
Vivado Design Suite Tcl Command
Reference Guide

UG835 (v 2013.1) March 20, 2013

Chapter 1

Introduction

Overview of Tcl Capabilities in Vivado
The Tool Command Language (Tcl) is the scripting language integrated in the Vivado™
tool environment. Tcl is a standard language in the semiconductor industry for application
programming interfaces, and is used by Synopsys® Design Constraints (SDC).

SDC is the mechanism for communicating timing constraints for FPGA synthesis tools from
Synopsys Synplify as well as other vendors, and is a timing constraint industry standard;
consequently, the Tcl infrastructure is a “Best Practice” for scripting language.

Tcl lets you perform interactive queries to design tools in addition to executing automated
scripts. Tcl offers the ability to “ask” questions interactively of design databases, particularly
around tool and design settings and state. Examples are: querying specific timing analysis
reporting commands live, applying incremental constraints, and performing queries immediately
after to verify expected behavior without re-running any tool steps.

The following sections describe some of the basic capabilities of Tcl with Vivado.

Note This manual is not a comprehensive reference for the Tcl language. It is a reference to the
specific capabilities of the Vivado Design Suite Tcl shell, and provides reference to additional
Tcl programming resources.

Launching the Vivado Design Suite

You can launch the Vivado Design Suite and run the tools using different methods depending
on your preference. For example, you can choose a Tcl script-based compilation style method
in which you manage sources and the design process yourself, also known as Non-Project
Mode. Alternatively, you can use a project-based method to automatically manage your design
process and design data using projects and project states, also known as Project Mode. Either
of these methods can be run using a Tcl scripted batch mode or run interactively in the Vivado
IDE. For more information on the different design flow modes, see the Vivado Design Suite
User Guide: Design Flows Overview (UG892).

Tcl Shell Mode

If you prefer to work directly with Tcl commands, you can interact with your design using Tcl
commands with one of the following methods:

• Enter individual Tcl commands in the Vivado Design Suite Tcl shell outside of the Vivado IDE.

• Enter individual Tcl commands in the Tcl Console at the bottom of the Vivado IDE.

• Run Tcl scripts from the Vivado Design Suite Tcl shell.

• Run Tcl scripts from the Vivado IDE.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 2

Introduction

Use the following command to invoke the Vivado Design Suite Tcl shell either at the Linux
command prompt or within a Windows Command Prompt window:
vivado –mode tcl

Tip On Windows, you can also select Start > All Programs > Xilinx Design Tools > Vivado
2013.x > Vivado 2013.x Tcl Shell.

For more information about using Tcl and Tcl scripting, see the Vivado Design Suite User Guide:
Using the Tcl Scripting Capabilities (UG894). For a step-by-step tutorial that shows how to use
Tcl in the Vivado tool, see the Vivado Design Suite Tutorial: Design Flows Overview (UG888).

Tcl Batc h Mode

You can use the Vivado tools in batch mode by supplying a Tcl script when invoking the
tool. Use the following command either at the Linux command prompt or within a Windows
Command Prompt window:
vivado –mode batch –source <your_Tcl_script>

The Vivado Design Suite Tcl shell will open, run the specified Tcl script, and exit when the script
completes. In batch mode, you can queue up a series of Tcl scripts to process a number of
designs overnight through synthesis, simulation, and implementation, and review the results
on the following morning.

Vivado IDE Mode

If you prefer to work in a GUI, you can launch the Vivado IDE from Windows or Linux. For
more information on the Vivado IDE, see the Vivado Design Suite User Guide: Using the
Vivado IDE (UG893).

Launch the Vivado IDE from your working directory. By default the Vivado journal and log
files, and any generated report files, are written to the directory from which the Vivado tool
is launched. This makes it easier to locate the project file, log files, and journal files, which
are written to the launch directory.

In the Windows OS, select Start > All Programs > Xilinx Design Tools > Vivado 2013.x >
Vivado 2013.x.

Tip You can also double-click the Vivado IDE shortcut icon on your Windows desktop.

In the Linux OS, enter the following command at the command prompt:
vivado
-or-
vivado -mode gui

If you need help, with the Vivado tool command line executable, type:
vivado -help

If you are running the Vivado tool from the Vivado Design Suite Tcl shell, you can open the
Vivado IDE directly from the Tcl shell by using the start_gui command.

From the Vivado IDE, you can close the Vivado IDE and return to a Vivado Tcl shell by using the
stop_gui command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 3

Introduction

Tcl Journal Files

When you invoke the Vivado tool, it writes the vivado.log file to record the various
commands and operations performed during the design session. The Vivado tool also writes a
file called vivado.jou which is a journal of just the Tcl commands run during the session. The
journal file can be used as a source to create new Tcl scripts.

Note Backup versions of the journal file, named vivado_<id>.backup.jou , are written to
save the details of prior runs whenever the Vivado tool is launched. The <id> is a unique
identifier that allow the tool to create and store multiple backup versions of the log and journal
files.

Tcl Help

The Tcl help command provides information related to the supported Tcl commands.
• help — Returns a list of Tcl command categories.

help

Command categories are groups of commands performing a specific function, like File
I/O for instance.

• help -category category — Returns a list of commands found in the specified
category.
help -category object

This example returns the list of Tcl commands for handling objects.

• help pattern — Returns a list of commands that match the specified search pattern.
This form can be used to quickly locate a specific command from a group of commands.
help get_*

This example returns the list of Tcl commands beginning with get_.

• help command — Provides detailed information related to the specified command.
help get_cells

This example returns specific information of the get_cells command.

• help -args command — Provides an abbreviated help text for the specified command,
including the command syntax and a brief description of each argument.
help -args get_cells

• help -syntax command — Reports the command syntax for the specified command.
help -syntax get_cells

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 4

Introduction

Tcl Initialization Scripts

When you start the Vivado tool, it looks for a Tcl initialization script in two different locations:

1. In the software installation: installdir /Vivado/ version /scripts/init.tcl

2. In the local user directory:

• For Windows 7: %APPDATA%/Roaming/Xilinx/Vivado/init.tcl

• For Linux: $HOME/.Xilinx/Vivado/init.tcl

Where:

installdir is the installation directory where the Vivado Design Suite is installed.

If init.tcl exists, in one or both of those locations, the Vivado tool sources this file; first
from the installation directory and second from your home directory.

• The init.tcl file in the installation directory allows a company or design group to
support a common initialization script for all users. Anyone starting the Vivado tool from
that installation location sources the enterprise init.tc l script.

• The init.tcl file in the home directory allows each user to specify additional commands,
or to override commands from the software installation to meet their specific design
requirements.

• No init.tcl file is provided with the Vivado Design Suite installation. You must create
the init.tcl file and place it in either the installation directory, or your home directory,
as discussd to meet your specific needs.

The init.tcl l file is a standard Tcl command file that can contain any valid Tcl command
supported by the Vivado tool. You can also source another Tcl script file from within init.tcl
by adding the following statement:

source path_to_file / file_name .tcl

Note You can also specify the -init option when launching the Vivado Design Suite from the
command line. Type vivado -help for more information.

