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Introduction 

Welcome to the Zynq beginners workshop.  The purpose of this document is to give 
you a hands-on introduction to the Zynq-7000 SoC devices, and also to the Xilinx 
Vivado Design Suite.  Throughout the course of this guide you will learn about the 
Zynq SoC solution step-by-step, and gain the knowledge and experience you need to 
create your own designs. 

 

How does it work? 

However you want it to!  But the following notes might help: 
 

 Please feel free to experiment beyond the guidance of the exercises – it is the 
fastest way to learn.  This is not going to be a regimented "follow the steps in the 
instructions" style of material.  The aim is to learn by doing, getting it wrong, and 
then fixing it. 

 Please work on your own if you can, you'll learn more by doing than by watching 
someone else use the tools.  If you do work with someone else, please try to get 
equal hands-on time.  You won’t learn much by watching. 

 Everyone will be work at their own speed when following this guide.  Depending 
on previous knowledge and experience, some people will progress quickly and 
others will take longer to master the concepts.  The idea is to progress through 
the exercises, learning how to use the Xilinx embedded processor tools simply by 
"getting your hands dirty".  Each exercise will introduce new concepts of 
embedded processor design and will enable you to learn new skills.  The 
exercises will become more challenging as the workshop progresses, and will 
gradually offer less step-by-step guidance. 

 If you’re working though this material at an organised event, there are more 
exercises listed here than most people will be able to cover during one day.  This 
has been done quite intentionally so that you will have something more to 
explore in your own time if you so choose.  If you are working through this 
material alone, then you can obviously set your own schedule and pace. 

 Have fun! 

 

Prerequisites 

These exercises have been designed to guide you through the usage of the Xilinx 
tools at every step of the way, and teach the basic principles of the code that we’ll 
be writing in C and VHDL.  That said, it would be advantageous if you have a basic 
understanding of both languages, just so that you don’t feel like you’re living in a 
world of peculiar-looking hieroglyphics.   
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Agenda 

 Exercise 1 - Getting something (anything!) working. 

 "I just want to see the board work.  How do I do it?" 

 Use of the Block Diagram tool. 

 "print" is your friend.  We will learn how to use it for debugging. 

 

 Exercise 2 - Using drivers to flash an LED. 

 What is a driver? 

 Where do I find the supplied drivers? 

 Using the GPIO peripheral and the supplied drivers, control some pins to flash LEDs on the 

board. 
 

 Exercise 3 - Debugging. 

 Why is this important? 

 How does it help us? 

 What options do we have for debugging? 

 Use the debugger to step through your Flashing LED design. 

 

 Exercise 4 – Expanding your design into the programmable logic (PL). 

 Add soft peripherals to the AXI interfaces. 

 Interfacing between the PS and PL. 

 Connecting interrupts. 

 Assigning IO pin locations. 

 
 Exercise 5 - Making your design interactive. 

 How do we read inputs from the user? 

 User input driver functions. 

 Using a UART connection, make your software respond to characters sent via the UART. 

 Make an LED light on the board when a certain character is sent from the UART. 

 

 Exercise 6 - Talking to internal memory 

 Use the "Xil_io" functions to write to and read from memory. 

 Why is this important? 

 
 Exercise 7 - Timers (Polled mode) 

 Why are timers useful? 

 When do we use them? 

 Using a timer peripheral, flash an LED at a frequency of 1Hz. 

 

 Exercise 8 - Timers (Interrupt mode) 

 What is an interrupt? 

 Why are they important? 

 Make a system that will light an LED in response to a user input, but at the same time flash 

another LED at a frequency of 1Hz.  Neither task is permitted to noticeably interfere with the 
other. 

 

 Exercise 9 – Talking to external components 

 Using a PMOD expansion module, we will experiment with using the SPI protocol to talk to a 

temperature sensor. 
 This exercise will discuss the basics of SPI, and will show how to read from and write to an 

external device to expand the capabilities of your design. 

 We will then implement an interrupt based design to send and receive data from the external 

board via SPI. 
 

 Exercise 10 – Autonomous Boot 

 Using an SD flash memory card, we will make the ZedBoard boot automatically. 
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Preparation 

During this workshop we shall be using an evaluation board to demonstrate some of 
the principles behind designing an embedded processor system on Xilinx SoC 
devices.  The board we will use is a low-cost “ZedBoard” development kit (Zynq 
Evaluation & Development Board), available from the http://zedboard.org website.  
The board features a Zynq 7020 device, and also provides a number of simple 
peripherals to enable users to experiment with various aspects of their embedded 
designs.  These include UARTs, LCD displays, external (DDR3) memory, push 
buttons, toggle switches, LEDs, PMOD expansion sockets, audio codec with input and 
output connections, and an Ethernet PHY & socket. 
 
The starter kit board has its own in-built JTAG configuration cable, which simply 
requires that the user connect a USB lead between their laptop and the board.  A 
power supply for the board is also provided.  We shall be using the RS232 UART in 
our experiments, which is connected to a USB socket on the board via a Cypress 
CY7C64225 USB-UART bridge.  You will therefore need two USB to MicroUSB cables, 
and the power supply provided with the board. 

I’m new to Xilinx.  What tools do I need? 

The Xilinx design tools are designed to cater for both hardware and software 
engineers.  The Xilinx FPGA and Zynq SoC devices are extremely flexible and so 
there is a lot of functionality in the toolset, which is spread across different 
applications. 
 
Vivado – The top level design environment for the hardware designer.  Use this tool 
to create the contents of your Programmable Logic, and to create the embedded 
processor section of the design.  We will use Vivado to configure our settings for the 
Zynq “Processing System” section of the design. 
 
SDK – The Software Development Kit.  A tool for software engineers, allowing the 
user to develop C code, generate BSPs, and test their code using the debugger. 

 

What hardware do I need? 

This workshop uses the ZedBoard and the cables which are supplied in the box.  For 
Exercise 9, you will also need a “MAX31723PMB1” temperature sensor from Maxim.   

http://zedboard.org/
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Exercise 1 - Getting something (anything!) working 

This exercise has a triple purpose.  Firstly, it will check that Xilinx tools have been 
correctly installed.  The second and main part of the exercise will be to build a very 
basic processor system using the Xilinx Vivado tools, to help create a design which 
will then be synthesised, implemented, and downloaded to the demonstration board 
via a programming cable.  Lastly, the exercise will enable the user to test the 
ZedBoard to check that it is correctly powered and configured.  If successful, the 
user will see messages displayed on the terminal connected to the UART socket on 
the board. 
 

 
 
As with all development boards, there are supplied reference designs which are 
provided for the user to see the board in action out of 
the box.  However, the purpose of this session is for you 
to do it, so we’ll create our own design rather than use 
the supplied reference designs. 
 
1. Connect the USB cable between your PC and the 

“UART” micro-USB socket on the demonstration 
board.  You will find this socket to the left of the 
power switch.  Later on, we will use the Terminal 
utility built into the Xilinx Software Development Kit 
to view the output from the board. 
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2. Connect the second USB lead to the “PROG” socket next to the power connector 
on the board.  Connect the other end of the USB lead to a spare USB port on 
your PC. 

 
3. Check the jumper settings for “J18” in the 

bottom-right corner of the board.  The jumper 
should be set to 2.5 volts, which is marked as 
“2V5” on the board. 

 
4. Remove the SD card from the socket on the 

back of the board, if one is inserted.  Connect 
the demonstration board to the power supply and switch it on using the main 
power switch in the corner of the board.  Check that the “Power” LED on the 
demo board is illuminated.   

 
5. Check the jumper settings for the boot mode on the 

board.  These should be set to the following settings: 
 

Jumper SIG connected to... 
MIO6 GND 
MIO5 3V3 
MIO4 3V3 
MIO3 GND 
MIO2 GND 

 
6. Depending on whether your PC has previously been used with this board, you 

may see an automated installation wizard run on your PC for the USB UART 
drivers.  If this happens, permit the wizard to look for files on the internet and 
the cable should be installed automatically.  (N.B. The wizard may re-run several 
times before the cable is correctly installed.  This is normal so please persevere) 

 

7. Run the Xilinx Vivado tool (Start  All Programs 
 Xilinx Design Tools  Vivado 2014.1  
Vivado 2014.1).  You can use a different version 
of the Vivado tools, but please be aware that 
some of the screens you will see may differ from 
the ones shown in this document. 

 
7.1. From the menu, choose to “Create new 

project” and then click “Next”. 
7.2. Give the project a name of your choice, and 

specify a convenient location on your PC for 
the project files.  Leave the “Create Project 
Subdirectory” box ticked, and click “Next”.  
Choose “RTL Project” from the list of project 
types and click “Next”. 
 

7.3. Choose “VHDL” as your target language from the drop down list.  If you have 
a particular preference for Verilog, you can choose it here but the guidance 
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later on in this workshop will need to be modified using your own skills.  Click 
“Next” several times until you see the “Default Part” screen. 

7.4. Click the “Boards” option in the “Specify” area.  Choose “Zynq-7000” from the 
“Family” filter drop-down. Choose “All” from the “Board Rev” drop down box. 

7.5. Check to see which version of the ZedBoard you have by examining the 
revision markings next to the bar code sticker on the board. 

7.6. Choose the correct version of the “ZedBoard Zynq Evaluation and 
Development Kit” option from the list of known boards.  Click “Next”, and 
then click “Finish”. 

 
8. You will now see an empty Vivado project.  Maximise the Vivado window if it is 

not already filling the screen, so that you can properly explore this tool. 
8.1. On the left of the screen you will see the Flow Navigator pane.  This is where 

you control the flow of the design and where you will click to run Synthesis, 
Implementation, and generate a configuration bitstream. 

8.2. In the middle of the screen near the top, you will see the “Sources” pane.  
This is where you will see design sources that you will add to your project.  
Currently there are no Design Sources in this project so the list will be empty.  
You will also see the design constraints lists here, which is also empty.  Don’t 
be confused by the “constrs_1” sub folder; this represents that you have a 
default “Constraint Set” present in the project, but there are no constraints 
files in it yet. 

8.3. On the right of the screen you will see the Project Summary pane.  This is 
where you will see statistics about your project; how big it is, how many 
resources you are using in your Zynq device, and a summary from the 
various report files.  There is little information in this pane at the moment, 
because we have not yet done anything. 

8.4. At the bottom of the screen you will see a series of tabs which show reports, 
errors, warnings, messages, a log of recent events, and the progress of any 
open designs in the “Design Runs” tab.  There is also a TCL console in this 
area which allows power users to enter advanced custom commands. 

 
9. Xilinx Zynq devices offer users the ability to combine custom logic blocks with 

embedded processor systems.  We are going to add a source file to the project 
which represents the Embedded Processor section of our design in block diagram 
form. 
9.1. On the left of the screen in the Flow Navigator pane, click the “Create Block 

Design” icon. 
9.2. Leave the name of the block diagram at the default setting, and click “OK”. 
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9.3. After a few seconds, the pane on the right of the screen will open into the 
Block Design mode (shown in the blue bar at the top of the pane), and an 

empty block diagram will be shown.  Note also the green “designer 
assistance” bar at the top of the pane, which is prompting you to start your 
design by adding some IP to the block diagram. 

 
10. You will now configure the hardened Processing System section of the Zynq 

device. 
10.1. In the green designer assistance bar at the top of the page, 

click the “Add IP”.  If the designer assistance bar is not visible, 
you can open the “Add IP” window using its icon on the left of the 
block diagram pane. 

10.2. Choose the “ZYNQ7 Processing System” entry from the list, 
either by scrolling down to locate it, or by typing the first few characters into 
the search box at the top of the box.  Double-click the IP in the list to add it 
to the block diagram, or drag it to the block diagram with your mouse. 

10.3. Note the change to the green designer assistance bar at the top of the 
block diagram, which is now offering the “Run Block Automation” feature.  
Vivado has detected that there is an un-configured block on the diagram and 
is offering the user the chance to connect some required pins on the symbol.  
Click the “Run Block Automation” link in the designer assistance bar, followed 
by the instance name that appears for the symbol you have added to the 
diagram.  Leave the “Apply Board Preset” box ticked, which will apply the 
required settings for the ZedBoard, and click OK. 

10.4. Review how the DDR & Fixed IO connections are made automatically.  
The Vivado tools are “board aware” and have also now made a number of 
changes to the internal configuration of the “Zynq7 Processing System” block.  
You will notice that a number of additional connections have appeared on the 
block including clocks, resets, timer outputs, and bus interfaces which allow 
the connection of additional AXI IP blocks (soft peripherals in the 
Programmable Logic fabric).  
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10.5. Double click the “Zynq7 Processing System” block to open the 
customisation window.  This is where changes can be made to the Processing 
System section of a Zynq device, and there are a large number of settings 
available.  We are going to keep our design very simple at first, so we will 
disable the AXI bus interfaces that connect to the Programmable Logic. 

10.6. The diagram of the Zynq device shown on this window is interactive; 
anything in bright green can be clicked to adjust the settings.  Click the “32b 
GP AXI Master Ports” block at the bottom of the diagram.  Remove the tick 
mark from the box labelled “M AXI GP0 interface” to disable the bus port, 
then click “OK”.  The customisation window will close and you will return to 
the Block Diagram editor.  Note that the AXI ports on the “Zynq7 Processing 
System” tile disappear, leaving just the clock, reset, and timer outputs.  
(Note: We could also have disabled these outputs in the customisation 
settings, but in our design we will simply leave them disconnected) 

10.7. This completes the settings for the embedded processing 
section of the design.  Click the “Validate Design” icon to the left 
of the block diagram to check for any errors.  You should see a 
“Validation successful” message. 

10.8. Save the block design by choose “File  Save Block Design” 
from the menus. 

 
11. Click the “Sources” tab in the “Design Hierarchy” pane in the middle of the 

screen.  You will now see your block design source in the “Design Sources” folder.  
Click the name of the embedded source that you have created (with its yellow 
icon and .bd file suffix) to select it.  This module contains all of the settings that 
you configured in the block diagram editor, and you can return to it any time by 
double-clicking this source. 

