RTL description of your design into a
technology mapped netlist. This process happens in several steps, and includes a number of
timing-driven optimizations.

Xilinx® FPGA devices include many logic features that can be used in many different ways.
Your constraints are needed to guide the synthesis engine towards a solution that meets all
the design requirements at the end of implementation.

There are four categories of constraints for the Vivado IDE synthesis:
« RTL Attributes
« Timing Constraints

« Physical and Configuration Constraints

« Elaborated Design Constraints

RTL Attributes

RTL attributes must be written in the RTL files. They usually correspond to directives related
to the mapping style of certain part of the logic, as well as preserving certain registers and
nets, or controlling the design hierarchy in the final netlist.

For more information, see the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 5].

Only the DONT_TOUCH attribute can be set from the XDC file as a property on a netlist
object.

f IMPORTANT: The DONT_TOUCH attribute does not obey the properties of used_in_synthesis and
used_in_implementation. If you use DONT_TOUCH properties in the synthesis XDC, it is
propagated to implementation regardless of the value of used_in_implementation.

For more information about used_in_synthesis and used_in_implementation, Refer to
Synthesis and Implementation Constraint Files, page 9.

DONT_TOUCH Attribute Example

set_property DONT_TOUCH true [get_cells fsm_reg]

Using Constraints www.xilinx.com Send Feedback 30
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=30

g: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Timing Constraints

Timing constraints must be passed to the synthesis engine by means of one or more XDC
files. Only the following constraints related to setup analysis have any real impact on
synthesis results:

« create_clock

« create_generated_clock
« set_input_delay

« set_output_delay

« set_clock_groups

« set_false_path

« set_max_delay

« set_multicycle_path

Physical and Configuration Constraints

Physical and configuration constraints are ignored by the synthesis algorithms.

Elaborated Design Constraints

O RECOMMENDED: When you create the first version of your synthesis XDC, use simple timing
constraints to describe the high-level design requirements.

At this point in the flow, the net delay modeling is still not very accurate. The main goal is
to obtain a synthesized netlist which meets timing, or fail by a small amount, before starting
implementation. In many cases, you will have to go through several XDC and RTL
modification iterations before you can reach this state.

The RTL-based XDC creation iteration is shown in Figure 2-21, Creating Constraints with the
Elaborated Design, page 32. It is based on the utilization of the Elaborated design to find
the object names in your design that you want to constrain for synthesis.

You must use the Tcl Console to validate the syntax of the XDC commands before saving
them in the XDC files. With the elaborated design, you can create constraints, query clocks,
and query design objects, but you cannot run any timing report command.

Using Constraints www.xilinx.com Send Feedback 31
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=31

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

RTL source files

Y

Open (or reload)

Elaborated Design XDC files
A
Vivado
Database
(elaborated)
A
\i
Query names in your design Copy/paste good XDC commands
Validate XDC syntax in Tcl Console from Tcl Console to XDC files

A

NO

Syntax Clean? YES

X12982

Figure 2-21: Creating Constraints with the Elaborated Design

Design objects that are safe to use when writing constraints for synthesis are:

« Top level ports

¢ Manually instantiated primitives (cells and pins)

Some RTL names are modified or lost during the creation of the elaborated design.
Following are the most common cases:

« Single-Bit Register Names
« Multi-Bit Register Names
« Absorbed Registers and Nets

e Hierarchical Names

Using Constraints www.xilinx.com Send Feedback 32
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=32

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Single-Bit Register Names
By default, the register name is based on the signal name in the RTL, plus the _reg suffix.

For example, for a signal defined as follows in VHDL and Verilog, the instance name
generated during the elaboration is woDataForInputReg_reg:

VHDL: signal wbDataForInputReg : std_logic;
Verilog: reg wbDataForInputReg;

Figure 2-22, Single-Bit Register in Elaborated Design, shows the schematic of the register,
and its pins. It is possible to define a constraint on the register instance or its pins.

| whDataForinputReg_reg
RST

— ol
—=C

RTL_REG_SYNC

Figure 2-22: Single-Bit Register in Elaborated Design

Multi-Bit Register Names

By default, the register name is based on the signal name in the RTL, plus the _reg suffix.
You can only query and constrain individual bits of the multi-bit register in your XDC
commands.

For example, for a signal defined as follows in VHDL and Verilog, the instance names
generated during the elaboration are 1loadState_reg[0], loadState_regl[1l], and
loadState_reg[2]:

VHDL: signal loadState: std_logic_vector (2 downto 0);
Verilog: reg [2:0] loadState;

Figure 2-23, Multi-Bit Register in Elaborated Design, page 33, shows the schematic of the
register. The multi-bit register appears as a vector of single-bit registers. The vector is
represented in a compact way whenever possible in the schematics. Each individual bit can
also be displayed separately.

loadState_reg[2:0]

—=C

Q

——)

e
RTL_REG

Figure 2-23: Multi-Bit Register in Elaborated Design

Using Constraints www.xilinx.com Send Feedback 33
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=33

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

You can only constrain each register individually or as a group by using the following
patterns:
* Register bit 0 only
loadState_reg[0]
« All register bits

loadState_reg[*]

f IMPORTANT: You cannot query the multi-bit register, or more generally any multi-bit instance, by
using the following pattern: loadState_reg[2:0]

Because the names above also correspond to the names in the post-synthesis netlist, any
constraint based on them will most probably work for implementation as well.

Absorbed Registers and Nets

Some registers or nets in the RTL sources can disappear in the elaborated design (or
synthesized design) for various reasons. For example, memory block, DSP or shift register
inference requires absorbing several design objects into one resource. If you must use these
objects to define constraints, try to find other connected registers or nets that you can use
instead.

Hierarchical Names

Unless you plan to force Vivado synthesis to keep the complete hierarchy of your design,
some or all levels of the hierarchy can be flattened during synthesis. For more information,
see the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 5].

O RECOMMENDED: Use fully resolved hierarchical names in your synthesis constraints. They are more
likely to be matching the final netlist names regardless of the hierarchy transformations.

For example, consider the following register located in a sub-level of the design.

Elaborated Design Example

inst_A/inst_B/control_reg

During synthesis (assuming no special optimization is performed on this register), you can
get either flat or hierarchical name depending on the tool options or the design structure.

Instance name in a flat netlist:
inst_A/inst_B/control_reg (F)
Instance name in a hierarchical netlist:

inst_A/inst_B/control_reg (H)

Using Constraints www.xilinx.com Send Feedback 34
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=34

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

There is no obvious difference because the / character is also used to mark flattened
hierarchy levels. You will notice the difference when querying the object in memory. The
following commands will return the netlist object for F but not H:

o

get_cells -hierarchical *inst_B/control_reg
get_cells inst_A*control_reg

o

In order to avoid problems related to hierarchical names, Xilinx recommends that you:

+ Use get_* commands without the -hierarchical option.

« Mark explicitly with the / character all the levels of hierarchy as they show in the
elaborated design view.

Examples Without Hierarchical Option

This option works for both flat and hierarchical netlists.

o

get_cells inst_A/inst_B/*_reg
get_cells inst_*/inst_B/control_reg

oe

C CAUTION! (1) Do not attach constraints to hierarchical pins during synthesis for the same reason as
explained above for hierarchical cells. (2) Do not attach constraints to nets connecting combinatorial
logic operators. They will likely be merged into a LUT and disappear from the netlist.

O RECOMMENDED: Regularly save your XDC files after editing, and reload the Elaborated design in order
to make sure the constraints in memory and the constraints in the XDC files are the same. After
running synthesis, load the synthesized design with the same synthesis XDC in memory, and run timing
analysis by using the timing summary report.

For more information, see the Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 4].

Some pre-synthesis constraints may no longer apply properly because of the
transformations performed by synthesis on the design. To resolve these problem:

1. Find the new XDC syntax that applies to the synthesized netlist.
2. Save the constraints in a new XDC file to be used during implementation only.

3. Move the synthesis constraints that can no longer be applied to a separate XDC file that
will be used for synthesis only.

Using Constraints www.xilinx.com Send Feedback 35
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=35

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Creating Implementation Constraints

Once you have a synthesized netlist, you can load it into memory together with the XDC
files or Tcl scripts enabled for implementation. You must review the messages issued by the
tool when loading the XDC in order to verify and correct any constraint that cannot be
applied.

In some cases, the object names in the synthesized netlist are different from the names in
the elaborated design. If this is the case, you must recreate some constraints with the
corrected names, and save them in an implementation-only XDC file.

Once the tool can properly load all the XDC files, you can run timing analysis in order to:

« Add missing constraints, such as input and output delay.

« Add timing exceptions, such as false paths, multicycle paths, and min/max delay
constraints.

« Identify large violations due to long paths in the design and correct the RTL
description.

You can use the same base constraints as during synthesis, and create a second XDC file to
store all new constraints specific to implementation. You can choose to save physical and
configuration constraints in a separate XDC file.

The netlist-based XDC iteration is shown in Figure 2-24, Creating Constraints with the
Synthesized Design, page 37.

Using Constraints www.xilinx.com Send Feedback 36
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=36

g: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Synthesized Netlist

Y

Open (or reload)
Synthesized Design

Implementation XDC
files

\

Vivado
Database

A
\

Use Vivado IDE editors or the Tcl
Console to enter new constraints

NO (missing constraints) Fix RTL Design

NO (clean constraints) —| Add Synthesis Attributes
Use different Synthesis Options

Timing clean?

Save your constraints
Run implementation

X129¢

Figure 2-24: Creating Constraints with the Synthesized Design

Before proceeding to implementation, you must verify that your design does not include
any major timing violation. The place-and-route tools can fix most reasonable timing
violations, but they cannot fix fundamental design issues that make timing closure
impossible.

O RECOMMENDED: Revisit the RTL to reduce the number of logic levels on the violating paths and to
clean up the clock trees in order to use dedicated clock resources and minimize the skew between
related clocks. You can also add synthesis attributes and use different synthesis options.

For more information, see the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 5].

Using Constraints www.xilinx.com Send Feedback 37
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=37

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

Constraints Scoping

The constraints from a particular XDC file can be optionally scoped to a specific module, to
specific cells of your design, or both, if needed. This is convenient for creating and applying
constraints to a sub-level of your design without having any information about the
top-level. It also prevents constraints from being applied outside the target hierarchical cell.
By default, all the IP cores from the Vivado IP Catalog generated within a Vivado project use
this mechanism to load their constraints in memory.

XDC File Scoping Properties

The constraints scoping mechanism is activated by specifying the following properties on
the XDC files:

« SCOPED_TO_REF: This property takes the name of a module (or entity). The constraints
are applied to ALL instances of the specified module (or entity) only,

« SCOPED_TO_CELLS: This property takes a list of hierarchical cell names. The constraints
are scoped and applied to each hierarchical cell individually,

« SCOPED_TO_REF + SCOPED_TO_CELLS: If BOTH these properties are specified, the
constraints are applied to each cell of the SCOPED_TO_CELLS list, located inside the
module (or entity) specified by SCOPED_TO_REF.

These properties are automatically set by Vivado for IP cores added to your RTL project by
means of the IP Catalog.

Setting XDC File Scoping Properties Example

Figure 2-25, Setting XDC File Scoping Properties Example, page 39, shows the uart_tx_i0
cell, an instance of the uart_tx module, which includes two hierarchical cells,
uart_tx_ctl_i0 and uart_baud_gen_tx_1iO0.

The project includes an XDC file uart_tx_ctl.xdc to constrain the uart_tx_ctl
module.

Using Constraints www.xilinx.com Send Feedback 38
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=38

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE-

uart b i0
uart_baud_gen_t< i0
char_fifo_pop baud_x16_en
uart te ctl il clk_ b char_fifo_rd_en char_fifo_rd_en
ret_clk_t
baud_x16_en uart_baud_gen__parameterized(
char_fifo_empty char_fifo_empty char_fifo_pop
clk_br cll et [EC S
dout[7:0] dout[7:0]
rat_clk_te rst ekt
uart_t_ctl
uart_tx

Figure 2-25: Setting XDC File Scoping Properties Example

Following are three equivalent Tcl examples to use the scoping properties on
uart_tx_ctl.xdc. The same values can be set in the Properties windows of the XDC file
in the Vivado IDE.

Using the reference module name only:
set_property SCOPED_TO_REF uart_tx ctl [get_files uart_tx_ctl.xdc]

Using the cell name only:
set_property SCOPED_TO_CELLS uart_tx i0/uart_tx ctl_i0 [get_files uart_tx_ctl.xdc]

Using both the uart_tx reference module and uart_tx ctl_i0 instance:
set_property SCOPED_TO_REF uart_tx [get_files uart_tx ctl.xdc]
set_property SCOPED_TO_CELLS uart_tx_ctl_i0 [get_files uart_tx_ctl.xdc]

When using Vivado in Non-Project Mode, you can use the read_xdc command with the
-ref and -cells options to achieve the same result:

Using the reference module name only:

read_xdc -ref uart_tx_ctl uart_tx_ctl.xdc

Using the cell name only:

read_xdc -cells uart_tx_i0/uart_tx_ctl_i0 uart_tx_ctl.xdc

Using both the uart_tx reference module and uart_tx ctl_i0 instance
read_xdc -ref uart_tx -cells uart_tx_ctl_i0 uart_tx ctl.xdc

Using Constraints www.xilinx.com Send Feedback 39
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=39

g: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

XDC Scoping Mechanism

Except for ports, constraints scoping relies on the current_instance mechanism, which
is part of the Synopsys Design Constraints (SDC) standard. When setting the scope to a
lower level of the design hierarchy with the current_instance command, only the
objects included in that level or below can be returned by the object query commands.

The only exceptions are with timing clock objects and netlist ports:

« Timing clocks are defined by create_clock or create_generated_clock. They
are visible throughout the design regardless of the current instance setting. The
get_clocks command can query clocks that are not present in the current instance,
or that propagate beyond the current instance. Xilinx does not recommend defining
timing exceptions on clocks when creating scoped constraints unless they are fully
contained in the current instance. For a clock to be available for reference in an XDC,
the clock must have already been defined. This may require changing the order of the
XDC files in the project.

« Top-level ports are returned by the get_ports command when the scope is set to a
lower level instance with the current_instance command. But when reading an
XDC file scoped to a lower-level instance with the read_xdc -ref/-cells
command or when loading a design after setting the
SCOPED_TO_REF/SCOPED_TO_CELLS file properties, the get_ports command
behavior is different:

o The port names to be used with get_ports are the port names of the scoped
instance interface, not the top-level port names.

- If a scoped instance port is directly connected to a top-level port through the
hierarchy of the design, the top-level port is returned by the get_ports command
and the constraint is applied to the top-level port.

o If there is any leaf cell, including IO and clock buffers, between the scoped instance
port and the top-level ports, the get_ports command becomes a get_pins
command and returns the hierarchical scoped instance pin.

The XDC scoping mechanism is used for reading all Vivado IP constraint files. Figure 2-26,
IP Port Migration to the Corresponding Top-Level Port, page 41, and Figure 2-27, IP Port
Migration to a Hierarchical Pin, page 41, show the two examples of how the get_ports
commands are treated when reading in the IP-level XDC using this methodology.

In Figure 2-26, IP Port Migration to the Corresponding Top-Level Port, the I/O buffer is
instantiated inside the IP and the IP interface pin is directly connected to a top-level port
(regardless of the hierarchy). When the XDC for the IP is applied, the argument of the
get_ports command is automatically replaced with the top-level port.

Using Constraints www.xilinx.com Send Feedback 40
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=40

g: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

This enables setting physical properties such as a LOC or IOSTANDARD at the IP level and
having them be placed on the top-level port where they need to be. This is accomplished
without the IP knowing the name of the top-level ports of the design.

top

| —
-

IBUF IBUF

X12586

Figure 2-26: IP Port Migration to the Corresponding Top-Level Port

In Figure 2-27, IP Port Migration to a Hierarchical Pin, the IP does not contain an I/O buffer,
so the synthesis engine infers one between the IP interface pin and the top-level port.
Consequently, the get_ports is converted to a get_pins of the IP interface pin (for
example, a hierarchical pin) when the XDC is applied.

top

| -]
o
-

IBUF

X12587

Figure 2-27: IP Port Migration to a Hierarchical Pin

This capability is very useful for creating constraints on the interface of an IP or a sub-level
module without knowing the names of the top-level design.

If the scoped XDC file includes constraints that can only be applied to top-level ports but
the IP instance is not directly connected to top-level ports, the Vivado XDC reader will
return errors. For example, the following constraints can only be applied to top-level ports,
and not hierarchical pins of your design:

« set_input_delay/set_output_delay
+ set_property IOSTANDARD

Using Constraints www.xilinx.com Send Feedback 41
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=41

g: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

IP and Sub-module Constraining with XDC

When using Package IP to create IP and use it from the Vivado IP catalog, XDC constraints can
also be packaged for inclusion. Any IP in the Vivado Design Suite is plug-and-play, that is,
the IP does not require a sample project from which you must cut and paste constraints to
complete your top-level design constraints. Instead, the IP can be packaged with an XDC
file that was developed for the IP as if it were a stand alone, top-level design. The Vivado
tools take care of reading the constraints appropriately when the IP is instantiated in the
project using the IP catalog.

Similarly, you can develop constraints for a sub-module of your design, and use the same
scoping mechanism as IP cores by setting the SCOPED_TO_REF/SCOPED_TO_CELLS XDC file
properties appropriately in a project flow, or use the read_xdc -ref/-cells command
in Non-Project Mode.

Scoped Queries Guidelines

For this flow to work smoothly, the XDC constraints must be written so that the effects of
the constraints stay local to the IP or sub-module instance. The Vivado tools can set the
scope of queries to a specific level of the hierarchy as seen previously in Constraints
Scoping, page 38. When developing constraints for an IP or a sub-level module, you must
understand the behavior of the query commands:

« Cell/net/pin objects queries are limited to the scoped instance and its sub-levels:

- get_cells/get_nets/get_pins <name pattern>

- The NAME property of the object shows the full hierarchical path of the object
relative to the top-level and not just the scoped instance. If you use the -filter
option of the get_* commands on the NAME property, you must use the glob
string match operator and provide a pattern which starts with a *. For example:

get_nets -hierarchical -filter {NAME =~ *clk}
+ get_ports returns a top-level port or a hierarchical pin
* Netlist helper commands are also scoped:

o all_ffs, all_latches, all_rams, all_registers, all_dsps, all_hsios return onIy
instances included in the current instance.

« IO helper commands cannot be used at all in a scoped XDC:
o all_inputs, all_outputs
+ Clock commands are not scoped and will return all timing clocks of your design.

- get_clocks, all_clocks

Using Constraints www.xilinx.com Send Feedback 42
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=42

g: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE

« Top-level and local clock objects can be queried by probing the netlist with
get_clocks -of_objects.

- Retrieve a clock entering the current instance by using get_clocks
-of_objects [get_ports <interfacePinName>]

- Retrieve a clock automatically generated inside the current instance by using
get clocks -of objects [get pins <instName/outPin>1, where
instName is a clock generator instance.

« Querying any object in the design is possible using the -of_objects option:
° Example: get_pins -leaf -of_objects [get_nets local_net]

« Queries are supported for top-level ports connected to the current instance interface
nets:

- get_ports -of_objects [get_nets <scoped_instance_net>]
* Queries of IP/sub-module interface pins are not allowed:
o “get_pins clk” returns an error.
« Path tracing commands are also scoped:
- all_fanin/all_fanout traverses the scoped design and stops at its boundary.

« Use get_cells/get_pins/get_nets with the most specific pattern instead of
using the all_registers command with the -clock option to query all the cells
connected to a particular clock. The returned list can be very large while only a few
objects need to be constrained. This can impact the runtime negatively.

Scoped Timing Constraints Guidelines

To avoid negatively impacting the top-level design, it is important to make sure that timing
constraints written for the IP or sub-module do not propagate beyond its boundary, except
for clock definition in some cases.

For example, consider the case in which a false path constraint is defined in the IP XDC
between two clocks that come into the IP. The IP includes proper circuitry for asynchronous
clock boundaries, but perhaps not for the rest of the design. This is a problem if the two
clocks are related and must be timed together in the rest of the design in order to have
proper hardware functionality.

Also, as discussed in Chapter 7, XDC Precedence, a timing exception defined in the IP XDC
file can have higher precedence than top-level constraints and can override them, which is
undesired. To avoid this situation, Xilinx recommends that you apply the constraints to
netlist objects local to the IP. In the case of a false path between two global clocks, the false
path must be applied from a group of startpoint cells inside the IP to another group of
endpoint cells inside the IP as well. This technique is referred to as point-to-point
exceptions instead of global exceptions.

Using Constraints www.xilinx.com Send Feedback 43
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=43

i: X”_INX Chapter 2: Constraints Methodology

ALL PROGRAMMABLE
Recommended constraints of IP/sub-module XDC:

« Create clocks inside the core XDC only if they are:
- Defined on a port directly connected to an input buffer instantiated inside the IP.
- Defined on a driver pin located inside the IP (for example, GTX output).

* Query top-level clocks with the get_clocks -of_objects command instead of
redefining these clocks locally.

« Specify input and output delay only if the port is directly connected to the top-level
port and the I/O buffer is instantiated inside the IP.

« Do not define timing exceptions between two clocks that are not bounded to the IP.

Using Constraints www.xilinx.com Send Feedback 44
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=44

& XILINX

ALL PROGRAMMABLE.

Chapter 3

Basics of Timing Checks

Before adding timing constraints to your design, you must understand the fundamentals of
timing analysis, and the terminology associated with it. This chapter discusses some of key
concepts used by the Xilinx® Vivado® Integrated Design Environment (IDE) timing engine.

Terminology

The launch edge is the active edge of the source clock that launches the data.

The capture edge is the active edge on the destination clock that captures the data.
The source clock is also referred to as the launch clock.

The destination clock is also referred to as the capture clock.

The setup requirement is the relationship between the launch edge and the capture
edge that defines the most restrictive setup constraint.

The setup relationship is the setup check verified by the timing analysis tool.

The hold requirement is the relationship between the launch edge and capture edge
that defines the most restrictive hold constraint.

The hold relationship is the hold check verified by the timing analysis tool.

Timing Paths

Timing paths are defined by the connectivity between the instances of the design. In digital
designs, timing paths are formed by a pair of sequential elements controlled by the same
clock, or by two different clocks.

Using Constraints www.xilinx.com I Send Feedback I 45

UG903 (v2014.1) May 14, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=45

g: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE

Common Timing Paths
The most common paths in any design are:

« Path from Input Port to Internal Sequential Cell

« Internal Path from Sequential Cell to Sequential Cell
« Path from Internal Sequential Cell to Output Port

« Path from Input Port to Output Port

Path from Input Port to Internal Sequential Cell
In a path from an input port to a sequential cell, the data:

« Is launched outside the device by a clock on the board.

« Reaches the device port after a delay called the input delay [Synopsys Design
Constraints (SDC) definition].

« Propagates through the device internal logic before reaching a sequential cell clocked
by the destination clock.

Internal Path from Sequential Cell to Sequential Cell
In an internal path from sequential cell to sequential cell, the data:

« Is launched inside the device by a sequential cell, which is clocked by the source clock.

« Propagates through some internal logic before reaching a sequential cell clocked by
the destination clock.