Sourcing a Tcl Script

A Tcl script can be sourced from either one of the command-line options or from the GUI.
Within the Vivado Integrated Design Environment (IDE) you can source a Tcl script from Tools >
Run Tcl Script.

You can source a Tcl script from a Tcl command-line option:
source file_name

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 5

Introduction

When you invoke a Tcl script from the Vivado IDE, a progress bar is displayed and all operations
in the IDE are blocked until the scripts completes.

There is no way to interrupt script execution during run time; consequently, standard OS
methods of killing a process must be used to force interruption of the tool. If the process is
killed, you lose any work done since your last save.

Typing help source in the Tcl console will provide additional information regarding the source
command.

Using Tcl.pre and Tcl.post Hook Scripts

Tcl Hook scripts allow you to run custom Tcl scripts prior to (tcl.pre) and after (tcl.post)
synthesis and implementation design runs, or any of the implementation steps. Whenever
you launch a run, the Vivado tool uses a predefined Tcl script which executes a design flow
based on the selected strategy. Tcl Hook scripts let you customize the standard flow, with
pre-processors or post-processors, such as for generating custom reports. The Tcl Hook script
must be a standard Tcl script.

Every step in the design flow has a pre- and post-hook capability. Common examples are:
• Custom reports: timing, power, utilization, or any user-defined tcl report.
• Temporary parameters for workarounds.
• Over-constraining timing constraints for portions of the flow.
• Multiple iterations of stages (e.g. multiple calls to phys_opt_design).
• Modifications to netlist, constraint, or device programming.

For more information on defining Tcl Hook scripts, refer to the Vivado Design Suite User Guide:
Using Tcl Scripting (UG894).

General Tcl Syntax Guidelines
Tcl uses the Linux file separator (/) convention regardless of which Operating System you
are running.

The following subsections describe the general syntax guidelines for using Tcl in the Vivado
Design Suite.

Using Tcl Eval

When executing Tcl commands, you can use variable substitution to replace some of the
command line arguments accepted or required by the Tcl command. However, you must use the
Tcl eval command to evaluate the command line with the Tcl variable as part of the command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 6

Introduction

For instance, the help command can take the -category argument, with one of a number of
command categories as options:
help -category ipflow

You can define a variable to hold the command category:
set cat "ipflow"

Where:

• set is the Tcl keyword that defines the variable.
• cat is the name of the variable being defined.
• "ipflow" is the value assigned to the variable.

You can then evaluate the variable in the context of the Tcl command:
eval help -category $cat

or,
set cat "category ipflow"
eval help $cat

You can also use braces {} in place of quotation marks “” to achieve the same result:
set runblocksOptDesignOpts { -sweep -retarget -propconst -remap }
eval opt_design $runblocksOptDesignOpts

Typing help eval in the Tcl console will provide additional information regarding the eval
command.

Using Special Characters

Some commands take arguments that contain characters that have special meaning to Tcl.
Those arguments must be surrounded with curly braces {} to avoid unintended processing by
Tcl. The most common cases are as follows.

Bus Indexes - Because square brackets [] have special meaning to Tcl, an indexed (bit- or
part-selected) bus using the square bracket notation must be surrounded with curly braces.
For example, when adding index 4 of a bus to the Vivado Common Waveform Viewer window
using the square bracket notation, you must write the command as:
add_wave {bus[4]}

Parentheses can also be used for indexing a bus, and because parentheses have no special
meaning to Tcl, the command can be written without curly braces. For example:
add_wave bus(4)

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 7

Introduction

Verilog Escaped Identifiers - Verilog identifiers containing characters or keywords that are
reserved by Verilog need to be “escaped” both in the Verilog source code and on the
simulator command line by prefixing the identifier with a backslash "\" and appending a space.
Additionally, on the Tcl command line the escaped identifier must be surrounded with curly
braces.

Note If an identifier already includes a curly brace, then the technique of surrounding the
identifier with curly braces does not work, because Tcl interprets curly braces as reserved
characters even nested within curly braces. Instead, you must use the technique described
below, in VHDL Extended Identifiers.

For example, to add a wire named "my wire" to the Vivado Common Waveform Viewer window,
you must write the command as:
add_wave {\my wire }

Note Be sure to append a space after the final character, and before the closing brace.

Verilog allows any identifier to be escaped. However, on the Tcl command line do not escape
identifiers that are not required to be escaped. For example, to add a wire named "w" to the
Vivado Common Waveform Viewer window, the Vivado simulator would not accept:
add_wave {\w }

as a valid command, since this identifier (the wire name "w") does not required to be escaped.
The command must be written as:
add_wave w

VHDL Extended Identifiers - VHDL extended identifiers contain backslashes, "\", which are
reserved characters in Tcl. Because Tcl interprets a backslash next to a close curly brace \} as
being a close curly brace character, VHDL extended identifiers cannot be written with curly
braces. Instead, the curly braces must be absent and each special character to Tcl must
be prefixed with a backslash. For example, to add the signal \my sig\ to the Wave window,
you must write the command as:
add_wave \\my\ sig\\

Note Both the backslashes that are part of the extended identifier, and the space inside the
identifier are prefixed with a backslash.

General Syntax Structure

The general structure of Vivado Design Suite Tcl commands is:

command [optional_parameters] required_parameters

Command syntax is of the verb-noun and verb-adjective-noun structure separated by the
underscore (“_”) character.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 8

Introduction

Commands are grouped together with common prefixes when they are related.

• Commands that query things are generally prefixed with get_.

• Commands that set a value or a parameter are prefixed with set_.

• Commands that generate reports are prefixed with report_.

The commands are exposed in the global namespace. Commands are “flattened,” meaning
there are no “sub-commands” for a command.

Example Syntax

Following is an example of the return format on the get_cells -help command:
get_cells

Description:
Get a list of cells in the current design

Syntax:
get_cells [-hsc arg] [-hierarchical] [-regexp] [-nocase] [-filter arg]

[-of_objects args] [-match_style arg] [-quiet] [patterns]

Returns:
list of cell objects

Usage:
Name Optional Default Description

-hsc yes / Hierarchy separator
-hierarchical yes Search level-by-level in current instance
-regexp yes Patterns are full regular expressions
-nocase yes Perform case-insensitive matching (valid

only when -regexp specified)
-filter yes Filter list with expression
-of_objects yes Get cells of these pins or nets
-match_style yes sdc Style of pattern matching, valid values are

ucf, sdc
-quiet yes Ignore command errors
patterns yes * Match cell names against patterns

Categories:
SDC, XDC, Object

Unknown Commands

Tcl contains a list of built-in commands that are generally supported by the language, Vivado
tool specific commands which are exposed to the Tcl interpreter, and user-defined procedures.

Commands that do not match any of these known commands are sent to the OS for execution
in the shell from the exec command. This lets users execute shell commands that might be
OS-specific. If there is no shell command, then an error message is issued to indicate that
no command was found.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 9

Introduction

Return Codes

Some Tcl commands are expected to provide a return value, such as a list or collection of
objects on which to operate. Other commands perform an action but do not necessarily return
a value that can be used directly by the user. Some tools that integrate Tcl interfaces return a 0
or a 1 to indicate success or error conditions when the command is run.