 
12. We now need to create a top level VHDL / Verilog wrapper file to go around this 

block design.  Normally this top level source file would be custom created by the 
designer, but as a short-cut we can make the Vivado tools do this for us. 
12.1. Right-click the block design source file and choose “Create HDL 

Wrapper” from the resulting menu. Choose to “Let Vivado manage wrapper 
and auto-update”, and click OK.  The tools will automatically create a VHDL 
or Verilog file which will have the same name as your block design source, 
but with the suffix “_wrapper” appended to the name.  If you wish, you can 
double click to open and review this top level file in the editing pane on the 
right of the screen.  This wrapper will serve at the top level HDL file for our 
design. 

 
13. We will now synthesise, implement, and create a downloadable bitstream for this 

design. 
13.1. On the left of the screen in the “Flow Navigator” pane you will see 

menu items for “Run Synthesis”, “Run Implementation” and “Generate 
Bitstream”.  We could run all of these steps in turn, but the Vivado tool is 
capable of managing the dependences automatically. 
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13.2. We want to generate a downloadable 
bitstream to configure the Zynq device, so 
choose “Generate Bitstream” from the bottom 
of the Flow Navigator pane on the left of the 
screen.  You may see a confirmation box 
asking you to confirm that you want to re-run 
the entire flow.  The Vivado tool will 
Synthesise, Implement, and finally generate 
the bitstream for your design.  You can 
monitor the progress of this process as it 
moves from one stage to the next using the 
pop-up status boxes in the centre of the 
screen and the progress indicator in the top-
right corner of the screen (just below the 
Search box), but it may take a few minutes to 
complete.  Grab a coffee!  (When you see the 
message “Bitgen Complete” in the top right 
corner of the screen, you will be ready to 
continue) 

13.3. You may see some “critical warnings” towards the end of the run to 
generate the bitstream, mentioning POR_B, etc.  This can be ignored, 
because despite the message, the problems are not in the least bit critical. 

13.4. Depending on whether you have changed the default settings in your 
Xilinx tools on a previous occasion, you may also see a pop-up box asking 
whether you wish to open the implemented design, view reports, or open the 
hardware manager.  If you see this, choose to “Open Implemented Design”.  
If you do not see this pop-up box, click “Open Implemented Design” in the 
“Flow Navigator” pane on the right of the screen. 

 
14. That’s it, you’ve now built the hardware and you have a Bitstream which can be 

used to configure the Programmable Logic (PL) section of the device.  In this case 
the bitstream is just a wrapper, because all of the functionality in this first simple 
design is contained within the hardened Processing System (PS) section of the 
device.  You will see a diagram of the Zynq device appear on the right of the 
screen.  The boxes represent different design regions of the Programmable Logic, 
and the bright orange section in the top left is the hardened Processing System 
which contains the memory controllers and ARM processor cores. 
14.1. The settings you made using the block design tool were of huge 

importance, and all of this information has been included in our design.  
Almost all of these settings were applied automatically by the tool because 
we chose the “ZedBoard” when we created the project.   Vivado knows how 
to correctly configure the DDR controller, clocks, IO pins, and many other 
settings, so a huge amount of design time has been saved here.  For custom 
boards the user would need to manually configure these settings to match 
their board. 

15. We now need to start writing some software to run on one of the ARM Cortex A9 
processors, and to do that we must use the Software Development Kit (SDK). 
 

16. Launch the SDK tool from within Vivado. 
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16.1. Choose “File  Export  Export Hardware for SDK...” from the menus.  
16.2. Tick the “Launch SDK” box from the pop up, leave the other settings as 

the defaults (all ticked), and click OK. 
 
  

 
 
 
 

After a few seconds you will see a new design tool appear.  The Software 
Development Kit (SDK) is based upon the “Eclipse” tools which are fast becoming 
an industry standard for software development environments across the world.  If 
you are new to Eclipse, please take a few moments to familiarise yourself with 
the layout of the SDK. 
 
If the SDK does not appear, you may have forgotten to open the implemented 
design, or you may have closed the block design before performing the export 
operation.  The block design must be open, and the implemented design must be 
open, in order for the export operation to succeed. 
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16.3. On the left of the screen is the Project Explorer pane.  This is where 

you will see all of your software projects, Board Support Packages, and 
Hardware Platforms listed, including all of the files which represent the 
project.  At this stage you will see only a hardware platform, which is 
depicted by the yellow folder icon containing a microchip.  This hardware 
platform has been automatically imported from the Vivado tool and describes 
the hardware settings which are applicable for the ZedBoard that we’re using 
today. 

16.4. In the middle of the screen we can see the code and file editing pane.  
This is where you will make changes to source files, and edit your C code.  At 
this stage you should see a .XML file open, and this represents the hardware 
for the ZedBoard that has been imported.  Feel free to explore this file; you 
will see that it contains all of the hardware base address and high address 
settings for the various peripherals on the Zynq device. 

16.5. On the right of the screen is the Outline pane.  This will provide an 
overview of your software code later on, but is blank for the moment. 

16.6. At the bottom of the screen you will see a series of tabs that operate in 
much the same way as they did in the Vivado tool.  The tabs show you a 
console which will provide messages, warnings, and status updates.  There is 
a Tasks tab which shows you what the SDK is currently doing (perhaps in the 
background), and a Terminal which allows you to interact with serial ports on 
the board. 

 
17. We will start our software development by creating a Board Support Package 

(BSP).  BSPs contain drivers, libraries, and essentially anything else which will 
allow your software applications to access features on the hardware.  In many 
cases it is the user’s responsibility to create a BSP from scratch, or import one 
that someone else has created.  The Xilinx tools differ massively from this way of 
working, and are capable of creating a BSP for you automatically.  This is a huge 
benefit and will save a lot of time during your software development. 

17.1. From the menus choose “File  New  Board Support Package”.  
Accept all of the defaults and click “Finish”. 

17.2. A BSP settings window will appear, giving you the option to adjust what 
will be contained within the BSP.  We are going to keep it simple, so please 
just click “OK”. 

17.3. In the Console tab at the bottom of the screen you will see the compiler 
and a special utility called “Library Generator” working to create your BSP.  
You will ultimately see the message “Build Finished”, which will indicate that 
the BSP is complete.  That’s it!  You have just created a fully featured BSP 
which would normally require weeks of engineering time. 

17.4. In the Project Explorer pane on the left of the screen you will see that 
your “standalone_bsp_0” BSP has appeared in the list of sources.  Expand 
this project by clicking on the arrow to the left of the name and continue to 
expand the yellow folders until you see the “include” folder.  Open this folder 
and you will see a list of header (.h) files which represent all of the drivers 
that you will need to develop your software. 
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17.5. As an example of the available drivers, open the “xuartps.h” header file 
by double-clicking it, and explore the contents of the file.  You will find a 
selection of functions which allow you to 
configure and control the UART.  Near the 
bottom of the file you will see functions that 
Send and Receive bytes to/from the UART.  At 
this stage also review the “Outline” tab on the 
right of the screen.  For large complex source 
files, the Outline tab can help you to navigate 
through the source file with ease.  Try clicking a 
few of the items in the outline tab, and note 
how the view in the source code window jumps 
to that section of the code. 

17.6. You will find that all of the function 
prototypes in the header file are documented 
and provided in C source code (in the associated 
“libsrc” directory of the BSP).  This is a very 
useful resource for software developers, and will 
save huge amounts of time when writing your 
code.   

17.7. Close the header file, and collapse the BSP 
folder to tidy up the Project Explorer pane. 

 
18. We will now create a simple software application.  

Just like all good software engineers, our first 
application will simply write “Hello World” to the 
UART. 

18.1. From the menus, choose “File  New  Application Project” 
18.2. Give the project a name, such as “Exercise_01”. 
18.3. At the bottom of the window, choose the “Use existing” Board Support 

Package, and then select the BSP that you created a few moments ago. Click 
“Next”. 

18.4. Finally, choose the “Hello World” template from the list of examples and 
click “Finish”. 

18.5. Monitor the Project Explorer pane and you will note that the new 
software project called “Exercise_01” appears on the left. 

18.6. Expand the “Exercise_01” folder and descend into the “src” sub-folder.  
Double click to open the “helloworld.c” file and examine the contents.  You 
will notice that the code is extremely simple and all of the usual complicated 
code that is often present to configure a processor appears to be missing.  
Actually it’s not missing, but has been cleverly abstracted away by Xilinx to a 
different location.  (You can see where the setup code is hiding later on, but 
for now please just believe me that it works!) 

 
19. Switch on the ZedBoard, if it is not already.  Check that you can see the green 

“Power” LED on the left of the board. 
 

20. We will now configure the built-in UART Terminal to listen to UART traffic coming 
from the board. 
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20.1. At the bottom of the SDK screen, click to 
activate the “Terminal” tab. 

20.2. In the Terminal tab’s menu bar, click the 
Terminal Settings icon, which is depicted as a 
yellow spreadsheet-like table with a blue header 
bar.  The terminal settings will be shown in a small 
pop-up window. 

20.3. From the “Connection Type” pull-down, 
choose “Serial”. 

20.4. Set the COM port to the one that has been 
installed on your PC for the USB-UART.  You may 
need to check the Device Manager in the 
Windows Control Panel to find out which one it is. 

20.5. Set the baud rate to “115200”, the Data Bits 
to “8”, the Stop bits to “1”, and both Parity and 
Flow Control to “None”.  Leave the rest of the 
settings as default and click OK.  The connection 
to the UART will automatically be opened, and 
you should see a “CONNECTED” message in the 
Terminal tab. 

 
21. In the Project Explorer pane, right-click on the 

“Exercise_01” project and choose “Run as  Launch 
on Hardware (GDB)”.  The application will be downloaded to the ZedBoard and it 
will execute on the first Cortex A9 processor core. 
 

22. SDK has a mildly irritating habit of deselecting 
the Terminal tab when an application is 
downloaded, so reselect it from the bottom of 
the screen.  Alternatively, you can click and 
drag the Terminal window to a different pane 
in SDK.  The pane occupied by the “Outline” 
tab is often a good place for it.  You should 
see the “Hello World” message displayed in the 
Terminal window.  
 

23. That’s it!  Although there were a lot of steps to explain in this first exercise, you 
have taken a Zynq device and configured it to run a simple software application, 
starting completely from scratch.  Congratulations! 

 

Further experiments 

 
The "print" C code function can be used to display text to the standard output device 
(which in our case is the UART).  The syntax for "print" is as follows: 
 
print("Your line of text goes in here!\n\r"); 

 



 

Page 15 

Zynq Workshop for Beginners (ZedBoard) -- Version 1.0, July 2014 
Rich Griffin, Silica EMEA  

 

The “\n\r” is a special tag which tells the STDOUT device to send a line feed (\n) to 
the UART, followed by a carriage return (\r).  Therefore to send a blank line to the 
UART we would use the function call: 
 
print("\n\r"); 

 

End of Exercise Challenge 

Modify the “Exercise_01” software to send a series of your own messages to the 
UART, by using the "print" function. Experiment with using the "\n" "\r" tags 
individually and together. 
 
When you have made your code modifications, the application can be run on the 

board using the “Right-click  Run as  Launch on Hardware (GDB)” method, the 
same as you did before. 



 

Page 16 

Zynq Workshop for Beginners (ZedBoard) -- Version 1.0, July 2014 
Rich Griffin, Silica EMEA  

 

Exercise 2 - Using drivers to flash an LED 

We have now verified that the board and the relevant connections are correct.  In 
this exercise we will explore the use of software drivers to control an output pin on 
the Zynq device to drive an LED.  As we saw at the end of Exercise 1, the Vivado 
tools have the ability to maintain several software applications designed for use on 
the same processor hardware, so we must first create a new software application in 

SDK, by choosing File  New  Application Project from the menus.  Give the 
application the name of “Exercise_02”, and select the existing “standalone_bsp_0” 
board support package in the same way that you did in the previous exercise.  On 
the second screen, choose the “Hello World” template again.  We could create an 
Empty Application, but it’s actually easier to create a “Hello World” template and 
then modify it, because the template also includes some basic setup for the UART. 
 
Expand the new “Exercise_02” application in the Project Explorer pane, and then also 
expand the “src” folder.  Right-click on the “hello_world.c” source file and choose 
“Rename” from the menu.  Give the source file a new name, such as “exercise_02.c”.  
Note that the SDK will guide you to choose and appropriate filename extension for 
this type of source file. 
 
Open the “exercise_02.c” source file by double-clicking it.  You will see that there are 
some comments at the top of the source file, and the basic code required to print a 
hello world message to the UART.  Note also the “init_platform()” function; this is the 
basic setup for the UART that is useful to us.  Modify the message printed to the 
UART by adjusting the print statement to a printf statement, and remove the 
declaration for the print function. 
 

#include <stdio.h> 
#include "platform.h" 
 
int main() 
{ 

init_platform(); 
 
 printf("Hello World\n\r"); 
 
     return 0; 
} 

 
This printf statement will provide us with a simple sanity check when we run the 
application later on, and reassure us that the 
application is executing correctly on the ARM 
processor core. 
 
To flash an LED we first of all need to work 
out where the LEDs are on the ZedBoard, 
and to what they are connected.  The 
ZedBoard Hardware User’s Guide (available 
from the http://zedboard.org website) tells 
us that there are eight user LEDs, labelled 

http://zedboard.org/


 

Page 17 

Zynq Workshop for Beginners (ZedBoard) -- Version 1.0, July 2014 
Rich Griffin, Silica EMEA  

 

LD0 to LD7, but these are all connected to the PL (Programmable Logic) side of the 
Zynq device, and we have not yet configured that part of the device to do anything.  
Instead we shall use “LD9” for our exercise, and this is connected to pin 7 
(PS_MIO7) of the 54 MIO pins which are accessible on the “PS” (Processing System) 
side of the Zynq device.  
 