Path from Internal Sequential Cell to Output Port
In a path from an internal sequential cell to an output port the data:

« Is launched inside the device by a sequential cell, which is clocked by the source clock.
« Propagates through some internal logic before reaching the output port.

« Is captured by a clock on the board after an additional delay called the output delay
(SDC definition).

Path from Input Port to Output Port

In a path from an input port to output port, the data traverses the device without being
latched. This type of path is also commonly called an in-to-out path. The input and output
delays reference clock can be a virtual clock or a design clock.

Using Constraints www.xilinx.com Send Feedback 46
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=46

i: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE

Timing Paths Example

Figure 3-1, Timing Paths Example, shows the paths described above. In this example, the
design clock CLKO can be used as the board clock for both DIN and DOUT delay constraints.

FPGA DEVICE
———
1
Board ! H
Device Data Path Delay : Soa'rd
! pouT evice
H
T O O
Tl N
k-Q setup 7 Tl E Output
H ! Delay v
I i
Board Clock CLKO EC Board Clock
H
IZ In-2-Out Data Path (’-\’-\ =®

Figure 3-1: Timing Paths Example

Timing Path Sections

Each timing path is composed of three sections:

« Source Clock Path
« Data Path
« Destination Clock Path

Source Clock Path

The source clock path is the path followed by the source clock from its source point
(typically an input port) to the clock pin of the launching sequential cell. For a timing path
starting from an input port, there is no source clock path.

Data Path

The data path is the section of the timing path where the data propagates, between the
path startpoint and the path endpoint. The following definitions apply: (1) A path startpoint
is a sequential cell clock pin or a data input port; and (2) A path endpoint is a sequential cell
data input pin or a data output port.

Using Constraints www.xilinx.com Send Feedback 47
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=47

i: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE

Destination Clock Path

The destination clock path is the path followed by the destination clock from its source
point, typically an input port, to the clock pin of the capturing sequential cell. For a timing
path ending at an output port, there is no destination clock path. Figure 3-2, Typical Timing
Path, shows the three sections of a typical timing path.

REGA Data Path
A
\
\
Endpoint A
Source Clock Path 7y~ — : 7
i !\ ﬁ\' Startpoint
l/ . .
5 !\ Destination Clock Path
|7

Figure 3-2: Typical Timing Path

Launch and Capture Edges
When transferring between sequential cells or ports, the data is:

« Launched by one of the edges of the source clock, which is called the launch edge.

« Captured by one of the edges of the destination clock, which is called the capture
edge.

In a typical timing path, the data is transferred between two sequential cells within one
clock period. In that case: (1) the launch edge occurs at Ons; and (2) the capture edge occurs
one period after.

The following section explains how the launch and capture edges define the setup and hold
relationships used for timing analysis.

Setup and Hold Analysis

The Vivado IDE analyzes and reports slack at the timing path endpoints. The slack is the
difference between the data required time and the data arrival timing at the path endpoint.
A data is safely transferred between two registers if both the setup and hold relationships
are successfully verified on that path. In other words, if both setup and hold slacks are
positive, the path is considered functional from a timing point of view.

Using Constraints www.xilinx.com Send Feedback 48
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=48

i: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE

Setup Check

The setup check is performed only on the most pessimistic setup relationship between two
clocks. By default, this corresponds to the smallest positive delta between the launch and
capture edges. In order to identify this relationship, and to calculate the corresponding
path requirement, the timing engine does the following:

1. Determines the common period between the source and destination clock. The
common period is the time after which the source and destination clocks have the same
phase alignment as at time Ons.

2. Determines the smallest positive delta between any two active capture and launch
edges found over the common period time. This delta is called the setup path
requirement.

ﬁ IMPORTANT: /f the common period cannot be found over 1000 cycles of both clocks, the worst setup
relationship over these 1000 cycles is used for timing analysis. For such case, the two clocks are called
unexpandable, or clocks with no common period. The analysis will likely not correspond to the most
pessimistic scenario. You must review the paths between these clocks to assess their validity and
determine if they can be treated as asynchronous paths instead. For more information, see Clock
Groups in Chapter 4.

Setup Path Requirement Example

Consider a path between two registers which are sensitive to the rising edge of their
respective clock. The launch and capture edges of this path are the clock rising edges only.
The clocks are defined as follows:

« clkO has a period of 6ns
« clkl has a period of 4ns

Common period

clkO launch edges
(source clock)

i

I

I

clk1 capture edges f

(destination clock) JI |
1

1
Ons 2ns 4ns 6ns 8ns 10ns 12ns

Figure 3-3: Setup Path Requirement Example

Figure 3-3 shows that there are two unique source and destination clock edges that qualify
for setup analysis: setup(l) and setup(2).

The smallest positive delta from clk0 to clkl is 2 ns, which corresponds to setup(2):

Source Clock Launch Edge Time: Ons + 1 * T(clk0) = 6éns
Destination Clock Capture Edge Time: Ons + 2 * T(clkl) = 8ns
Setup Path Requirement = capture edge time - launch edge time = 2ns

Using Constraints www.xilinx.com Send Feedback 49
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=49

i: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE
When computing the path requirement, two important considerations are made:

1. The clock edges are ideal, that is, the clock tree insertion delay is not considered yet.

2. The clocks are phase-aligned at time zero by default, unless their waveform definition
introduces a phase-shift. Asynchronous clocks do not have a known phase relationship.
The timing engine applies the default assumption when analyzing paths between them.
For more information on asynchronous clocks, see the following sections.

Data Required Time For Setup Analysis

The data required time for setup analysis is the time before which the data must be stable
in order for the destination cell to capture it safely. Its value is based on:

» Destination clock capture edge time
« Destination clock delay
» Source and destination clock uncertainty

« Endpoint setup time

Data Arrival Time For Setup Analysis

The data arrival time for setup analysis is the time it takes for the data to be stable at the
path endpoint after being launched by the source clock. Its value is based on:

» Source clock launch edge time
« Source clock delay

« Datapath delay
The datapath delay includes all the cell and net delays, from the startpoint to the endpoint.

In the timing reports, the Vivado IDE considers the setup time as being part of the datapath.
Accordingly, the equation for data arrival and required times are:

Data Required Time (setup) = capture edge time
+ destination clock path delay
- clock uncertainty
- setup time

Data Arrival Time (setup) = launch edge time
+ source clock path delay
+ datapath delay
The setup slack is the difference between the required time and the arrival time:

Slack (setup) = Data Required Time - Data Arrival Time

A negative setup slack on a register input data pin means that the register can potentially
latch an undesired value, or go to a metastable state.

Using Constraints www.xilinx.com Send Feedback 50
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=50

i: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE

Hold Check

The hold check (also called hold relationship) is directly connected to the setup
relationship. While the setup analysis validates that data can safely be captured under the
most pessimistic scenario, the hold relationship ensures that:

« The setup launch edge cannot send a data that can be latched by the active edge
before the setup capture edge.

« The next active source clock edge after the setup launch edge cannot send a data that
can be latched by the setup capture edge.

During hold analysis, the timing engine reports only the most pessimistic hold relationship
between any two clocks. The most pessimistic hold relationship is not always associated
with the worst setup relationship. The timing engine must review all possible setup
relationships and their corresponding hold relationships to identify the most pessimistic
hold relationship.

For each setup relationship, there are two hold relationships that define the following
requirements:

+ requirement (a): previous capture edge minus launch edge

*+ requirement (b): capture edge minus next launch edge

Finally, the greatest of all requirement (a) and requirement (b) values becomes the
hold requirement and the corresponding clock edges are used for hold analysis reporting.

Hold Path Requirement Example

Consider the clocks used in Setup Path Requirement Example, page 49. There are only two
possible edge combinations for setup analysis:

Setup Path Requirement (S1) = 1*T(clkl) - 0*T(clk0) = 4ns
Setup Path Requirement (S2) = 2*T(clkl) - 1*T(clk0) = 2ns
The corresponding hold requirements are as follows.

For setup Sl:
Hold Path Requirement (Hla) = (1-1)*T(clkl) - 0*T(clk0) = Ons
Hold Path Requirement (Hlb) = 1*T(clkl) - (0+1)*T(clk0) = -2ns

For setup S2:
Hold Path Requirement (H2a) = (2-1)*T(clkl) - 1*T(clk0) = -2ns
Hold Path Requirement (H2b) = 2*T(clkl) - (1+41)*T(clk0) = -4ns

The greatest hold requirement is Ons, which corresponds to the first rising edge of both
source and destination clocks.

Figure 3-4, page 52 shows the setup check edges and their associated hold checks.

Using Constraints www.xilinx.com Send Feedback 51
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=51

i: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE

2

I!II_

1
Ons 2ns 4ns 6ns 8ns 10ns 12ns

Figure 3-4: Hold Path Requirement Example

In this example, the final hold requirement is not derived from the tightest setup
requirement. This is because all possible setup edges were considered in order to find the
most challenging hold requirement.

As in setup analysis, the data required time and the data arrival time are calculated based
on:

» Source clock launch edge time

» Destination clock capture edge time
« Source and destination clock delays
« Clock uncertainty

- Datapath delay

« Endpoint hold time

Data Required Time (hold) = destination clock capture edge time
+ destination clock path delay
+ clock uncertainty
+ hold time

Data Arrival Time (hold) = source clock launch edge time
+ source clock path delay
+ datapath delay
The hold slack is the difference between the required time and the arrival time:

Slack (hold) = Data Arrival Time - Data Required Time

A positive hold slack means that the data cannot be captured by the wrong clock edges
under the most pessimistic conditions. A negative hold slack means that an undesired data
can be captured, or the register can go to a metastable state.

Using Constraints www.xilinx.com Send Feedback 52
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=52

i: XI LI NX Chapter 3: Basics of Timing Checks

ALL PROGRAMMABLE

Recovery and Removal Analysis

The recovery and removal timing checks are similar to setup and hold checks, except that
they apply to asynchronous pins such as set or clear.

For a register with an asynchronous reset:

« The recovery time is the minimum time before the next active clock edge after the
asynchronous reset signal has toggled to its inactive state in order to safely latch a new
data.

« The removal time is the minimum time after an active clock edge before the
asynchronous reset signal can be safely toggled to its inactive state.

The following equations describe how the slack is computed for each check.

Recovery Check
The following equations describe how the recovery slack is computed:

Required Time (recovery) = destination clock edge start time
+ destination clock path delay
- clock uncertainty
- recovery time

Arrival Time (recovery) = source clock edge start time
+ source clock path delay

+ datapath delay

Slack (recovery) = Required Time - Arrival Time

Removal Check
The following equations describe how the removal slack is computed:

Required Time (removal) = destination clock edge start time
+ destination clock path delay
+ clock uncertainty
+removal time

Arrival Time (removal) = source clock edge start time
+ source clock path delay
+ datapath delay

Slack (removal) = Arrival Time - Required Time

A negative recovery slack or removal slack means that the register can go to a metastable
state, and propagate an unknown electrical level through the design.

Using Constraints www.xilinx.com Send Feedback 53
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=53

& XILINX

ALL PROGRAMMABLE.

Chapter 4

Defining Clocks

About Clocks

In digital designs, clocks represent the time reference for reliably transferring data from
register to register. The Xilinx® Vivado® Integrated Design Environment (IDE) timing engine
uses the clock characteristics to compute timing path requirements and report the design
timing margin by means of the slack computation.

For more information, see Chapter 3, Basics of Timing Checks.

Clocks must be properly defined in order to get the maximum timing path coverage with
the best accuracy. The following characteristics define a clock:

« Itis defined on the driver pin or port of its tree root, which is called the source point.
« Its edges are described by the combination of the period and the waveform properties.

« The period is specified in nanoseconds. It corresponds to the time over which the
waveform repeats.

« The waveform is the list of rising edge and falling edge absolute times, in nanoseconds,
within the clock period. The list must contain an even number of values. The first value
always corresponds to the first rising edge. Unless specified otherwise, the duty cycle
defaults to 50% and the phase shift to Ons.

As shown in Figure 4-1, Clock Waveforms Example, page 54, the clock ClkO has a 10ns
period, a 50% duty cycle and Ons phase. The clock Clk1 has 8ns period, 75% duty cycle and
a 2ns phase shift.

Clk0: period
Clkl: period

10, waveform = {0 5}
8, waveform = {2 8}

L 50% ., 50%

| : >
clko

Ons 5ns 10ns 15ns
?25%\? 75% N

clk1 ‘ ‘ |
Ons 2ns 8ns 10ns 16ns

Figure 4-1: Clock Waveforms Example

Using Constraints www.xilinx.com I Send Feedback I 54

UG903 (v2014.1) May 14, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=54

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Propagated Clocks

The period and waveform properties represent the ideal characteristics of a clock. When
entering the FPGA device and propagating through the clock tree, the clock edges are
delayed and become subject to variations induced by noise and hardware behavior. These
characteristics are called clock network latency and clock uncertainty.

The clock uncertainty includes:

« Clock jitter (see Clock Jitter, page 70)
* Phase error
« Any additional uncertainty that you have specified (see Additional Clock Uncertainty,

page 71)

By default, the Vivado IDE always treats clocks as propagated clocks, that is, non-ideal, in
order to provide an accurate slack value which includes clock tree insertion delay and
uncertainty.

Dedicated Hardware Resources

The dedicated hardware resources of Xilinx FPGA devices efficiently support a large number
of design clocks. These clocks are usually generated by an external component on the
board. They usually enter the device through an input port.

They can also be generated by special primitives called Clock Modifying Blocks, such as:

+ MMCM
« PLL
+ BUFR

They can also be transformed by regular cells such as LUTs and registers.

The following sections describe how to best define clocks based on where they originate.

Primary Clocks

A primary clock is a board clock that enters the design through:

* Aninput port, or

« A gigabit transceiver output pin (for example, a recovered clock)

A primary clock can be defined only by the create_clock command.

Using Constraints www.xilinx.com Send Feedback 55
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=55

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

A primary clock must be attached to a netlist object. This netlist object represents the point
in the design from which all the clock edges originate and propagate downstream on the
clock tree. In other words, the source point of a primary clock defines the time zero used by
the Vivado IDE when computing the clock latency and uncertainty used in the slack
equation.

ﬁ IMPORTANT: The Vivado IDE ignores all clock tree delays coming from cells located upstream from the
point at which the primary clock is defined. If you define a primary clock on a pin in the middle of the
design, only part of its latency is used for timing analysis. This can be a problem if this clock
communicates with other related clocks in the design, since the skew, and consequently the slack, value
between the clocks can be inaccurate.

Primary clocks must be defined first, since other timing constraints often refer to them.
Primary Clocks Examples

As shown in Figure 4-2, Primary Clock Example, page 56, the board clock enters the device
through the port sysclk, then propagates through an input buffer and a clock buffer before
reaching the path registers.

« Its period is 10ns.
« Its duty cycle is 50%
« Its phase is not shifted.

REGA Data Path REGB
D Q 4@_, D aQ
A JAN
sysclk IBUF BUFG | ,
N N
| |
Recommended ¢ 50% < 50%

primary clock

‘ 3
source point sysclk

Figure 4-2: Primary Clock Example

O RECOMMENDED: Define the board clock on the input port, not on the output of the clock buffer.

Corresponding Xilinx Design Constraints (XDC):

create_clock -period 10 [get_ports sysclk]

Using Constraints www.xilinx.com Send Feedback 56
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=56

& XILINX

ALL PROGRAMMABLE

Chapter 4: Defining Clocks

Similar to sysclk, a board clock devclk enters the device through the port ClkIn.

« Its period is 10ns.

« Its duty cycle is 25%.

« Itis phase shifted by 90 degrees.

Corresponding XDC:

create_clock -name devclk -period 10 -waveform {2.5 5}

[get_ports ClkIn]

Figure 4-3, GT Primary Clock Example, page 57, shows a transceiver gt0, which recovers the
clock rxclk from a high speed link on the board. The clock rxclk has a 3.33ns period, a 50%
duty cycle and is routed to an MMCM, which generates several compensated clocks for the

design.

When defining rxclk on the output driver pin of GTO, all the generated clocks driven by the
MMCM have a common source point, which is gt0/RXOUTCLK. The slack computation on
paths between them uses the proper clock latency and uncertainty values.

create_clock -name rxclk -period 3.33 [get_pins gt0/RXOUTCLK]

REGA

Data Path REGB

O

mmcmO
gto
CLKFBIN CLKFBOUT /l\
RXOUTCLK 2K | crint CLKOUTO 'l>
CLKOUT1 —| S>———
Recommended Y 50% NE 50% J
primary clock N ¢
source point rxclk
Ons 1.66ns 3.33ns

Using Constraints

UG903 (v2014.1) May 14, 2014

Figure 4-3: GT Primary Clock Example

www.Xilinx.com

l Send Feedback I

57

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=57

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Virtual Clocks

A virtual clock is a clock that is not physically attached to any netlist element in the design.

A virtual clock is defined by means of the create_clock command without specifying a
source object.

A virtual clock is commonly used to specify input and output delay constraints in one of the
following situations:

« The external device I/O reference clock is not one of the design clocks.

« The FPGA 1/O paths are related to an internally generated clock that cannot be properly
timed against the board clock from which it is derived.

Note: This happens when the ratio between the two periods is not an integer. which leads to a
very tight and unrealistic timing path requirement.

« You want to specify different jitter and latency only for the clock related to the I/O
delay constraints without modifying the internal clocks characteristics.

For example, the clock clk_virt has a period of 10ns and is not attached to any netlist
object. The [<objects>] argument is not specified. The -name option is mandatory in such
cases.

create_clock -name clk virt -period 10

The virtual clocks must be defined before being used by the input and output delay
constraints.

Generated Clocks

This section discusses generated clocks and includes:

« User Defined Generated Clocks
« Automatically Derived Clocks

» Renaming Auto-Derived Clocks

Using Constraints www.xilinx.com Send Feedback 58
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=58

g: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

About Generated Clocks

Generated clocks are driven inside the design by special cells called Clock Modifying Blocks
(for example, an MMCM), or by some user logic.

Generated clocks are associated with a master clock. The create_generated_clock command
considers the start point of the master clock. The master clock can be:

« A primary clock

» Another generated clock

Generated clock properties are directly derived from their master clock. Instead of
specifying their period or waveform, you must describe how the modifying circuitry
transforms the master clock.

The relationship between a master clock and a generated clock can be:
« A simple frequency division
« Asimple frequency multiplication

« A combination of a frequency multiplication and division in order to obtain a
non-integral ratio (usually done by MMCM and PLL)

« A phase shift or a waveform inversion
« A duty cycle transformation

« A combination of all the above

O RECOMMENDED: Define all primary clocks first. They are needed for defining the generated clocks.

User Defined Generated Clocks
A user defined generated clock is:

« Defined by the create_generated_clock command.

« Attached to a netlist object, preferably the clock tree root pin.

Specify the master clock using the -source option. This indicates a pin or port in the design
through which the master clock propagates. It is common to use the master clock source
point or the input clock pin of generated clock source cell.

f IMPORTANT: The -source option accepts only a pin or port netlist object. It does not accept clock
objects.

Using Constraints www.xilinx.com Send Feedback 59
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=59

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Example One: Simple Division by 2
The primary clock clkin has a period of 10ns. It is divided by 2 by the register REGA which

drives other registers clock pin. The corresponding generated clock is called clkdiv2.

Two equivalent constraints are provided below:

create_clock -name clkin -period 10 [get_ports clkin]

Option 1: master clock source is the primary clock source point
create_generated_clock -name clkdiv2 -source [get_ports clkin] -divide_by 2 \

[get_pins REGA/Q]

Option 2: master clock source is the REGA clock pin
create_generated_clock -name clkdiv2 -source [get_pins REGA/C] -divide_by 2 \

[get_pins REGA/Q]

REGB Data Path
IO
REGA A
S0t Q |
C Generated clock
clkin IBUF BUFG A definition point
i
N N ,
/JZ >
(edge#t) 1 2 3 4 5 6

Primary clock |

source point clkin J | | | l_
akav2 [[]_

Ons 10ns 20ns 30ns
Figure 4-4: Generated Clock Example One

Example Two: Division by 2 With the -edges Option

Instead of using the -divide_by option, you can use the -edges option to directly describe
the waveform of the generated clock based on the edges of the master clock. The argument
is a list of master clock edge indexes used for defining the position in time of the generated

clock edges, starting with the rising clock edge.
The following example is equivalent to the generated clock defined in Example One: Simple
Division by 2.

waveform specified with -edges instead of -divide_by
create_generated_clock -name clkdiv2 -source [get_pins REGA/C] -edges {1 3 5} \

[get_pins REGA/Q]

Using Constraints www.xilinx.com Send Feedback 60
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=60

& XILINX

ALL PROGRAMMABLE

Chapter 4: Defining Clocks

Example Three: Duty Cycle Change and Phase Shift with -edges and -edge_shift Options

Each edge of the generated clock waveform can also be individually shifted by a positive or
negative value by using the -edge_shift option. Use this option only if a phase shift is

needed.

The -edge_shift option cannot be used at the same time as any of the following:

« -divide_by
« -multiply_by
 -invert

Consider the master clock clkin with a 10ns period and a 50% duty cycle. It reaches the cell
mmem0 which generates a clock with a 25% duty cycle, shifted by 90 degrees. The generated
clock definition refers to the master clock edges 1, 2, and 3. These edges respectively occur
at Ons, 5ns, and 10ns. To obtain the desired waveform, shift the first and the third edges by

2.5ns.

create_clock -name

create_generated_clock -name clkshift -source

clkin -period 10 [get_ports clkin]

-edge_shift {2.5 0 2.5} [get_pins mmcm0/CLKOUT]

First rising edge: Ons + 2.5ns

Falling edge:

Second rising edge: 10ns + 2.5ns

2.5ns
S5ns
12.5ns

5ns + Ons

Note: The -edge_shift values can be positive or negative.

REGA Data Path REGB

D Q _Q D aq
mmcmO0

IBUF BUFG t

BUFG
clkin CLKFBIN CLKFBOUT BUFG TA JAN
N N | |
CLKIN CLKOUT
L | v\ |
Generated clock
definition point
Primary clock
source point (edge#) Z} % _?, 4}
clkin
. 25%
—
clkdiv2
Ons 2.5ns 5ns 10ns 12.5ns 15ns

Using Constraints
UG903 (v2014.1) May 14, 2014

Figure 4-5: Generated Clock Example Three

www.Xilinx.com l Send Feedback I

[get_pins mmcmO/CLKIN] -edges {1 2 3} \

61

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=61

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Example Four: Using Both -divide_by and -multiply_by at the Same Time

The Vivado IDE allows you to specify both -divide_by and -multiply_by at the same time.
This is an extension to standard Synopsys Design Constraints (SDC) support. This is

particularly convenient for manually defining clocks generated by MMCM or PLL instances,
although Xilinx recommends that you let the engine create these constraints automatically.

For more information, see Automatically Derived Clocks.

Consider the mmemo0 cell as in Example Three: Duty Cycle Change and Phase Shift with
-edges and -edge_shift Options above, and assume that it multiplies the frequency of the
master clock by 4/3. The corresponding generated clock definition is:

create_generated_clock -name clk43 -source [get_pins mmcmO0/CLKIN] -multiply by 4 \
-divide_by 3 [get_pins mmcm0/CLKOUT]

If you create a generated clock constraint on the output of an MMCM or PLL, it is better to
verify that the waveform definition matches the configuration of the MMCM or PLL.