To properly handle errors in Tcl commands or scripts, you should use the Tcl built-in command
catch. Generally, the catch command and the presence of numbered info, warning, or error
messages should be relied upon to assess issues in Tcl scripted flows.

Vivado tool Tcl commands return either TCL_OK or TCL_ERROR upon completion. In addition,
the Vivado Design Suite sets the global variable $ERRORINFO through standard Tcl mechanisms.

To take advantage of the $ERRORINFO variable, use the following line to report the variable
after an error occurs in the Tcl console:

puts $ERRORINFO

This reports specific information to the standard display about the error. For example, the
following code example shows a Tcl script (procs.tcl) being sourced, and a user-defined
procedure (loads) being run. There are a few transcript messages, and then an error is
encountered at line 5.
Line 1: Vivado % source procs.tcl
Line 2: Vivado% loads
Line 3: Found 180 driving FFs
Line 4: Processing pin a_reg_reg[1]/Q...
Line 5: ERROR: [HD-Tcl 53] Cannot specify '-patterns' with '-of_objects'.
Line 6: Vivado% puts $errorInfo
Line 7: ERROR: [HD-Tcl 53] Cannot specify '-patterns' with '-of_objects'. While executing
"get_ports -of objects $pin" (procedure "my_report" line 6) invoked from within procs.tcl

You can add puts $ERRORINFOinto catch clauses in your Tcl script files to report the details
of an error when it is caught, or use the command interactively in the Tcl console immediately
after an error is encountered to get the specific details of the error.

In the example code above, typing the puts $ERRORINFOcommand in line 6, reports detailed
information about the command and its failure in line 7.

First Class Tcl Objects and Relationships
The Tcl commands in the Vivado Design Suite provide direct access to the object models for
netlist, devices, and projects. These objects are first-class which means they are more than just
a string representation, and they can be operated on and queried. There are a few exceptions
to this rule, but generally “things” can be queried as objects, and these objects have properties
that can be queried and they have relationships that allow you to get to other objects.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 10

Introduction

Object Types and Definitions

There are many object types in the Vivado Design Suite; this chapter provides definitions and
explanations of the basic types. The most basic and important object types are associated with
entities in a design netlist, and these types are listed in the following subsections:

Cell
A cell is an instance, either primitive or hierarchical inside a netlist. Examples of cells
include flip-flops, LUTs, I/O buffers, RAM and DSPs, as well as hierarchical instances which
are wrappers for other groups of cells.

Pin
A pin is a point of logical connectivity on a cell. A pin allows the internals of a cell to be
abstracted away and simplified for easier use, and can either be on hierarchical or primitive
cells. Examples of pins include clock, data, reset, and output pins of a flop.

Port
A port is a special type of hierarchical pin, a pin on the top level netlist object, module or
entity. Ports are normally attached to I/O pads and connect externally to the FPGA device.

Net
A net is a wire or list of wires that eventually be physically connected directly together.
Nets can be hierarchical or flat, but always sorts a list of pins together.

Clock
A clock is a periodic signal that propagates to sequential logic within a design. Clocks can
be primary clock domains or generated by clock primitives such as a DCM, PLL, or MMCM.
A clock is the rough equivalent to a TIMESPEC PERIOD constraint in UCF and forms the
basis of static timing analysis algorithms.

Querying Objects

All first class objects can be queried by a get_ Tcl command that generally has the following
syntax:

get_ object_type pattern

Where pattern is a search pattern, which includes if applicable a hierarchy separator to get a
fully qualified name. Objects are generally queried by a string pattern match applied at each
level of the hierarchy, and the search pattern also supports wildcard style search patterns to
make it easier to find objects, for example:

get_cells */inst_1

This command searches for a cell named inst_1 within the first level of hierarchy under the
top-level of hierarchy. To recursively search for a pattern at every level of hierarchy, use the
following syntax:

get_cells –hierarchical inst_1

This command searches every level of hierarchy for any instances that match inst_1.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 11

Introduction

For complete coverage of syntax, see the specific online help for the individual command:
• help get_cells

• get_cells -help

Object Properties

Objects have properties that can be queried. Property names are unique for any given object
type. To query a specific property for an object, the following command is provided:
get_property property_nameobject

An example would be the lib_cell property on cell objects, which tells you what UniSim
component a given instance is mapped to:
get_property lib_cell [get_cell inst_1]

To discover all of the available properties for a given object type, use the report_property
command:
report_property [get_cells inst_1]

The following table shows the properties returned for a specific object.

Reported Properties for Specified Object

Key Value Type

bel OLOGICE1.OUTFF string

class cell string

iob TRUE string

is_blackbox 0 bool

is_fixed 0 bool

is_partition 0 bool

is_primitive 1 bool

is_reconfigurable 0 bool

is_sequential 1 bool

lib_cell FD string

loc OLOGIC_X1Y27 string
name error string

primitive_group FD_LD string

primitive_subgroup flop string

site OLOGIC_X1Y27 string

type FD & LD string

XSTLIB 1 bool

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 12

Introduction

Some properties are read-only and some are user-settable. Properties that map to attributes
that can be annotated in UCF or in HDL are generally user-settable through Tcl with the
set_property command:

set_property loc OLOGIC_X1Y27 [get_cell inst_1]

Filtering Based on Properties

The object query get_* commands have a common option to filter the query based on any
property value attached to the object. This is a powerful capability for the object query
commands. For example, to query all cells of primitive type FD do the following:

get_cells * -hierarchical –filter “lib_cell == FD”

To do more elaborate string filtering, utilize the =~ operator to do string pattern matching. For
example, to query all flip-flop types in the design, do the following:

get_cells * -hierarchical –filter “lib_cell =~ FD*”

Multiple filter properties can be combined with other property filters with logical OR (||) and
AND (&&) operators to make very powerful searches. To query every cell in the design that if
of any flop type and has a placed location constraint:

get_cells * -hierarchical –filter {lib_cell =~ FD* && loc != “”}

Note In the example, the filter option value was wrapped with curly braces {} instead of double
quotes. This is normal Tcl syntax that prevents command substitution by the interpreter and
allows users to pass the empty string (“”) to the loc property.

Large Lists of Objects

Commands that return more than one object generally return a container that looks and
behaves like a native Tcl list. This is a feature of the Vivado tool in that it allows dramatic
optimization of large lists of Tcl objects handling without the need for special iteration
commands like the foreach_in_collection command that other tools have implemented. This is
handled with the Tcl built-in foreach command.

There are a few nuances with respect to large lists, particularly in the log files and the GUI Tcl
console. Typically, when you set a Tcl variable to the result of a get_* command, the entire list
is echoed to the console and to the log file. For large lists, this is truncated when printed to the
console and log to prevent memory overloading of the buffers in the tool.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 13

Introduction

What is echoed is the list printed to the log and console is truncated and the last element
appears to be “…” in the log and console, however the actual list in the variable assignment is
still correct and the last element is not an error. An example of this is querying a single cell
versus every cell in the design, which can be large:

get_cells inst_1
inst_1
get_cells * -hierarchical
XST_VCCXST_GNDerror readIngressFifo wbDataForInputReg fifoSelect_0 fifoSelect_1 fifoSelect_2 fifoSelect_3 ...
%set x [get_cells * -hierarchical]
XST_VCCXST_GNDerror readIngressFifo wbDataForInputReg fifoSelect_0 fifoSelect_1 fifoSelect_2 fifoSelect_3 ...
%lindex $x end
bftClk_BUFGP/bufg
%llength $x
4454

In this example, all four thousand cells were not printed to the console and the list was
truncated with a “…” but the actual last element of the list is still correct in the Tcl variable.