We will now find the appropriate driver to use from the BSP that we created in 
Exercise 1.  Expand the BSP in the Project Explorer, and navigate down to the 
contents of the “include” directory.  All Xilinx drivers begin with the letter “X” and 
then have a name which reflects their functionality.  We’re looking for the GPIO 
driver for pins connected to the PS, so we need to look for the “xgpiops.h” header 
file (X GPIO PS). 
 
Open the “xgpiops.h” header file and review the code.  You will probably become 
very rapidly overwhelmed by the quantity and complexity of the code.  This is where 
the “Outline” pane becomes useful on the right of the screen.  All #define 
statements (Macro definitions) in the code are listed with a “#” icon.  All function 
prototypes are shown with circular icons with a 
green hatch pattern.  All structs are shown with a 
circular blue “S” icon.  All type definitions are shown 
with a yellow circular “T” icon.  The Outline view is 
also interactive. Try clicking to select various items 
in the Outline pane, and you will see that the view 
in the editor window jumps to that section of the 
code. 
 
In order to use these functions in our application, 
we first need to tell the compiler to include them in 
our C code.  Scroll to the top of your 
“exercise_02.c” file, and add the following lines near 
the other “#include” lines. 
 

#include “xgpiops.h” 
#include “xparameters.h” 

 

The second #include line (xparameters.h) will give you access to many of the 
predefined “#define” macros which are provided in the Xilinx BSP.  Take a moment 
to view the contents of this file, and to do this we will introduce another feature of 
the SDK.  Although we have added the #include line for xparameters.h, we might 
not have any idea where the file is located in the tree of sources.  In fact it doesn’t 
matter, because the SDK will find it for us.  Hold down the “Ctrl” key on your 
keyboard and hover your mouse over the “#include” line in your source.  Notice how 
the line of C has become a link.  Click the link and the xparameters.h source file will 
be opened in the editor. 
 
Scrolling through the file you’ll find that there are lines which define a “Device ID” to 
each of the peripherals in the system.  The one that interests us for this exercise is 
“XPAR_PS7_GPIO_0_DEVICE_ID” which you will find roughly halfway down the file.  
If you find it difficult to locate, you can use the “Outline” view to make this easier.  If 
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it is still too hard to find, then try sorting the Outline view 
alphabetically by toggling the A-Z sort feature header bar. 
 
Xilinx drivers all use the same principles of operation and they require 
that the driver be initialised before use.  To avoid confusion, we will 
explore the concepts of driver initialisation before we write any code. 
 
All Xilinx drivers have a “struct” (structure) which holds all of the various setup 
values which will be needed by the peripheral.  A “struct” is merely a collection of 
variables / data types, wrapped and bundled together in such a way that allows us to 
move many variables around using just one name.    
 

 
 
To declare an instance of this struct in C, we could use the following line of code. 
 

Fruit My_Fruit_Collection; 

 
It’s important to recognise that by declaring an instance of a struct, we do not assign 
any values to the three variables inside it.  They are only declared at this stage, but 
we’ve saved ourselves a lot of typing by grouping them together.  Imagine that you 
were writing software to count all of the fruit in a supermarket; there are so many 
different types of fruit that you would need to write hundreds of lines of code just to 
declare the variables.  Untidy, and very time consuming! 
 
Worse still, imagine that you wanted to expand the software to count the fruit in two 
different shops; you’d need to double the number of lines of code just to declare the 
variables.  Whereas with a struct, you’d simply go from one line of code to two: 
 

Fruit My_Fruit_Collection_SHOP_A; 
Fruit My_Fruit_Collection_SHOP_B; 

 
To access the individual variables inside the struct, you simply use the “->” notation 
in C.  Here is an example showing how you’d assign two different variables inside 
two different structs: 

 
My_Fruit_Collection_SHOP_A->Lemon_Count = 5; 
My_Fruit_Collection_SHOP_B->Banana_Count = 3; 

Fruit My_Fruit_Collection 

 
 
typedef struct { 

 u8  Banana_Count; 

u16 Apple_Count; 

u32 Lemon_Count;  

} Fruit; 

 

Here we can see that we have a 

struct with an instance name of 
“*My_Fruit_Collection”, and it is of a 

data type called “Fruit”. 
 

The struct contains three variables, 

“Banana_Count”, “Apple_Count”, 
and “Lemon_Count”.  They are all of 

different data types (for no real 
reason whatsoever, but just to 

prove that it’s possible!), which are 
unsigned integers of 8, 16, and 32 
bits wide, respectively. 
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Fruit 

*My_Fruit_Collection_SHOP_B 

 
 
Banana_Count = 3; 

Apple_Count  = ????; 

Lemon_Count  = ????; 

 

XGpioPs my_Gpio 

 
 
typedef struct { 

 XGpioPs_Config GpioConfig; 

u32 IsReady;  

 XGpioPs_Handler Handler;

 void *CallBackRef; 

} XGpioPs; 

The result is two structs, and each 

of them has one initialised value.   

 
Xilinx drivers work in the same way.  The struct represents the various operating 
parameters, and in the case of complex peripherals there may be a very large 
number of variables inside the struct.  Fortunately in the case of our GPIO it is 
relatively simple and there are only a few variables.  Here is the struct which controls 
the GPIO in the Processing System of a Zynq device.  In this example we have 
declared an instance of the struct and called it “my_Gpio”. 
 
There are four variables inside the struct.  The first is called “GpioConfig” and is of 
data type “XGpioPs_Config”.  This data type is actually another struct (yes, it’s 
possible to have a struct inside a struct!), and we will use it to configure our 
“my_Gpio” instance. 
The remaining three variables are all of different data types.  It’s not necessary to 
understand what everything does, but it is not difficult to believe that it would be a 
tricky task manually configure everything inside the struct.  For this reason, Xilinx 
supplies a function in C which does the job for us, and it is called 
“XGpioPs_CfgInitialize”.  The function automatically configures everything for us, 
because all of the variables inside are uninitialised when the struct is declared.  The 
function requires three inputs; the instance of “my_Gpio” that we declared, the 
GPIO_Config struct, and a base address (which can be easily extracted from the 
GPIO_Config struct).  The output of the function is a status value which lets us know 
whether the initialisation was successful.  Here is a graphical description of how it 
works; we can see the three required items being passed into the 
XGpioPs_CfgInitialize function, and the initialised struct coming out (plus a status 
value). 
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But there’s a problem!  The “GPIO_Config” struct hasn’t been initialised yet, either.  
So our first step is to use another automated function called “XGpioPs_LookupConfig” 
to achieve this task.  In essence, the output of one function is therefore simply fed 
into the other. 
 
Again, let’s represent this in a diagram for clarity.  The important thing to note is that 

the only piece of information that we’ve had to enter manually is the “Device ID”, 

and even that comes from the xparameters.h file: 

XGpioPs_CfgInitialize 

XGpioPs my_Gpio 
 
 
GpioConfig   = ????; 

IsReady      = ????; 

Handler      = ????; 

*CallBackRef = ????; 

 

XGpioPs my_Gpio 
 

 

GpioConfig   = ; 

IsReady      = ; 

Handler      = ; 

*CallBackRef = ; 

 

XGpioPs_Config 
GPIO_Config 

 
 
DeviceID  = ????; 

BaseAddr  = ????; 

 

Base 
Address 

Status 
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XGpioPs_Config 
GPIO_Config 

 
 
DeviceID  = ????; 

BaseAddr  = ????; 

 

XGpioPs_LookupConfig 

Device 
ID 

XGpioPs_CfgInitialize 

XGpioPs my_Gpio 
 
 
GpioConfig   = ????; 

IsReady      = ????; 

Handler      = ????; 

*CallBackRef = ????; 

 

XGpioPs my_Gpio 
 

 

GpioConfig   = ; 

IsReady      = ; 

Handler      = ; 

*CallBackRef = ; 

 

XGpioPs_Config 
GPIO_Config 

 

DeviceID  = ; 

BaseAddr  = ; 

 

Base 
Address 

Status 
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Let’s start putting this into C code.  The first task is to declare two structs; a 
temporary configuration struct called “XGpioPs_Config”, and the second struct is the 
instance that will be used to control the GPIO, called “XGpioPs”.  You will see these 
listed in the “Outline” view of SDK when you select the “xgpiops.h” in your editor 
(yellow circular icon with a “T” logo). 
 
 
Return to your “execise_2.c” source file and start adding some code above the 
“init_platform()” line.  At this stage we will also introduce an incredibly powerful 
feature of the code editor called “Content Assist”.  This feature will save you huge 
amounts of typing once you learn how to use it.  Start typing the first few characters 
of “XGpioPs_Config” and then hold down the “Ctrl” key on your keyboard and press 
the space-bar.  A pop-up screen will appear giving you a list of possibilities, which 
has the same appearance as the Outline pane.  Scroll down the list of possibilities (or 
continue typing the next letters to filter the list) and choose the “XGpioPs_Config” 
item from the list using either the mouse or the arrow keys on the keyboard and 
pressing enter.  Note that the coloured icons are shown here too, to make it easier 
for you.  Finish off the line manually by adding a name for this instance, and making 
the code match the following line.  Notice the use of the “*” because this is a 
pointer, and of course the semicolon at the end of the line. 
 

XGpioPs_Config *GPIO_Config; 

 
Immediately below the line you’ve just typed, declare an instance of “XGpioPs” and 
also an integer called “Status” that we will use for some error checking later on. 

 
XGpioPs my_Gpio; 
int Status; 

 
To initialize the GPIO driver, we need to provide it with three pieces of information 
when we use the function call in our code.  The instance name of the driver which in 
our case is “my_Gpio”, the configuration settings for the GPIO (we have created a 
placeholder for this in the form of “GPIO_Config” but not done anything with it yet), 
and the base address for the GPIO peripheral in question.  The second and third 
parameters can be easily provided using a function call which you may have seen 
when you reviewed the Outline pane for the “xgpiops.h” file.  As we saw in the 
diagrams, the function is called “XGpioPs_LookupConfig”, and just needs to have one 
parameter passed to it (the “DEVICE ID”) which we will find in the xparameters.h file 
(automatically generated for the design by Xilinx). 
 
Below the “printf()” line, add the following to your code to look up the settings for 
the GPIO configuration and store them in your “GPIO_Config” placeholder. 
Experiment using the Content Assist feature by pressing Ctrl+<Space> to help you 
write the code without lots of typing: 
 

GPIO_Config = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID); 

 
“GPIO_Config” is our instance name for the “XGpioPs_Config” struct data type that 
we declared earlier.  As we saw previously, structs are essentially a series of smaller 
data types (variables, usually) which are grouped together under one name to make 
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life easier for the user.  In this particular case the “XGPioPs_Config” struct contains 
two variables; a 16-bit device ID called “DeviceId”, and a 32-bit base address called 
“BaseAddr”.  SDK will allow you to find out the definition of any function or data type 
that you choose by using the “Open Declaration” feature from the Right-Click menu 
(this is the same as holding down “Ctrl” and clicking on the object).  Add the 
following line to initialize the driver, remembering once again to use Content Assist to 
ease the strain your fingers: 
 

Status = XGpioPs_CfgInitialize(&my_Gpio, GPIO_Config, GPIO_Config->BaseAddr);  
 
You can now begin to see how structs work.  We are recovering the base address for 
the GPIO using the “GPIO_Config->BaseAddr” notation.  Essentially this is like using 
an ordinary variable name, but we’re telling the compiler to look inside the 
“GPIO_Config” struct for a variable called “BaseAddr” by using the “->” syntax. 
 
You’ll notice that the initialisation function returns a value which we are capturing in 
our variable called “Status”.  We could add some code here to check that the 
initialisation was successful (Success = a returned value of “0”), or alternatively we 
could check the value in the debugger at runtime if we experience problems.  To 
keep our code as simple as possible we’ll choose the latter option, and we’ll trust that 
the function call works as it should. 
 
That’s it!  The GPIO driver is now initialised, and we can now use it to control the 
LED on our board.  If we want to perform operations on the GPIO in our code, we 
can now do so by using the “my_Gpio” instance that we have just created and 
initialized. 
 
When we configured the Zynq device using the Platform Studio tool in Exercise 1, the 
imported settings in the XML file for the ZedBoard included a GPIO peripheral.  The 
GPIO is perhaps the simplest of all peripherals, in that it allows us to control a series 
of wires from software.  Once again, review the driver header file for the GPIO and 
you will see that there are functions which help you to set the pins as inputs or 
outputs, and also functions which allow you to read and write from those pins.  
(Hint: Use the “Ctrl + <click>” operation on #include line for the GPIO’s header file) 
 
We’re only interested in outputting a value to either illuminate or extinguish the LED, 
so we only need two functions: 
 

XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, int Pin, int Direction); 
XGpioPs_WritePin(XGpioPs *InstancePtr, int Pin, int Data); 

 
These functions allow us to send values to the various registers within the GPIO 
peripheral.  The first line will set the direction of the GPIO to be an output, but only 
for a specific pin.  In our case this will be pin 7 which is where the LED is connected.  
The second line allows us to write our chosen value to the pin; either “0” or “1”. 
 
Add the two lines of code to your application, filling in the blanks with the correct 
information.  The first parameter should be a reference to your instance of the 
“my_Gpio” struct, so add a “&” character before the name of the struct to tell the 
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compiler that you are using a reference (References are a more advanced concept of 
the C language... don’t worry about it, just trust me!).  The pin number is easy; 7.  
The data direction is unknown to us at the moment so we need to find this 
information.  Go back to the “xgpiops.h” header file and click on the 
“XGpioPs_SetDirectionPin” function in the Outline pane.  The editor will jump to the 
location of this function in the file.  Now move your mouse to the editor window, and 
hover the mouse pointer over the highlighted function name.  A helper window will 
pop up, showing you key information about the function.  In this information you will 
see that a value of “0” makes the GPIO and input, and the value of “1” makes the 
GPIO an output.  Excellent; we now have enough information to complete the code 
in our application.  So let’s add the code: 
 

XGpioPs_SetDirectionPin(&my_Gpio, 7, 1); 
XGpioPs_WritePin(&my_Gpio, 7, 1); 

 
That’s it.  We have changed the direction of pin 7 to an output (output = 1) using 
the first line, and the second line writes the value of “1” to the pin to switch on the 
LED.  Save the C source file, and the application will be compiled automatically.  
Check for any errors in the C code which will be highlighted and marked with a red 
cross. 
 