Automatically Derived Clocks

Automatically derived clocks are also called auto-generated clocks. Their constraint is
automatically created by the Vivado IDE on the output pins of the Clock Modifying Blocks
(CMB), provided the associated master clock has already been defined. The CMBs are
MMCMYx, PLLx,IBUFDS_GTEZ2, or BUFR primitives, including the PHASER_x ones in the MIG IP.

An auto-generated clock is not created if a user-defined clock (primary or generated) is also
defined on the same netlist object, that is, on the same definition point (net or pin). The
name of the auto-generated clock is based on the name of the net directly connected to the
definition point.

Using Constraints www.xilinx.com Send Feedback 62
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=62

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Automatically Derived Clock Example
The following automatically derived clock example is a clock generated by an MMCM.

The master clock clkin drives the input CLKIN of the MMCME?2 instance c1kip/mmcm0. The
name of the auto-generated clock is cpuClk and its definition point is
clkip/mmcm0/CLKOUT.

clkip REGA Data Path
____________________ 1
| D Q 4@
clkip/mmcmO
BUFG

CLKIN CLKOUT

[
|
[
' A
CLKFBIN CLKFBOUT BUFG |
N |
| | |
|

I
I
I
I
clkin IBUF BUFG |
|
I
I
I
I

| Hierarchical net
________________ — — — — name: clkip/cpuClk
Auto-generated
clock definition
point

Primary clock
source point

Figure 4-6: Auto Generated Clock Example

TIP: Use the get_clocks -of_objects <pin/port/mnet> command to query an
O auto-generated clock without knowing its name. This will make your constraint or script independent
of the clock name changes.

Local Net Names

If the CMB instance is located inside the hierarchy of the design, the local net name (that is,
the name without its parent cell name) is used for the generated clock name.

For example, for a hierarchical net called c1kip/cpuClk:
« The parent cell name is c1lkip.

+ The generated clock name is cpuClk.

Name Conflicts

In case of name conflict between two auto-generated clocks, the Vivado IDE adds unique
suffixes to differentiate them, such as:

« usrclk
« usrclk 1
o usrclk 2

Using Constraints www.xilinx.com Send Feedback 63
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=63

g: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE
To force the name of the generated clocks:

« Choose unique and relevant net names in the RTL, or

 Use create_generated_clock to force the name of the generated clocks.

Renaming Auto-Derived Clocks

It is possible to rename the generated clock that is automatically created by the tool. The
renaming process consists in calling the create_generated_clock command with a
limited number of parameters:

create_generated_clock -name new_name [-source master_pin] [-master_clock
master_clk] source_object

The arguments that must be specified are the new generated clock name and the source
object of the generated clock. The -source and -master parameters must be used only
when more than one clock propagates through the source pin in order to remove any
ambiguity.

ﬁ IMPORTANT: /f any of the ~edges/-edge_shift/-divide_by/-multiply_ by/
-combinational/-duty_cycle/-invert options is passed to the
create_generated_clock command, the generated clock is not renamed. Instead a new
generated clock is created with the specified characteristics.

Limitations

« Auto-derived clocks can only be renamed at the pin where they originate, such as at
the output of the Clock Modifying blocks (PLL, MMCM, ...). For example, an
auto-derived clock cannot be renamed at the output of a BUFG even though it
propagates through it.

« Primary clocks or user-defined generated clocks cannot be renamed. Only auto-derived
clocks can be renamed with this mechanism.

« A generated clock cannot be renamed if any constraint references the generated clock
prior to its definition. This can occur when constraints using clock queries are located
before the auto-derived name constraint:

o get_clocks clockName
o get_clocks -of [get_pin pinName]

o set_clock_groups -asynchronous -group clockName

If some timing constraints do reference the generated clock, the constraints must be
re-organized so that the renaming of the auto-derived clock happens before the clock is
referenced

+ The source_object must match one and only one object

Using Constraints www.xilinx.com Send Feedback 64
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=64

& XILINX

ALL PROGRAMMABLE-

Chapter 4: Defining Clocks

An error is returned if the tool cannot rename the generated clock. The master clock must
also exist at the time the renaming is done.

For example, below is an abstract of report_clocks for the generated clock at the
output pins of an MMCM:

Generated Clock
Master Source
Master Clock
Multiply By
Generated Sources

Generated Clock
Master Source
Master Clock
Multiply By
Generated Sources

Generated Clock
Master Source
Master Clock
Edges

Edge Shifts
Generated Sources

clkfbout_clk_core
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
clk_pin_p

1
{clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKFBOUT}

clk_rx_clk_core
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
clk _pin_p

1
{clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUTO}

clk_tx_clk_core
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
clk _pin_p

{1 2 3}

{0.000 0.500 1.000}

{clk _gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT1}

The three commands below illustrate the command line options that must be specified to
rename the three auto-derived clocks at the output of the MMCM:

create_generated_clock -name clk rx [get_pins
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUTO]
create_generated_clock -name clk_tx [get_pins
clk_gen_i0/clk_core_i0O/inst/mmcm_adv_inst/CLKOUT1]

create_generated_clock -name clkfbout [get_pins
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKFBOUT]

After the renaming, below is the abstract from the report_clocks:

Generated Clock
Master Source
Master Clock
Multiply By
Generated Sources

Generated Clock
Master Source
Master Clock
Multiply By
Generated Sources

Generated Clock
Master Source
Master Clock
Edges

Edge Shifts
Generated Sources

Using Constraints
UG903 (v2014.1) May 14, 2014

clkfbout
clk_gen_i0/clk_core_i0O/inst/mmcm_adv_inst/CLKIN1
clk_pin_p

1
{clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKFBOUT}

clk_rx
clk_gen_i0/clk_core_i0O/inst/mmcm_adv_inst/CLKIN1
clk_pin_p

1
{clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUTO}

clk_tx
clk_gen_i0/clk_core_i0O/inst/mmcm_adv_inst/CLKIN1
clk_pin_p

{1 2 3}

{0.000 0.500 1.000}
{clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT1}

www.Xilinx.com

l Send Feedback I 65

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=65

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Clock Groups

This section discusses Clock Groups and includes:

e About Clock Groups
» Clock Categories
« Asynchronous Clock Groups

« Exclusive Clock Groups

About Clock Groups

The Vivado IDE times the paths between all the clocks in your design by default, unless you
specify otherwise by using clock groups or false path constraints. The set_clock_groups
command disables timing analysis between groups of clocks that you identify, and not
between the clocks within a same group. Unlike with the set_false_path constraint,
timing is ignored on both directions between the clocks.

Use the schematic viewer or the Clock Networks Report to visualize the topology of the
clock trees, and determine which clocks must not be timed together. You can also use the
Clock Interactions Report to review the existing constraints between two clocks, and
determine whether they share the same primary clock -- that is, they have a known phase
relationship -- or identify the clocks with no common period (unexpandable).

C CAUTION! /gnoring timing analysis between two clocks does not mean that the paths between them
will work properly in hardware. In order to prevent metastability, you must verify that these paths have
proper re-synchronization circuitry, or asynchronous data transfer protocols.

Clock Categories
This section discusses the following Clock Categories:

» Synchronous Clocks
* Asynchronous Clocks

« Unexpandable Clocks

Synchronous Clocks

Two clocks are synchronous when their relative phase is predictable. This is usually the case
when their tree originates from the same root in the netlist, and when they have a common
period.

Using Constraints www.xilinx.com Send Feedback 66
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=66

g: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

For example, a generated clock and its master clock that have a period ratio of 2 are
synchronous because they propagate through the same netlist resources up to the
generated clock source point, and have a common period of 2 cycles. They can be safely
timed together.

Asynchronous Clocks
Two clocks are asynchronous when it is impossible to determine their relative phase.

For example, two clocks generated by separate oscillators on the board and entering the
FPGA device by means of different input ports have no known phase relationship. They
must therefore be treated as asynchronous. If they were generated by the same oscillator
on the board, this would not be true.

In most cases, primary clocks can be treated as asynchronous. When associated with their
respective generated clocks, they form asynchronous clock groups.

Unexpandable Clocks

Two clocks are not expandable when the timing engine cannot determine their common
period over 1000 cycles. In this case, the worst setup relationship over the 1000 cycles is
used during timing analysis, but the timing engine cannot ensure this is the most
pessimistic case.

This is typically the case between two clocks with an odd fractional period ratio. For
example, consider two clocks, ¢1k0 and c¢1k1, generated by two MMCMs that share the
same primary clock:

« ¢1k0 has a 5.125ns period.

* clk1 has a 6.666ns period.

Their rising clock edges do not realign within 1000 cycles. The timing engine uses a setup
path requirement of 0.01ns on the timing paths between the two clocks. Even if the two
clocks have a known phase relationship at their clock tree root, their waveforms do not
allow safe timing analysis between them.

As with asynchronous clocks, the slack computation appears normally, but the value cannot
be trusted. For this reason, unexpandable clocks are often assimilated to asynchronous
clocks. Both clock categories must be treated the same way for constraining and
clock-domain crossing circuitry.

Using Constraints www.xilinx.com Send Feedback 67
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=67

g: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Asynchronous Clock Groups

Asynchronous clocks and unexpandable clocks cannot be safely timed. The timing paths
between them can be ignored during analysis by using the set_clock_groups command.

f IMPORTANT: The set_clock_groups command has higher priority over the regular timing
exceptions. If you need to constrain and report some paths between asynchronous clocks, you must use
the timing exceptions only, and not set_clock_groups.

Asynchronous Clock Groups Examples

« The primary clock clk0 is defined on an input port and reaches an MMCM which
generates the clocks usrclk and itfclk.

« A second primary clock clkl is a recovered clock defined on the output of a GTP
instance and reaches a second MMCM which generates the clocks gtclkrx and gtclktx.

Creating Asynchronous Clock Groups

Use the -asynchronous option to create asynchronous groups.

set_clock_groups -name async_clkO_clkl -asynchronous -group {clkO usrclk itfclk} \
-group {clkl gtclkrx gtclktx}

If the name of the generated clocks cannot be predicted in advance, use get_clocks
-include_generated_clocks to dynamically retrieve them. The -include_generated_clocks
option is an SDC extension.

The previous example can also be written as:

set_clock_groups -name async_clkO_clkl -asynchronous \
-group [get_clocks -include_generated_clocks clk0] \
-group [get_clocks -include_generated_clocks clkl]

Exclusive Clock Groups

Some designs have several operation modes that require the use of different clocks. The
selection between the clocks is usually done with a clock multiplexer such as BUFGMUX and
BUFGCTRL, or A LUT.

O RECOMMENDED: Avoid using LUTs in clock trees as much as possible.

Because these cells are combinatorial cells, the Vivado IDE propagates all incoming clocks
to the output. With the Vivado IDE, several timing clocks can exist on a clock tree at the
same time, which is convenient for reporting on all the operation modes at once, but is not
possible in hardware.

Using Constraints www.xilinx.com Send Feedback 68
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=68

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Such clocks are called exclusive clocks. Constrain them as such by using the options of
set_clock_groups:

« -logically_exclusive, or
« -physically_exclusive
Exclusive Clock Groups Example

An MMCM instance generates clk0 and clkl which are connected to the BUFGMUX instance
clkmux. The output of clkmux drives the design clock tree.

By default, the Vivado IDE analyzes paths between clk0 and clkl even though both clocks
share the same clock tree and cannot exist at the same time.

You must enter the following constraint to disable the analysis between the two clocks:

set_clock_groups -name exclusive_clk0O_clkl -physically exclusive \
-group clk0 -group clkl

The following options are equivalent in the context of Xilinx FPGA devices:

« -physically_exclusive

» -logically_exclusive

The physically and logically labels refer to various signal integrity analysis (crosstalk) modes
in ASIC technologies which is not needed for Xilinx FPGA devices.

Clock Latency, Jitter, and Uncertainty

In addition to defining the clock waveforms, you must specify predictable and random
variations related to the operating conditions and environment.

Clock Latency

After propagating on the board and inside the FPGA device, the clock edges arrive at their
destination with a certain delay. This delay is typically represented by:

« The source latency (delay before the clock source point, usually, outside the device)

« The network latency
The delay introduced by the network latency (also called insertion delay) is either:

« Automatically estimated (pre-route design), or

» Accurately computed (post-route design)

Using Constraints www.xilinx.com Send Feedback 69
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=69

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE

Many non-Xilinx timing engines require the SDC command set_propagated_clock to
trigger the computation of propagation delay along the clock trees. The Vivado tool does
not require this command. Instead, it computes the clock propagation delay by default:

« All clocks are considered propagated clocks.

« A generated clock latency includes the insertion delay of its master clock plus its own
network latency.

For Xilinx FPGA devices, use the set_clock_latency command primarily to specify the
clock latency outside the device.

set_clock_latency Example

Minimum source latency value for clock sysClk (for both Slow and Fast corners)
set_clock_latency -source -early 0.2 [get_clocks sysClk]
Maximum source latency value for clock sysClk (for both Slow and Fast corners)
set_clock_latency -source -late 0.5 [get_clocks sysClk]

Clock Uncertainty

Clock Jitter

For ASIC devices, clock jitter is usually represented with the clock uncertainty characteristic.
However, for Xilinx FPGA devices, the jitter properties are predictable. They can be
automatically computed by the timing analysis engine, or be specified separately.

Input Jitter

Input jitter is the difference between successive clock edges with respect to variation from
the nominal or ideal clock arrival times.

Use the set_input_jitter command to specify input jitter for each primary clock
individually. You cannot specify the input jitter on a generated clock directly. The Vivado IDE
timing engine automatically computes the jitter that a generated clock inherits from its
master clock.

» For the case in which the generated clock is driven by a MMCM or a PLL, the input jitter
is replaced with a computed discrete jitter.

« For the case the generated clock is created by a combinatorial or sequential cell, the
generated clock jitter is the same as its master clock jitter.

Using Constraints www.xilinx.com Send Feedback 70
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=70

i: XILINX Chapter 4: Defining Clocks

ALL PROGRAMMABLE
System litter
System jitter is the overall jitter due to:

+ Power supply noise
« Board noise

« Any extra jitter of the system

Use the set_system_jitter command to set only one value for the whole design, that
is, all the clocks.

Additional Clock Uncertainty

Use the set_clock_uncertainty command to define additional clock uncertainty for
different corner, delay, or particular clock relationships as needed. This is a convenient way
to add extra margin to a portion of the design from a timing perspective.

Using Constraints www.xilinx.com Send Feedback 71
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=71

& XILINX

ALL PROGRAMMABLE.

Chapter 5

Constraining 1/0O Delay

About Constraining 1/O Delay

To accurately model the external timing context in your design, you must give timing
information for the input and output ports. Because the Xilinx® Vivado® Integrated Design
Environment (IDE) recognizes timing only within the boundaries of the FPGA device, you
must use the following commands to specify delay values that exist beyond these
boundaries:

« set_input_delay
« set_output_delay

Input Delay

The set_input_delay command specifies the input path delay on an input port relative
to a clock edge at the interface of the design. When considering the application board, this
delay represents the phase difference between:

a. The data propagating from an external chip through the board to an input package
pin of the FPGA device, and

b. The relative reference board clock.
Consequently, the input delay value can be positive or negative, depending on the clock
and data relative phase at the interface of the device.
Using Input Delay Options

Although the -clock option is optional in the Synopsys Design Constraints (SDC)
standard, it is required by the Vivado IDE. The relative clock can be either a design clock or
a virtual clock.

O RECOMMENDED: When using a virtual clock, use the same waveform as the design clock related to the
input ports inside the design. This way, the timing path requirement is realistic. Using a virtual clock is
convenient for modeling different jitter or source latency scenarios without modifying the design clock.

Using Constraints www.xilinx.com Send Feedback 72
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=72

i: XILINX Chapter 5: Constraining 1/0 Delay

ALL PROGRAMMABLE
The Input Delay command options are:

* Min and Max Input Delay Command Options
» Clock Fall Input Delay Command Option
« Add Delay Input Delay Command Option

Min and Max Input Delay Command Options
The -min and -max options specify different values for:

« Min delay analysis (hold/removal)

« Max delay analysis (setup/recovery).

If neither is used, the input delay value applies to both min and max.

Clock Fall Input Delay Command Option

The -clock_£fall option specifies that the input delay constraint applies to timing paths
launched by the falling clock edge of the relative clock. Without this option, the Vivado IDE
assumes only the rising edge of the relative clock.

Do not confuse the -clock_£all option with the -rise and -fall options. These options
refer to the data edge and not to the clock edge.

Add Delay Input Delay Command Option
The -add_delay option must be used if:

* A max (or min) input delay constraint exists, and

« You want to specify a second max (or min) input delay constraint on the same port.

This option is commonly used to constrain an input port relative to more than one clock
edge, as, for example, DDR interfaces.

You can apply an input delay constraint only to input or bi-directional ports, excluding clock
input ports, which are automatically ignored. You cannot apply an input delay constraint to
an internal pin.

Using Constraints www.xilinx.com Send Feedback 73
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=73

i: XILINX Chapter 5: Constraining 1/0 Delay

ALL PROGRAMMABLE

Input Delay Example One

This example defines an input delay relative to a previously defined sysClk for both min
and max analysis.

> create_clock -name sysClk -period 10 [get_ports CLKO]
> set_input_delay -clock sysClk 2 [get_ports DIN]

Input Delay Example Two
This example defines an input delay relative to a previously defined virtual clock.

> create_clock -name clk_port_virt -period 10
> gset_input_delay -clock clk_port_virt 2 [get_ports DIN]

Input Delay Example Three

This example defines a different input delay value for min analysis and max analysis relative
to sysClk.

> create_clock -name sysClk -period 10 [get_ports CLKO]
> set_input_delay -clock sysClk -max 4 [get_ports DIN]
> get_input_delay -clock sysClk -min 1 [get_ports DIN]

Input Delay Example Four
This example specifies input delay value relative to a DDR clock.

> create_clock -name clk_ddr -period 6 [get_ports DDR_CLK_IN]
> set_input_delay -clock clk_ddr -max 2.1 [get_ports DDR_IN]
> set_input_delay -clock clk_ddr -max 9 [get_ports DDR_IN]
> set_input_delay -clock clk_ddr -min 0.9 [get_ports DDR_IN]
> gset_input_delay -clock clk_ddr -min 1 [get_ports DDR_IN]

-clock_fall -add_delay

P O RF N

-clock_fall -add_delay

This example creates constraints from data launched by both rising and falling edges of the
clk_ddr clock outside the device to the data input of the internal flip-flop that is sensitive to
both rising and falling clock edges.

Using Constraints www.xilinx.com Send Feedback 74
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=74

i: XILINX Chapter 5: Constraining 1/0 Delay

ALL PROGRAMMABLE

Output Delay

The set_output_delay command specifies the output path delay of an output port
relative to a clock edge at the interface of the design.

When considering the application board, this delay represents the phase difference between:

a. The data propagating from the output package pin of the FPGA device, through the
board to another device, and

b. The relative reference board clock.

The output delay value can be positive or negative, depending on the clock and data
relative phase outside the FPGA device.

Using Output Delay Options
Although the -clock option is optional in the SDC standard, it is required by Vivado.

The relative clock can either be a design clock or a virtual clock.

O RECOMMENDED: When using a virtual clock, use the same waveform as the design clock related to the
output ports inside the design. This way, the timing path requirement is realistic. Using a virtual clock
is convenient for modeling jitter or source latency scenarios without modifying the design clock.

The Output Delay command options are:

« Min and Max Output Delay Command Options
« Clock Fall Output Delay Command Option
« Add Delay Output Delay Command Option

Min and Max Output Delay Command Options

The -min and -max options specify different values for min delay analysis (hold/removal)
and max delay analysis (setup/recovery). If neither is used, the output delay value applies to
both min and max.

Clock Fall Output Delay Command Option

The -clock_£all option specifies that the output delay constraint applies to timing paths
captured by a falling clock edge of the relative clock. Without this option, the Vivado IDE
assumes only the rising edge of the relative clock (outside the device) by default.

Do not confuse the -clock_£all option with the -rise and -fall options. These
options refer to the data edge, not the clock edge.

Using Constraints www.xilinx.com Send Feedback 75
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=75

i: XILINX Chapter 5: Constraining 1/0 Delay

ALL PROGRAMMABLE

Add Delay Output Delay Command Option
You must use the -add_delay option if:

« A max output delay constraint already exists, and

« You want to specify a second max output delay constraint on the same port.

The same is true for a min output delay constraint. This option is commonly used to
constrain an output port relative to more than one clock edge, as, for example, rising and
falling edges in DDR interfaces, or when the output port is connected to several devices
that use different clocks.

f IMPORTANT: You can apply an output delay constraint only to output or bi-directional ports. You
cannot apply an output delay constraint to an internal pin.

Output Delay Example One

This example defines an output delay relative to a previously defined sysClk for both min
and max analysis.

> create_clock -name sysClk -period 10 [get_ports CLKO]
> set_output_delay -clock sysClk 6 [get_ports DOUT]

Output Delay Example Two
This example defines an output delay relative to a previously defined virtual clock.

> create_clock -name clk_port_virt -period 10
> set_output_delay -clock clk_port_virt 6 [get_ports DOUT]

Output Delay Example Three

This example specifies output delay value relative to a DDR clock with different values for
min (hold) and max (setup) analysis.

> create_clock -name clk _ddr -period 6 [get_ports DDR_CLK_IN]

> set_output_delay -clock clk_ddr -max 2.1 [get_ports DDR_OUT]

> set_output_delay -clock clk_ddr -max 1.9 [get_ports DDR_OUT] -clock_fall
-add_delay

> set_output_delay -clock clk_ddr -min 0.9 [get_ports DDR_OUT]

> set_output_delay -clock clk_ddr -min 1.1 [get_ports DDR_OUT] -clock_fall
-add_delay

This example creates constraints from data launched by both rising and falling edges of the
clk_ddr clock outside the device to the data output of the internal flip-flop sensitive to
both rising and falling clock edges.

Using Constraints www.xilinx.com Send Feedback 76
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=76

& XILINX

ALL PROGRAMMABLEw

Chapter 6

Timing Exceptions

About Timing Exceptions

A timing exception is needed when the logic behaves in a way that is not timed correctly by
default. You must use a timing exception command any time you want the timing handled
differently (for example, for logic that only has the result captured every other clock cycle
by design).

The Xilinx® Vivado® Integrated Design Environment (IDE) supports the timing exceptions
commands shown in Table 6-1, Timing Exceptions Commands.

Table 6-1: Timing Exceptions Commands

Command Function
set_multicycle_path Indicates the number of clock cycles required to
propagate data from the start to the end of a path.
set_false_path Indicates that a logic path in the design should not
be analyzed.
set_max_delay Sets the minimum and maximum path delay value.
set_min_delay This overrides the default setup and hold

constraints with user specified maximum and
minimum delay values.

set_case_analysis Performs timing analysis using logic constants or
logic transitions on ports or pins to restrict the
signals propagated through the design.

Using Constraints www.xilinx.com Send Feedback 77
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=77

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Multicycle Paths

The Multicycle Path constraint allows you to modify the setup and hold relationships
determined by the timer, based on the design clock waveforms. By default, the Vivado IDE
timing engine performs a single-cycle analysis. This analysis can be too restrictive, and can
be inappropriate for certain logic paths.