Object Relationships

Related objects can be queried using the -of option to the relevant get_* command. For
example, to get a list of pins connected to a cell object, do the following:
get_pins –of [get_cells inst_1]

The following image shows object types in the Vivado tool and their relationships, where an
arrow from one object to another object indicates that you can use the -of option to the get_*
command to traverse logical connectivity and get Tcl references to any connected object.

Errors, Warnings, Critical Warnings, and InfoMessages
Messages that result from individual commands appear in the log file as well as in the GUI
console if it is active. These messages are generally numbered to identify specific issues and are
prefixed in the log file with “INFO”, “WARNING”, “CRITICAL_Warning”, “ERROR” followed by a
subsystem identifier and a unique number.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 14

Introduction

The following example shows an INFO message that appears after reading the timing library.
INFO: [HD-LIB 1] Done reading timing library

These messages make it easier to search for specific issues in the log file to help to understand
the context of operations during command execution.

Generally, when an error occurs in a Tcl command sourced from a Tcl script, further execution of
subsequent commands is halted. This is to prevent unrecoverable error conditions. There are
Tcl built-ins that allow users to intercept these error conditions, and to choose to continue.
Consult any Tcl reference for the catch command for a description of how to handle errors
using general Tcl mechanisms.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 15

Chapter 2

Tcl Commands Listed by Category

Categories
• Board

• ChipScope

• DRC

• FileIO

• Floorplan

• GUIControl

• Hardware

• IPFlow

• IPIntegrator

• Netlist

• Object

• PinPlanning

• Power

• Project

• PropertyAndParameter

• Report

• SDC

• Simulation

• SysGen

• Timing

• ToolLaunch

• Tools

• Waveform

• XDC

• XPS

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 16

Tcl Commands Listed by Category

Board:
• current_board

• get_board_interfaces

• get_board_pins

ChipScope:
• launch_chipscope_analyzer

• launch_impact

• write_chipscope_cdc

DRC:
• add_drc_checks

• create_drc_check

• create_drc_ruledeck

• create_drc_violation

• delete_drc_check

• delete_drc_ruledeck

• get_drc_checks

• get_drc_ruledecks

• get_drc_vios

• remove_drc_checks

• report_drc

• reset_drc

• reset_drc_check

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 17

Tcl Commands Listed by Category

FileIO:
• config_webtalk

• infer_diff_pairs

• pr_verify

• read_checkpoint

• read_csv

• read_edif

• read_ip

• read_saif

• read_twx

• read_vcd

• read_verilog

• read_vhdl

• read_xdc

• write_bitstream

• write_bmm

• write_checkpoint

• write_chipscope_cdc

• write_csv

• write_debug_probes

• write_edif

• write_ibis

• write_sdf

• write_verilog

• write_vhdl

• write_xdc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 18

Tcl Commands Listed by Category

Floorplan:
• add_cells_to_pblock
• create_pblock
• delete_pblock
• delete_rpm
• get_pblocks
• place_cell
• place_pblocks
• remove_cells_from_pblock
• reset_ucf
• resize_pblock
• swap_locs
• unplace_cell

GUIControl:
• endgroup
• get_selected_objects
• highlight_objects
• mark_objects
• redo
• select_objects
• show_objects
• show_schematic
• start_gui
• startgroup
• stop_gui
• undo
• unhighlight_objects
• unmark_objects
• unselect_objects

Hardware:
• close_hw
• close_hw_target

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 19

Tcl Commands Listed by Category

• commit_hw_sio
• commit_hw_vio
• connect_hw_server
• create_hw_sio_link
• create_hw_sio_linkgroup
• create_hw_sio_scan
• current_hw_device
• current_hw_ila
• current_hw_ila_data
• current_hw_server
• current_hw_target
• disconnect_hw_server
• display_hw_ila_data
• display_hw_sio_scan
• get_hw_devices
• get_hw_ila_datas
• get_hw_ilas
• get_hw_probes
• get_hw_servers
• get_hw_sio_commons
• get_hw_sio_gtgroups
• get_hw_sio_gts
• get_hw_sio_iberts
• get_hw_sio_linkgroups
• get_hw_sio_links
• get_hw_sio_plls
• get_hw_sio_rxs
• get_hw_sio_scans
• get_hw_sio_txs
• get_hw_targets
• get_hw_vios
• open_hw
• open_hw_target
• program_hw_devices
• read_hw_ila_data
• read_hw_sio_scan
• refresh_hw_device
• refresh_hw_server
• refresh_hw_sio
• refresh_hw_target

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 20

Tcl Commands Listed by Category

• refresh_hw_vio
• remove_hw_sio_link
• remove_hw_sio_linkgroup
• remove_hw_sio_scan
• reset_hw_ila
• reset_hw_vio_activity
• reset_hw_vio_outputs
• run_hw_ila
• run_hw_sio_scan
• stop_hw_sio_scan
• upload_hw_ila_data
• wait_on_hw_ila
• wait_on_hw_sio_scan
• write_hw_ila_data
• write_hw_sio_scan

IPFlow:
• copy_ip
• create_ip
• generate_target
• get_ipdefs
• get_ips
• import_ip
• open_example_project
• read_ip
• report_ip_status
• reset_target
• update_ip_catalog
• upgrade_ip
• validate_ip

IPIntegrator:
• apply_bd_automation
• assign_bd_address
• close_bd_design
• connect_bd_intf_net

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 21

Tcl Commands Listed by Category

• connect_bd_net

• copy_bd_objs

• create_bd_addr_seg

• create_bd_cell

• create_bd_design

• create_bd_intf_net

• create_bd_intf_pin

• create_bd_intf_port

• create_bd_net

• create_bd_pin

• create_bd_port

• current_bd_design

• current_bd_instance

• delete_bd_objs

• disconnect_bd_intf_net

• disconnect_bd_net

• find_bd_objs

• generate_target

• get_bd_addr_segs

• get_bd_addr_spaces

• get_bd_cells

• get_bd_designs

• get_bd_intf_nets

• get_bd_intf_pins

• get_bd_intf_ports

• get_bd_nets

• get_bd_pins

• get_bd_ports

• group_bd_cells

• move_bd_cells

• open_bd_design

• regenerate_bd_layout

• save_bd_design

• ungroup_bd_cells

• validate_bd_design

• write_bd_tcl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 22

Tcl Commands Listed by Category

Netlist:
• connect_net
• create_cell
• create_net
• create_pin
• disconnect_net
• get_net_delays
• remove_cell
• remove_net
• remove_pin
• rename_ref
• resize_net_bus
• resize_pin_bus
• tie_unused_pins