Run the code on the board using the “Run as...” feature that you explored in 
Exercise 1.  You should see the LED “LD9” illuminate.  You’ll find it to the right of the 
OLED display near the bottom of the board. 
 
Change the code to send a “0” to the GPIO pin to switch the LED off, and then run 
the code on the board again using “Run as...”. Be sure to change only the 
“XGpioPs_WritePin” line of code and not the “XGpioPs_SetDirectionPin” line.  We only 
want to change the value we’re sending to the UART, not change the direction of the 
port! 
 
Now that you have established basic control over an LED, let’s make it flash. 
 
Let’s create a loop in software using a “while” loop.  Edit your code to match the 
following: 
 
 

XGpioPs_SetDirectionPin(&my_Gpio, 7, 1); 
 
while(1) 

 { 
  XGpioPs_WritePin(&my_Gpio, 7, 0); 
  XGpioPs_WritePin(&my_Gpio, 7, 1); 
 } 

 
 
This code makes an endless loop which repeatedly turns the LED on and off.  Run 
the code on your board and see what happens. 
 

 Is there any change? 
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 Really?  Are you sure?  The LED might be on, but is it as bright as it used to 
be? 

 
If you’re correct, then you will have realised that the LED is being switched on and 
off extremely quickly.  So quickly, in fact, that it has the appearance of being dimmer 
than before.  This is the way that LEDs are dimmed using digital control; and it’s 
called Pulse Width Modulation.  The brightness of an LED can be varied by changing 
the percentage of the time the LED is on versus off.  Provided that the flash rate is 
fast enough, the human eye can’t tell the difference. 
 
For our purposes it would be interesting to have the software insert a delay between 
the “on” command and the “off” so that we can drive the LED on and off at a speed 
that we can realistically observe.  Here is an example of a delay function: 
 
 for (Status=0; Status< 2000; Status++) 
  { 

print("."); 
  } 

 
As you can see, this is a simple loop which instructs the processor to print a full-stop 
to the UART 2000 times.  Naturally, we are not at all interested in generating 2000 
full-stops on the terminal, but doing so will take the processor a finite amount of 
time to complete the task, hence the delay.  For any expert software engineers 
reading this; yes we know that this delay is phenomenally crude, but this is basic 

stuff for the moment.  It gets more advanced later!   
The iterations are counted by using a variable called “Status”.  We used “Status” 
simply because we’d already declared it for a previous use and so it was convenient.  
In real designs, you’d probably declare another variable specifically to be used in the 
loop.  We are just being lazy here, to save some typing. 
 

End of Exercise Challenge 

Experiment with these function calls to write a piece of software that will make the 
LED flash at different speeds.  If you really want to challenge your coding skills, try 
to make the LED fade up and down in brightness. 
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Exercise 3 - Debugging 

In this exercise we shall look at the concepts behind debugging a piece of C code.  
This is important for all software development, because we are all human and 
therefore software rarely works first time.  The ARM Cortex-A9 processors in the 
Zynq devices are supplied with a very advanced debug and trace interface, but we 
will simply cover some basic debugging techniques.   
 
We shall now create a project to show the steps required for debugging. The finished 
version of Exercise 2 is an ideal design for this exercise.  Create a new software 
application called “Exercise_03” using standard cut and paste operations, based on 
Exercise 2.  Once you’ve copied the files, experiment with changing the filename 
from “exercise_02.c” to “exercise_03.c” to match your new project (and you might 
want to change the printf message inside the file too!).  The rename feature can be 
found in the right-click menu. 
 
To debug the code on the processor we shall be using another tool called "GDB" 
(The GNU Debugger).  GDB is built into the SDK, and can be accessed by Right-
Clicking on the project name and choosing “Debug as” from the menu rather than 
“Run as”. 
 
Right click on the “Exercise_03” software project, and choose “Debug as  Launch 
on Hardware (System Debugger)” from the menu.  After a few seconds you may see 
a pop-up message asking you whether you want to switch to the “debug 
perspective”.  Choose “Yes”.  

 
The windows will all re-arrange themselves, and you will now be in the “Debug 
perspective” rather than the “C/C++ Perspective”.  A “Perspective” in the Eclipse 
SDK tool is the name given to a layout of the various panes on the screen.  The 
layout of the screen in a SDK tool is critical to making the software engineer more 
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productive.  When writing a developing code, it is useful to have a very different 
layout of the screen than when running the debugger.  Different information needs 
to be displayed, and the required size of each pane is very different.  In the Eclipse 
SDK, the user can toggle back and forth between the different perspectives by using 
the buttons in the top-right of the screen.  Advanced users can even design and use 
their own perspectives, to match their precise needs and personal preferences. 
 
With the debug perspective open, you will notice that the code editing window has 
become smaller and has moved to the left of the screen.  The Project Explorer 
window has vanished altogether; we no longer need to concentrate on different 
applications because we’re debugging just one.  In the code editing window, you will 
see that there is a line of code that is highlighted in green, and also marked with a 
blue arrow in the left margin.  This is 
showing you that the processor has been 
halted at this stage of the application, and 
that the software execution is under control 
of the GDB debugger.  The highlighted line 
of code is GDB telling you “I am about to 
execute this line of code, but I’ve not done it 
yet”.  The pane above the code editing 
window shows you that the Exercise_03.elf 
file is being debugged, and that debug 
control is being handled by something called 
“TCF”.  TCF is the Target Communication 
Framework system, and is the utility which 
manages the connection between the GDB 
debug engine, and the JTAG cable.  You will be able to see that the code is halted 
inside the “main” function.  This display will update to show when you’re inside a 
function, and the hierarchy will be shown to demonstrate which functions called each 
other as you step through your code. 
 
To see a practical example of this, we will step 
through our code until we descend into the 
“init_platform()” function.  At the top of the 
“Debug” pane you will see a series of new icons.  
There’s a green “Resume” arrow button which 
tells the code to continue to the next breakpoint 
(more on breakpoints in a moment), a red square “Terminate” button to halt 
execution completely, and then there is a series of yellow arrows which control the 
single-stepping of your application. 
 
Hover your mouse over the yellow single-step arrow buttons and locate the one 
marked “Step Into”.  Click this button (perhaps a few times, depending on your code 
that you copied from Exercise 2) and you will “Step Into” the init_platform() function.  
Observe what happens in the “Debug” pane when you descend into the function.  
You will see the “_start()” function underneath the  “main” function, which is also 
underneath the “init_platform” function.  This will tell you that “_start” has called 
“main”, which in turn has called “init_platform”, and therefore tells you which 
functions you passed through on the way to your current point in the code.  In our 
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example it’s very simple, but in a complex 
application this is very useful to see how 
you got to your breakpoint. 
 
We will now examine the difference 
between the “Step Into” and “Step Over” 
buttons.  Inside the “init_platform” there is 
a further function call to “enable_caches”.  
Click “Step Into” again, and you will see 
that the debugger will descend once again into this function.  Note the change to the 
“Debug” pane and the hierarchy view.  We could single step through this lower level 
function if we wanted to, but let’s imagine that we want to execute to the end of the 
function and return to just one level of hierarchy up.  Click the “Step Return” button, 
and the code will execute all of the way through the current function and back up to 
stop at the level above.  Now click the “Step Over” button, and you will see that the 
debugger stays at the same level of hierarchy, but executes all of the “init_uart” 
function in one go.  Click “Step Return” to get back to the “main” function. 
 
In the code editing pane, scroll down a few lines and find the line of code which sets 
the direction of the GPIO port.  In the blue margin to the left of this line, double click 
your mouse and you will see a blue dot with a tick mark appear.  This is a 
breakpoint, and tells GDB that you wish to always stop at this point.  Now click the 
green arrow “resume” button, and the debugger will execute all of your code 
between the current position and the breakpoint that you have just set.  This is a 
useful way to execute a lot of your application, but only stop at the section you wish 
to debug. 
 
At this stage we will turn our attention to the Variables pane which you will see in 
the top right of the screen.  You will see all of the local variables which are relative to 
this function.  It’s a simple application, so you should only see three or four listed.  
One of the variables is “Status” and hopefully its value will be “0”.  This proves that 
the “XGpioPs_CfgInitialize” function completed and returned no errors.  This is good 
news.  In the “Variables” pane you should also see the “GPIO_Config” placeholder 
which you created in Exercise 2.  Recall that this is actually a struct, which is a 
collection of variables under one name.  
Expand the hierarchy of the 
“GPIO_Config” struct by clicking on the 
white arrow to the left of the name.  You 
will now see the two variables contained 
within the struct, and their values.  The 
“GPIO_Config -> BaseAddr” variable 
probably seems to be a meaningless number, but that’s because we’re looking at the 
decimal value rather than the hexadecimal value.  A second column exists in the 
Variables table which shows the hexadecimal equivalent of the number.  Now the 
number should make more sense.  This is the base address of the GPIO in the Zynq 
device memory map.   
 
You can also expand the “my_Gpio” instance in the Variables pane.  You will see that 
it’s actually a struct containing another struct, and therefore there will be multiple 
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levels of hierarchy that you can explore.  You may see that some of the variables are 
highlighted in yellow.  This occurs when the variable has been updated since the last 
breakpoint or during the last single-step operation.  This feature of the debugger can 
be very useful because it draws your attention to things that change during your 
debugging session.  
 
But the Variables pane is not the only place where you can explore the value of 
variables.  In the code editing window, hover your mouse over the name of a 
variable or a struct.  A pop up helper will be displayed that will give you the same 
information.  Simple, but useful. 
 
Add another breakpoint inside your “for” delay loop which prints the “.” characters to 
the UART.  Click the “Resume” button and the code will advance to inside this loop.  
Click “Resume” a few more times, and observe the change to the variable which 
counts the iterations of this loop.  You will see the variable incrementing with each 
click of “Resume”.  Single-stepping our way out of this loop could be a very tedious 
process, and would require 2000 mouse clicks.  But what if there was a fault in the 
code just before the last iteration of the loop?  The debugger can help us in these 
cases, because we can dynamically change the values of variables in the middle of 
executing the code. 

 
Inside the “Variables” pane, click the value for your loop variable and manually 
change it to “1997”.  Now click the “Resume” button and notice that within a few 
clicks we have left the loop.  If you find yourself back in the loop but with the loop 
variable set to zero, it’s because you have exited the loop and re-entered it on the 
next iteration of the entire application.  By using this feature, we have manually 
updated the value of a variable to set up a specific condition in the software.  This 
can be used to debug a known set of events which might be causing a problem in 
your application.  
 
That’s it – you’ve just mastered the basics of single step debugging.  Feel free to 
play around in the debugger to familiarise yourself with the features that are 
available. 

End of Exercise Challenge 

It is sometimes convenient to temporarily disable a breakpoint, but still remember 
where you put it.  The SDK allow you to do this. 
 
Select the “Breakpoints” tab in the top right of the screen, and you will see a list of 
the breakpoints that are currently set.  Experiment with the tick boxes to the left of 
the breakpoints.  Set up various breakpoints in your code, and then enable and 
disable them to see how the debugger works. 
 
End of Exercise Mega Challenge 
 
Still hungry for more?  Well OK then... 
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In this exercise we manually adjusted the value of our loop variable to a given value 
(1997).  This was fine for our application, but in a more complex software project 
this method could seriously affect the correct operation of the design. 
 
Another way to achieve the same goal is to set up a “conditional breakpoint”.  A 
conditional breakpoint is one where the execution of the code will only stop when a 
specified condition is met.  In our case, we could set the condition to only break 
when the value of our loop variable was equal to “1997”. 
 
Select the “Breakpoints” tab in the top right of the screen, and you will see a list of 
the breakpoints that are currently set.  Right-click on the breakpoint which applies to 
your loop, and then choose “Breakpoint Properties...” 
 
Work out, perhaps by using the Help system built into SDK, how to set up a 
conditional breakpoint that only stops when the value of the loop variable reaches 
“1997”.  This might not be immediately obvious, so don’t get too annoyed with it if 
you can’t find the answer.   
 

 

 
When you have finished debugging your code, click the C/C++ button in the top 
right of the screen to return to the code editing perspective. 
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Exercise 4 – Expanding your design into the programmable logic 

In the previous exercises we have confined our efforts to just the hardened 
“processing system” (PS) section of the Zynq device.  However, Zynq is much more 
than just a processor, and it provides a large quantity of FPGA “programmable logic” 
(PL) that can be configured by the user. 
 
Several use models for the PL; the user can write and design custom code in a 
hardware description language such as VHDL or Verilog, they can use a high level 
language synthesis tool to convert C code into hardware (such as Vivado HLS), or 
they can add items from an existing catalogue of IP.  To expand our design we will 
choose the latter option, adding some existing IP from the catalogue. 
 
Close the SDK tool, and re-open Vivado if you have closed it.  In the “Sources” pane, 
expand the hierarchy of sources until you can see the block design that you created 
in Exercise 1.  Double click this source and the block diagram editor will be invoked 
so that you can make edits to the design. 
 
Note that the design only contains one item, the “Zynq7 Processing System”, which 
is the IP that represents the hardened “PS” section of the Zynq device.  We will now 
expand this into the programmable logic “PL” section of the Zynq device.  
Specifically, we will add functionality to control the eight LEDs, eight DIP switches, 
and one of the PMOD expansion sockets. 
 
Double click the “Zynq7 Processing System” block to open the customisation window.  
Click on the green box at the bottom of the Zynq diagram marked “32b GP AXI 
Master Ports”, and then enable the “M AXI GP0 Interface”.  This will provide an AXI 
port which can be used to connect additional peripherals in the programmable logic 
part of the Zynq device.  Select the “Interrupts” screen on the left of the window, 
enable “Fabric Interrupts” and also expand the “Fabric Interrupts” hierarchy tree, 
expand the “PL-PS Interrupt Ports” sub-tree, and then enable the “IRQ_F2P[15:0]” 
feature.  This makes some interrupt lines available to peripherals in the 
programmable logic so that the interrupt lines on our two new peripherals can be 
connected.  Click “OK”. 
 