The most common example is the logical path that requires more than one clock cycle for
the data to stabilize at the endpoint. If the control circuitry of the path startpoint and
endpoint allows it, Xilinx recommends that you use the Multicycle Path constraint to relax
the setup requirement.

The hold requirement may still maintain the original relationship, depending on your intent.
This helps the timing-driven algorithms to focus on other paths that have tighter
requirements and that are challenging. It can also help in reducing runtime.

Setting the Path Multipliers and Clock Edges

The set_multicycle_path command is used to modify the path requirement multipliers
(for setup analysis, hold analysis, or both) with respect to the source clock or the
destination clock.

set_multicycle_path Syntax

The syntax of the set_multicycle_path command with the basic options is:

set_multicycle_path <path_multiplier> [—setup|—hold] [—start|—end]
[-from <startpoints>] [-to <endpoints>] [-through <pins|cells|nets>]

You must specify the <path_multiplier>. The default values used by the timer are:

« 1 for setup analysis (or recovery)

« 0 for hold analysis (or removal)

The hold relationship is tied to the setup relationship. Use the following formula to retrieve
the number of hold cycles for most common cases:

Hold cycles = <setup path multiplier> - 1 - <hold path multiplier>

« By default, the setup path multiplier is defined with respect to the destination clock. To
modify the setup requirement with respect to the source clock, use the -start
option.

« Similarly, the hold path multiplier is defined with respect to the source clock. To modify
the hold requirement with respect to the destination clock, use the -end option.

Note: For a definition of the relevant terms, see Terminology, page 45.

Using Constraints www.xilinx.com Send Feedback 78
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=78

& XILINX

ALL PROGRAMMABLE

)

Chapter 6: Timing Exceptions

IMPORTANT: There are two hold relationships for each setup relationship. (1) The first hold
relationship ensures that the setup launch edge is not captured by the edge arriving before the active
capture edge. (2) The second hold relationship ensures that the edge after the active launch edge is not
captured by the active capture edge. The timing analysis tool calculates both hold relationships but
only the most restrictive is kept during analysis and reporting. See Figure 6-1, Example of Setup and
Hold Relationships for a Path.

launch edge
Source clock I ’L I |\ I U
H N X
| Hold Setup Hold
Relationship 1 Relatiu\nship | Relationship 2
Destination clock | W | e 7 | | |_

: capture edge

Ons 2ns 4ns 6ns 8ns 10ns 12ns

Figure 6-1: Example of Setup and Hold Relationships for a Path

IMPORTANT: The -start and -end options have no apparent effect when applying a Multicycle
Path constraint on paths clocked by the same clock or clocked by two identical clocks (that is, when the
clocks have the same waveform with or without a phase shift).

Table 6-2, Active Launch and Capture Edges, summarizes how the active launch and capture
edges are affected by the -end and -start options.

Table 6-2: Active Launch and Capture Edges
Source Clock (-start) Destination Clock (-end)
Moves the launch edge Moves the capture edge
Setup <---- (backward) ----> (forward) (default)
Hold ----> (forward) (default) <---- (backward)

ﬁ IMPORTANT: The -setup option of the set_multicycle_path command does not only
modify the setup relationship. It also affects the hold relationships which are always tied to the setup
relationships. If the hold relationship is to be restored back to its original position, another
set_multicycle_path specification would be needed with -hold.

Note: A Multicycle constraint can be set on a single path, on multiple paths, or even between two

clocks.

The following sections cover the common Multicycle Path constraint scenarios and illustrate
the impact of the setup and hold multipliers and the -start and -end options on the
timing path requirement.

Using Constraints

www.Xilinx.com

UG903 (v2014.1) May 14, 2014

l Send Feedback I &

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=79

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE-

Multicycles in Single Clock Domain

A Multicycle constraint defined within the same clock domain or between two clocks with
the same waveform (no phase-shift) work the same way. See Figure 6-2, Multicycle
Constraint in Single Clock Domain.

e T

(0
8 __r—\\ DATAPATH) a
i S /
REGISTER REGISTER
- - - — — =
CLK N Cycles CLK
—N T

Figure 6-2: Multicycle Constraint in Single Clock Domain

The default Setup and Hold relationships that are resolved by the Static Timing Analysis
(STA) tool are shown in Figure 6-3, Default Setup and Hold Relationships.

launch edge

S lock

EE L L r
o Hold) \Setup

ock (1) <1 L L rer

capture edge
Ons 2ns 4ns Bns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-3: Default Setup and Hold Relationships

The Setup and Hold timing requirements are:

« Setup check

TDatapath(max) < TCLK(t:Perj.od) - TSetup

« Hold check:

TDatapath(min) > TCLK(t:O) + THold

Using Constraints www.xilinx.com Send Feedback 80
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=80

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Relaxing Setup While Maintaining Hold

Figure 6-4, Registers Enabled Every Two Cycles, shows a path between two flip-flops that
are enabled every two cycles. It is safe to define a Multicycle Path constraint on this path to
indicate that: (1) the first edge of the destination clock is not active; and (2) only the second
edge of the destination clock will capture a new data.

clk[>
| data0_reg | datal_reg
RST RST
- D
enable0_i N R
[Iv] s =L L8]
0 CE
RTL_INV]

RTLREG_SYNC RTL_REG_SYNC RTL_REG_SYNC

Figure 6-4: Registers Enabled Every Two Cycles
The following constraint establishes a new setup relationship:

set_multicycle_path 2 -setup -from [get_pins datalO_reg/C] -to [get_pins datal_reg/D]

Chapter 3, Basics of Timing Checks, describes how the hold relationships are derived from
the setup relationships. When modifying the setup relationship, the hold relationships are
also modified to follow the changes in the setup launch and capture edges.

f IMPORTANT: /f the new hold requirements become too aggressive, it will likely result in difficult timing
closure. It is the your responsibility to relax the hold requirement assuming it is safe for the design.

In the same example as Figure 6-4, Registers Enabled Every Two Cycles, after moving the
setup check to the second capture edge, the hold check is automatically moved to the first
capture edge (that is, one clock period before the setup check).

Using Constraints www.xilinx.com Send Feedback 81
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=81

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Figure 6-5, MultiCycle Path: Relaxing Setup Only, shows how both the setup and hold
relationships have changed when only the setup path multiplier has been defined with the
Multicycle Path constraint.

BEFORE
launch edge

Source clockﬁ }\ - l I | | I |_

| Hold \l\'\Setup | Hold

Destination clock | * | | | | | |_

| capture edge
[

Clock Enable |: | | | |_

AFTER
launch edge

Source dlock Qf\]‘ ~ [J | | [’_

N Hold --SetuS\\HDId

N .t
Destination clock \"| | \"’* | | | ’_
I

capture edge

Clock Enable i | |_

Ons 2ns 4ns bns 8ns 10ns 12ns

Figure 6-5: MultiCycle Path: Relaxing Setup Only

Holding the data in the data0_reg for one cycle is not needed for this path to be
functional due to the clock enable. In this case, Xilinx recommends changing the hold
relationship back to the original, which is between the same launch and capture edges. To
do so, you must add a second Multicycle Path constraint that modifies the hold check only:

set_multicycle_path 1 -hold -end -from [get_pins dataO_reg/C] \
-to [get_pins datal_reg/D]

The -end option is used with set_multicycle -hold command because the edges of
the capture clock must be moved backward.

Note: Because the launch and capture clocks have the same waveforms, the -end option is
optional. Moving the capture edges backward result in the same hold relationship as moving the
launch edges forward. To simplify the expressions, the -~end option has been removed from the next
two examples.

Using Constraints www.xilinx.com Send Feedback 82
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=82

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE-

Figure 6-6, Multicycle Path: Relaxing Setup and Hold, shows the updated setup and hold
relationships after applying both Multicycle Path constraints.

launch edge

Source clock /1 | | | |

| X
{Hold) Hold Setup

L
Destination clock - I \] I* I | I_[_
|_

: capture edge

Clock Enable | | | | |

Ons 2ns 4ns 6ns B8ns 10ns 12ns

Figure 6-6: Multicycle Path: Relaxing Setup and Hold

To summarize this example, the following constraints are necessary to properly define a
multicycle path of two (2) between data0_reg/C and datal_reg/D:

set_multicycle_path 2 -setup -from [get_pins datalO_reg/C] -to [get_pins datal_reg/D]
set_multicycle_path 1 -hold -from [get_pins datalO_reg/C] -to [get_pins datal_reg/D]

For a multicycle with a setup multiplier of four (4), the constraints are:

set_multicycle_path 4 -setup -from [get_pins datalO_reg/C] -to [get_pins datal_reg/D]
set_multicycle_path 3 -hold -from [get_pins dataO_reg/C] -to [get_pins datal_reg/D]

launch edge

L I LTI

Source clock

N
:Hdd}

Destination clock > | \l |

[capture edge
[

Clock Enable [| | [

Ons 2ns 4ns 6ns 8ns 10ns 12ns

Figure 6-7: Multicycle Path with Setup Multiplier of Four (4)
Moving the Setup
The following examples show the results of moving the setup:

+ Example One: Setup=5 / Hold Moved Accordingly
+ Example Two: Setup=5 / Hold=4

Using Constraints www.xilinx.com Send Feedback 83
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=83

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Example One: Setup=5 / Hold Moved Accordingly

Let's assume that the setup path multiplier is set to five (5). Because the hold path multiplier
is not specified, the hold relationship is derived from the setup launch and capture edges:

set_multicycle_path 5 -setup -from [get_pins datalO_reg/C] -to [get_pins datal_reg/D]

By default, the setup multiplier is applied against the capture clock. This results in moving
the edge on the capture clock forward. The setup capture edge comes after five clock
periods instead of just one. Because no hold multiplier has been specified, the edge of the
capture clock used for the hold check stays the edge that arrives one cycle before the active
edge used for the setup check.

The edges on the launch clock do not change for the setup and hold relationships.

launch edge
Source clock
(CLKI)WSEN | | | | | |_
N Hold P
Destination r‘=| — = —]
clock (CLKZ)—I_| | = | I

: capture edge
|

Clock Enable —l !

Ons 2ns 4ns 6ns B8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-8: Setup=5, Hold Moved Accordingly

With a four-cycle hold requirement, the timing-driven implementation tools usually have to
insert a large amount of delay in the datapath in order to meet hold timing in both Slow and
Fast timing corners. This results in unnecessary area and power consumption. For this
reason, it is important to relax the hold requirement when possible.

In this example design, the clock enable signal provides the safety to not have to hold the
data in the data0_reg for four cycles without risking metastability. Example Two: Setup=5
/ Hold=4 describes how the hold requirement can be relaxed.

Example Two: Setup=>5 / Hold=4

This example assumes that the following are defined:
« A setup multiplier of five (5)
« A hold multiplier of four (4) (that is, 5-1)

This corresponds to a transfer between two sequential cells when a new data is launched
and captured every five (5) cycles.

set_multicycle_path 5 -setup -from [get_pins datalO_reg/C] -to [get_pins datal_reg/D]
set_multicycle_path 4 -hold -from [get_pins datalO_reg/C] -to [get_pins datal_reg/D]

Using Constraints www.xilinx.com Send Feedback 84
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=84

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

By default, the setup multiplier is applied against the destination clock, which in this case
results in moving the capture edge forward to the fifth cycle instead of the first cycle.
Accordingly, by default, the hold check follows the setup check.

On specifying the second command, the hold multiplier is applied against the source clock,
which in this case results in moving the launch edge forward to the fourth cycle.

launch edge

Source clock L L~ 1T 1T
(CLK1) Setup

1
Destination '
clock (CLKZ)—'. | | | | | l

capture edge

Clock Enable_] | | [|

Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-9: Setup=5, Hold=4

Because both source and destination clocks have the same waveforms, and are
phase-aligned, Figure 6-9, Setup=5, Hold=4, is equivalent to Figure 6-10, Setup=5, Hold=4.

launch edge
Source clock | | | | I ‘ I [
S~
CLK1
(CLK1) "\ Hold
Destination _"4 ’] 1 | [

clock (CLK2) : capture edge
|

Clock Enable _| L | |

Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-10: Setup=5, Hold=4

f IMPORTANT: /n general, within a clock domain or between two clocks with the same waveform, when
a setup multiplier of N is defined, define a hold multiplier of N-1 (most common case) as shown below:

set_multicycle_path N -setup -from [get_pins dataO_reg/C] -to [get_pins datal_reg/D]
set_multicycle_path N-1 -hold -from [get_pins dataO_reg/C] -to [get_pins datal_reg/D]

Using Constraints www.xilinx.com Send Feedback 85
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=85

& XILINX

Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Multicycle Paths and Clock Phase-Shift

Sometimes a timing constraint must be defined between two clock domains that have: (1)
the same clock period; but (2) a phase-shift between the two clocks. In those cases, it is
critical to understand the default setup and hold relationships used by the timing engine. If
not carefully adjusted, the phase-shift between two clocks might result in over constraining
the logic between the two clock domains.

P -
{ Y
4
aQ +iﬁ . DATAPATH | /} . Q
\‘ﬂ—-__/u__r-f’
REGISTER REGISTER
CLK1 CLK2
-1/ — |4
Figure 6-11: Multicycle Paths and Clock Phase-Shift

For example, assume that: (1) the two clocks CLK1 and CLK2 have the same waveform; and
(2) CLK2 is shifted by +0.3ns.

The setup relationship is calculated by the timing engine by: (1) looking at all the edges on
both waveforms; and (2) selecting the two edges on the launch and capture clocks that
result in the stricter constraint.

Because of the clocks phase-shift, the setup and hold relationships used by the timing
engine might not be those expected. See Figure 6-12, Default Scenario of Phase-Shift
Without Multicycle Path.

launch edge
I
Source clock A
edok [[T A L LT LI LT
Hold\ |/ Setup
2 I
Destination [] ¥ [L[L[LT
clock (CLK2) ' capture edge
-8ns -6ns -4ns -2ns Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns
Figure 6-12: Default Scenario of Phase-Shift Without Multicycle Path

Using Constraints www.xilinx.com

UG903 (v2014.1) May 14, 2014

l Send Feedback I

86

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=86

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

In this example, the setup constraint due to the phase-shift is 0.3ns. This makes it almost
impossible to achieve timing closure. On the other hand, the hold check is -3.7ns, which is
too lenient.

The setup and hold edges must be adjusted to match your intent. This is done by adding a
Multicycle constraint with a setup multiplier of two (2):

set_multicycle_path 2 -setup -from [get_clocks CLK1l] -to [get_clocks CLK2]

This results in moving the capture edge for the setup requirement forward by one cycle. The
default edge for the hold is derived from the setup requirement. It does not need to be

specified.
launch edge

|

Source clock I | I |

(CLK1) l | thﬁ{ l | I |]

:Hold Setup
|

Destination | | | | | | | | | i

clock (CLK2)] capture edge

-8ns -6ns -4ns -2ns Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns

Figure 6-13: Default Scenario of Positive Phase-Shift: Setup 2 (-end), Hold Moved Accordingly

In the case of negative phase-shift, as shown in Figure 6-14, between the two clock
domains, the launch and capture edges used for the setup and hold checks are similar to
those from the previous section (single clock domain, no phase-shift).

launch edge

Source clock I I I/ | | I | | I I |_

(CLK1)
Setup

L ¥ LI LI LTI

capture edge
2ns 4ns bns 8ns 10ns 12ns 14ns 16ns

Hold
s ™Y
Destination
clock (CLKZ)—I_| I I ‘I

8ns -6ns -4ns -2ns On

|
|
|
|
|
|
|
|
S

Figure 6-14: Default Scenario of Negative Phase-Shift

For a negative phase-shift, a Multicycle constraint is typically not needed to
counter-balance the effect of the phase-shift. An exception occurs if the phase-shift is so
large that the clock launch or capture edges must be adjusted to keep realistic setup and
hold requirements.

Using Constraints www.xilinx.com Send Feedback 87
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=87

& XILINX

ALL PROGRAMMABLE

Chapter 6: Timing Exceptions

Multicycles Between SLOW-to-FAST Clocks

In this scenario, the launch clock CLK1 is the slow clock; the capture clock CLK2 is the fast
clock. See Figure 6-15, Multicycles Between SLOW-to-FAST Clocks.

o DATAPATH o
REGISTER | - ———————————————_ > REGISTER

CLKl N Cycles CLK?2

{SLOW [FAST)

Figure 6-15: Multicycles Between SLOW-to-FAST Clocks

For example, assume that: (1) CLK2 is three times the frequency of CLK1; and (2) a clock
enable signal on the receiving registers allows a Multicycle constraint to be set between
both clocks. See Figure 6-16, Multicycles Between SLOW-to-FAST Clocks.

Source clock l | I
(CLK1) |

| [

I
I
Destination
e L L L L s

Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-16: Multicycles Between SLOW-to-FAST Clocks

The setup and hold relationships that are resolved by the STA tool when no multicycle is
applied are shown in Figure 6-17, Default Setup and Hold Relationships.

launch edge
Source clock J
Hold)) "\ Setup
Destetor 1 A N s O e Oy O

clock (CLK2)—

capture edge
Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-17: Default Setup and Hold Relationships

Using Constraints www.xilinx.com

Send Feedback 88
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=88

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Example One: Setup=3 / Hold Moved Accordingly

For example, assume that only a setup multiplier of three (3) is defined.
set_multicycle_path 3 -setup -from [get_clocks CLK1] -to [get_clocks CLK2]

The consequence of the setup multiplier is to move the edge of the capture clock used for
setup check forward by two (2) cycles (that is, 3-1 cycles). Because no hold multiplier has
been specified, the hold relationship is derived by the tool from the setup launch and
capture edges. The launch clock active edge is not modified by the Multicycle constraint.

The setup and hold relationships after the multicycle are shown in Figure 6-18, Setup=3,
Hold Moved Accordingly.

capture edge

launch edge
Source clock A | | | |_
(CLK1) |
.QOH Setup
Destination '
clock(CLKZ)! el G I D SRR N N S N A
1

Clock Enable |—‘ |—|
(CLK2) "_\—

Ons 2ns 4dns gns Bns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-18: Setup=3, Hold Moved Accordingly

There is no need to hold the data in the launch registers for one cycle of CLK2 for this path
to be functional. Doing so adds unnecessary logic, which increases area and consumes
power.

Because the receiving registers have a clock enable signal, it is safe to relax the hold
requirement without risks of metastability.

Using Constraints www.xilinx.com Send Feedback 89
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=89

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Example Two: Setup=3 / Hold=2 (-end)

To relax the hold requirement for the previous example, the capture clock edge for the hold
relationship must be moved backward by two (2) clock cycles. This is done by specifying the
-end option with the set_multicycle_path -hold command:

set_multicycle_path 3 -setup -from [get_clocks CLK1l] -to [get_clocks CLK2]
set_multicycle_path 2 -hold -end -from [get_clocks CLK1l] -to [get_clocks CLK2]

TIP: /f —end is not specified with set_multicycle_path -hold, then the launch clock edge is
O instead moved forward. This does not result in the intended hold requirement.

As in the Example One: Setup=3 / Hold Moved Accordingly, the setup multiplier moves the
edge of the capture clock used for setup check forward by two (2) cycles (that is, 3-1 cycles).

The setup and hold relationships after the two Multicycle constraints are shown in
Figure 6-19, Setup=3, Hold=2 (-end).

launch edge
Sourceclock p——— 1T
(CLKL)™ 7 Setup
' "Hold
Destination 1 [| [[| [L[1T
clock (CLK2) capture edge
|
Clock Enable | |
(CLK2) .

Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-19: Setup=3, Hold=2 (-end)

ﬁ IMPORTANT: For a SLOW-to-FAST clock domain crossing, when a setup multiplier of N is defined,
define a hold multiplier of N-1 against the capture clock (-end) (most common case) as shown in the
following code example:

set_multicycle_path N -setup -from [get_clocks CLK1] -to [get_clocks CLK2]
set_multicycle_path N-1 -hold -end -from [get_clocks CLK1l] -to [get_clocks CLK2]

Using Constraints www.xilinx.com Send Feedback 0
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=90

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Multicycles Between FAST-to-SLOW Clocks

In the following scenario, the launch clock CLK1 is the fast clock and the capture clock CLK2
is the slow clock. See Figure 6-20, Multicycles Between FAST-to-SLOW Clocks.

@ DATAPATH @
REGISTER | - —-———————————————— - REGISTER

LKL N Cycles CLK2

(FAST]] (SLCW]

Figure 6-20: Multicycles Between FAST-to-SLOW Clocks

In the next example, the launch clock CLK1 is the fast clock. The capture clock CLK2 is the
slow clock. Assume that CLK1 is three (3) times the frequency of CLK2. See Figure 6-21,
Multicycles Between FAST-to-SLOW Clocks.

Source clock |

(CLK1)—] 0 1] [
Destination _!—|—‘—|—|—
clock (CLK2) .

Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-21: Multicycles Between FAST-to-SLOW Clocks

The setup and hold relationships that are resolved by the STA tool when no multicycle is
applied are shown in Figure 6-22, Default Setup and Hold Relationships.

, launch ed
Source clock | | | ity
(CLK1)'—|’
|
Destination
clock (CLK2) : capture edge

Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-22: Default Setup and Hold Relationships

Using Constraints www.xilinx.com Send Feedback 91
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=91

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Example: Setup=3 (-start) / Hold=2

Assume that: (1) a setup multiplier of three (3) is defined against the launch clock (-start)
and; (2) a hold multiplier of one (1) is defined.

set_multicycle_path 3 -setup -start -from [get_clocks CLK1l] -to [get_clocks CLK2]
set_multicycle_path 2 -hold -from [get_clocks CLK1] -to [get_clocks CLK2]

The consequence of the defining the setup multiplier against the launch clock (-start) is
to move the edge of the launch clock used for setup check backward by two (2) cycles (that
is, 3-1 cycles). However, because a hold multiplier is defined against the launch clock
(default -start option with -hold) the edge of the launch clock that is used for the hold
relationship is moved forward by two (2) cycles.

For both setup and hold checks, the capture clock edge does not change. See Figure 6-23,
Setup=3 (-start), Hold=2.

launch edge

Source clock
(CLK1)

Destination
clock (CLK2)— capture edge
Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Figure 6-23: Setup=3 (-start), Hold=2

i? IMPORTANT: for a FAST-to-SLOW clock domain crossing, define a setup multiplier of N against the
launch clock (-start) with a hold multiplier of N-1 (most common case). See the following example:

set_multicycle_path N -setup -start -from [get_clocks CLK1] -to [get_clocks CLK2]
set_multicycle_path N-1 -hold -from [get_clocks CLK1l] -to [get_clocks CLK2]

Table 6-3 summarizes the previous results.

Table 6-3: To define a multicycle path with a Setup of N ...

Scenario Multicycle Constraints
Same clock domain or between set_multicycle_path N -setup -from CLK1 -to CLK2
synchronous clock domains with same set_multicycle_path N-1 -hold -from CLK1 -to CLK2

period and no phase-shift

Between SLOW-to FAST synchronous clock | set_multicycle_path N -setup -from CLK1 -to CLK2
domains set_multicycle_path N-1 -hold -end -from CLK1 -to CLK2

Between FAST-to SLOW synchronous clock | set_multicycle_path N -setup -start -from CLK1 -to CLK2
domains set_multicycle_path N-1 -hold -from CLK1 -to CLK2

Note: The get_clocks command has been omitted in Table 6-3 to simplify the expressions.