Object:
• add_drc_checks
• create_drc_check
• create_drc_ruledeck
• current_board
• delete_drc_check
• delete_drc_ruledeck
• filter
• get_bel_pins
• get_bels
• get_board_interfaces
• get_board_pins
• get_boards
• get_cells
• get_clock_regions
• get_clocks
• get_debug_cores
• get_debug_ports
• get_delays
• get_designs
• get_drc_checks

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 23

Tcl Commands Listed by Category

• get_drc_ruledecks
• get_drc_vios
• get_files
• get_filesets
• get_generated_clocks
• get_hw_devices
• get_hw_ila_datas
• get_hw_ilas
• get_hw_probes
• get_hw_servers
• get_hw_sio_commons
• get_hw_sio_gtgroups
• get_hw_sio_gts
• get_hw_sio_iberts
• get_hw_sio_linkgroups
• get_hw_sio_links
• get_hw_sio_plls
• get_hw_sio_rxs
• get_hw_sio_scans
• get_hw_sio_txs
• get_hw_targets
• get_hw_vios
• get_interfaces
• get_io_standards
• get_iobanks
• get_ipdefs
• get_ips
• get_lib_cells
• get_lib_pins
• get_libs
• get_macros
• get_net_delays
• get_nets
• get_nodes
• get_package_pins
• get_parts
• get_path_groups
• get_pblocks
• get_pins
• get_pips

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 24

Tcl Commands Listed by Category

• get_ports

• get_projects

• get_property

• get_runs

• get_selected_objects

• get_site_pins

• get_site_pips

• get_sites

• get_slrs

• get_tiles

• get_timing_arcs

• get_timing_paths

• get_wires

• list_property

• list_property_value

• remove_drc_checks

• report_property

• reset_drc_check

• reset_property

• set_property

PinPlanning:
• create_interface

• create_port

• delete_interface

• make_diff_pair_ports

• place_ports

• remove_port

• resize_port_bus

• set_package_pin_val

• split_diff_pair_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 25

Tcl Commands Listed by Category

Power:
• delete_power_results
• power_opt_design
• read_saif
• read_vcd
• report_power
• report_power_opt
• reset_default_switching_activity
• reset_operating_conditions
• reset_switching_activity
• set_default_switching_activity
• set_operating_conditions
• set_power_opt
• set_switching_activity

Project:
• add_files
• archive_project
• close_design
• close_project
• copy_ip
• create_fileset
• create_project
• create_run
• current_board
• current_fileset
• current_project
• current_run
• delete_fileset
• delete_run
• find_top
• generate_target
• get_board_interfaces
• get_board_pins
• get_boards
• get_files

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 26

Tcl Commands Listed by Category

• get_filesets

• get_ips

• get_projects

• get_runs

• help

• import_files

• import_ip

• import_synplify

• import_xise

• import_xst

• launch_runs

• list_targets

• lock_design

• make_wrapper

• move_files

• open_example_project

• open_io_design

• open_project

• open_run

• refresh_design

• reimport_files

• remove_files

• reorder_files

• report_compile_order

• reset_project

• reset_run

• reset_target

• save_constraints

• save_constraints_as

• save_project_as

• set_speed_grade

• update_compile_order

• update_design

• update_files

• wait_on_run

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 27

Tcl Commands Listed by Category

PropertyAndParameter:
• create_property
• filter
• get_param
• get_property
• list_param
• list_property
• list_property_value
• report_param
• report_property
• reset_param
• reset_property
• set_param
• set_property

Report:
• check_timing
• create_drc_violation
• create_slack_histogram
• delete_clock_networks_results
• delete_timing_results
• delete_utilization_results
• get_msg_config
• get_msg_count
• get_msg_limit
• report_carry_chains
• report_clock_interaction
• report_clock_networks
• report_clock_utilization
• report_clocks
• report_config_timing
• report_control_sets
• report_datasheet
• report_debug_core
• report_default_switching_activity
• report_disable_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 28

Tcl Commands Listed by Category

• report_drc
• report_environment
• report_exceptions
• report_high_fanout_nets
• report_incremental_reuse
• report_io
• report_operating_conditions
• report_param
• report_phys_opt
• report_power
• report_property
• report_pulse_width
• report_route_status
• report_ssn
• report_switching_activity
• report_timing
• report_timing_summary
• report_transformed_primitives
• report_utilization
• reset_drc
• reset_msg_config
• reset_msg_count
• reset_msg_limit
• reset_msg_severity
• reset_ssn
• reset_timing
• set_msg_config
• set_msg_limit
• set_msg_severity
• version

SDC:
• all_clocks
• all_fanin
• all_fanout
• all_inputs
• all_outputs
• all_registers

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 29

Tcl Commands Listed by Category

• create_clock
• create_generated_clock
• current_design
• current_instance
• get_cells
• get_clocks
• get_hierarchy_separator
• get_nets
• get_pins
• get_ports
• get_timing_arcs
• get_timing_paths
• group_path
• report_operating_conditions
• reset_operating_conditions
• set_case_analysis
• set_clock_groups
• set_clock_latency
• set_clock_sense
• set_clock_uncertainty
• set_data_check
• set_disable_timing
• set_false_path
• set_hierarchy_separator
• set_input_delay
• set_load
• set_logic_dc
• set_logic_one
• set_logic_unconnected
• set_logic_zero
• set_max_delay
• set_max_time_borrow
• set_min_delay
• set_multicycle_path
• set_operating_conditions
• set_output_delay
• set_propagated_clock
• set_units

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 30

Tcl Commands Listed by Category

Simulation:
• add_bp
• add_condition
• add_files
• add_force
• checkpoint_vcd
• close_saif
• close_sim
• close_vcd
• compile_simlib
• create_fileset
• current_scope
• current_sim
• current_time
• data2mem
• delete_fileset
• describe
• flush_vcd
• get_objects
• get_scopes
• get_value
• import_files
• launch_modelsim
• launch_xsim
• limit_vcd
• log_saif
• log_vcd
• log_wave
• ltrace
• move_files
• open_saif
• open_vcd
• open_wave_database
• ptrace
• read_saif
• read_vcd
• remove_bps
• remove_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 31

Tcl Commands Listed by Category

• remove_files

• remove_forces

• report_bps

• report_conditions

• report_drivers

• report_objects

• report_scopes

• report_simlib_info

• report_values

• reset_simulation

• restart

• run

• set_value

• start_vcd

• step

• stop

• stop_vcd

• write_sdf

• write_verilog

• write_vhdl

• xsim

SysGen:
• create_sysgen

• make_wrapper

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 32

Tcl Commands Listed by Category

Timing:
• check_timing
• config_timing_analysis
• config_timing_corners
• delete_timing_results
• get_net_delays
• get_timing_arcs
• get_timing_paths
• report_config_timing
• report_disable_timing
• report_exceptions
• report_timing
• report_timing_summary
• reset_timing
• set_delay_model
• set_disable_timing
• update_timing

ToolLaunch:
• launch_chipscope_analyzer
• launch_impact
• launch_modelsim
• launch_sdk
• launch_xsim

Tools:
• link_design
• list_features
• load_features
• opt_design
• phys_opt_design
• place_design
• route_design
• synth_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 33