Click the “Add IP” icon in the 
control bar to the left of the 
block diagram.  Type “gpio” 
into the search box, then click 
and drag an instance of the 
“AXI GPIO” from the catalogue 
into the white space of the 
block design.  Now search for 
“spi” and drag an instance of 
the “AXI Quad SPI” peripheral 
into the block design.  Click 
anywhere in the white space 
of the block diagram to close 
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the Add IP box.  
 
We now need to set the parameters for these two IPs.  Double click the AXI GPIO 
block to open its customisation window.  Select the “IP Configuration” tab, and note 
that peripheral has two channels “GPIO” and 
“GPIO 2”.  This allows two sets of GPIO 
signals to be controlled by just one GPIO 
peripheral.  Adjust the width of the first 
channel, “GPIO”, to 16 bits (8 for the DIP 
switches and 8 for the LEDs) and then click 
“OK” 
 
Now repeat the configuration process for the 
“AXI QUAD SPI” peripheral.  In the “AXI 
interface options” disable XIP Mode, and 
disable performance mode.  In the SPI 
Options choose “standard mode”, set the 
transaction width to “8”, set the frequency 
ratio to “16 x 1”, set the number of slaves to 
“1”, enable master mode, enable the FIFO 
with a depth of “16”, and disable the 
“STARTUPE2 primitive”.   
 
Using the “Designer Assistance” feature in the green bar at the top of the block 
design, run the “connection automation” feature and choose “/axi_gpio_0/S_AXI” 
from the dialogue.  When the “clock connection” drop down box appears, leave it set 
to “Auto” and click “OK”.  Repeat the designer assistance process for the 
“/axi_quad_spi_0/AXI_LITE” connection.  Note how the two new peripherals have 
been automatically connected to the Zynq processing system block, and the Vivado 
tools have added AXI interconnects, reset controllers, and clock nets, without the 
user having to make any manual connections. 
 
We will now connect the inputs and outputs of the GPIO and SPI peripherals to 
external ports on our block design.  Run the designer assistance feature again, 
selecting “/axi_gpio_0/GPIO”, and then choose “custom” from the board part 
dialogue that will appear.  Click “OK” to confirm.  Run the design assistance feature 
yet again, and select “/axi_quad_spi_0/SPI_0” from the dialogue. 
 
The SPI peripheral requires a reference clock connection, which must be connected 
manually.  Using your mouse, click and draw a new net from the “ext_SPI_clk” port 
on the SPI block to the existing clock nets which are connected throughout the 
design including the “s_axi_aclk” port on the SPI block.  Note how the diagram 
enhances the viable clock nets in bold to guide you to make an acceptable clock 
connection. 
 
Lastly, we will need to use the SPI controller in interrupt enabled mode, so we must 
connect the interrupt output from the peripheral to the interrupt controller.  Using 
your mouse, click and draw a new net from the “IP2INTC_Irpt” connection on the 
SPI block to the “IRQ_F2P” port on the Zynq 7 Processing System block.  Note the 
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small green tick mark which appears on the interrupt input port of the Zynq 7 
Processing system block, which guides you to make this connection. 
 
Spend a few moments reviewing the completed block diagram and 
note that the additional peripherals are now connected to the 
processing system block, and also to the external ports on the block 
design.  If the block diagram is looking cluttered, click the 
“Regenerate Layout” button in the control panel to the left of the 
block diagram, and the block design will be automatically tidied up. 
 
Select the “Address Editor” tab of the block design, and expand the hierarchy for the 
“processing_system7_0” instance and also for the “Data” connections.  You will see 
the base address and high address settings for the two new peripherals that we’ve 
just added to the design.  The tools have automatically allocated addresses to the 
new peripherals, making them suitable for use with the Zynq device.  
 
We also need to work around a problem related to an expansion module which will 
be used later.  There is a bug on the expansion module board which means that one 
of the SPI signals (the slave select) must be inverted in order to make it work.  
Happily we are using a programmable logic device and therefore small modifications 
like this are fairly simple. 
 
If you remember from Exercise 1, we created a top level VHDL file called 
“<your_design_name>_wrapper.vhd”.  This is now out of date because we have 
added additional ports to the block design for the new GPIO and SPI peripherals.  
Vivado automatically maintains this file, so we must first allow the tools to update 
the wrapper file.  In the “Flow Navigator” pane on the left of the screen, run the 
“Elaborate Design” step of the design flow, which will cause the top level VHDL 
wrapper to be updated. 
 
Open the top level VHDL wrapper file and check that the SPI and GPIO ports are 
visible in the entity declaration.  To implement the modification for the inverted SPI 
SS signal, we must first save our own version of the wrapper file because it is 

currently being maintained automatically by the Vivado tools.  Choose File  Save 
File As... from the menus.  Save the file as “top.vhd” in the default directory that is 
presented in the dialogue. 
 
We must now replace the automated wrapper VHDL with our own version.  Right-
click on the top level wrapper in the list of Design Sources, and choose “Replace 
File...”.  Choose the top.vhd and click OK. 
 
To implement the modification, open top.vhd and scroll down to the bottom of the 
file until you find an instantiation of an IOBUF primitive which handles the 
spi_0_ss_io signal.  Add an inverter to the input of this buffer by adding the keyword 
“not” to the port assignment, as shown below. 
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spi_0_ss_iobuf_0: component IOBUF 

    port map ( 

      I => not spi_0_ss_o_0(0), 

      IO => spi_0_ss_io(0), 

      O => spi_0_ss_i_0(0), 

      T => spi_0_ss_t 

    ); 

 
Save the top.vhd file. 
 
The new ports for the SPI and GPIO pins are not currently allocated to any specific 
IO pins on the Zynq device, so we must create and edit a constraints file to do this.  
Click “Add Sources” from the “Project Manager” section of the “Flow Navigator” pane 
on the left of the screen.  Choose “Add or Create Constraints” and click “Next”.  Click 
the “Create File”... button and name the file “my_constraints”.  Click “OK” and then 
“Finish”. 
 
Expand the “Constraints” folder in the “Sources” pane and locate the new constraints 
file that you have just created.  Double-click on the “my_constraints.xdc” file to open 
it.  At this stage you would normally consult the ZedBoard user guide to research the 
pin locations for the LEDs and DIP switches, but it has been done for you.  Cut and 
paste the following constraints into the XDC file, or copy them from the supplied 
resource files: 
 

set_property PACKAGE_PIN AA11 [get_ports spi_0_io0_io] 

set_property PACKAGE_PIN Y10 [get_ports spi_0_io1_io] 

set_property PACKAGE_PIN AA9 [get_ports spi_0_sck_io] 

set_property PACKAGE_PIN Y11 [get_ports {spi_0_ss_io[0]}] 

 

set_property PACKAGE_PIN F22 [get_ports {gpio_rtl_tri_io[0]}] 

set_property PACKAGE_PIN G22 [get_ports {gpio_rtl_tri_io[1]}] 

set_property PACKAGE_PIN H22 [get_ports {gpio_rtl_tri_io[2]}] 

set_property PACKAGE_PIN F21 [get_ports {gpio_rtl_tri_io[3]}] 

set_property PACKAGE_PIN H19 [get_ports {gpio_rtl_tri_io[4]}] 

set_property PACKAGE_PIN H18 [get_ports {gpio_rtl_tri_io[5]}] 

set_property PACKAGE_PIN H17 [get_ports {gpio_rtl_tri_io[6]}] 

set_property PACKAGE_PIN M15 [get_ports {gpio_rtl_tri_io[7]}] 

set_property PACKAGE_PIN T22 [get_ports {gpio_rtl_tri_io[8]}] 

set_property PACKAGE_PIN T21 [get_ports {gpio_rtl_tri_io[9]}] 

set_property PACKAGE_PIN U22 [get_ports {gpio_rtl_tri_io[10]}] 

set_property PACKAGE_PIN U21 [get_ports {gpio_rtl_tri_io[11]}] 

set_property PACKAGE_PIN V22 [get_ports {gpio_rtl_tri_io[12]}] 

set_property PACKAGE_PIN W22 [get_ports {gpio_rtl_tri_io[13]}] 

set_property PACKAGE_PIN U19 [get_ports {gpio_rtl_tri_io[14]}] 

set_property PACKAGE_PIN U14 [get_ports {gpio_rtl_tri_io[15]}] 

 

set_property IOSTANDARD LVCMOS25 [get_ports {spi_0_*}] 

set_property IOSTANDARD LVCMOS25 [get_ports {gpio_rtl_tri_io[*]}] 

 

set_property PULLDOWN true [get_ports {spi_0_*}] 

set_property PULLDOWN true [get_ports {gpio_rtl_tri_io[*]}] 

 
In the interests of clarity, four of these constraints relate to pin locations for the SPI 
interface, sixteen relate to pin locations for the GPIO (8 DIP switches & 8 LEDs), and 
the remaining four specify IO standards and pull down resisters for  both interfaces 
(using wildcards in the constraints to save some typing).  More specifically, the SPI 
pin location constraints relate to socket “JA1” which can be found on the bottom left 
of the board.  An additional module will be plugged into this socket in a later 
exercise, which features a sensor with a SPI interface. 
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That completes the changes to this design.  From the Vivado Flow Navigator pane, 
click “Run Synthesis”, “Run implementation” and then finally “Generate Bitstream” to 
complete the design.  Take a few minutes to stretch your legs and top up your 
caffeine levels.  The next exercise will require your concentration. 
 
When the Bitstream has been generated, please re-export the design into SDK by 

choosing “File  Export  Export Hardware for SDK...” from the menus, check the 
“Launch SDK” box, and click “OK”.  Remember that the block design must be open, 
and the implemented design must also be open, in order for the export process to 
succeed.   
 
When the SDK opens, you may notice furious activity from the Library Generator and 
compiler tools.  This is because the tools will automatically detect the changes you 
have made to the hardware, and will update the BSP, and all of your software 
applications for you without any fuss.  It just works. 
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Exercise 5 - Making your design interactive 

It is time to develop a more complex design, which will allow you to practice using 
the tools in preparation for your future embedded processor projects.  In this 
exercise, we will look at how to make the processor read values from user inputs (in 
our case some DIP Switches) and then use that information to control some outputs 
(in our case some LEDs).  Once again this will require the use of the supplied 
software drivers, which have been produced by the Library Generator tool when we 
created a BSP.  All software drivers read or write to an address in memory, which in 
turn is mapped to a register in a peripheral.  The job of a peripheral is to make 
hardware registers appear as if they are memory, so that the processor believes that 
it is simply reading from and writing to RAM.  The fact that the peripheral adds extra 
functionality to these registers for controlling UARTs, GPIO, and other functions is 
completely hidden from the processor. 
 
On our board, the eight DIP switches are connected to the least significant bits of the 
GPIO (i.e. bits 7 down to 0), and the LEDs are connected to the eight next most 
significant bits of the GPIO (i.e. bits 15 down to 8). 
 
For our first example, we shall make the processor read the DIP switches and output 
their state, bit by bit, to the LEDs.  Obviously this could be done by wiring the switch 
to the LED in FPGA programmable logic, but we will use software for the purposes of 
our learning. 
 

 
 
 
Using the first few exercises as a reference, complete the following: 
 

 Use the menus to create a new software application called “Exercise 5”  
 

 Examine the driver created for the GPIO by Library Generator by examining the 
appropriate header file.  The GPIO we want with the Xilinx GPIO.  (But not the 

one in the PS).  The underlines are a “subtle” hint!   
 

 If you cannot find the header file that you’re looking for, it might be that the 
BSP has not been automatically updated for some reason.  Try right-clicking 
on the BSP in the list of projects and choosing ”Board Support Package 
Settings”, change to the “drivers” screen, and then adjust the setting in the 
“Driver” column drop down menus for the “axi_gpio_0” to “gpio”.  While you 
are there, you can also check / update the driver for the “axi_quad_spi_0” 
peripheral to “spi”.  Click “OK” and the BSP will be re-built, and after a few 
seconds you should see an updated list of header files in the “include” 
directory. 

 

Your software 
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 Identify the struct that must be declared for the instance of the GPIO.  Again, the 
hint here is that we’re declaring an instance of the Xilinx GPIO. 

 
 We will need to configure the GPIO, so identify the struct that will be used to 

store the Xilinx GPIO configuration information.  Also identify a function that will 
lookup the details of the Configuration. 

 

 The function to lookup the config information will require a device ID, so locate 
this in the xparameters.h file. 

 
 Locate the function that will initialise the configuration, using the config struct 

that you found just now. 
 

 Find a function that sets the data direction on the GPIO so that the pins for the 
DIP switches and LEDs are inputs and outputs, as appropriate.  This is slightly 
more complicated than last time, because you will need to use a bit mask to set 
the direction, rather than doing it pin by pin.  There is also a reference to a 
“channel”, and this should be set to “1”.  The soft GPIO that we built in the 
programmable logic (PL), had the possibility of two channel operation.  We only 
implemented one channel (the default), so the channel number is always “1” for 
our purposes. 

 

 Use the “Open Declaration” feature in the right-click menu examine functions in 
greater detail, and this will help you to determine how to use them.  Xilinx 
documents each of their driver functions in comments above the function in 
question.  Also find a function that writes data to the GPIO. 

 

 Once you have researched the functions mentioned above, write a piece of 
software in C that will check the value of the DIP switches, make modifications to 
the data values, and then write the same value back to the LEDs. 

 

 The biggest hint here is to remember that the LEDs and DIP switches are 
attached to the same GPIO, so therefore you must consider the positions of each 
bit in the register and how it will impact the value of the variables that are read 
and written. 