Using Constraints www.xilinx.com Send Feedback 92
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=92

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

False Paths

A false path is a path that topologically exists in the design but either: (1) is not functional;
or (2) does not need to be timed. Consequently, the false paths should be ignored during
timing analysis.

Examples of false paths include:

» Clock domain crossings in which double synchronizer logic has been added
« Registers that might be written once at power up
* Reset or test logic

« Ignore paths between the write and asynchronous read clocks of an asynchronous
distributed RAM (when applicable)

Figure 6-24, Non-Functional Path Example, shows an example of a non-functional path. Because
both multiplexers are driven by the same select signal, the path from Q to D does not exist,
and should be defined as a false path.

Qf >0 0 D
REGISTER MUX MUX REGISTER

Figure 6-24: Non-Functional Path Example

TIP: Use a Multicycle constraint in place of a False Path constraint when: (1) your intent is only to relax
O the timing requirements on a synchronous path; but (2) the path still must be timed, verified and
optimized.

Using Constraints www.xilinx.com Send Feedback 93
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=93

g: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE
Reasons to remove false paths from the timing analysis include:
« Decrease Runtime

When false paths have been removed from the timing analysis, the tool does not need
to time or optimize those non-functional paths. Having non-functional paths visible to
the timing and optimization engines can result in a large runtime penalty.

« Enhance Quality of Results (QOR)

Removing false paths can greatly enhance the Quality of Results (QOR). The quality of
the synthesized, placed, and optimized design is greatly impacted by the timing issues
that the tool tries to solve.

If some non-functional paths have timing violations, the tool might try to fix those paths
instead of working on the real functional paths. Not only might the design unnecessarily
increase in size (such as logic cloning), but the tool might skip fixing real issues because
non-functional paths have larger violations that overshadow other real violations. The

best results are always achieved with a realistic set of constraints.

False paths are defined inside the tool with the Xilinx Design Constraints (XDC) command
set_false_path:

set_false_path [-setup] [-hold] [-from <node_list>] [-to <node_list>] \
[-through <node_list>]

There are additional options to the command to fine tune the path specification. For
detailed information about all supported command line options, see the Vivado Design
Suite Tcl Command Reference Guide (UG835) [Ref 6].

« The list of nodes for the -from option should be a list of valid startpoints. A valid
startpoint is a clock object, a clock pin of a sequential element, or an input (or inout)
primary port. Multiple elements can be provided.

« Thelist of nodes for the -to option should be a list of valid endpoints. A valid endpoint
is a clock object, an output (or inout) primary port of a sequential element input data
pin. Multiple elements can be provided.

« The list of nodes for the -~through option should be a list of valid pins or ports.
Multiple elements can be provided.

& CAUTION! Be careful when using -through option without -£xrom and -to because it removes
from timing analysis any path going through this list of pins or ports. Be especially careful when the
timing constraints are designed for an IP or a sub-block, but then used in a different context or a larger
project. Many more paths than expected could be removed when -through is used alone.

Using Constraints www.xilinx.com Send Feedback 94
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=94

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE
The order of the -through option is important. See the following examples.

For example, the following two commands are different:

set_false_path -through celll/pinl -through cell2/pin2
set_false_path -through cell2/pin2 -through celll/pinl

The following example removes the timing paths from the reset port to all the registers:
set_false_path -from [get_port reset] -to [all_registers]

The following example disables the timing paths between two asynchronous clock domains
(for example, from clock CLKA to clock CLKB):

set_false_path -from [get_clocks CLKA] -to [get_clocks CLKB]

The previous example disables the paths from clock CLKA to clock CLKB. Paths from clock
CLKB to clock CLKA are not disabled. Accordingly, disabling all the paths between the two
clock domains in either direction requires two set_false_path commands:

set_false_path -from [get_clocks CLKA] -to [get_clocks CLKB]
set_false_path -from [get_clocks CLKB] -to [get_clocks CLKA]

f IMPORTANT: Although the previous two set_false_path examples perform what is intended, when two
or more clock domains are asynchronous and the paths between those clock domains should be
disabled in either direction, Xilinx recommends using the set_clock_groups command instead:

set_clock_groups -group CLKA -group CLKB

In the non-functional path example shown in Figure 6-24, Non-Functional Path Example, the
false path can be set using the -through option instead of using the -from or -to option.
See Figure 6-25, Non-Functional Path Example.

Q »al al D
REGISTER MUX1 —— MUX2 REGISTER

al L__,al

Figure 6-25: Non-Functional Path Example

This ensures that all the paths going through the path shown above are selected without
needing to find specific patterns for the startpoints and endpoints.
set_false_path -through [get_pins MUX1/a0] -through [get_pins MUX2/al]

Note: The order of the ~through option is important. In the above example, the order ensures
that the false paths go through pin MUX1 /a0 first and then pin MUX2/al.

Using Constraints www.xilinx.com Send Feedback 95
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=95

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Another common example is with asynchronous dual-ports distributed RAM. The write
operations are synchronous to the clock RAM but the read operations can be asynchronous
when permitted by the design. In this case, it is safe to false paths the timing paths between
the write and the read clocks.

There are two ways to do this:

« Define a false path from the write registers before the RAM to the registers after the
RAM receiving the read clock:

set_false_path -from [get_cells <write_registers>] -to [get_cells <read_registers>]
On the Vivado example project WAVE (HDL):

set_false_path -from [get_cells -hier -filter {NAME =~
*gntv_or_sync_fifo.gl0.wr*reg[*]}] -to [get_cells -hier -filter {NAME=~
*gntv_or_sync_fifo.mem*gprl.dout_i_regl[*]}]

« Define a false path starting from the pin WE of the RAM

set_false_path -from [get_cells -hier -filter {REF_NAME =~ RAM* && IS_SEQUENTIAL &&
NAME =~ <PATTERN_FOR_DISTRIBUTED_RAMS>}]

On the Vivado example project WAVE (HDL):

set_false_path -from [get_cells -hier -filter {REF_NAME =~ RAM* && IS_SEQUENTIAL &&
NAME =~ *char_fifo*}]

Figure 6-26 illustrates the way the distributed RAM is driven in the WAVE (HDL) example
project.

char_fifo_i0

o

et o

1k H
inst_fifo_gen /geonviifo.rf /grf.rfjgntv_or_syne_fifo.gl0.rd/rpntrfge0.count_d1_reg[0] inst_fifo_gen/geonviifo.rf /grl.if Jgntv_or_syne_fife.mem) gdm.dm/RAM_reg_0_31_0_5

S
e RAMC D1
- o

o i
o ADDRC[42 it ifist_fifo_ger/geanviifo.if fgrf.of /gntv_or_sync_fifo.mem/gdm.dm/gprl.dout i regls]
FDCE i

ranR1 [
ranez —e
ranes —FiR
rADRA
WADRD
WADRL
AnR2
WADRS
WADRA

inst_fifo_gen/gconvfifo.rflgrf.iffantv_or_sync_fifa.glO.wr vpntr/gic0.gc.count_d 2_reg[0

—c
e
iR
b

FDCE

=) EE—

fifo_generator_v10_0_2

ehar o _=debup__1

Figure 6-26: Distributed RAM Driven in the WAVE Example Project

Using Constraints www.xilinx.com Send Feedback 96
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=96

g: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Min/Max Delays

You can override a maximum delay or a minimum delay for a path:

« Use the Maximum Delay constraint to override the default setup (or recovery)
requirement on a path.

« Use the Minimum Delay constraint to override the default hold (or removal)
requirement.

Setting Maximum Delay and Minimum Delay Constraints

The Maximum Delay constraint and the Minimum Delay constraint are set by two different
XDC commands. These commands accept similar options.

Maximum Delay Constraint Syntax

set_max_delay <delay> [-datapath_only] [-from <node_list>]
[-to <node_list>] [-through <node_list>]

Minimum Delay Constraint Syntax

set_min_delay <delay> [-from <node_list>]
[-to <node_list>] [-through <node_list>]

Additional command options are available to fine tune the path specification. For more
information about the supported command line options, see the Vivado Design Suite Tcl
Command Reference Guide (UG835) [Ref 6].

List of Nodes for the -from Option

« The list of nodes for the -from option should preferably be a list of valid startpoints. A
valid startpoint is a clock, an input (or inout) port, or the clock pin of a sequential
element, such as a register or a RAM.Using a node that is not a valid startpoint results
in path segmentation. The path segmentation is covered in the next section.

« Multiple elements can be provided.

List of Nodes for the -to Option
« The list of nodes for the -to option should preferably be a list of valid endpoints. A
valid endpoint is a clock, an output (or inout) port or the data pin of a sequential cell.

« Using a node that is not a valid endpoint results in path segmentation. For more
information, see Path Segmentation, page 100.

« Multiple elements can be provided.

Using Constraints www.xilinx.com Send Feedback 97
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=97

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

List of Nodes for the -through Option

« The list of nodes for the -through option should be a list of valid pins, ports, or nets.

« Multiple elements can be provided.
By default, the timing engine includes the clock skew inside the slack computation.

The -datapath_only option can be used to remove the clock skew from the slack
computation. The -datapath_only option is supported only by the set_max_delay
command, and requires the -from option.

Table 6-4, Differences Between Max Delay Constraint With and Without -datapath_only,
summarizes the impact of ~-datapath_only in the behavior of set_max_delay

constraint.

The common behavior for the path delay calculation of set_max_delay with or without
-datapath_onlyis:

« Input delay is included in the path delay calculation when the path starts on an input
port and that a set_input_delay has been specified on the port

« Output delay is included in the path delay calculation when the path ends on an output
port and that a set_output_delay has been specified on the port

« The data pin setup time is included in the path delay calculation when the path ends on
the data pin of a sequential element.

Table 6-4: Differences Between Max Delay Constraint With and Without -datapath_only

set_max_delay set_max_delay -datapath_only

Path delay calculation Skew included when the constraint starts | Skew never included.
on the clock pin of a sequential element
or ends on the data pin of a sequential

element.
Hold Requirement Untouched False-ed path
-from Option Optional Mandatory

Using Constraints www.xilinx.com Send Feedback 98
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=98

g: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Consequences of Setting Maximum Delay or Minimum Delay Constraints on a
Path

Setting a Maximum Delay constraint on a path, when -datapath_only option is not used,
does not modify the minimum requirement on that path. The hold (or removal) check on
that path remains the default one.

Note: Using the —-datapath_only option with set_max_delay results in the hold
requirement being false-ed path on that/those path(s) (some internal set_false_path -hold constraints
are generated).

Similarly, setting a Minimum Delay constraint on a path does not modify the default setup
(or recovery) check.

If a path has only, for example, a max delay requirement, the path can be constrained with
a combination of set_max_delay and set_false_path commands. See the following
example:

set_max_delay 5 -from [get_pins FD1/C] -to [get_pins FD2/D]
set_false_path -hold -from [get_pins FD1/C] -to [get_pins FD2/D]

The above example sets a 5ns setup requirement for the path starting on Fpi1/¢ and ending
on FD2/D. There is no minimum requirement due to the set_false_path command.

Constraining Input or Output Logic

The set_max_delay command and the set_min_delay command are not typically used
to constrain the input or output logic. The input logic between the input ports and the first
level of registers is typically constrained with the set_input_delay command. This
command provides the option to associate a clock with the input ports.

For the same reason, the output logic between the last level of registers and the output
ports is typically constrained with the set_output_delay command. However, the
set_max_delay command and the set_min_delay command are typically used to
constrain pure combinational path between primary input ports and primary output port
(in-to-out I/O paths).

Using Constraints www.xilinx.com Send Feedback 929
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=99

g: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Constraining Asynchronous Signals

The set_max_delay command can also be used to constrain asynchronous signals that:
(1) do not have a clock relationship; but which (2) require maximum delay.

For example, timing paths between two asynchronous clock domains can be disabled with
the set_clock_groups command (recommended) or the set_false_path command

(not recommended). This assumes that you have properly designed the inter-clock domains
with, for instance, a double registers synchronizer or a FIFO. However, you must still ensure
that the path delay between the two clock domains is not unnecessarily high.

If a maximum delay must be specified for some or for all the paths between two clock
domains, then you must use the command set_max_delay -datapath_only to
constrain those paths. In this case, set_clock_groups cannot be used to define the two
clock domains as asynchronous, as it supersedes the set_max_delay constraint in terms
of constraint priority. Other cross clock domains paths must then be constrained with a
combination of set_false_path or set_max_delay constraints.

See the following example:

set_max delay <delay> -datapath only -from
<startpoints_ source_clock_domain> \
-to <endpoints_destination_clock domain>

Path Segmentation

Unlike other XDC constraints, the set_max_delay command and the set_min_delay
command can accept, in the case of -from and -to options, a list of invalid startpoints or
endpoints respectively.

When an invalid startpoint is specified, the timing engine breaks the timing arcs going
through the node so that the node does become a valid startpoint.

In the following example, the only valid startpoint is FpD1/C:

set_max_delay 5 -from [get_pins FD1/C]

Figure 6-27: Original Timing Arc

Using Constraints www.xilinx.com Send Feedback 100
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=100

i: X”_INX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE-

If the constraint is applied to FD1/Q, the timing engine breaks the timing arc c->Q to make
the pin Q a valid startpoint:

set_max_delay 5 -from [get_pins FD1/Q]

D /,,Q[:I

/

[

F |
/
|

X

-
AN,

Figure 6-28: Timing Arc Broken after Path Segmentation

The process of breaking a timing arc to create a valid startpoint is called path segmentation.
Path segmentation affects both max and min delay analysis. Because the timing arc is
broken for the timing engine, path segmentation also affects any timing constraint going
through those nodes (FD1/C and FD1/Q).

Note: Because of Path Segmentation, no clock insertion delay is used for the launch clock for paths
starting from FD1/Q. This can potentially result in large skew because the clock skew of the endpoints
is still taken into account. See Figure 6-29, Path Segmentation Result in Large Skew.

FD1

LUTA LUTB
10 FD2

T, —

I2

clock insertion delay

Figure 6-29: Path Segmentation Result in Large Skew

Q CAUTION! Path segmentation can have unexpected consequences. Avoid path segmentation
altogether, or use it very carefully.

After path segmentation, there is no default hold requirement on the path. Assuming the

-datapath_only option has not been specified, use the set_min_delay command to set a
hold requirement on the path if necessary.

Because of the risks, a critical warning is issued when a path segmentation occurs.

Using Constraints www.xilinx.com Send Feedback 101
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=101

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE-

If you targeted the output FD1/Q as the startpoint in order to avoid taking the clock skew
into account, Xilinx recommends using the -datapath_only option. Instead, see the
following example:

set_max_delay 5 -from [get_pins FD1/C] -datapath_only

In the same way, when an invalid endpoint is specified, the timing engine breaks the timing
arcs after the node so that the node does become a valid endpoint.

In the following example, the max delay is specified on LUTA/0O, which is not a valid
endpoint:

set_max_delay 5 -from [get_pins LUTA/O]

This is shown in Figure 6-30.

REGA LUTA LUTB
D T 10 REGB

. +—p. Q

' 12 12 \

BUFG X

_\/‘ A
5 3¢ >

Figure 6-30: Path Segmentation When an Invalid Endpoint is Specified

To make LUTA/0 an endpoint, the timing arc after LUTA/0 is broken. As a result, all timing
paths going through LUTA/0 are impacted for both setup and hold. For the path starting
on REGA/C and ending on LUTA/O, only the insertion delay of the launch clock is taken into
account. This can result in very large skew.

Because path segmentation breaks timing arcs in the design, it can have unexpected
consequences. The broken timing arcs impact all the timing paths going through those
nodes.

In the following example, a max delay has been set between LUTA/0 and REGB/D:
set_max_delay 6 -from [get_pins LUTA/O] -to [get_pins REGB/D]

This is shown in Figure 6-31.

Using Constraints www.xilinx.com Send Feedback 102
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=102

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE-

LUTC

--------- Broken Paths REGC
. 10
--------- Constrained Paths n .o Q
i
A\
LUTB |
mem— REGB
it - --o1—2D Q
12

surG 4 Segmentation »]\

Figure 6-31: Path Segmentation Breaking Multiple Paths

Because the pin LUTA/0 is not a valid startpoint: (1) a path segmentation occurs; and (2)
the timing arcs from LUTA/I* and LUTA/O are disabled. Even though the set_max_delay
constraint was set between LUTA/0 and REGB/D only, other paths such as the path
between REGA/C and REGC/D are also broken.

Path Segmentation and Timing Exception

Path segmentation can result in the perception that the priority between the timing
exceptions is altered, which is actually not the case.

There can be a difference on whether a set_max_delay constraint is superseded by a
set_clock_groups constraint. Consider the following two scenarios.

Scenario 1
set_max_delay <ns> -datapath_only -from <instance> -to <instance>

In this scenario, instance names are provided for -from/-to. The set_max_delay
constraint is always overridden by set_clock_groups -asynchronous, because
Vivado always selects valid startpoints when an instance is provided.

Scenario 2
set_max_delay <ns> -datapath_only -from <pin> -to <pin | instance>

In this scenario, if the pin name provided with -from results in path segmentation, then
that particular set_max_delay constraint is not overriden by set_clock_groups
-asynchronous. The reason behind is that the path segmentation forces the path starting
on the pin name to no longer being considered launched by the first clock domain. As a
result, this path is no longer covered by the set_clock_groups constraints and the
set_max_delay constraint get applied.

Using Constraints www.xilinx.com Send Feedback 103
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=103

i: XILINX Chapter 6: Timing Exceptions

ALL PROGRAMMABLE

Case Analysis

In some designs, certain signals have a constant value in specific modes. For instance, in
functional modes, the test signals do not toggle and are therefore tied either to VDD or VSS
depending on their active level. This also applies to signals that do not toggle once the
design has been powered up. In the same way, today's designs have multiple functional
modes and some signals that are active in some of the functional modes might be inactive
in other modes.

To help reduce the analysis space, runtime and memory consumption, it is important to let
the Static Timing Engine know about the signals that have a constant value. This is also
critical to ensure that non-functional and irrelevant paths are not reported.

A signal is declared as inactive to the timing engine with the set_case_analysis
command. The command applies to pins and/or ports.

The syntax of the set_case_analysis command is:
set_case_analysis <value> <pins or ports objects>
The parameter <value> can be any of 0, 1, rise, rising, fall, or falling.

When the values ris (e) (ing) or £all (ing) are specified, this means that the given
pins or ports should only be considered for timing analysis with the specified transition. The
other transition is disabled.

A case value can be set on a port, a pin of a leaf cell, or a pin of a hierarchical module.

In the example below, two clocks are created on the input pins of the multiplexer clock_sel
but only clk_2 is propagated through the output pin after setting the constant value on the
selection pin s.

clock_sel

clk 1 10

clk 2 U

MUXF8
S

Figure 6-32: Clock Example

create_clock -name clk 1 -period 10.0 [get_pins clock_sel/I0]
create_clock -name clk 2 -period 15.0 [get_pins clock_sel/I1]
set_case_analysis 1 [get_pins clock_sel/S]

Note: Setting a case value on a pin results in disabling timing analysis through that pin. This means
that timing paths through that pin are not reported.

Using Constraints www.xilinx.com Send Feedback 104
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=104

& XILINX

ALL PROGRAMMABLE.

Chapter 7

XDC Precedence

About XDC Precedence

The precedence rules for Xilinx®Design Constraints (XDC) are inherited from Synopsys
Design Constraints (SDC). This chapter discusses how constraint conflicts or overlaps are
resolved.

XDC Constraints Order

XDC constraints are commands interpreted sequentially. For equivalent constraints, the last
constraint takes precedence.

Constraints Order Example

> create_clock -name clkl -period 10 [get_ports clk_inl]
> create_clock -name clk2 -period 11 [get_ports clk_inl]

In this example, the second clock definition overrides the first clock definition because:

« They are both attached to the same input port.

« The create_clock -add option was not used.

Exceptions Priority

If constraints overlap (for example, if several timing exceptions are applied to the same
path), the priority from highest to lowest is:

1. Clock Groups (set_clock_groups)
2. False Path (set_false_path)
3. Maximum Delay Path (set_max_delay) and Minimum Delay Path (set_min_delay)

4. Multicycle Paths (set_multicycle_path)

Using Constraints www.xilinx.com Send Feedback 105
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=105

i: XILINX Chapter 7: XDC Precedence

ALL PROGRAMMABLE

In addition, for the same type of exception, the more specific the constraint, the higher the
precedence. Depending on the filtering options and the type of objects used in the
constraint, you can modify the specificity of a constraint.

The priority rule for the objects is:

1. Ports, pins, and cells

Note: Pins of a cell are used instead of the cell itself.

2. Clocks
The precedence rule for the filters, from highest to lowest, is:

-from -through -to
-from -to

-from -through

1

2

3

4. -from
5. -through -to
6. -to

7. -through

Exceptions Priority Example

> set_max_delay 12 -from [get_clocks clkl] -to [get_clocks clk2]
> set_max_delay 15 -from [get_clocks clkl]

In this example, the first constraint overrides the second constraint for the paths from clkl
to clk2.

The number of -through options used in an exception does not affect the precedence. The
timing engine uses the tightest constraint.

Exceptions Priority with Multiple -through Options Example

> gset_max_delay 4 -through [get_pins inst0/I0]
> set_max_delay 5 -through [get_pins inst0/I0] -through [get_pins instl/I3]

Both exceptions are kept by the timing engine. The more challenging constraint is used for
timing analysis. In this example, the 4ns max delay constraint will be used even for paths
going through the pin inst1/13.

O RECOMMENDED: You must avoid using several timing exceptions on the same paths, so that the timing
analysis results are not dependent on priority rules, and it is easier to validate the effect of your
constraints.

Using Constraints www.xilinx.com Send Feedback 106
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=106

i: XILINX Chapter 7: XDC Precedence

ALL PROGRAMMABLE

If a string instead of an object is passed to the constraint, the Tcl interpreter uses the
following sequence to determine which object matches the string:

1. port
2. pin
3. cell
4. net

The search is not exhaustive. As soon as objects of a certain type match the string pattern,
they are returned, even though objects of another type down the list might also match the
same pattern.

Using Constraints www.xilinx.com Send Feedback 107
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=107

& XILINX

ALL PROGRAMMABLE.

Chapter 8

Physical Constraints

About Physical Constraints

The Xilinx® Vivado® Integrated Design Environment (IDE) enables design objects to be
physically constrained by setting values of object properties. Examples include:

« IO constraints such as location and IO standard
* Placement constraints such as cell locations
» Routing constraints such as fixed routing

« Configuration constraints such as the configuration mode

Similar to timing constraints, physical constraints must be saved in an Xilinx Design
Constraints (XDC) file or a Tcl script so that they can be loaded with the netlist when you
open a design. Once the design is loaded in memory, you can interactively enter new
constraints using the Tcl console, or by using one the Vivado Design Suite IDE editing tools.

Most physical constraints are defined by means of properties on an object:
set_property <property> <value> <object list>

The exception is for area constraints which use Pblock commands.

Critical Warning

Critical Warnings are issued for invalid constraints in XDC files, including those applied to
objects that cannot be found in the design.

O RECOMMENDED: Xilinx highly recommends that you review all Critical Warnings to ensure that the
design is properly constrained. Invalid constraints result in errors when applied interactively.

For constraint definition and usage, see the Vivado Design Suite Properties Reference Guide
(UG912) [Ref 7].