Tcl Commands Listed by Category

Waveform:
• add_wave
• add_wave_divider
• add_wave_group
• add_wave_marker
• add_wave_virtual_bus
• close_wave_config
• create_wave_config
• current_wave_config
• get_wave_configs
• open_wave_config
• save_wave_config

XDC:
• add_cells_to_pblock
• all_clocks
• all_cpus
• all_dsps
• all_fanin
• all_fanout
• all_ffs
• all_hsios
• all_inputs
• all_latches
• all_outputs
• all_rams
• all_registers
• create_clock
• create_generated_clock
• create_macro
• create_pblock
• current_design
• current_instance
• delete_macros
• delete_pblock
• filter

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 34

Tcl Commands Listed by Category

• get_cells
• get_clocks
• get_generated_clocks
• get_hierarchy_separator
• get_iobanks
• get_macros
• get_nets
• get_package_pins
• get_path_groups
• get_pblocks
• get_pins
• get_ports
• get_sites
• get_timing_arcs
• group_path
• remove_cells_from_pblock
• resize_pblock
• set_case_analysis
• set_clock_groups
• set_clock_latency
• set_clock_sense
• set_clock_uncertainty
• set_data_check
• set_default_switching_activity
• set_disable_timing
• set_external_delay
• set_false_path
• set_hierarchy_separator
• set_input_delay
• set_input_jitter
• set_load
• set_logic_dc
• set_logic_one
• set_logic_unconnected
• set_logic_zero
• set_max_delay
• set_max_time_borrow
• set_min_delay
• set_multicycle_path
• set_operating_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 35

Tcl Commands Listed by Category

• set_output_delay

• set_package_pin_val

• set_power_opt

• set_propagated_clock

• set_property

• set_switching_activity

• set_system_jitter

• set_units

• update_macro

XPS:
• create_xps

• export_hardware

• generate_target

• get_boards

• launch_sdk

• list_targets

• make_wrapper

• reset_target

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 36

Chapter 3

Tcl Commands Listed Alphabetically
This chapter contains all SDC and Tcl Commands, arranged alphabetically.

add_bp
Add breakpoint at a line of a HDL source.

Syntax
add_bp [-quiet] [-verbose] file_name line_number

Returns
Return a new breakpoint object if there is not already a breakpoint set at the specified file line
else returns the existing breakpoint object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file_name Filename to add the breakpoint

line_number Line number of the given file to set the breakpoint

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 37

Tcl Commands Listed Alphabetically

add_cells_to_pblock
Add cells to a Pblock.

Syntax
add_cells_to_pblock [-top] [-add_primitives] [-clear_locs] [-quiet]
[-verbose] pblock [cells ...]

Returns
Nothing

Usage
Name Description

[-top] Add the top level instance; This option can't be used with
-cells, or -add_primitives options. You must specify either
-cells or -top option.

[-add_primitives] Assign all the primitives of the specified instances to a
pblock

[-clear_locs] Clear instance location constraints

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pblock Pblock to add cells to

[cells] Cells to add. You can't use this option with -top option.
You must specify either -cells or -top option.

Categories
Floorplan, XDC

Description
Adds specified logic instances to a Pblock. Once cells have been added to a Pblock, you
can place the Pblocks onto the fabric of the FPGA using the resize_pblock command. The
resize_pblock command can also be used to manually move and resize pblocks.

You can remove instances from the Pblock using the remove_cells_from_pblock command.

Arguments
-top - (Optional) Add the top level instance to create a Pblock for the whole design. You must
either specify cells or the -top option to add objects to the Pblock.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 38

Tcl Commands Listed Alphabetically

-add_primitives - (Optional) Assign all primitives of the specified instances to a Pblock. This
lets you specify a block module and automatically assign all of the instances within that module
to the specified Pblock.

Note This option cannot be used with -top.

-clear_locs - (Optional) Clear instance location constraints for any cells that are already
placed. This allows you to reset the LOC constraint for cells when defining new Pblocks
for floorplanning purposes. When this option is not specified, any instances with assigned
placement will not be unplaced as they are added to the Pblock.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pblock - The name assigned to the Pblock.

cells - One or more cell objects to add to the specified Pblock.

Note If -top is specified, you cannot also specify cells

Examples
The following example creates a Pblock called pb_cpuEngine, and then adds all of the primitives
found in the cpuEngine module, clearing placement constraints for placed instances:
create_pblock pb_cpuEngine
add_cells_to_pblock pb_cpuEngine [get_cells cpuEngine] -add_primitives -clear_locs

See Also
• get_pblocks
• place_pblocks
• remove_cells_from_pblock
• resize_pblock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 39

Tcl Commands Listed Alphabetically

add_condition
Conditionally execute Tcl commands.

Syntax
add_condition [-name arg] [-radix arg] [-quiet]
[-verbose] condition_expression commands

Returns
The condition object created

Usage
Name Description

[-name] Assign a unique name (label) to a condition. Multiple
conditions cannot be assigned the same name. If no name
is specified, then a default label named as condition is
automatically created

[-radix] Specifies which radix to use. Allowed values are: default,
dec, bin, oct, hex, unsigned, ascii.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

condition_expression The condition expression when true executes the given
commands

commands Commands to execute upon condition

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 40

Tcl Commands Listed Alphabetically

add_drc_checks
Add drc rule check objects to a rule deck.

Syntax
add_drc_checks [-of_objects args] [-regexp] [-nocase] [-filter arg]
-ruledeck arg [-quiet] [-verbose] [patterns]

Returns
Drc_check

Usage
Name Description

[-of_objects] Get 'drc_rule' objects of these types: 'drc_ruledeck'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

-ruledeck DRC rule deck to modify

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'drc_rule' objects against patterns. Default: *

Categories
DRC, Object

Description
Add design rule checks to the specified drc_ruledeck object.

A rule deck is a collection of design rule checks grouped for convenience, to be run with the
report_drc command at different stages of the FPGA design flow, such as during I/O planning
or placement. The tool comes with a set of factory defined rule decks, but you can also create
new user-defined rule decks with the create_drc_ruledeck command.

Use the get_drc_ruledecks command to return a list of the currently defined rule decks
available for use in the report_drc command.

You can add standard factory defined rule checks to the rule deck, or add user-defined rule
checks that were created using the create_drc_check command. Use the get_drc_checks
command to get a list of checks that can be added to a rule deck.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 41

Tcl Commands Listed Alphabetically

Checks can also be removed from a rule deck using the remove_drc_checks command.

Note To temporarily disable a specific DRC rule, use the set_property command to set the
IS_ENABLED property for the rule to false. This will disable the rule from being run in
report_drc, without having to remove the rule from the rule deck. Use reset_drc_check to
restore the rule to its default setting

This command returns the list of design rule checks that were added to the rule deck.

Arguments
-of_objects arg - (Optional) Add the rule checks of the specified drc_ruledeck object to the
specified rule deck. This has the effect of copying the rules from one rule deck into another.