 
 
Here is a starting point for the code, you will need to fill in the gaps.  This code is 
also available in the supplied files: 
 
#include <stdio.h> 

#include "platform.h" 

#include "xgpio.h" 

#include "xparameters.h" 

#include “stdio.h” 

 

 

int main() 

{ 

 XGpio_Config *GPIO_Config; 

 XGpio my_Gpio; 

 

 // Declare some variables that we will use later 

 int Status; 

 unsigned int DIP_value; 
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 unsigned int LED_value; 

 

 

 init_platform(); 

 

 printf("Exercise 5\n\r"); 

 

 // Lookup the config information and store it in the struct "GPIO_Config" 

 <ADD SOME CODE IN HERE> 

 

 // Initialise the GPIO using a reference to the my_Gpio struct, 

 // the struct "GPIO_Config", and also a base address value. 

 Status = <ADD SOME CODE IN HERE> 

 

 // Set the direction of the bits in the GPIO. 

 // The lower (LSB) 8 bits of the GPIO are for the DIP Switches (inputs). 

 // The upper (MSB) 8 bits of the GPIO are for the LEDs (outputs). 

 <ADD SOME CODE IN HERE> 

 

 

 // Go around in a loop for ever 

 while (1) 

 { 

  // Read from the GPIO to determine the position of the DIP switches 

  <ADD SOME CODE IN HERE> 

 

  // Assign a value to LED_Value variable, adjusting it as necessary 

  <ADD SOME CODE IN HERE> 

 

  // Print the values of the variables to the UART to help us debug 

  printf("DIP = 0x%04X, LED = 0x%04X\n\r", DIP_value, LED_value); 

 

  // Write the value back to the GPIO 

  <ADD SOME CODE IN HERE> 

 } 

 

 // Technically we should never reach this far! 

 return (0); 

} 

 

Big Gotcha!! 

Now that we have created some soft peripherals in the programmable logic, it is vital that 

you program the bitstream into the Programmable Logic before you run the software.  To 
do this, use the menus in SDK; Xilinx Tools  Program FPGA, and click “Program” to 

accept the defaults.  The Bitstream will be loaded into the device, and the blue “DONE” 

LED will illuminate on the ZedBoard to indicate that the bitstream was successfully 

programmed.  Remember to download the bitstream again if you power-cycle the board 
for any reason. 

 

End of Exercise Challenge 

If you are feeling confident about the usage of drivers – attempt the following: 
 

 Modify your C code to set up the drivers for both the PL based GPIO, and also 
the PS based GPIO.  This will require you to create different instances of the 
various structs, and duplicate the lookup and initialisation function calls to 
setup both GPIOs. 

 

 Write some code to control the ninth LED “LD9”.  Make LD9 illuminate only 
when four DIP switches or more are in the “on” position. 
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 To succeed with this challenge, you will need to think about the use of 
hexadecimal mask values to check the status of each individual DIP switch. 
When you detect that a switch is on, you will need to increment a variable 
which counts the number of switches that are in the “on” position. 
 

 Essentially you will need to perform an AND gate operation in software, using 
the variable that contains the value that you read from the DIP switches.  The 
syntax for a bitwise AND operation in the C language is “&”. 

 

 Before you start, ask yourself “How would I do this in hardware using logic 
gates?” 

 
 
This is actually harder than it initially sounds.  Have fun!   
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Exercise 6 – Reading from and writing to memory 

This exercise will look at ways to read from and write to memory.  We shall begin by 
exploring why this is so important.  Memory is not only used to store software in an 
embedded system; quite often the user will have a piece of memory as the interface 
between the embedded processor system and some custom hardware in the FPGA 
design.  The Xilinx dual port BlockRAMs are very often used in this way, so it is 
important that we explore how to access memory from our processor software.  The 
On Chip Memory (OCM) in Zynq also behaves like a dual port BlockRAM memory.  
External (e.g. DDR) memory works in much the same way, the only difference being 
that the memory controller interprets the request from the processor and generates 
a transaction for the external memory which uses the correct protocol of signals used 
by the DIMM or device. 
 
To do this, we shall once again use some drivers that have been generated by the 
Library Generator.  The drivers are not associated with any peripheral, but are 
nevertheless made available to EDK users in all processor designs.  Let us look again 
in the "include" directory under the name of the processor instance.  Here we can 
see that Library Generator has created some other 
header files (.h) that do not relate to any particular 
peripheral.  Let us take a look at the "xil_io.h" header 
file.  In it we will see various functions designed 
specifically for reading from and writing to memory, in 
various byte widths.   
 
These functions include: 

 Xil_In8 
 Xil_In16 

 Xil_In32 
 Xil_Out8 
 Xil_Out16 
 Xil_Out32 
 
Processors work on byte (8bit) address boundaries.  If we specify an address in 
memory, we must do so assuming that we are always referring to a number of bytes.  
Therefore, if we wish to write byte-wide data values into the first four consecutive 
locations in a region of memory starting at "DDR_BASEADDR",  we must write the 
first to DDR_BASEADDR + 0, the second to DDR_BASEADDR + 1, the third to 
DDR_BASEADDR + 2, and the last to DDR_BASEADDR + 3. 
 
However, if we wish to write four half-word wide (16 bit) data values to four memory 
addresses starting at the same location, we must write the first to DDR_BASEADDR 
+ 0, the second to DDR_BASEADDR + 2, the third to DDR_BASEADDR + 4, and the 
last to DDR_BASEADDR + 6. 
 
It therefore follows that when writing word wide (32 bit) data values, we must do so 
on 4 byte boundaries; 0x0, 0x4, 0x8, and 0xC. 
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As you can see from the xil_io.h header file, there are functions for reading from 
memory in 8 bit, 16 bit, and 32 bit transactions.  The same applies for writing to 
memory in the same width variants.  The exact syntax is very simple to use; here are 
the function templates for writing: 
 

Xil_Out8(memory_address, 8_bit_value); 
Xil_Out16(memory_address, 16_bit_value); 
Xil_Out32(memory_address, 32_bit_value); 

 
... and for reading: 
 

8_bit_value = Xil_In8(memory_address); 
16_bit_value = Xil_In16(memory_address); 
32_bit_value = Xil_In32(memory_address); 

 
Here is an example, showing how you might access the Zynq On-Chip Memory 
(OCM): 
 
int main(void) 

{ 
int result1;  // integers are 32 bits wide! 
int result2;  // integers are 32 bits wide! 

 
Xil _Out8(XPAR_PS7_RAM_0_S_AXI_BASEADDR + 0, 0x12); 
Xil _Out8(XPAR_PS7_RAM_0_S_AXI_BASEADDR + 1, 0x34); 
Xil _Out8(XPAR_PS7_RAM_0_S_AXI_BASEADDR + 2, 0x56); 
Xil _Out8(XPAR_PS7_RAM_0_S_AXI_BASEADDR + 3, 0x78); 

  
 result1 = Xil _In32(XPAR_PS7_RAM_0_S_AXI_BASEADDR); 
  
 Xil _Out16(XPAR_PS7_RAM_0_S_AXI_BASEADDR + 4, 0x9876); 
 Xil _Out16(XPAR_PS7_RAM_0_S_AXI_BASEADDR + 6, 0x5432); 
  
 result2 = Xil_In32(XPAR_PS7_RAM_0_S_AXI_BASEADDR + 4); 
  
 return(0); 

} 

MENTAL EXERCISE QUESTION 

For this code example, predict the values of “result1” and “result2” after this 
software has been executed?  Read the code carefully and consider the width of 
each read and write transaction. 
 

End of Exercise Challenge 

 

 Write some software that will write eight data values, each one byte wide 
with the following values; 0xAB, 0xFF, 0x34, 0x8C, 0xEF, 0xBE, 0xAD, 0xDE.  
The values should be written to consecutive addresses, starting at the base 
address of the Zynq OCM region. 

 

 Leave a gap in the OCM memory of 2 "words" in size following the values you 
have just written.  Then write four "half-word" data values at the next 
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available addresses in the OCM, of values 0x1209, 0xFE31, 0x6587 and 
0xAAAA. 
 

 Add some code that will write the value of 0x00000000 (32 bits of data) to 
address 0xE000A204. 

 

 Add code that will read two words of data starting from the base address of 
the OCM region, placing the values into integer variables called "word1" and 
"word2". 
 

 Add code that will read a word (32 bits) of data from address 0xE000A064, 
placing the result into an integer variable called “word3”.  Type this address 
in your code carefully – it’s special, and it is NOT the same as the one we 
used just now.  A lot of people get this wrong. 

 

 Using the following lines of code, display the contents of word1, word2, and 
word3 to the UART. 
 
printf("Word1 = 0x%08x\n\r", word1); 
printf("Word2 = 0x%08x\n\r", word2); 
printf("Word3 = 0x%08x\n\r", word3); 

 

 Run the software on the board using “Run as  Launch on Hardware (GDB)”.  
Check that the output on the UART terminal screen is as you’d expect for 
word1 and word2.  Some of the data might seem to be around the wrong 
way.  It’s not, but consider why this might be the case.  Think about how the 
addresses are arranged in the memory map for data values larger than 8 bits. 
 

 Does the value of “word3” mean anything to you?  It probably doesn’t; but 
try running the software on the board again, but this time press and hold 
push buttons “PB1” and/or “PB2” on the board while you download the 
application.  What happens to the value of “word3”? 
 Note:  If you are reading the value of “0x00000000” for word3, then you 

have typed the wrong address into your code.  Please go back and check 
carefully. 

 

 Experiment by pressing and holding different combinations of PB1 and PB2 
when you run the software, and see if you can determine what’s going on.  It 
might be helpful to convert the hexadecimal values to binary, and a pattern 
should suddenly emerge.  What do you think is located at this special address 
0xE000A064 ? 
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End of Exercise Challenge – ANSWERS 

 
 Word 1 should be 0x8C34FFAB. 
 Word 2 should be 0xDEADBEEF. 

 If you’ve guessed correctly, you will have worked out that there is a GPIO 
peripheral at address 0xE000A064. 

 Specifically, this address is the register that reads the values of the pins 
which are attached to the push buttons on the board. 

 By pressing and holding the buttons, you are affecting the values of bits 18 
and 19 of the PS_GPIO read register at address 0xE000A064. 

 If we wanted to determine whether button PB1 was being pushed, we 
would read the contents this register and then bitwise AND it with the 
mask 0x40000 (“310000 0000 0000 0100 0000 0000 0000 00000” in binary) 
to isolate bit 18.  If the result was non-zero then we’d know that the 
button was being pushed.  The same test could be done for button PB2, 
using a mask value of 0x80000 (to test bit 19 of the same register). 

 This last part of the exercise essentially demonstrates how device drivers 
are written.  The GPIO driver that we have been using in our earlier 
experiments performs these reads, writes, and masks for us, but simply 
hides the complexity from us.   
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Exercise 7 - Timers (Polled mode) 

So far in this workshop, we have experimented with various driver functions to 
control the features on the ZedBoard.  Processors are able to execute instructions 
extremely quickly, and in some of our examples we have used loops in software to 
slow down the processor to a speed which is suitable for our needs.  Here is one of 
those (extremely crude!) delay loops from earlier: 
 
 for (i=0; i<2000; i++) 
  { 

print(“.”); 
  } 

 
Although loops like the one shown here are effective for implementing delays, they 
are extremely inefficient in terms of processor time, which is often a precious 
resource in embedded designs.  All of the time that we spent wastefully going 
around in the loop doing nothing, could be better spent executing real code and 
producing useful results.  Also, when using our rudimentary loops we had no real 
control over the amount of delay time that would be produced by the delay loop.  
We could adjust the size of the loop, but this is a trial and error process and has no 
precise correlation to predictable and measurable units of time. 
 
In this exercise we shall look at how it is possible to accurately measure time using a 
hardware-based timer peripheral.  This will give us much greater flexibility in our 
designs, considerably more control, and will allow us to avoid wastage of the 
processor's time. 
 
A timer, just like any other processor peripheral, is a block of hardware which has 
been added to the bus structure using memory mapped registers.  Timers can work 
in many ways but we shall first look at using a countdown timer in "polled mode".  
To explain the process in its most basic form, we shall use the processor to write a 
value into one of the registers within the timer and then starting it running.  The 
timer will decrement once per clock cycle until it reaches zero, and then stop.  While 
it is counting down we shall "poll" the timer from the processor, which is simply the 
art of repeatedly asking the timer if it has finished.  If it were a human conversation 
it would go something like this: 
 
 PROCESSOR: Load the value of 10,000 into your register and start running. 
 TIMER: OK.  I'm doing that. 
 PROCESSOR: Have you reached zero yet? 
 TIMER: No. 
 PROCESSOR: Have you reached zero yet? 
 TIMER: No. 
 PROCESSOR: Have you reached zero yet? 
 TIMER: No. 
 PROCESSOR: Have you reached zero yet? 
 TIMER: Yes. 
 PROCESSOR: Good, I can start doing something else. 
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This scheme will allow us to measure time quite accurately; we know the value that 
was loaded into the timer, and we know the frequency of the clock connected to the 
timer.  Therefore we know precisely how long it will be before we reach 0x00000000, 
and that can be checked by the processor to insert a known delay into our software.  
The Xilinx tools have already generated device driver functions in the BSP for writing 
the values into the timer's registers, enabling and disabling the timer, and for 
checking the value currently held within the timer.  We can use these functions to 
control the timer from our code, in the same way that we did for the other 
peripherals. 
 
There are various timers in a Zynq device, but we shall use the one built into the 
Snoop Control Unit (don’t worry about the details of the SCU for a moment – but 
please just believe me that there’s a timer in there!). 
 
In the “xparameters.h” file you will find a reference to the SCU timer called 
“XPAR_PS7_SCUTIMER_0_DEVICE_ID”.  You will need this in your code. 
 
Open the header file in the BSP “include” directory called “xscutimer.h”.  Browse 
through the available functions and identify functions which do the following: 
 

 Lookup the config for initialising the timer. 
 Initialise the timer using config information. 
 Load a value into the timer. 
 Start the timer. 