Using Constraints www.xilinx.com Send Feedback 108
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=108

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE

Netlist Constraints

Netlist constraints are set on netlist objects such as ports, pins, nets or cells, to require the
compilation tool to handle them in special way.

f IMPORTANT: Be sure that you understand the impact of using these constraints. They may result in
increased design area, reduced design performance, or both.

Netlist constraints include:

+ CLOCK_DEDICATED_ROUTE
+ MARK_DEBUG

+ DONT_TOUCH

+ LOCK_PINS

CLOCK_DEDICATED_ROUTE

Set CLOCK_DEDICATED_ROUTE on a net to indicate how the clock signal is expected to be
routed.

The CLOCK_DEDICATED_ROUTE property is used on a clock net to override the default
routing. This is an advanced control requiring extreme caution as it may affect timing
predictability and routability.

CLOCK_DEDICATED_ROUTE can be set to FALSE when dedicated clock routing is not
available. A value of FALSE allows the Vivado tool to route the clock from an input port to a
global clocking resource such as a BUFG or MMCM using general routing resources. This
should only be used as a last resort when device package pin assignments have been locked
down, and the clock input cannot be assigned to an appropriate clock capable input pin
(CCIO). The routing will be suboptimal and unpredictable unless used in conjunction with
FIXED_ROUTE.

MARK_DEBUG

Set MARK_DEBUG on a net in the RTL to preserve it and make it visible in the netlist. This
allows it to be connected to the logic debug tools at any point in the compilation flow.

For more information, see Vivado Design Suite User Guide: Programming and Debugging
(UG908) [Ref 8].

Using Constraints www.xilinx.com Send Feedback 109
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=109

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE

DONT_TOUCH

Set DONT_TOUCH on a leaf cell, hierarchical cell, or net object to preserve it during netlist
optimizations. DONT_TOUCH is most commonly used to:

« Prevent a net from being optimized away.

A net with DONT_TOUCH cannot be absorbed by synthesis or implementation. This may
be helpful for logic probing or debugging unexpected optimization in designs. To
preserve a net with multiple hierarchical segments, place DONT_TOUCH on the net
PARENT (get_property PARENT -of $net) which is the net segment closest to its
driver.

» Prevent merging of manually replicated logic.

Sometimes it is best to manually replicate logic, such as a high-fanout driver that spans
a wide area. Adding DONT_TOUCH to the manually replicated drivers (as well as the
original) prevents synthesis and implementation from optimizing these cells.

TIP: Avoid using DONT_TOUCH on hierarchical cells for implementation as Vivado IDE
O implementation does not flatten logical hierarchy. Use KEEP_HIERARCHY in synthesis to maintain
logical hierarchy for applying XDC constraints.

LOCK_PINS

LOCK_PINS is a cell property used to specify the mapping between logical LUT inputs (I0, I1,
I2, ...) and LUT physical input pins (A6, A5, A4, ..).

A common use is to force timing-critical LUT inputs to be mapped to the fastest A6 and A5
physical LUT inputs.

LOCK_PINS Constraint Example One

Map I1 to A6 and I0 to A5 (swap the default mapping).

o

set myLUT2 [get_cells uO/ul/i_365]

set_property LOCK_PINS {IO0:A5 Il:A6} SmyLUT2

Which you can verify by typing the following line in the Tcl Console:
get_property LOCK_PINS S$SmyLUT2

HH o°

o

LOCK_PINS Constraint Example Two
Map I0 to A6 for a LUT6, mapping of I1 through IS5 are dont-cares.

% set_property LOCK_PINS I0:A6 [get_cell u0/ul/i_768]

Using Constraints www.xilinx.com Send Feedback 110
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=110

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE

10 Constraints

IO constraints configure:

 Ports

« Cells connected to ports
Typical constraints include:

« IO standard

+ IO location

The Vivado Integrated Design Environment (IDE) supports many of the same IO constraints
as the Integrated Software Environment (ISE®) Design Suite. The following list of IO
properties is not exhaustive.

- For a complete list of IO properties, and for more information on IO port and IO cell
properties, see the Vivado Design Suite Properties Reference Guide (UG912) [Ref 7].

Note: All properties are applied to port objects unless otherwise stated.

- For coding examples with proper syntax, see the Vivado Design Suite Properties
Reference Guide (UG912) [Ref 7].

- For more information on the application and methodology behind these properties,
see the device SelectIO documents, for example 7 Series FPGAs Select/O Resources
User Guide (UG471) [Ref 9].

« DRIVE
Sets the output buffer drive strength (in mA), available with certain IO standards only.
« IOSTANDARD
Sets an IO Standard,
« SLEW
Sets the slew rate (the rate of transition) behavior of a device output.
« IN_TERM
Sets the configuration of the input termination resistance for an input port
« DIFF_TERM

Turns on or off the 100 ohm differential termination for primitives such as
IBUFDS_DIFF_OUT.

Using Constraints www.xilinx.com Send Feedback 111
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=111

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE

e KEEPER

Applies a weak driver on an tri-stateable output or bidirectional port to preserve its
value when not being driven.

e PULLDOWN

Applies a weak logic low level on a tri-stateable output or bidirectional port to prevent
it from floating.

« PULLUP

Applies a weak logic high level on a tri-stateable output or bidirection port to prevent it
from floating.

« DCI_CASCADE

Defines a set of master and slave banks. The DCI reference voltage is chained from the
master bank to the slaves. DCI_CASACDE is set on IOBANK objects.

« INTERNAL_VREF

Frees the Vref pins of an I/O Bank and uses an internally generated Vref instead.
INTERNAL_VREF is set on IOBANK objects

- IODELAY_GROUP

Groups a set of IDELAY and IODELAY cells with an IDELAYCTRL to enable automatic
replication and placement of IDELAYCTRL in a design.

- IOB

Tells the placer to try to place FFs in I/O Logic instead of the fabric slice.

ﬁ IMPORTANT: There are notable differences between the ISE Design Suite and the Vivado Design Suite
in the handling of IOB. The Vivado tool allows IOB to be set on both ports and on register cells
connected to ports. If conflicting values are set on a port and its register, the value on the register
prevails. The Vivado tool uses only the values TRUE and FALSE. The value FORCE is interpreted as TRUE,
and the value AUTO is ignored. Unlike ISE, if a setting of /OB true cannot be honored, the Vivado tool
generates a critical warning, not an error.

Using Constraints www.xilinx.com Send Feedback 112
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=112

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE

Placement Constraints

Placement constraints are applied to cells to control their locations within the device. The
Vivado Integrated Design Environment (IDE) supports many of the same placement
constraints as the Integrated Software Environment (ISE) Design Suite and the PlanAhead™
tool.

e LUTNM

A unique string name applied to two LUTs to control their placement on a single LUT
site.

Unlike HLUTNM, LUTNM can be used to combine LUTs that belong to different
hierarchical cells.

e HLUTNM

A unique string name applied to two LUTs in the same hierarchy to control their
placement on a single LUT site.

Use HLUTNM within a cell that is instantiated multiple times.
« PROHIBIT
Disallows placement to a site.
« PBLOCK
Attached to logical blocks to constrain them to a physical region in the device.

PBLOCK is a read-only cell property that is the name of the Pblock to which the cell is
assigned. Cell Pblock membership can be changed only by using the XDC Tcl commands
add_cells to pblock and remove_cells from pblock.

« PACKAGE_PIN

Specifies the location of a design port on a pin of the target device package.
« LOC

Places a logical element from the netlist to a site on the device.
« BEL

Places a logical element from the netlist to a specific BEL within a slice on the device.

Using Constraints www.xilinx.com Send Feedback 113
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=113

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE
For more information, see:

« Chapter 7, XDC Precedence
» Chapter 9, Defining Relatively Placed Macros

Placement Types
There are two types of placement in the tools:

» Fixed Placement

« Unfixed Placement

Fixed Placement
Fixed placement is placement specified by the user through:

« Hand placement, or

» An XDC constraint

« Using either of the following on a cell object of the design loaded in memory:
o IS_LOC_FIXED
o IS_BEL_FIXED

Unfixed Placement

Unfixed placement is a placement performed by the implementation tools. By setting the
placement as fixed, the implementation cannot move the constrained cells during the next
iteration or during an incremental run. A fixed placement is saved in the XDC file, where it
appears as a simple LOC or BEL constraint.

+ IS_LOC_FIXED

Promotes a LOC constraint from unfixed to fixed.
« IS_BEL_FIXED

Promotes a BEL constraint from unfixed to fixed.

Placement Constraint Example One
Locate a block RAM at RAMB18 X0Y10 and fix its location.

% set_property LOC RAMB18_X0Y10 [get_cells u_ctrl0/ram0]

Using Constraints www.xilinx.com Send Feedback 114
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=114

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE

Placement Constraint Example Two

Place a LUT in the C5LUT BEL position within a slice and fix its BEL assignment.
% set_property BEL C5LUT [get_cells u_ctrl0/lut0]

Placement Constraint Example Three

Locate input bus registers in ILOGIC cells for shorter input delay.
% set_property IOB TRUE [get_cells mData_reg*]

Placement Constraint Example Four

Combine two small LUTs into a single LUT6_2 that uses both O5 and O6 outputs.
% set_property LUTNM LO [get_cells {u_ctrl0/dmux0 u_ctrl0/dmuxl}]

Placement Constraint Example Five

Prevent the placer from using the first column of block RAMs.

% set_property PROHIBIT TRUE [get_sites {RAMB18_X0Y* RAMB36_X0Y*}]

Routing Constraints

Routing constraints are applied to net objects to control their routing resources.

Fixed Routing

Fixed Routing is the mechanism for locking down routing, similar to Directed Routing in
ISE®. Locking down a net routing resources involves three net properties. See Table 8-1,
Net Properties.

Table 8-1: Net Properties

Property Function
ROUTE Read-only net property
IS ROUTE_FIXED Flag to mark the whole route as fixed
FIXED_ROUTE A net’s fixed route portion

To guarantee that a net routing can be fixed, all of its cells must also be fixed in advance.

Using Constraints www.xilinx.com Send Feedback 115
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=115

i: X”_INX Chapter 8: Physical Constraints

ALL PROGRAMMABLE-

Following is an example of a fully-fixed route. The example takes the design in Figure 8-1,
Simple Design to Illustrate Routing Constraints, and creates the constraints to fix the
routing of the net netA (selected in blue).

e
&b o CLR
- 0 8] C
OE a e FCE
LR z0
— 0
L1 =L
FDCE | O ICE .
- 1 i S
BO LUT2 »
. FD(CE
|-'_.|: u
C
FDCE

Figure 8-1: Simple Design to lllustrate Routing Constraints

You can query the routing information of any net after loading the implemented design in
memory:

o

set net [get_nets netA]
get_property ROUTE S$net

CLBLL_LL_CQ CLBLL_LOGIC_OUTS6 FAN ALT5 FAN BOUNCE5 { IMUX L17 CLBLL_LL_B3 }
MUX_L11 CLBLL_LL_ A4 }

H —~ of

The routing is defined as a series of relative routing node names with fanout denoted using
embedded curly braces. The routing is fixed by setting the following property on the net:

Q

% set_property IS_ROUTE_FIXED TRUE S$net

To back-annotate the constraints in your XDC file for future runs, the placement of all the
cells connected to the fixed net must also be preserved. You can query this information by
selecting the cells in the schematics or device view, and look at their LOC/BEL property

values in the Properties window. Or you can query those values directly from the Tcl
console:

Q

% get_property LOC [get_cells {a0 LO L1}]
SLICE_X0Y47 SLICE_X0Y47 SLICE_X0Y47

% get_property BEL [get_cells {a0 LO L1}]
SLICEL.CFF SLICEL.A6LUT SLICEL.B6LUT

Because fixed routes are often timing-critical, LUT pins mapping must also be captured in
the LOCK_PINS property of the LUT to prevent the router from swapping pins.

Using Constraints www.xilinx.com l Send Feedback l 116

UG903 (v2014.1) May 14, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=116

i: XILINX Chapter 8: Physical Constraints

ALL PROGRAMMABLE

Again, you can query the site pin of each logical pin from the Tcl console:

% get_site_pins -of [get_pins {L0/I1 LO/I0}]
SLICE_X0Y47/A4 SLICE_XO0Y47/A2
% get_site_pins -of [get_pins {L1/I1 L1/I0}]
SLICE_X0Y47/B3 SLICE_X0Y47/B2

The complete XDC constraints required to fix the routing of net neta are:

set_property LOC SLICE_X0Y47 [get_cells {a0 LO L1}]

set_property BEL CFF [get_cells a0]

set_property BEL A6LUT [get_cells LO]

set_property BEL B6LUT [get_cells L1]

set_property LOCK_PINS {Il:A4 I0:A2} [get_cells LO]

set_property LOCK_PINS {I1l:A3 I0:A2} [get_cells L1]

set_property FIXED_ROUTE { CLBLL_LL_CQ CLBLL_LOGIC_OUTS6 FAN_ALT5 FAN_BOUNCES5 {
IMUX_L17 CLBLL_LL_B3 } IMUX L1l CLBLL_LL_A4 } [get_nets netA]

If you are using interactive Tcl commands instead of XDC, several placement constraints can
be specified at once with the place_cell command, as shown below:

place_cell a0 SLICE_X0Y47/CFF LO SLICE_XO0Y47/A6LUT L1 SLICE_X0Y47/B6LUT

For more information on place_cell, see the Vivado Design Suite Tcl Command Reference
Guide (UG835) [Ref 6].

Configuration Constraints

Configuration constraints are global constraints for bitstream generation that are applied
to the current design. This includes constraints such as the configuration mode.

Configuration Constraint Example One
Set the CONFIG_MODE to M_SELECTMAP.
% set_property CONFIG_MODE M_SELECTMAP [current_design]
Configuration Constraint Example Two
Set device pins E11 and F11 to be voltage reference pins.
% set_property VREF {E1l F11} [current_design]

Configuration Constraint Example Three

Disable CRC checking.

Q

% set_property BITSTREAM.GENERAL.CRC Disable [current_design]

For a list of bitstream generation properties and definitions, see the Vivado Design Suite
User Guide: Programming and Debugging (UG908) [Ref 8].

Using Constraints www.xilinx.com Send Feedback 117
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=117

& XILINX

ALL PROGRAMMABLE.

Chapter 9

Defining Relatively Placed Macros

About Relatively Placed Macros

A Relatively Placed Macro (RPM) is a list of logic elements grouped into a set. Examples of
logic elements include:

. FF
. LUT
. DSP
- RAM

RPMs are primarily used to place small groups of logic close together in order to:

« Improve resource efficiency.

« Enable faster interconnections.

Defining Sets of Design Elements
Define sets of design elements with U Set (U_SET) or HU Set (HU_SET) constraints.

« Each element of the set is placed in relation to the other elements of the set by Relative
Location (RLOC) constraints.

* Logic elements with RLOC constraints and common set names are associated in an
RPM.

U_SET, HU_SET, and RLOC constraints:

¢ Must be defined as properties in the HDL design files.

« Are not supported in Xilinx® Design Constraints format (XDC).

For more information on U_SET, HU_SET, and RLOC constraints, see the Constraints Guide
(UG625) [Ref 10].

Using Constraints www.xilinx.com Send Feedback 118
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=118

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

Creating an RPM

To create an RPM:

1. Group cells into a set.
2. Define relative locations for cells in the RPM set.

3. Specify an RLOC_ORIGIN constraint or a LOC constraint on an RPM cell to fix placement
of the RPM on the target device.

Note: This step is optional.

Assigning Cells to RPM Sets

Design elements in a hierarchical module that are assigned RLOC constraints are
automatically grouped into an RPM set.

The grouping occurs by using an H_SET constraint that is implicitly defined by the
combination of the design hierarchy and the RLOC constraint.

All design elements with RLOC constraints in a single block of the design hierarchy are
considered to be in the same H_SET unless they are tagged with another set constraint, such
as U _SET or HU_SET.

Explicitly Grouping Design Elements

While H_SET is implied based on the design hierarchy and the presence of the RLOC
constraint, you can also explicitly group design elements into RPM sets using the U_SET and
HU_SET constraints.

Explicitly Grouping Design Elements With U_SET

U_SET lets you group cells regardless of hierarchy or where they appear in the design. All
cells with the same set_name are members of the same RPM set.

Design elements tagged with a U_SET constraint can be primitive or non-primitive symbols.

When attached to non-primitive symbols, the U_SET constraint propagates downward
through the hierarchy to all the primitive symbols below it that are assigned RLOC
constraints.

Using Constraints www.xilinx.com Send Feedback 119
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=119

g: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

Explicitly Grouping Design Elements With HU_SET

HU_SET has an explicit user-defined and hierarchically qualified name for the set. This lets
you create hierarchical RPMs in which RLOC constraints can be placed on cells at different
levels of the hierarchy.

All cells with the same hierarchically qualified set_name are members of the same set.

Syntax for Defining RPM Sets in VHDL
The syntax for defining RPM sets as attributes in VHDL is:

attribute U_SET : string;
attribute HU_SET : string;

attribute U_SET of my_reg : label is "usetO";
attribute HU_SET of other_reg : label is "husetO";

Syntax for Defining RPM Sets in Verilog

The syntax for defining RPM sets as attributes in Verilog is as follows.
U_SET Example
(* U_SET = "usetO", RLOC = "X0YO0" *) FD my_reg (.C(clk), .D(d0), .Q(g0));

HU_SET Example

(* HU_SET = "huset0", RLOC = "X0YO" *) FD other_reg (.C(clk), .D(d1l), .Q(gl));

Using Constraints www.xilinx.com Send Feedback 120
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=120

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE-

RPM Definition in the Physical Constraints Window

Netlist — O @ X Physical Constraints — O @ X % Project Summary x @ Device x
bn[3] Q T 2 _
o [@uo (fs) (] [design_1 aar
Nets |] | &- @ ROOT _
» Primitives (12 @- [RPMs (: P
— [l GND (GMND) (@ uo N
— (@ inq (FDCE @ul
- (i) outq (FDCE @ u2 Ri
— [ill srO (FDCE) ,Lz‘\/
— [l srl (FDCE) 5 2
I (il sr2 (FDCE) P
(il sr3 (FDCE) see B
[ill sr4 (FDCE) _— 5
— [l sr5 (FDCE) B
— [ill sré (FDCE) T
— il sr7 (FDCE) 4
— @ VCC (vCC X2
[@ i0 (in E e
E il (iny O v g :
& Sources 3 Netlist
RPM Properties _ 0o x
« +[EIx]
@& uo
[fig |name
Bl uojsro

Figure 9-1: RPM Definition in the Physical Constraints Window

RPM sets must be embedded as properties in HDL source files. After synthesis, RPM related
properties appear on netlist objects as read only properties for use by the Xilinx Vivado®
Integrated Design Environment (IDE) placer.

Viewing RPM Definitions

View RPM definitions in the Physical Constraints window. See Figure 9-1, RPM Definition in
the Physical Constraints Window.

To view RPM definitions:

1. Expand the RPM folder to display a list of RPMs.

2. Select an RPM to view its properties or to select related cells.

TIP: RPMs can be placed and locked down by dragging from the Physical Constraints to the Device
O window. The RPMs are moved as a single shape instead of cell-by-cell.

Using Constraints www.xilinx.com Send Feedback 121
UG903 (v2014.1) May 14, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=121

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

Assigning Relative Locations

Use the RLOC property to assign relative locations to design objects. The RLOC property
specifies relative X-Y coordinates for each cell in the RPM set.

To specify the RLOC property, use either of two different grid coordinate systems:
» Relative Slice-Based Coordinates
e Absolute RPM Grid-Based Coordinates
Use the following syntax:
RLOC=XmYn
where

* m s an integer representing the relative or absolute X coordinate of the object.

« nis an integer representing the relative or absolute Y coordinate of the object.

Relative Slice-Based Coordinates
The relative grid system:

+ Is also known as the standard grid.
« Is sufficient for most RPMs.

« Is used for homogeneous RPMs in which all cells in an RPM belong to the same site
type (such as slice, block RAM, and DSP).

Note: Objects are positioned in relation to other objects in the same RPM set.

The relative grid is a standard rectangular grid in which each grid element is the same size.
For example, the following Verilog code example results in an eight-slice-high column with
an FD cell in each slice:

(* RLOC = "X0Y0" *) FD sr0 (.C(clk), .D(d4[0]), .Q(y[01)):;
(* RLOC = "X0Y1" *) FD srl (.C(clk), .D(d4[1]), .Q(yI[11));
(* RLOC = "X0Y2" *) FD sr2 (.C(clk), .D(d[2]), .Q(yI[2]1));
(* RLOC = "X0Y3" *) FD sr3 (.C(clk), .D(d[3]1), .Q(y[31));
(* RLOC = "X0Y4" *) FD srd4 (.C(clk), .D(d[4]1), .0Q(y[41));
(* RLOC = "X0Y5" *) FD sr5 (.C(clk), .D(dA[5]), .0Q(yI[51));
(* RLOC = "X0Y6" *) FD sr6 (.C(clk), .D(d[6]), .Q(y[6]1)):;
(* RLOC = "X0Y7" *) FD sxr7 (.C(clk), .D(A[7]), .Q(y[71));

Using Constraints www.xilinx.com Send Feedback 122
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=122

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

Absolute RPM Grid-Based Coordinates

The RPM_GRID system is used for heterogeneous RPMs in which cells in an RPM belong to
different site types (such as a combination of slice, block RAM, and DSP). This is an absolute
coordinate system that is mapped to a specific Xilinx device.

Because the cells may occupy sites of various sizes, the RPM_GRID system uses absolute
RPM_GRID coordinates. The RPM_GRID values are visible in the Site Properties window of
the Vivado Integrated Design Environment (IDE) when a specific site is selected. The
coordinates can also be queried with Tcl commands using the RPM_X and RPM_Y site
properties.

RPM_GRID Coordinates VHDL Example

The following VHDL example defines RLOC constraints using RPM_GRID coordinates.

« Two shift registers are placed relative to a block RAM.
« Four stages connect the input.

« Four stages connect the output.

attribute RLOC : string;

attribute RPM_GRID : string;

attribute RLOC of di_reg3 : label is "X25Y0";
attribute RLOC of di_reg2 : label is "X27Y0";
attribute RLOC of di_regl: label is "X29Y0";
attribute RLOC of di_reg0 : label is "X31Y0";
attribute RLOC of ramO : label is "X34Y0";
attribute RLOC of out_reg3 : label is "X37Y0";
attribute RLOC of out_reg2 : label is "X39Y0";
attribute RLOC of out_regl : label is "X41Y0";
attribute RLOC of out_reg0 : label is "X43Y0";

Setting a Property to Invoke the RPM_GRID System

To use the RPM_GRID system, set a property on any cell in the RPM set:
attribute RPM_GRID of ram0 : label is "GRID";

As long as at least one cell has the RPM_GRID property equal to GRID, the RPM_GRID
coordinate system is used.

Although the RPM_GRID coordinates are absolute based on the target device, they define
the relative placement of the elements of an RPM set.

During implementation, the RPM set can be placed at any suitable location on the device.

Using Constraints www.xilinx.com Send Feedback 123
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=123

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

RPM_GRID Coordinate Values

The RPM_GRID coordinate values differ significantly from the coordinate values of the
SLICEs on the FPGA device. These coordinates:

« Are stored as RPM_X and RPM_Y properties on device sites in the Vivado tool.