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by the search pattern, based on specified property values. You
can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

-ruledeck arg - (Required) The name of the rule deck to add the specified design rule checks to.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Add the design rule checks that match the specified patterns to the rule
deck. The default pattern is the wildcard '*' which adds all rule checks to the specified rule
deck. More than one pattern can be specified to find multiple rule checks based on different
search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 42

Tcl Commands Listed Alphabetically

Examples
The following example adds the rule checks matching the specified search pattern to the
project_rules rule deck:
add_drc_checks -ruledeck project_rules {*DCI* *BUF*}

The following example creates a new rule deck called placer+, copies all of the rule checks from
the placer_checks rule deck into the placer+ rule deck, then adds some additional checks:
create_drc_ruledeck placer+
add_drc_checks -of_objects [get_drc_ruledecks placer_checks] -ruledeck placer+
add_drc_checks -ruledeck placer+ *IO*

The following example adds only the rule checks with a severity of Warning to the rule deck:
add_drc_checks -filter {SEVERITY == Warning} -ruledeck warn_only

See Also
• create_drc_check
• create_drc_ruledeck
• get_drc_checks
• get_drc_ruledecks
• list_property
• remove_drc_checks
• report_drc
• report_property
• reset_drc_check
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 43

Tcl Commands Listed Alphabetically

add_files
Add sources to the active fileset.

Syntax
add_files [-fileset arg] [-norecurse] [-scan_for_includes] [-quiet]
[-verbose] [files ...]

Returns
List of file objects that were added

Usage
Name Description

[-fileset] Fileset name

[-norecurse] Do not recursively search in specified directories

[-scan_for_includes] Scan and add any included files found in the fileset's RTL
sources

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[files] Name of the files and/or directories to add. Must be
specified if -scan_for_includes is not used.

Categories
Project, Simulation

Description
Adds one or more source files, or the source file contents of one or more directories, to the
specified fileset in the current project.

The Vivado tool does not read the contents of a file automatically when the file is added to
the project with add_files , but rather reads the file contents when they are needed. For
instance, a constraints file is not read when added to the design until needed by synthesis,
timing, or implementation. To read the file at the time of adding it to the design, use the
read_xxx command instead.

Note When running the Vivado tool in Non Project mode, in which there is no project file to
maintain and manage the various project source files, you should use the read_xxx commands
to read the contents of source files into the in-memory design. Refer to the Vivado Design Suite
User Guide: Design Flows Overview (UG892) for more information on Non Project mode.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 44

Tcl Commands Listed Alphabetically

The add_files command is different from the import_files command, which copies the file into
the local project folders as well as adding them to the specified fileset. This command only
adds them by reference to the specified fileset.

Arguments
-fileset name - (Optional) The fileset to which the specified source files should be added.
An error is returned if the specified fileset does not exist. If no fileset is specified the files
are added to the source fileset by default.

-norecurse - (Optional) Do not recurse through subdirectories of any specified directories.
Without this argument, the tool searches through any subdirectories for additional source
files that can be added to a project.

-scan_for_includes - (Optional) Scan Verilog source files for any 'include statements and
add these referenced files to the specified fileset. By default, 'include files are not added to
the fileset.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Optional) One or more file names or directory names to be added to the fileset. If a
directory name is specified, all valid source files found in the directory, and in subdirectories of
the directory, are added to the fileset.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example adds a file called rtl.v to the current project:
add_files rtl.v

In the preceding example the tool looks for the rtl.v file in the current working directory since
no file path is specified, and the file is added to the source fileset as a default since no fileset is
specified.

The following example adds a file called top.ucf to the constrs_1 constraint fileset, as well as
any appropriate source files found in the project_1 directory, and its subdirectories:
add_files -fileset constrs_1 -quiet c:/Design/top.ucf c:/Design/project_1

In addition, the tool ignores any command line errors because the -quiet argument was
specified.

If the -norecurse option had been specified then only constraint files found in the project_1
directory would have been added, but subdirectories would not be searched.

The following example adds an existing IP core file to the current project:

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 45

Tcl Commands Listed Alphabetically

add_files -norecurse C:/Data/ip/c_addsub_v11_0_0.xci

Note Use the import_ip command to import the IP file into the local project folders

The following example adds an existing Embedded Processor sub-design into the current
project:

add_files C:/Data/dvi_tpg_demo_ORG/system.xmp

Note Use the create_xps command to create a new Embedded Processor using Xilinx Platform
Studio (XPS)

The following example adds an existing DSP module, created in System Generator, into the
current project:

add_files C:/Data/model1.mdl

Note Use the create_sysgen command to use System Generator to create a new DSP module

See Also
• create_sysgen
• create_xps
• import_files
• import_ip
• read_ip
• read_verilog
• read_vhdl
• read_xdc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 46

Tcl Commands Listed Alphabetically

add_force
Force value of signal, wire, or reg to a specified value.

Syntax
add_force [-radix arg] [-repeat_every arg] [-cancel_after arg]
[-quiet] [-verbose] hdl_object values ...

Returns
The force objects added

Usage
Name Description

[-radix] Specifies which radix to use. Allowed values are: default,
dec, bin, oct, hex, unsigned, ascii

[-repeat_every] Repeat every time duration

[-cancel_after] Cancel after time offset

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hdl_object Specifies the object upon which to add a force

values Adds a value and time offset to the force: {value [
time_offset] }

Categories
Simulation

Description
Force the value of a signal, wire, or reg to a certain value during simulation.

The add_force command has the same effect as the Verilog force/release commands in the
test bench or the module definition. It forces an HDL object to hold the specified value for the
specified time, or until released by the -cancel_after option, or the remove_forces command.

Important! If there are Verilog force/release statements on an HDL object in the test bench or
module, these commands are overridden by the Tcl add_force command. When the Tcl force
expires or is released, the HDL object resumes normal operation in the simulation, including the
application of any Verilog forces

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 47

Tcl Commands Listed Alphabetically

This command returns the name of the force object created, or returns an error if the command
failed. The name of the returned force object is important when using the remove_forces
command, and should be captured in a Tcl variable for later recall, as shown in the examples.

Arguments
-radix arg - (Optional) The radix used when specifying the values. Supported radix values are:
default, dec, bin, oct, hex, unsigned, and ascii. The default radix is binary, unless the specified
HDL object type has an overriding radix defined.

-repeat_every arg - (Optional) Causes the add_force to repeat over some specified increment
of time. This can be used to create a recurring force on the specified hdl_object.

Note The specified time must be greater than the time period defined by any {value time} pairs
defined by values, or an error will be returned

-cancel_after arg - (Optional) Cancels the force effect after the specified period of time from
the current_time. This has the same effect as applying the remove_forces command after the
specified period of time.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

hdl_object - (Required) Specifies a single HDL object to force the value of. The object can
be specified by name, or can be returned as an object by the get_objects command. Valid
objects are signal, wire, and reg.

values - (Required) The value to force the HDL object to. A single value can be specified, and
the value will be held during simulation until the force is removed either through the use of the
-cancel_after option, or through the use of the remove_forces command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 48

Tcl Commands Listed Alphabetically

The specified value depends on the type of the hdl_object. HDL object types include: "logic",
floating point, VHDL enumerated, and VHDL integral. For all but "logic" the -radix option
is ignored.

• "Logic" does not refer to an actual HDL object type, but means any object whose values are
similar to those of VHDL std_logic, such as:

– the Verilog implicit 4-state bit type,

– the VHDL bit and std_logic predefined types,

– any VHDL enumeration type which is a subset of std_logic, including the character
literals 0 and 1.