 Read the current value of the timer’s counter register 
 Restart the timer from the initial value 

 
Also identify the pre-defined struct which is used to store the settings for the timer 
driver, and the struct used for configuration. 
 
 

End of Exercise Challenge 

You should be getting the hang of using Xilinx drivers by now, so you can write this 
application on your own.  Oh, stop blubbing, it’s not that hard! 
 
 Using the xscutimer.h header file as a reference, write some code which does the 

following: 
 Look up the config for the timer and the initialize it. 
 Load a suitable value into the Timer which reflects a period of one second in 

real time.  (HINT: The SCU Timer runs at half the frequency of the processor, 
and in xparameters.h you will find some #define statements which define the 
frequency of the CPU clock). 

 Start the timer. 
 Inside an infinite software loop, constantly check the value of the timer’s 

counter register.  When it reaches zero: 

 Print something to the UART.  An incrementing counter value would be a 
good idea, so you can see the number of seconds which have elapsed. 
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 Restart the timer from the original value so that the timer keeps running, 
reaching zero repeatedly at a frequency of 1Hz. 

Hints and Tips 

 Make sure that you read the header file that is generated in the BSP.  This will 
explain many things! 

 The debugger is your friend, remember to use it!  Also remember that you can 
insert "printf()" statements in the code to keep an eye on the progress of your 
software during development. 
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Exercise 8 - Timers (Interrupt mode) 

We have seen from the last exercise that peripheral based timers can be very useful 
for accurately measuring time, and represent a much more elegant solution than 
using variable delay loops in software.  Although we have cured the problems of 
inaccuracy, in the previous exercise we are still polling the timer which is an 
inefficient use of processor time.  To cure this inefficiency, we can use interrupts. 
 
An interrupt is simply an event which causes the processor to stop what it is doing, 
make a record of the stage it had reached and the contents of all its internal 
registers, and then begin work on a new task by executing a different piece of 
software.  The alternate task usually performs a specific function which is related to 
handling the event which caused the interrupt, and thus we call the alternate piece 
of software an "interrupt handler".  An interrupt handler is written in C code just like 
any other function, and we then assign the interrupt handler function to the 
peripheral using some special C functions supplied in the BSP.  The Xilinx BSP 
automates the rest of the flow, and our software will return the processor to the 
original task once the interrupt handler has executed to completion. 
 
People often get confused about interrupts, and don’t always understand why they 
are helpful in software design.  The easiest way to understand interrupts is to liken 
them to a simple household scenario.  Imagine the front door of your house, and 
imagine you’re sitting inside the house watching TV.  How do you know if there is 
somebody waiting at your door with the pizza that you 
ordered?  One method is that you could routinely get up, 
walk to the door, and check.  If you check very regularly, 
then you stand a good chance of finding your pizza at the 
exact moment it arrives, but you’ll spend a lot of wasted 
time going back and forth, you’ll miss most of your TV 
show, and your neighbours will think you’re odd.  If you 
check less often then you will waste less of your time, you’ll 
see more TV, but you might need to be quite lucky in order 
to get your pizza before it gets cold.  This is “polling”; a 
constant checking process that requires a lot of manual 
work.  All of the same principles apply in software. 
 

The second method is to install a 
doorbell.  When pizza boy arrives, he sends you a signal 
using a button by the door, and you are notified.  You can 
then stop watching TV, and go to the door only when 
needed.  It takes a bit more time to set up the system in 
the first place, but ultimately it’s more efficient.  This is an 
interrupt.  Again, all of the same principles apply in 
software.  Simple, huh? 
 

Here is an example of a piece of code that could write a line of text to the UART 
when an interrupt was generated.  At the moment we will not worry about how or 
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why the interrupt was generated, but simply study it as a textbook example of how 
the code might appear in C: 

 
 
int main (void) 
 { 
 assign_interrupt_handler(&my_doorbell, front_door_interrupt_handler); 
 

while(1) 
  { 
  print("I’m watching TV\n\r"); 
  } 
 
 return(0); 
 } 
 
 
void front_door_interrupt_handler (void) 
 { 
 print("My pizza has arrived!\n\r"); 
 } 

 
Interrupts can be generated by many different peripherals, but for this exercise we 
will be generating interrupts from the Snoop Control Unit Timer peripheral that we 
used in the previous exercise.  In the last exercise we were operating the timer in 
polled mode, although the timer peripheral is in fact capable of producing interrupts.  
The Zynq documentation states that an interrupt is generated by the timer whenever 
it reaches zero, so we shall use this feature to our advantage. 
 
In order to use interrupts, we need to use a few more driver functions to enable the 
interrupt functionality on the timer, to enable interrupts on the ARM processor, and 
also to set up the interrupt controller.  For the beginner, this process can get a bit 
scary, but I’ll walk you through it.  You’re going to need coffee for this next bit.  No 
really... please get coffee! 
 
Let’s look at the software flow for an interrupt.  We start in the main part of the 
code, and then when an interrupt occurs we jump first into a supplied general 
purpose interrupt handler, and then again into your custom interrupt handler.  The 
supplied interrupt handler does all of the important tasks such as saving the state of 
the processor, and tidying up any mess that is caused by the interruption.  All you 
have to do is to write the code that you want to execute when the interrupt occurs. 
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In a processor like the ARM Cortex-A9, all interrupts are managed by, and connected 
via, the general interrupt controller.  So our first task is to create instances of the 
general interrupt controller (GIC) and the timer, and initialise them both.  This is 
done in the same way as before, using the “Lookup_Config” and “CfgInitialize” 
functions. 
 

XScuTimer my_Timer; 

XScuTimer_Config *Timer_Config; 

 

XScuGic my_Gic; 

XScuGic_Config *Gic_Config; 

 

Gic_Config = XScuGic_LookupConfig(XPAR_PS7_SCUGIC_0_DEVICE_ID); 

XScuGic_CfgInitialize(&my_Gic, Gic_Config, Gic_Config->CpuBaseAddress); 

 

Timer_Config = XScuTimer_LookupConfig(XPAR_PS7_SCUTIMER_0_DEVICE_ID); 

XScuTimer_CfgInitialize(&my_Timer, Timer_Config, Timer_Config->BaseAddr); 

 
 
We should now consider the layout of our processor system, and understand what 
needs to be done to configure it correctly.  We shall start with a block diagram which 
shows a simplified view of a Zynq device at power-up.  Please note the following 
things, which are all important to the success of this exercise: 
 

 The Cortex-A9 CPU cores have internal exception handing logic, and this is 
disabled and initialised at power-up. 

 There is one (standard) interrupt pin on the Cortex-A9 core, and there is a 
master interrupt handler which the CPU executes when receiving any interrupt 
request (IRQ).  The handler is unassigned. 

 The General Interrupt Controller (GIC) has the ability to manage many 
interrupt inputs, and has a table which allows interrupt handlers to be 
assigned to each incoming interrupt. 

 Each interrupt input on the GIC has an enable “switch” that is disabled by 
default. 

 Each peripheral / interrupt source has an output enable “switch”, that is 
disabled by default. 

Main application 
Xilinx supplied 

interrupt handler 
Your custom 

interrupt handler 

Any other functions 
you call from your 
interrupt handler 

Return to Xilinx 
supplied interrupt 

handler 

Continue with main 
application 

Interrupt 
Occurs 
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IRQ 

Cortex-A9 core(s) 

Master Interrupt Handler = <UNASSIGNED> 

Exception handling logic = <UNINITIALIZED> 

General Interrupt Controller (GIC) 

PL # 0 Handler = <UNASSIGNED> 

PL # 1 Handler = <UNASSIGNED> 

PL # 2 Handler = <UNASSIGNED> 

PL # 15 Handler = <UNASSIGNED> 

PL # ... Handler = <UNASSIGNED> 

PL # 3 Handler = <UNASSIGNED> 

USB Handler = <UNASSIGNED> 

CAN Handler = <UNASSIGNED> 

DMA Handler = <UNASSIGNED> 

SCU Timer Handler = <UNASSIGNED> 

??? Handler = <UNASSIGNED> 

I2C Timer = <UNASSIGNED> 

SCU Timer INTERRUPT 

Programmable Logic (PL) 
 
(16 interrupt connections) 

Many MANY 
other interrupt 
enabled devices 

in the PS 
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Next we need to initialise the exception handling features on the ARM processor.  
This is done using a function call from the “xil_exception.h” header file. 
 

 Xil_ExceptionInit(); 

 
When an interrupt occurs, the processor first has to interrogate the interrupt 
controller to find out which peripheral generated the interrupt.  Xilinx provide an 
interrupt handler to do this automatically, and it is called 
“XScuGic_InterruptHandler”.  To use this supplied handler, we have to assign it to 
the interrupt controller.  The syntax is pretty scary, but it’s the same for all designs 
so it can just be copied and pasted for every design that you create.  The only item 
that needs to be changed is the name of the GIC instance at the end of the function 
(in our case “&my_Gic”). 
 

Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IRQ_INT, 

(Xil_ExceptionHandler)XScuGic_InterruptHandler, &my_Gic); 

 
We now need to assign our interrupt handler, which will handle interrupts for the 
timer peripheral.  In our case, the handler is called “my_timer_interrupt_handler”.  
It’s connected to a unique interrupt ID number which is represented by the 
“XPAR_SCUTIMER_INTR”.  You’ll find a list of these IDs in the “xparameters_ps.h” 
header file, and they cover all of the peripherals in the PS which generate interrupts.  
If you were dealing with an interrupt which came from a peripheral in the PL, you’d 
find a similar list in the “xparameters.h” header file. 
 
XScuGic_Connect(&my_Gic, XPAR_SCUTIMER_INTR, 

(Xil_ExceptionHandler)my_timer_interrupt_handler, (void *)&my_Timer); 

 
The next task is to enable the interrupt input for the timer on the interrupt controller.  
Interrupt controllers are flexible, so you can enable and disable each interrupt to 
decide what gets through and what doesn’t. 
 

XScuGic_Enable(&my_Gic, XPAR_SCUTIMER_INTR); 

 
Next, we need to enable the interrupt output on the timer.  
 

XScuTimer_EnableInterrupt(&my_Timer); 

 
Finally, we need to enable interrupt handling on the ARM processor.  Again, this 
function call can be found in the “xil_exception.h” header file.  
 

Xil_ExceptionEnable(); 

 
 
That’s the setup completed for the interrupt controller and timer.  Let’s review our 
work, and see what changes we’ve made to the system diagram.  Use the yellow 
numbers to cross-reference each line of C code to the block diagram. 
  

1 

2 

3 

4 

5 

6 
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IRQ 

Cortex-A9 core(s) 

Master Interrupt Handler = XScuGic_InterruptHandler 

Exception handling logic = INITIALISED & ENABLED 

General Interrupt Controller (GIC) 

PL # 0 Handler = <UNASSIGNED> 

PL # 1 Handler = <UNASSIGNED> 

PL # 2 Handler = <UNASSIGNED> 

PL # 15 Handler = <UNASSIGNED> 

PL # ... Handler = <UNASSIGNED> 

PL # 3 Handler = <UNASSIGNED> 

USB Handler = <UNASSIGNED> 

CAN Handler = <UNASSIGNED> 

DMA Handler = <UNASSIGNED> 

SCU Timer Handler = my_timer_interrupt_handler 

??? Handler = <UNASSIGNED> 

I2C Timer = <UNASSIGNED> 

SCU Timer INTERRUPT 

Programmable Logic (PL) 
 
(16 Interrupt connections) 

Many MANY 
other interrupt 
enabled devices 

in the PS 
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Now we need to write an interrupt handler, which is the function that will be called 
when the interrupt occurs.  We’ve already decided on a name because we used it 
above; “my_timer_interrupt_handler”. 
 
It is considered good programming practice when coding an interrupt handler 
function to first check to make absolutely sure that the right peripheral has raised 
the interrupt.  Lots of headaches can be created when a software engineer starts 
making decisions in their code because they believe one interrupt has occurred, 
when actually it’s a completely different one.  This problem is hard to detect because 
in most cases you have no way of checking which interrupt has occurred.  Xilinx has 
solved this problem by including some clever code in their driver, using something 
called a “CallBackRef”.  We discussed before that there is a supplied interrupt 
handler which is provided by Xilinx for the interrupt controller, called 
“XScuGic_InterruptHandler”.  This handler is the one that calls our handler, but it 
also helpfully passes information about the driver instance which is relevant to the 
peripheral that generated the interrupt.  This is the CallBackRef.  In practice, this 
means that from the moment we enter our interrupt handler, the Xilinx drivers have 
already given us the details of which peripheral generated the interrupt. 
 
This is what the basic structure of our timer interrupt handler looks like: 
 

static void my_timer_interrupt_handler(void *CallBackRef) 

{ 

// Your code goes in here 

} 

 
We can clearly see the “CallBackRef” that is passed into the function, and we can use 
it to our advantage.  Suppose we wanted to control the timer as part of our interrupt 
handler code?  Without the CallBackRef we couldn’t do it, because the original 
instance of “my_Timer” doesn’t exist in the scope of this function.  (We declared it in 
main() and therefore it cannot be directly used in our interrupt handler because our 
handler is a different function) 
 
But we can declare a local copy of the “my_Timer” instance, and assign it the 
information provided by the “CallBackRef” : 
  

static void my_timer_interrupt_handler(void *CallBackRef) 

{ 

 XScuTimer *my_Timer_LOCAL = (XScuTimer *) CallBackRef; 

} 

 
The instance “my_Timer_LOCAL” is now an exact copy of the one in our “main” 
function, and we can control the timer in the same way as we did before.  Any 
changes to “my_Timer_LOCAL” will also apply to the original copy of “my_Timer”, 
because they are linked together using a pointer. 
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Returning to our previous comments on good coding practices, we now want to 
check to make sure that the timer really did generate this interrupt.  To do that we 
can use a standard function from the timer’s header file.  All of the functions will 
work on “my_Timer_LOCAL” in the same way that they did in “main” for the original 
instance of “my_Timer”, because they are declared as the same data type 
(“XScuTimer”): 
 

static void my_timer_interrupt_handler(void *CallBackRef) 

{ 

 XScuTimer *my_Timer_LOCAL = (XScuTimer *) CallBackRef; 

 

if (XScuTimer_IsExpired(my_Timer_LOCAL)) 

 { 

  xil_printf("We are in the interrupt handler!!\n\r”); 

}  

} 

 
The last task is to clear the interrupt condition in the timer peripheral.  If we don’t do 
this, then the interrupt condition will still be active.  That means that the moment we 
exit from our interrupt handler, the processor will jump straight back into it again.  
The main section of our application would therefore never be executed.  Again there 
is a supplied function call in the timer’s header file to do this, so we need to add it to 
our interrupt handler : 
 

XScuTimer_ClearInterruptStatus(my_Timer_LOCAL); 

End of Exercise Challenge 

 Create a new software application in the SDK “Project Explorer” pane. 
 Using the guidance provided in this exercise, write a piece of software that will 

print a message to the UART at an interval of precisely 1Hz.  The message should 
contain a counter which shows how many interrupts have been generated since 
the start of the application. 
 