« Can be queried using get_property.
The following example:

« Gets the RPM coordinates from a selected SLICE.
+ Uses join to output both the X and Y coordinates in the required format.

join "X[get_property RPM_X [get_selected_objects]]Y[get_property RPM_Y
[get_selected_objects]]"
X25Y394

Defining RLOC Properties Directly in the RTL Source File

Because the standard grid is simple and relative, you can define the RLOC properties for an
RPM directly in the RTL source file.

Because the RPM_GRID coordinates must be extracted from the target device, you will
probably need to:

« Iterate on the design to find the right RPM_GRID values after synthesis.
« Add the coordinates as properties in the RTL source files.

» Resynthesize the netlist before placement.

Using Constraints www.xilinx.com Send Feedback 124
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=124

& XILINX

ALL PROGRAMMABLE-

Chapter 9: Defining Relatively Placed Macros

Assigning a Fixed Location to an RPM

Optionally use an RLOC_ORIGIN or LOC constraint to place and fix the location of an RPM
on the device. In the Vivado IDE, these properties fix the RPM origin, or the lower-left
corner of the RPM. Each remaining cell in the RPM set is placed by using the relative
location (RLOC) to offset from the origin.

Figure 9-2: RPM Placement by RLOC_ORIGIN

The following example shows a hierarchical RPM that is fixed using RLOC_ORIGIN. RLOC
constraints are assigned to the RPM register cells to create a two-up-by-three-across
placement pattern.

In Verilog:

(* RLOC
(* RLOC
(* RLOC
(* RLOC
(* RLOC
(* RLOC

The RPM is

(* RLOC
(* RLOC
(* RLOC

Using Constraints

UG903 (v2014.1) May 14, 2014

"X0YQ0"
"X1Y0"
"X2Y0"
"X0Y1"
"X1y1l"
"X2Y1"

* 0% X X X X

FDC
FDC
FDC
FDC
FDC
FDC

instantiated into

" XOYO "
"X3Y2"
"X6Y4"

ffs
ffs
ffs

sr0...
srl...
sr2...
sr3...
srd. ..
sr5...

the design three times with an RLOC on each cell:

ul...
ul...
uz. ..

www.Xilinx.com l Send Feedback I 125

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=125

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

Finally, an RLOC_ORIGIN of x74Y15 is assigned to cell u0 resulting in the placement shown
in Figure 9-2, RPM Placement by RLOC_ORIGIN, page 125. The highlighting in the figure is
shown in Table 9-1, Cell Highlighting.

Table 9-1: Cell Highlighting

Cell Highlight Color
uo yellow
ul green
u2 red

TIP: Although RPMs control the relative placement of logic elements, they do not insure that specific
O routing resources are used to connect the logic from one implementation to the next.

For more information on controlling the routing used, see Routing Constraints, page 115.

XDC Macros

XDC macros enable assignment of relative placement to cells after synthesis. Macros have
many characteristics similar to RPMs, but are design objects that can be modified
interactively using XDC and Tcl. Macros are created from leaf cells that are grouped
together with relative placement constraints.

While RPMs are managed in HDL code, macros are managed using XDC constraints. RPMs
cannot be automatically converted to macros. Similarly, macros cannot be automatically
annotated to HDL code. Unlike macros, RPMs are not objects, and the XDC macro
commands cannot be used on RPMs.

Table 9-2: Comparison of RPMs and Macros

RPMs Macros
Definition HDL Attributes XDC constraints
Post-Synthesis Access Read-only Read-write
Hierarchical Yes (H_SET/HU_SET) No
RLOC Targets Non-leaf and leaf cells Leaf cells only

Site Type Mixing Allowed Yes, using RPM_GRID attribute | Yes, using update_macro
-absolute_grid

Accessible as objects No Yes

Where stored In netlist In XDC or Tcl scripts

Using Constraints www.xilinx.com Send Feedback 126
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=126

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

Specifying Macros
Use the following XDC Tcl commands to specify macros:

« create_macro
« update_macro
« delete_macros

« get_macros
Each command is supported by undo and redo.

Following are descriptions of each command.

create_macro
The create_macro command creates a new macro object.

Macro names must be unique. Attempting to create a macro with the same name as an
existing macro generates an error.

create_macro Syntax
create_macro <name>

create_macro Example
create_macro m0

Creates a macro object called mo.

Using Constraints www.xilinx.com Send Feedback 127
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=127

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

update_macro

The update_macro command adds leaf cells and relative placements (RLOCs) to the
macro.

The RLOC has identical syntax and functionality as the RPM RLOC attribute. All cells must be
specified at once. No partial or incremental definition is allowed.

update_macro Syntax

update_macro [-absolute_grid] <macro name> <cell-RLOC list>
where

+ -absolute_grid: A switch to choose the Absolute Grid for mixing slice and non-slice
sites.

o The X-Y values are the site properties RPM_X and RPM_Y.

o The Absolute Grid values are identical to those of RPM_GRID.
+ macro name: The name of the macro to be updated.
+ cell-RLOC list: A Tcl list of cells and RLOC pairs:

{cell0d RLOC(cell0) celll RLOC(celll) - cellN RLOC (cellN)}.

o All macro cells and RLOCs must be specified at once. It is not possible to build a
macro in steps.

- If you need to update an existing macro, you must re-create it first.

update_macro Example One

update_macro ml {u2/sr0 X0Y0 u2/srl XO0Y1l}

o Addsu2/sr0 and u2/srl to macro ml
o Assignsu2/sr0 an RLOC of Xx0Y0

o Assignsu2/sril an RLOC of x0Y1
The following (update_macro Example Two) does the same, with slightly different syntax.

update_macro Example Two

set rlocs [list u2/sr0 X0Y0 u2/srl X0Y1]
update_macro ml $rlocs

update_macro Example Three

This example uses the absolute grid:

set rlocs {ireg X2Y38 glreg X17Y40 g2reg X17Y40}
update_macro -absolute_grid m2 S$rlocs

Using Constraints www.xilinx.com Send Feedback 128
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=128

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

delete_macros
The delete_macros command deletes the specified macros.

delete_macros Syntax

delete_macros <pattern>
delete_macros Example
delete_macros ml
get_macros
The get_macros command returns macro objects in a design.

get_macros Syntax

get_macros [pattern]

With no arguments, the get_macros command returns all macros in the design. When
macro names are specified, the command returns the corresponding macro objects.

get_macros Examples

The get_macros command can be used with other object commands. Examples:

o

create_macro ml

update_macro ml {u2/sr0 X0Y0 u2/srl XO0Y1l}
get_cells -of [get_macros ml]

u2/sr0 u2/srl

% get_macros -of [get_cells u2]
ml

o

o

The following command returns all macros that are fully contained within the cells.
get_macros -of [get_cells Scells]

Using get_cells, other indirect combinations are possible such as:
get_macros -of [get_cells -of [get_pblocks pb0]]

This command returns the macros contained within Pblock pbo0.

Using Constraints www.xilinx.com Send Feedback 129
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=129

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

Managing Macros

Macros are stored as XDC constraints. By definition, they are Tcl commands. This allows the
macros to be used in both XDC constraint files and Tcl scripts, and used interactively.

Macros are written using the write_xdc command. Macros are read using the read_xdc
command. The -cell option can be used to limit scope to particular cells.

The -cell option is particularly useful for applying a relative placement from one macro to
similar instances in different hierarchies.

Managing Macros Example One
Write all XDC constraints in memory, including macros:
% write_xdc constrs.xdc
Managing Macros Example Two
A design contains three instances of a cell: inst_0, inst_1, and inst_2.

A macro is created inside inst_0:

oe

create_macro m0
update_macro mO0 {reg0 X0Y0 regl X0Y1l}
write_xdc -cell inst_0 inst_0.xdc

o

o

Managing Macros Example Three
Write all XDC constraints including macro mO, for the cell inst_0:
% write_xdc -cell inst_0 inst_0.xdc

Managing Macros Example Four

Read the XDC constraints including the macro m0 from cell inst_0, and apply it to inst_1
and inst_2:

% read_xdc inst_0 -cell {inst_1 inst_2}
get_macros
m0 inst_1_mO0 inst_2_mO0

o

TIP: When a macro is read and applied to another cell using the -cell option, the new macro name
O must be unique. The cell name is applied as a prefix to the macro name to create a unique macro name.
In Example Four, two new unique macros were created: inst_1_m0 and inst_2_mO.

Using Constraints www.xilinx.com Send Feedback 130
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=130

g: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

Macro Properties

Macro objects have the following properties:

+ ABSOLUTE_GRID

+ CLASS
+ NAME
+ RLOCS

Macro Properties Example

% report_property [get_macros ml]

Property Type Read-only Visible Value

ABSOLUTE_GRID bool true true 0

CLASS string true true macro

NAME string true true ml

RLOCS string* true true u2/sr0 X0Y0 u2/srl X0Y1

Following are descriptions of the properties:

ABSOLUTE_GRID

Boolean property that reflects whether or not the RLOCs are using the default grid system
or the Absolute Grid system.

The default is false. If update_macro is used with —absolute_grid, then the property is
true.

The Absolute Grid uses coordinates that align with site RPM_X and RPM_Y properties to
allow creating macros from cells placed at different site types.

CLASS
Identifies the object as a macro.
NAME

Name of the macro object, either the name used by create_macro, or the macro name
prefixed by the cell hierarchy when using read_xdc -cell.

RLOCS

String containing the list of macro cells and their RLOC properties in the same format used
by the update_macro command.

Macro cells have these additional properties:

« RLOC: The relative location property (RLOC) value of the cell.
« MACRO_NAME: The name of the macro to which the cell belongs.

Using Constraints www.xilinx.com Send Feedback 131
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=131

& XILINX

ALL PROGRAMMABLE

RLOCS Example

Chapter 9: Defining Relatively Placed Macros

Using the previous example for macro properties:

% get_property RLOC

X0Y0 X0Y1

get_property MACRO_NAME

ml ml

Advanced XDC Macro Examples

[get_cells {u2/sr0 u2/srl}]

[get_cells {u2/sr0 u2/srl}]

This section gives the following advanced XDC macro examples:

Relative Grid Macro Examples

Absolute Grid Macro Examples

Relative Grid Macro Examples

By default, the relative grid is used for macro RLOC coordinates because the most common
macros are made of cells that belong to the same site type.

The following simple example illustrates the relative placement derived from macro RLOCs.
The macro consists of a pair of SRL >FF >FF circuits that are to be arranged in a 2x2 pattern.
See Figure 9-3, Schematic of Example Circuit, page 132.

srl[0] regs 1[0]
AO T
g regs0[0] -
:i a E —ar 2
CE e @ °
neeLk D FDCE
—D regs1[1]
SRL16E FDEE]
srl[1] regs o
AO C cor 2
Al e, o
A2 +——ICLR
A3 Q D FDCE
CE £
i | o
b =
SRL16E
Figure 9-3: Schematic of Example Circuit

To create the desired relative placement, the cells are assigned RLOCs as follows:

srl[0] XO0YO

regs0[0] X0YO

regsl[0] X1YO

srl[1l] X0Y1

regs0[1] X0Y1
[

regsl[1l] X1Y1l

Using Constraints

UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 132

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=132

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

The following commands create this macro with a name mO:

create_macro m0
update_macro mO {srl[0] XO0Y0 regsO[0] X0Y0 regsl[0] X1YO0 srl[l] XO0Y1l regsO[1l] X0Y1
regsl[1l] X1Y1}

The macro can be automatically placed by the placer or manually placed as a set. The macro
placement appears as shown in Figure 9-4, Placement of the Macro Example, page 133.

Figure 9-4: Placement of the Macro Example

The macro contains SRLs which are based on LUTRAMSs, and which can be placed only in
SLICEM type slices. This places slight restrictions on the possible locations of the macro. The
macro can be located only where a SLICEL column is to the right of a SLICEM column.

& CAUTION! Too many densely packed slices in proximity can cause congestion, which reduces routability
and can negatively impact performance.

Absolute Grid Macro Examples

When combining cells of different site types into a macro, you must use the absolute grid.

The absolute grid (also known as the RPM grid) is an absolute coordinate system that
defines the coordinates of a site based on its location within the device. The absolute grid
also considers the sizes of sites: RAM and DSP blocks have wider spacing than slices. The
absolute grid is illustrated in Figure 9-5, Example Circuit for Absolute Grid, page 134.

Using Constraints www.xilinx.com Send Feedback 133
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=133

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

In this example, there are cells from three different types to group into a macro using the
absolute grid. The example consists of an input data path from input ports, through two
stages of registers, then block RAMs. This is illustrated in the schematic in Figure 9-5,
Example Circuit for Absolute Grid, page 134.

= whi_naniLram
S%‘.:l EMIM_IMF O SDF.SIMPLE PRIMI & am
=R AT AT AL
A AL 4
s Cadiana
reg 101 e caleirg
- oA micus
re
<l BEUF_EUFC ins Ll ok ces
] E— dir dira g diral} dira diry g
_[:;\.. . ol b a2 i a7 a2 3 im0 a3 —— CASCADEOUTA—
BUFC 1 =B B3 5 CARCADECLTA—
odin_EEUF[1)_ins — L LB LR o —
_[}" o ot R A0 OOAD O[3 0]
= = —ermanen OCADG{1 Y =
= g 13 —fEmEn CHER AL] e
sl 2 4 DATEN DOPEDOP[10]f
— 3 EATEL ECCRAT .0
G-
——foui SCCEMMECCE MOA DIRE CCTS: 0] fm
- s e SAmER
—EGcE £
oin_EEUF[Z) iy —
o —— —JETAsAsT A
_[} o FoCE
—JsTians
= o call —ETRECA R TREC
E —JsTRECE
I 1 A0
(-
- WL
1
[i RAMEIGE]L
din_BEUF|3) st -]
a
—[:'_:3 i FDCE D MEm_qen_Drem_wian pe_ve
- 2 1] &)
= FDCE CRE Blk_mem_gen_prm_widh
el ramboa ol 1) ram.s
L il o wfi_nakniLram
- @ 0 J_EMIMA_BNF O SDOP_SIMPLE PRIMIE ram
oin_IEUF i . . n
o 5 T [TR T
‘[> - e LA AL
1 FOCE eq I H eascanena
re] o Jeascanama
- — Joamncs
i -
——foui —JCLRAWALCLK
1 @
. £ 2 SETTErT CASCADEOUTA |-
oin_EEUF[S L iny —
—[:3“ — =B R(3 8 CASCADECOLTA—
o O AL AT —
= FOC ea it TR DA C 8]
- ermacen OO0 8 [
— & e DR AL] [
P JrEC DT DOPADOM A 0|
1
h B g EATER OO RT3
W -]
—RECCEARECCE WA Dol TS]
o FICE
—EC e SANERL—
- reg 1 7]
FDC TR AT A
reqal 7 —usTass
— ’ —RSTRECA RS TREG
(-
- Jusmasca
[P] q EALL G
FI7 ! i
N EUFI7L inst 2w J i,
o TOCE
-E} s RAMEIGE]
EUE FICE
D MM _QEN DT _Wran per_vh__nardam ez edd
reg 100 nil_mem_gen_nirem_twidth__parametenized 0
s] hil_mem_gen_gene s c_car
] Gl .1
S nil_mem_gen_tan
q n an B _0_wynd
din_IEUFKL inst — bik_mem._gen._vA_d_zymth
_[:;‘- i1 FOCE nl_mem_gen w8 0
U —= = =
FIXE nic_mem_gen

Figure 9-5: Example Circuit for Absolute Grid

The macro creation requires a list of cells and their relative locations (RLOCs) using the
absolute grid. When creating the macro, it may be difficult to visualize the relative
placement of absolute grid macros.

O RECOMMENDED: Place the cells temporarily into absolute locations in the device, then derive the
absolute grid RLOC values of each cell.

Using Constraints www.xilinx.com Send Feedback 134
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=134

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

The cells are first manually placed and arranged in their desired locations as shown in
Figure 9-6, Manually Placed Cells for an Absolute Grid Macro, page 135.

First stage of Second stage of Block RAMs in
registers in ILOGIC registers in slices adjacent
columns

Figure 9-6: Manually Placed Cells for an Absolute Grid Macro

Although the absolute grid specifies absolute locations, the resulting macro can be placed
at any location within the device that can accommodate the relative placement of the
macro. In this example, the relative locations are specified using the lower-left hand corner
as the point of reference.

However, the absolute grid locations specify only relative placement, not absolute
placement. That allows the macro to be located anywhere in the device that maintains the
relative placement.

Since the example is somewhat complex, consisting of ILOGIC, slices, and block RAM, the
macro locations are somewhat restricted but can be placed at any of the three locations
highlighted in orange in Figure 9-7, Three Possible Locations for the XDC Macro, page 136.

Using Constraints www.xilinx.com Send Feedback 135
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=135

2: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

O
O
0
=
0
=
|
=
=

Figure 9-7: Three Possible Locations for the XDC Macro

To determine absolute grid RLOCs, use the site RPM_X and RPM_Y properties. For example,
the lower block RAM is placed at site RAMB36_X0YO.

Using Constraints www.xilinx.com Send Feedback 136
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=136

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE-

Selecting the site (not the cell) displays the following values of 33 for RPM_X and 0 for
RPM_Y (Figure 9-8). These are the absolute grid coordinates. The corresponding RLOC value
is X33YO0.

Site Properties

« +[[]

[Z RAMBIE_X0V0

SN NUM_FINS
== RPM_X
RPM_Y
I5_PAD

IS TEST

IS_RESERVED
SITE_TYFE [RamMBFIFOZEE]

ALTERNATE SITE TYPES FIFO36E1 RAMBIGEL =]
General Properties Cell Fins Cells /O Ports Site Fins 4 ¢ B

Figure 9-8: Absolute Grid Coordinates of a block RAM

The same method is applied to determine the absolute RLOC of a slice (Figure 9-9). The
cells within this slice have an RLOC of X31Y0.

Site Properties

[E SLUCE_%7Y0

SN NUM_PINS
RPM X
RPM_Y
I5_PAD
IS_TEST

IS_RESERVED
SITE_TYPE [5LicEl '

ALTERMATE SITE_TYPES E|
Ceneral Properties Cell Pins Cells /O Ports Site Fins 4 » B

£
=
{1
=
L]
|
i1
|

Figure 9-9: Absolute Grid Coordinate of a Slice

Using Constraints www.xilinx.com Send Feedback 137
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=137

i: XI I_INX Chapter 9: Defining Relatively Placed Macros

ALL PROGRAMMABLE

There are two commands used to create the macro, with a name mO:

create_macro m0
update_macro m0 -absolute_grid <cell0O rlocO celll rlocl cell2 rloc2 .. cellN rlocN>

If the macro contains many cells as it does in this example, Tcl can be used to simply
building and specifying the cell-rloc list required by update_macro. Given a placed cell,
the absolute grid RLOC can be determined using the following Tcl proc getAbsRLOC:

proc getAbsRLOC {cell} {
set site [get_sites -of [get_cells S$celll]
set X [get_property RPM_X S$site]
set Y [get_property RPM_Y S$site]
return "XS${X}YsS{yY}"
}

Example: assign the variable rloc to the string value of a block RAM cell RLOC

% set rloc [getAbsRLOC S$Sram0]
X33Y0

The Tcl dict command can be used to build a dictionary (associative array) of cells and
absolute grid RLOCs for the update_macro command. A Tcl associative array is a series of
key-value pairs. The cells and RLOCs can be arranged as such as series using the dict
command. The array keys are the macro cell objects. The array values are the cell RLOCs.
This helps to automate the process of creating macros with many cells. The following
example uses the absolute grid, but the method can be applied to the normal grid as well.

Assuming $cells is the list of macro cells, and each cell of $cells has been placed to form
the desired macro pattern, the following Tcl proc creates a list of cell-RLOC pairs for the
update_macro command.

proc buildRLOCList {cells} {
set rlocs [dict create] ; # initialize dictionary called rlocs
foreach cell S$cells {
dictionary key is cell, value is absolute RLOC
dict set rlocs S$cell [getAbsRLOC S$cell]
}

return S$rlocs

}
Example: build an RLOC list for the example circuit

create macro cell list: input register stage and BRAM cells

set cells [get_cells -hier [list ireg0* iregl* *SIMPLE_PRIM36.ram]]
create_macro m0

update_macro m0 -absolute_grid [buildRLOCList Scells]

To see the dictionary list created by buildRLOCList:

$ puts [buildRLOCList S$Scells]

{ireg0[6]} X2Y10 {ireg0[5]} X2Y1l {ireg0[4]} X2Y6 {iregO0[3]} X2V7
If there are many macro cells and macro cells buried in hierarchy, specifying the explicit list
of cell-RLOC pairs can become complicated and error prone. The creation and management
of XDC macros can be made simpler using Tcl.

Using Constraints www.xilinx.com Send Feedback 138
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=138

& XILINX

ALL PROGRAMMABLE.

Appendix A

Supported XDC and SDC Commands

About Supported XDC and SDC Commands

This Appendix discusses supported Xilinx® Design Constraints (XDC) and Synopsys Design
Constraints (SDC) commands in the Xilinx Vivado® Integrated Design Environment (IDE),
and includes the following:

Valid Commands in an XDC File
Supported SDC Commands
Unsupported SDC Commands

Using Constraints www.xilinx.com Send Feedback 139
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=139

& XILINX

ALL PROGRAMMABLE

Appendix A

: Supported XDC and SDC Commands

Valid Commands in an XDC File

Table A-1: Valid Commands in an XDC File

Timing Constraint

Physical Constraint

Netlist Object Query

create_clock
create_generated_clock
group_path
set_clock_groups
set_clock_latency
set_data_check
set_disable_timing
set_false_path
set_input_delay
set_output_delay
set_max_delay
set_min_delay
set_multicycle_path
set_case_analysis
set_clock_sense
set_clock_uncertainty
set_input_jitter
set_max_time_borrow
set_propagated_clock
set_system_jitter
set_external_delay

add_cells_to_pblock
create_pblock
delete_pblock
remove_cells_from_pblock
resize_pblock
create_macro
delete_macros
update_macro

Netlist Constraint

set_load

set_logic_dc
set_logic_one
set_logic_zero
set_logic_unconnected

all_cpus
all_dsps
all_fanin
all_fanout
all_hsios
all_inputs
all_outputs
all_rams
all_registers
all_ffs
all_latches
get_cells
get_nets
get_pins
get_ports

get_debug_cores
get_debug_ports

Device Object Query

Timing Object Query

General Purpose

get_iobanks
get_package_pins
get_sites
get_bel_pins
get_bels
get_nodes
get_pips
get_site_pins
get_site_pips
get_slrs
get_tiles
get_wires

all_clocks
get_path_groups
get_clocks
get_generated_clocks
get_timing_arcs

Floorplan Object Query

get_pblocks
get_macros

set

expr

list

filter

current_instance
get_hierarchy_separator
set_hierarchy_separator
get_property
set_property

set_units

endgroup

startgroup

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 140

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=140

8 XI I_I NX Appendix A: Supported XDC and SDC Commands

ALL PROGRAMMABLE

Supported SDC Commands

Note: Because all Xilinx Tcl commands support the ~quiet and -verbose options, the following
table does not list them.