And when you’ve got that working... 
  

 Add your code back in from the previous exercises to make the eight LEDs (LD0 – 
LD7) show the values on the eight DIP switches, at the same time that the 
messages on the UART are getting displayed.  If you do it correctly, then the 
messages will continue to be displayed at 1Hz no matter what you are doing with 
the rest of the code. 

 
And then if you REALLY want a challenge... 

 

 Also make LD9 flash at precisely 1Hz, using interrupt control.  Think carefully 
about this before you start hacking your code.  It’s complicated. 

 
Something to think about at the end of this exercise... 

 
I don’t want to scare you, but you’re already becoming quite proficient with Zynq.  The basics that 

you’ve covered so far are the foundations for the vast majority of Zynq embedded design projects.  
You understand how the Xilinx drivers work, you understand how interrupts work, and you understand 

how peripherals are added in the PL.  You can do a lot with that!    
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Exercise 9 - Talking to external components 

You're nearly there!  We have looked at all of the basic techniques that would be 
needed to create an embedded processor system with Zynq.  For this final exercise 
we will go beyond the pins of the Zynq device, and expand the design to 
communicate with an external device. 
 
You may recall that in our previous exercises we added two peripherals to the PL 
section of the Zynq device, and one of those peripherals (the GPIO) we used 
immediately.  The other one, the SPI controller, was connected to some external pins 
but we didn’t do anything with it.  In this exercise we will explore the use of the 
incredibly popular SPI protocol, and use it to control a device on an external “PMOD” 
daughter board. 
 
But first a little bit of background... 
 
SPI (Serial Peripheral Interface) is a very well known standard interface in the digital 
electronics world, that allows master and slave devices to communicate using just 
four wires; SCLK, MOSI, MISO, and SS.  SCLK is (perhaps obviously!) the clock 
connection.  MOSI is an abbreviation for “Master Out Slave In”.  MISO is a similar 
abbreviation for “Master In Slave Out”.  SS is an abbreviation for “Slave Select”, and 
is an active-low connection.  Technically speaking, therefore, the signal should be 
named “nSS” but it hardly ever is. 

SPI is a simple protocol, whereby data is 
sent and received in a loop.  SPI has no 
specific concept of “read” and “write”, 
but merely understands the concept of 
data “transfers”.  For every byte the 
master sends to the slave, the slave 
always sends a byte back again.  As a 
result of this system, it is up to the 
master to “know” what data is expected 
back from any given slave, so that 
irrelevant dummy bytes (often 0x00 or 
0xFF) can be ignored.  For example, if 
the master is 

sending a command to the slave, but nothing is expected 
back, then the master must be programmed to ignore any 
bytes that come back.  If the master sends a byte and the 
slave is configured to reply immediately, then the master 
must actually send two bytes (one for the command and 
one dummy byte) because the slave will reply with its 
data during byte number two. 
 
PMOD is an abbreviation for “Peripheral MODule” and was designed by Digilent Inc 
(http://www.digilentinc.com).  Digilent hold the trademark for “PMOD”, and details of 
the licensing agreement use can be found at 
http://www.digilentinc.com/Pmods/licensing.cfm . 

http://www.digilentinc.com/
http://www.digilentinc.com/Pmods/licensing.cfm
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PMOD is essentially a specification for connecting expansion modules using either 6 
or 12 pin connectors.  A very large number of PMOD expansion modules exist, and 
cover applications ranging from simple 7-segment displays, through to data 
converters, GPS receivers, SD card interfaces, joysticks, rotary encoders, real-time 
clocks, PS/2 connectors, and many other varied applications. 
 
For this experiment we shall be using a temperature sensing PMOD board from 
Maxim, called the “MAX31723PMB1”.  The board is very simple, and consists merely 
of a MAX31723 device mounted to a 6 pin PMOD board.  Four of the pins are used 
for the SPI connections, and the remaining two are 
used for Vcc and GND.  The MAX31723 can also be 
used in a 3-pin I2C mode, but we will stick to using SPI 
for the purposes of our workshop today. 
 
The MAX31723 device has a number of useful 
features, but we will stick with just using three of its 
internal registers.  Each register on the device has an 
address, which can be read or written by sending two bytes via the SPI connection.  
During a write, the first byte contains the address of the register to be written, and 
the second byte contains the register value.  During a read, the first byte contains 
the address of the register, and the second byte is a dummy byte.  As discussed 
above, the MAX31723 will listen to the address provided by the master in byte 
number 1, and will ignore the second incoming byte.  In return, it will output a 
dummy value when it receives byte number 1, and will send the data from the 
register back during byte number 2. 
 

 
We will read two registers from the MAX31723; requiring four bytes to be transferred 
in total (two address bytes and two dummy bytes).  The TEMPLSB register is at 
address 0x01, and the TEMPMSB register is at address 0x02.  Using the data from 
these two registers, it is possible to calculate the current temperature.  The TEMPMSB 
byte represents the temperature in whole units (1 degree C, 2 degrees C... 100 
degrees C, etc) in two’s compliment binary, and TEMPLSB represents fractions of a 
degree (the bits in the binary word represent ½ degree C, ¼ degree C, ⅛ degree C, 
and so on).  
 

Master 
(Zynq) 

Slave 

(MAX31723) 

MOSI 

Byte 0 
(Address) 

Byte 1 
(Dummy) 

Byte 1 
(Data) 

Byte 0 
(Dummy) 

MISO 
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Before reading the temperature registers, we must enable the device using the 
configuration register which is at address 0x80.  Conveniently for us, the simplest 
and most useful mode to get a basic temperature reading can be achieved by 
clearing all of the bits in the configuration register, so we will write the value of 0x00 
to it at the beginning of our software application. 
 
The design is already ready to go, because all of the pin location constraints that we 
added to  the .XDC file in our previous exercise were sufficient to route the SPI 
connections to PMOD socket “JA1” on the ZedBoard (next to the DIP switches).  Plug 
the MAX31723PMB1 module into the upper row of pins on connector JA1 with the 
jumpers on the module facing upwards. 
 
We will use the device in interrupt mode, and due to the complexity of the C code a 
template is supplied for you.  The code follows all of the same rules that we saw 
from our previous exercises, using the same principles to set up the driver and 
initialise interrupts. 
 
The code starts a transfer and then sets up a global variable and a while loop that 
halts execution until the SPI transfer has completed.  The SPI peripheral can 
generate an interrupt for a number of reasons (completion of a transfer, error 
conditions, etc) and so the interrupt handler has to check to see what event caused 
the interrupt before taking any action.  As a result, the interrupt handler in this 
exercise is slightly more advanced; because it first has to do some checking.  If the 
interrupt condition is the desired result (transfer complete) then the handler sets the 
global variable back to the original value and the main section of the application can 
continue. 
 
Global variables are also used to implement two buffers for the SPI peripheral; one 
read buffer and one write buffer.  These buffers are then passed to the SPI drivers 
and are sent / received, byte by byte, during an SPI transfer. 
 

End of Exercise Challenge 

Straight to the challenge this time! 
 

 Create a new software application project called “Exercise 9”. 
 Use the supplied code for Exercise 9 as a template to implement your design.  

You will need to fill in the blanks using your newly found knowledge of Zynq 
embedded design. 

o You will need to set up the interrupt system and test it. 
o You will need to load the write buffer with commands to send to the 

MAX31723 device via SPI. 
o Two SPI transactions are required; the first to read the MSB 

temperature register, and the second to read the LSB. 
o You will need to read the temperature values back from the read 

buffer, and pass those to the supplied code which will calculate the 
correct temperature.  The read buffer has been created for you in the 
code template. 

 Use the debugger to get the code working. 
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 I have left some useful features in the code (unused) to help you.  These 
include functions like “display_buffers()” which could be called to help you 
debug what you’re doing. 

 This is harder than it looks.  Make good use of caffeine! 
 
 
The supplied code uses some calls from the math.h library, and you will need to 
make a small change to the properties of your software project to tell the linker to 
include the maths library.  The error message you will see from the compiler is 

“Undefined reference to ’pow’”.  Follow these steps carefully to correct the 

problem.  If different compiler error messages are seen, then it’s a fault in your code 
and not mine.  Have fun!   

 Right-click on the “Exercise 9” project in the Project Explorer, and choose 
“C/C++ Build Settings”. 

 Choose the “ARM gcc linker  Libraries” section. 

 Click the “Add...” button in the “Libraries” pane at the top.  (The button is the 
one with the green “+” sign on the document icon) 

 Type “m” in the entry field and then click “OK”. 
 Click “OK” to return to the main SDK window. 

 
 

Further fun with the temperature sensor 

 
When your code is up and running, you can experiment with making the temperature 
sensor more precise.  Examine the command that you sent to the MAX31723’s 
configuration register.  You will see that it contains a value called 
“MAX31723_THERMOMETER_RESOLUTION_9BIT_MODE”. 
 
Change this to “MAX31723_THERMOMETER_RESOLUTION_12BIT_MODE” to make 
the fractional precision of the sensor more detailed, and re-run the code.  You should 
now be able to measure very small changes in temperature.  The temperature sensor 
is so precise that you can hold your hand near (but not touching) the sensor, and it 
will still detect a change from your body heat.  Alternatively, you could place a hot 
mug of coffee or a cold drink can close to the board, and you will see the same 
effect. 
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Exercise 10 – Autonomous Boot 

We now have a design that works on the board, and is advanced enough for us to 
call it “finished”.  We now want to make the ZedBoard boot automatically from 
power on. 
 
To make this happen, we need to create a “First Stage Boot Loader” (FSBL), and 
then combine our application software, the FSBL, and the Programmable Logic 
hardware bitstream into one flash image file.  Happily, Xilinx have made this a very 
easy flow and it will allow you to get your board booting without any trouble. 

Creating the FSBL (First Stage Boot Loader) 

 
From the Xilinx SDK tool, choose “File  New  Application Project” from the 
menus.  Give the project a name, for example “FSBL”, create a new Board Support 
Package for this application, and click “Next”.  At the bottom of the list of templates 
choose “Zynq FSBL” and click “Finish”. 
 
Note: The Xilinx FSBL requires the inclusion of some libraries to access the FAT file 
system on the SD card.  This is the reason that a new Board Support Package must 
be generated, because the tools automatically include the required libraries. 
 
The FSBL project will be created next to all of the other software application projects.  
No modifications are necessary – the code just works. 
 

Creating the Boot Image 

 

 Use a windows explorer session to create a folder called “flash_images” on 
your PC.  It doesn’t really matter where, just remember where you put it. 

 From the menus, choose “Xilinx Tools  Create Zynq Boot Image”. 
 Choose the “Create new BIF file” radio button, and then browse to the folder 

you created a moment ago.  Keep the default filename of “output.bif”.  

 At the bottom of the window, click the “Add” button next to the Boot Image 
Partitions table.  Browse to the SDK workspace, and into the 
“SDK_Export\FSBL\Debug” folder.  Choose the “FSBL.elf” file and click “Open”.  
Check that the partition type is set to “bootloader” and click “OK”. 

 The second location in the flash image table is for the Programmable Logic 
bitstream.  Add another partition to the table, and browse to the 
“SDK_Export\hw” folder, and choose the .BIT bitstream file that has been 
generated by your Vivado project.  Check that the partition type is set to 
“datafile” for this partition. 

 Click the “Add” button on the right of the table for a third time, and browse to 
the .elf file in your “Exercise 9” directory.  Add this to your table of boot 
partitions as a “datafile” type partition. 

 At the bottom of the window, specify an “output path” for the boot image.  
Browse to the folder you created at the beginning of this exercise.  Use the 
filename “boot.bin”. 
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Open a Windows Explorer session (or an alternative file system application if you are 
using a different operating system on your host machine), and navigate to the 
location of the boot image that you have just created.  You will see two files (.bif and 
.bin).  The .bif file contains the settings for the “Boot Image Generator” wizard, and 
can be used if you ever want to re-create the boot image using the same settings as 
before.  The second file (.bin) is the binary image that is used if you are configuring 
the Zynq device using a SD Card. 
 
Locate an SD card and connect it to your PC via the 
SD card slot, or a card reader.  Open another 
Windows Explorer session, and navigate to the SD 
card. 
 

 Using a “drag and drop”, or cut and paste 
operation, copy the .bin file to the SD card. 

 When booting in SD card mode, Zynq 
devices look for a reserved filename called 
“boot.bin”.  Rename the .bin file on your SD card to “boot.bin” and then safely 
eject the SD card. 

 
  



 

Page 61 

Zynq Workshop for Beginners (ZedBoard) -- Version 1.0, July 2014 
Rich Griffin, Silica EMEA  

 

The moment of truth 
 

 Switch off the ZedBoard, and disconnect the JTAG cable. 
 Insert the SD card into the slot on the ZedBoard, taking care to push it all the 

way in. 
 Switch on the power, and wait for a few seconds.  Observe the UART terminal 

and you will see your application running on the board. 
 Celebrate!   

 