Table A-2: Supported SDC Commands

SDC1.9 Xilinx SDC Note
current_instance current_instance The Vivado IDE handles
[instance_name] [instance_name] get_ports differently when

using read_=xdc
-cells/-ref orthe
SCOPED_TO_xxx constraint
file property.

expr expr

list list In the Vivado IDE, a Tcl list is also
used as an objects container.

set set

set_hierarchy separa set_hierarchy separat

tor or
[separator] [separator]
set_units set_units The set_units -time
[-capacitance cap_units] [-capacitance arg] cannot change the timing unit in
. . . the Vivado IDE.
[-resistance res_unit] [-resistance arg]
[-time time_unit] [-time arg]
[-voltage voltage_units] [-voltage arg]
[-current current_unit] [-current arg]
[-power power_unit] [-power arg]
[-suffix arg]
[-digits arg]
all_clocks all_clocks
all_inputs all_inputs

[-level_sensitive]
[-edge_triggered]
[-clock clock_name]

all_outputs all outputs
[-level_sensitive]
[-edge_triggered]
[-clock clock_name]

Using Constraints www.xilinx.com Send Feedback 141
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=141

& XILINX

ALL PROGRAMMABLE

Appendix A: Supported XDC and SDC Commands

Table A-2: Supported SDC Commands (Cont’d)

SDC1.9

Xilinx SDC

Note

all registers
[-no_hierarchy]
-clock clock_name]
-rise_clock clock_name]
-fall_clock clock_name]
-cells]
-data_pins]
-clock_pins]
-slave_clock_pins]
-async_pins]
-output_pins]
-level_sensitive]
-edge_triggered]
-master_slave]

—_ — — o e e e e e e

all registers
[-no_hierarchy]
[-clock args]
[-rise_clock args]
[-fall_clock args]
[-cells]
[-data_pins]
[-clock_pins]

[-async_pins]
[-output_pins]
[-level_sensitive]
[-edge_triggered]

current_design

current_design

In the Vivado IDE, the current
design refers to the design
loaded in memory, and cannot be
changed to another module or
entity than the top-level one.

get_cells
[-hierarchical]
[-hsc separator]
[-regexp]
[-nocase]
-of_objects objects
patterns

get_cells
[-hierarchical]
[-hsc arg]
[-regexp]
[-nocase]
[-of_objects args]
[patterns]
[-filter arg]
[-match_style arg]

get_clocks
[-regexp]
[-nocase]
patterns

get_clocks
[-regexp]
[-nocase]
[patterns]
[-filter arg]
[-of_objects args]
[-match_style arg]
[-include_generated_clocks]

The Vivado IDE supports the
-of_objects option to
query the clock object on the
clock tree.

get_lib_ cells
[-hsc separator]
[-regexp]
[-nocase]
patterns

get_1lib_ cells

[-regexp]

[-nocase]

patterns

[-filter arg]
[-include_unsupported]
[-of_objects args]

In the Vivado IDE, because only
one device library can be loaded
for a design, itis not necessary to
specify the library name when
querying the library cells.

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 142

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=142

& XILINX

ALL PROGRAMMABLE

Appendix A: Supported XDC and SDC Commands

Table A-2: Supported SDC Commands (Cont’d)

SDC1.9

Xilinx SDC

Note

get_1lib pins
[-hsc separator]

get_lib pins

[-hierarchical]
[-hsc separator]
[-regexp]
[-nocase]
-of_objects objects
patterns

[-regexp] [-regexp]
[-nocase] [-nocase]
patterns patterns
[-filter arg]
[-of_objects args]
get_1libs get_1libs
[-regexp] [-regexp]
[-nocase] [-nocase]
patterns [patterns]
[-filter arg]
get _nets get_nets

[-hierarchical]
[-hsc arg]
[-regexp]
[-nocase]
[-of_objects args]
[patterns]

[-filter arg]
[-match_style arg]

[-top_net_of_hierarchical_group]

[-segments]
[-boundary_type arg]

get_pins
[-hierarchical]
[-hsc separator]
[-regexp]
[-nocase]
-of_objects objects
patterns

get_pins
[-hierarchical]
[-hsc arg]
[-regexp]
[-nocase]
[-of_objects args]
[patterns]
[-leaf]
[-filter arg]
[-match_style arg]

get_ports
[-regexp]
[-nocase]
patterns

get_ports
[-regexp]
[-nocase]
[patterns]
[-filter arg]
[-of_objects args]
[-match_style arg]

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 143

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=143

& XILINX

ALL PROGRAMMABLE

Appendix A: Supported XDC and SDC Commands

Table A-2: Supported SDC Commands (Cont’d)

SDC1.9

Xilinx SDC

Note

create_clock
-period period_value
[-name clock_name]
-waveform edge_list]

-add]

source_objects]

[
[
[

create_clock
-period arg
[-name arg]
[-waveform args]
[-add]
[objects]

ck
[-name clock_name]
-source master_pin
[-edges edge_list]
[-divide_by factor]
[-multiply_by factor]
[-duty_cycle percent]
[-invert]
[-edge_shift shift_list]
[-add]
[-master_clock clock]
[-combinational]
source_objects

create_generated_clo

create_generated_cloc
k

[-name arg]

[-source args]

[-edges args]

[-divide_by arg]

[-multiply_by arg]

[-duty_cycle arg]

[-edge_shift args]
[-add]
[-master_clock arg]
[-combinational]
objects

group_path
[-name group_name]

default]

weight weight_value]

-from from_list]

rise_from from_list]

fall_from from_list]

to to_list]

rise_to to_list]

fall_to to_list]

through through_list]

[
[
[
[
[
[
[
[
[
[
[

fall_through through_list]

rise_through through_list]

group_path
[-name arg]

[-from args]

[-to args]

[-through args]

set_clock_groups
[-name name]
[-logically_exclusive]
[-physically_exclusive]
[-asynchronous]
[-allow_paths]
-group
clock_list

set_clock_groups
[-name arg]
[-logically_exclusive]
[-physically_exclusive]
[-asynchronous]

[-group args]

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 144

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=144

& XILINX

ALL PROGRAMMABLE

Appendix A: Supported XDC and SDC Commands

Table A-2: Supported SDC Commands (Cont’d)

SDC1.9

Xilinx SDC

Note

set_clock_latency
[-rise]
[-fall]
[-min]
[-max]
[-source]
[-late]
[-early]

[-clock clock_list]

delay

object_list

set_clock_latency
[-rise]
[-fall]
[-min]
[-max]
[-source]
[-late]
[-early]
[-clock args]
latency
objects

set_clock_sense
[-positive]
[-negative]
[-pulse pulse]
[-stop_propagation]
[-clock clock_list]
pin_list

set_clock_sense
[-positive]
[-negative]
[-pulse arg]
[-stop_propagation]
[-clocks args]
pins

set_clock_uncertaint
Y

from from_clock]

rise_from rise_from_clock]
fall_from fall_from_clock]

to to_clock]

rise_to rise_to_clock]

fall_to fall_to_clock]

rise]

[_
[_
[_
[_
[_
[_
[_
[_
[_
[_

uncertainty
[object_list]

set_clock_uncertainty
[-from args]
[-rise_from args]
[-fall_from args]
[-to args]
[-rise_to args]
[-fall_to args]

[-setup]
[-hold]
uncertainty
[objects]

set_data_check
[-from from_object]

to to_object]

rise_from from_object]

fall_from from_object]

rise_to to_object]

fall_to to_object]

setup]

hold]

clock clock_object]

value

[_
[_
[_
[_
[_
[_
[_
[_

set_data_check
[-from args]
[-to args]
[-rise_from args]
[-fall_from args]
[-rise_to args]
[-fall_to args]
[-setup]
[-hold]
[-clock args]
value

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 145

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=145

& XILINX

ALL PROGRAMMABLE

Table A-2:

Appendix A: Supported XDC and SDC Commands

Supported SDC Commands (Cont’d)

SDC1.9

Xilinx SDC

Note

set_disable_timing
[-from from_pin_name]
[-to to_pin_name]
cell_pin_list

set_disable_timing
[-from arg]
[-to arg]
objects

set_false_path

[-setup]
-hold]
-rise]
-fall]
-from from_list]
-to to_list]
-through through_list]
-rise_from rise_from_list]
-rise_to rise_to_list]
-rise_through rise_through_list]
-fall_from fall_from_list]
-fall_to fall_to_list]
-fall_through fall_through_list]

set_false_path
[-setup]
[-hold]
[-rise]
[-fall]
[-from args]
[-to args]
[-through args]
[-rise_from args]
[-rise_to args]
[-rise_through args]
[-fall_from args]
[-fall_to args]
[-fall_through args]
[-reset_path]

set_input delay
[-clock clock_name]

[-clock_fall]

[-level_sensitive]

[-rise]

[-fall]

[-max]

[-min]

[-add_delay]

[-network_latency_included]

[-source_latency_included]

delay_value

port_pin_list

set_input delay
[-clock args]
[-clock_fall]

[-rise]

[-fall]

[-max]

[-min]

[-add_delay]
[-network_latency_included]
[-source_latency_included]
delay

objects

[-reference_pin args]

In the Vivado IDE, input delays
are not supported on internal
pins.

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 146

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=146

& XILINX

ALL PROGRAMMABLE

Appendix A: Supported XDC and SDC Commands

Table A-2: Supported SDC Commands (Cont’d)

SDC1.9

Xilinx SDC

Note

set_max_delay

[-rise]
-fall]
-from from_list]
-to to_list]
-through through_list]
-rise_from rise_from_list]
-rise_to rise_to_list]
-rise_through rise_through_list]
-fall_from fall_from_list]
-fall_to fall_to_list]
-fall_through fall_through_list]
delay_value

—_ — — e e e e

set_max_delay
[-rise]
[-fall]
[-from args]
[-to args]
[-through args]
[-rise_from args]
[-rise_to args]
[-rise_through args]
[-fall_from args]
[-fall_to args]
[-fall_through args]
delay
[-reset_path]
[-datapath_only]

set_max time_borrow
delay_value
object_list

set_max_time_borrow
delay
objects

set_min_ delay
[-rise]
[-fall]
[-from from_list]
[-to to_list]
[-through through_list]
[-rise_from rise_from_list]
[-rise_to rise_to_list]
[-rise_through rise_through_list]
[-fall_from fall_from_list]
[-fall_to fall_to_list]
[-fall_through fall_through_list]
delay_value

set_min_delay
[-rise]
[-fall]
[-from args]
[-to args]
[-through args]
[-rise_from args]
[-rise_to args]
[-rise_through args]
[-fall_to args]
[-fall_from args]
[-fall_through args]
delay
[-reset_path]

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 147

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=147

& XILINX

ALL PROGRAMMABLE

Table A-2:

Appendix A: Supported XDC and SDC Commands

Supported SDC Commands (Cont’d)

SDC1.9

Xilinx SDC

Note

set_multicycle_ path

[-setup]

[-hold]

[-rise]

[-fall]

[-start]

[-end]

[-from from_list]

[-to to_list]
[-through through_list]
[-rise_from rise_from_list]
[-rise_to rise_to_list]
[-rise_through rise_through_list]
[-fall_from fall_from_list]
[-fall_to fall_to_list]
[-fall_through fall_through_list]
path_multiplier

set_multicycle_path
[-setup]
[-hold]
[-rise]
[-fall]
[-start]
[-end]
[-from args]
[-to args]
[-through args]
[-rise_from args]
[-rise_to args]
[-rise_through args]
[-fall_from args]
[-fall_to args]
[-fall_through args]
path_multiplier
[-reset_path]

set_output_delay
[-clock clock_name]

[-clock_fall]

[-level_sensitive]

[-rise]

[-fall]

[-max]

[-min]

[-add_delay]

[-network_latency_included]

[-source_latency_included]

delay_value

port_pin_list

set_output_delay
[-clock args]
[-clock_fall]

[-rise]

[-fall]

[-max]

[-min]

[-add_delay]
[-network_latency_included]
[-source_latency_included]
delay

objects

[-reference_pin args]

In the Vivado IDE, output delays
are not supported on internal
pins.

set_propagated_clock
object _list

set_propagated_clock
object

In the Vivado IDE, all clocks are
propagated clocks by default.

set_case_analysis
value
port_or_pin_list

set_case_analysis
value
objects

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 148

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=148

& XILINX

ALL PROGRAMMABLE

Appendix A: Supported XDC and SDC Commands

Table A-2: Supported SDC Commands (Cont’d)
SDC 1.9 Xilinx SDC Note
set_load set_load In the Vivado IDE, the
[-min] [-max] set_ load command is
[-max] [-min] relevant for power analysis only.
[-subtract_pin_load]
[-pin_load]
[-wire_load]
value capacitance
objects objects
[-rise]
[-fall]

set_logic_dc
port_list

set_logic_dc
objects

set_logic_one
port_list

set_logic_one
objects

set_logic_zero
port_list

set_logic_zero
objects

set_operating condit
ions

[-library lib_name]
-analysis_type analysis_type]
-max max_condition]
-min min_condition]
-max_library max_lib]
-min_library min_Lib]
-object_list objects]
condition]

[
[
[
[
[
[
[

set_operating conditi
ons

[-voltage args]
[-grade arg]
[-process arg]
[-junction_temp arg]
[-ambient_temp arg]
[-thetaja arg]
[-thetasa arg]
[-airflow arg]
[-heatsink arg]
[-thetajb arg]
[-board arg]
[-board_temp arg]
[-board_layers arg]

In the Vivado IDE, the
set_operating conditi
ons command: (1) sets the
operating conditions for power
analysis only; and (2) does not
influence the timing reports. The
Vivado IDE timing engine is
controlled by the

config timing analysi
s command. For more
information on

config timing analysi
s, see the Vivado Design Suite Tcl
Command Reference Guide
(UG835)[Ref 6].

Using Constraints
UG903 (v2014.1) May 14, 2014

www.Xilinx.com

l Send Feedback I 149

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=149

& XILINX

ALL PROGRAMMABLE

Appendix A: Supported XDC and SDC Commands

Unsupported SDC Commands

The following SDC commands are not supported.

set_clock_gating_check
set_clock_transition
set_ideal_latency
set_ideal_network
set_ideal_transition

set_ max_fanout

Note: Maximum fanout is controlled by the MAX_FANOUT attribute during synthesis.

set_drive

set_driving_cell
set_fanout_load
set_input_transition
set_max_area
set_max_capacitance
set_max_transition
set_min_capacitance
set_port_fanout_number
set_resistance
set_timing_derate
set_voltage
set_wire_load_min_block_size
set wire_load_mode
set_wire_load_model
set_wire_load_selection_group
create_voltage_area
set_level_shifter_strategy
set_level_shifter_threshold
set_max_dynamic_power

set_max_leakage_power

Using Constraints www.xilinx.com
UG903 (v2014.1) May 14, 2014

l Send Feedback I 150

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=150

& XILINX

ALL PROGRAMMABLE.

Appendix B

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References

Vivado Design Suite User and Reference Guides
The following Vivado® Design Suite guides are referenced in this document.

Vivado Design Suite Migration Methodology Guide (UG911)

Vivado Design Suite User Guide: System-Level Design Entry (UG895)

Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
Vivado Design Suite User Guide: Synthesis (UG901)

Vivado Design Suite Tcl Command Reference Guide (UG835)

Vivado Design Suite Properties Reference Guide (UG912)

Vivado Design Suite User Guide: Programming and Debugging (UG908) (UG908)
7 Series FPGAs SelectlO Resources User Guide (UG471)

10. Constraints Guide (UG625)

W 0 N o vk W N

Using Constraints www.xilinx.com Send Feedback 151
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug912-vivado-properties.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug899-vivado-io-clock-planning.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug901-vivado-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug471_7Series_SelectIO.pdf
http://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug906-vivado-design-analysis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=cgd.pdf.
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug911-vivado-migration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug895-vivado-system-level-design-entry.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;d=ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=151

8 XI LINX Appendix B: Additional Resources and Legal Notices

ALL PROGRAMMABLE

Vivado Design Suite Video Tutorials

Vivado Design Suite Video Tutorials (http://www.xilinx.com/training/vivado/index.htm)

Vivado Design Suite Documentation

Vivado Design Suite Documentation
(www.xilinx.com/support/documentation/dt _vivado2014-1.htm)

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

© Copyright 2012-2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zyng, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

Using Constraints www.xilinx.com Send Feedback 152
UG903 (v2014.1) May 14, 2014 [—\/—]

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;t=vivado+videos
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.1;d=ug472_7Series_Clocking.pdf
http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Using%20Constraints&releaseVersion=2014.1&docPage=152

	Vivado Design Suite User Guide: Using Constraints
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Migrating From UCF Constraints to XDC Constraints
	About XDC Constraints

	Ch. 2: Constraints Methodology
	About Constraints Methodology
	Organizing Your Constraints
	Project Flows
	Non-Project Flows
	Synthesis and Implementation Constraint Files

	Ordering Your Constraints
	Recommended Constraints Sequence
	Constraints Sequence Editing
	Constraint Files Order
	Constraint Files Order with IP Cores

	Changing Read Order

	Entering Constraints
	Saving Constraints in Memory
	Constraints Editing Flow Options
	User Interface Option
	Hand Edit Option

	Pin Assignment
	Clock Resources Assignment
	Floorplanning
	Timing Constraints Window
	Timing Constraints Spreadsheet
	Constraints Creation, Grouped by Category
	All Constraints

	XDC Templates
	XDC Template Contents
	Using XDC Templates
	Advanced XDC Templates

	Creating Synthesis Constraints
	RTL Attributes
	Timing Constraints
	Physical and Configuration Constraints
	Elaborated Design Constraints
	Single-Bit Register Names
	Multi-Bit Register Names
	Absorbed Registers and Nets
	Hierarchical Names

	Creating Implementation Constraints
	Constraints Scoping
	XDC File Scoping Properties
	Setting XDC File Scoping Properties Example

	XDC Scoping Mechanism
	IP and Sub-module Constraining with XDC
	Scoped Queries Guidelines
	Scoped Timing Constraints Guidelines

	Ch. 3: Basics of Timing Checks
	Terminology
	Timing Paths
	Common Timing Paths
	Path from Input Port to Internal Sequential Cell
	Internal Path from Sequential Cell to Sequential Cell
	Path from Internal Sequential Cell to Output Port
	Path from Input Port to Output Port
	Timing Paths Example

	Timing Path Sections
	Source Clock Path
	Data Path
	Destination Clock Path

	Launch and Capture Edges

	Setup and Hold Analysis
	Setup Check
	Data Required Time For Setup Analysis
	Data Arrival Time For Setup Analysis

	Hold Check

	Recovery and Removal Analysis
	Recovery Check
	Removal Check

	Ch. 4: Defining Clocks
	About Clocks
	Propagated Clocks
	Dedicated Hardware Resources

	Primary Clocks
	Virtual Clocks
	Generated Clocks
	About Generated Clocks
	User Defined Generated Clocks
	Automatically Derived Clocks
	Local Net Names
	Name Conflicts

	Renaming Auto-Derived Clocks
	Limitations

	Clock Groups
	About Clock Groups
	Clock Categories
	Synchronous Clocks
	Asynchronous Clocks
	Unexpandable Clocks

	Asynchronous Clock Groups
	Creating Asynchronous Clock Groups

	Exclusive Clock Groups

	Clock Latency, Jitter, and Uncertainty
	Clock Latency
	Clock Uncertainty
	Clock Jitter
	Input Jitter
	System Jitter

	Additional Clock Uncertainty

	Ch. 5: Constraining I/O Delay
	About Constraining I/O Delay
	Input Delay
	Using Input Delay Options
	Min and Max Input Delay Command Options
	Clock Fall Input Delay Command Option
	Add Delay Input Delay Command Option

	Output Delay
	Using Output Delay Options
	Min and Max Output Delay Command Options
	Clock Fall Output Delay Command Option
	Add Delay Output Delay Command Option

	Ch. 6: Timing Exceptions
	About Timing Exceptions
	Multicycle Paths
	Setting the Path Multipliers and Clock Edges
	set_multicycle_path Syntax

	Multicycles in Single Clock Domain
	Relaxing Setup While Maintaining Hold
	Moving the Setup
	Example One: Setup=5 / Hold Moved Accordingly
	Example Two: Setup=5 / Hold=4

	Multicycle Paths and Clock Phase-Shift
	Multicycles Between SLOW-to-FAST Clocks
	Example One: Setup=3 / Hold Moved Accordingly
	Example Two: Setup=3 / Hold=2 (-end)

	Multicycles Between FAST-to-SLOW Clocks
	Example: Setup=3 (-start) / Hold=2

	False Paths
	Min/Max Delays
	Setting Maximum Delay and Minimum Delay Constraints
	Maximum Delay Constraint Syntax
	Minimum Delay Constraint Syntax
	List of Nodes for the -from Option
	List of Nodes for the -to Option
	List of Nodes for the -through Option
	Consequences of Setting Maximum Delay or Minimum Delay Constraints on a Path
	Constraining Input or Output Logic
	Constraining Asynchronous Signals

	Path Segmentation
	Path Segmentation and Timing Exception
	Scenario 1
	Scenario 2

	Case Analysis

	Ch. 7: XDC Precedence
	About XDC Precedence
	XDC Constraints Order
	Exceptions Priority

	Ch. 8: Physical Constraints
	About Physical Constraints
	Critical Warning

	Netlist Constraints
	CLOCK_DEDICATED_ROUTE
	MARK_DEBUG
	DONT_TOUCH
	LOCK_PINS

	IO Constraints
	Placement Constraints
	Placement Types
	Fixed Placement
	Unfixed Placement

	Routing Constraints
	Fixed Routing

	Configuration Constraints

	Ch. 9: Defining Relatively Placed Macros
	About Relatively Placed Macros
	Defining Sets of Design Elements
	Creating an RPM
	Assigning Cells to RPM Sets
	Explicitly Grouping Design Elements
	Explicitly Grouping Design Elements With U_SET
	Explicitly Grouping Design Elements With HU_SET

	Syntax for Defining RPM Sets in VHDL
	Syntax for Defining RPM Sets in Verilog
	U_SET Example
	HU_SET Example
	RPM Definition in the Physical Constraints Window

	Viewing RPM Definitions

	Assigning Relative Locations
	Relative Slice-Based Coordinates
	Absolute RPM Grid-Based Coordinates
	RPM_GRID Coordinates VHDL Example
	Setting a Property to Invoke the RPM_GRID System
	RPM_GRID Coordinate Values
	Defining RLOC Properties Directly in the RTL Source File

	Assigning a Fixed Location to an RPM
	XDC Macros
	Specifying Macros
	create_macro
	create_macro Syntax
	create_macro Example

	update_macro
	update_macro Syntax
	update_macro Example One
	update_macro Example Two

	delete_macros
	delete_macros Syntax
	delete_macros Example

	get_macros
	get_macros Syntax
	get_macros Examples

	Managing Macros
	Managing Macros Example One
	Managing Macros Example Two
	Managing Macros Example Three

	Macro Properties
	Macro Properties Example
	ABSOLUTE_GRID
	CLASS
	NAME
	RLOCS

	Advanced XDC Macro Examples
	Relative Grid Macro Examples
	Absolute Grid Macro Examples

	Appx. A: Supported XDC and SDC Commands
	About Supported XDC and SDC Commands
	Valid Commands in an XDC File
	Supported SDC Commands
	Unsupported SDC Commands

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Vivado Design Suite User and Reference Guides
	Vivado Design Suite Video Tutorials
	Vivado Design Suite Documentation

	Please Read: Important Legal Notices