• For logic types the value depends on the radix:

– If the specified value has fewer bits than the logic type expects, the value is zero
extended, but not sign extended, to match the expected length.

– If the specified value has more bits than the logic type expects, the extra bits on the
MSB side should all be zeros, or the Vivado simulator will return a "size mismatch" error.

• Accepted values for floating point objects are floating point values.

• The accepted value for non-logic VHDL enumerated types is a scalar value from the
enumerated set of values, without single quotes in the case of characters.

• Accepted values for VHDL integral types is a signed decimal integer in the range accepted
by the type.

The value can also be specified as {value time} pairs, which forces the HDL object to hold a
specified value for a specified period of time from the current time, then hold the next value for
the next period of time, until the end of the {value-time} pairs.

Note In {value time} pairs, the time is optional in the first pair, and will be assumed to be 0 if it
is not specified. In all subsequent {value time} pairs, the time is required

The time specified in {value time} pairs is defined relative to the current simulation time, and
indicates a period of time from the current_time. For example, if the current simulation time is
1000 ns, a time of 20 ns defines a period from the current time to 1020 ns.

Restriction The times must be specified in increasing order on the simulation time line, and
may not be repeated, or an error will occur.

The time is specified in the default TIME_UNIT of the current simulation, or can be specified with
the time unit included, with no white space. Valid units of time are: fs, ps, ns, us, ms, or s. A time
of 50 defines a period of 50 ns (the default). A time of 50ps defines a period of 50 picoseconds.

Examples
The following example forces the reset signal high at 300 nanoseconds, using the default
radix, and captures the name of the returned force object in a Tcl variable which can be used
to later remove the force:
set for10 [add_force reset 1 300]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 49

Tcl Commands Listed Alphabetically

The following example shows the use of {value time} pairs, repeated periodically, and canceled
after a specified time.
add_force mySig {0} {1 50 } {0 100} {1 150 } -repeat_every 200 -cancel_after 10000

Note In the preceding example, the first {value time} pair does not include a time. This indicates
that the specified value, 0, is applied at time 0 (the current_time)

See Also
• current_time
• get_objects
• remove_forces

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 50

Tcl Commands Listed Alphabetically

add_wave
Add new waves.

Syntax
add_wave [-into args] [-at_wave args] [-after_wave args]
[-before_wave args] [-reverse] [-radix arg] [-color arg] [-name arg]
[-recursive] [-r] [-regexp] [-nocase] [-quiet] [-verbose] items ...

Returns
The new waves

Usage
Name Description

[-into] into: the wave configuration, group, or virtual bus into
which the new wave object(s) will be inserted. If no -*_row
or -*_wave option is specified, the new wave object(s)
will be added to the end of the -into object. If such an
option is specified in addition to -into, it is an error if
the row number is incompatible with the -into object. If
wcfgGroupVbusObj is a string instead of an object, it is
treated as the name of a group in the current WCFG. If
no such group is found, the names of the virtual buses
of the current WCFG are searched. If still not found, the
names of all WCFG objects are searched. If no -into object
is specified, the current wave configuration is assumed.

[-at_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-after_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-before_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-reverse] reverse: set the is_reversed property of the new wave
object(s) to true

[-radix] radix radix: set the radix property of the new wave object(s)
to radixAllowed values are: default, dec, bin, oct, hex,
unsigned, ascii

[-color] color color: set the color property of the new wave
object(s) to color

[-name] name customName: set the display_name property of the
new wave object to customName. It is an error for there to
be more than one new wave object being created.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 51

Tcl Commands Listed Alphabetically

Name Description

[-recursive] recursive: if the design object is a scope, this option
specifies that wave objects for all design objects under
that scope should be created

[-r] recursive: if the design object is a scope, this option
specifies that wave objects for all design objects under
that scope should be created

[-regexp] regexp: using regular expressions, search design objects
from which to create wave objects by design object name.
The application supplying the design objects determines
how the match is to be performed. items must be strings.

[-nocase] nocase: Only when regexp is used, perform a case
insensitive match

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

items Creates one or more new design-based wave objects

Categories
Waveform

Description
The add_wave command creates one or more new design-based wave objects.

This command returns the name of the newly-created wave object(s).

Note This command can only be used when running a simulation. At a minimum, you must
specify an item, which is an HDL object (signal) within the simulation project. In the Vivado
interface, the object would display in the Objects Window.

Arguments
-into wcfgGroupVbusObj - (Optional) Specifies the wave configuration, group, or virtual bus
into which the new wave object(s) are inserted. If wcfgGroupVbusObj is a string instead of an
object, it is treated as the name of a group in the current WCFG. If no such group is found,
the tool searches the names of the virtual buses of the current WCFG. If still not found, the
tool searches the names of all WCFG objects. If no -into object is specified, the current wave
configuration is assumed.

-at_wave waveObj - (Optional) Adds a wave object at a specified wave object. If waveObj is
a string, it is treated as the display name of a wave object.

-after_wave waveObj - (Optional) Adds a wave object after a specified wave object. If waveObj
is a string, it is treated as the display name of a wave object.

-before_wave waveObj - (Optional) Adds a wave object before a specified wave object. If
waveObj is a string, it is treated as the display name of a wave object.

-reverse - (Optional) Sets the IS_REVERSED property of the new wave object(s) to true.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 52

Tcl Commands Listed Alphabetically

-radix arg - (Optional) Sets the radix property of the new wave object(s) to radix. Allowed
values are: default, dec, bin, oct, hex, unsigned, and ascii.

-color arg - (Optional) Sets the color property of the new wave object(s) to color, which is
either a pre-defined color name or a color specified by a six-digit RGB format (RRGGBB).

-name arg - (Optional) Sets the DISPLAY_NAME property of the new wave object to the
specified name. It is an error for there to be more than one new wave object being created.

-recursive | -r - (Optional) If items specifies a scope, this option specifies that all sub-scopes of
that scope should also be added.

-regexp - (Optional) Specifies that items are written as regular expressions Xilinx
regular expression commands are always anchored to the start of the search string.
You can add ".*" to the beginning of the search string to widen the search. See
http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

items - (Required) Add waves for the specified HDL objects in the current simulation.

Examples
Add a clk to the existing waveform configuration:
add_wave clk
clk

Add the dout_tvalid signal from the rsb_design_testbench to the existing simulation waveform
configuration:
add_wave dout_tvalid
/rsb_design_testbench/dout_tvalid

See Also
• add_wave_divider
• add_wave_group
• add_wave_marker
• add_wave_virtual_bus

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 53

Tcl Commands Listed Alphabetically

add_wave_divider
Add a new divider.

Syntax
add_wave_divider [-into args] [-at_wave args] [-after_wave args]
[-before_wave args] [-color arg] [-quiet] [-verbose] [name]

Returns
The new divider

Usage
Name Description

[-into] into: the wave configuration or group into which the new
wave object(s) will be inserted. If no -*_row or -*_wave
option is specified, the new wave object(s) will be added to
the end of the -into object. If such an option is specified
in addition to -into, it is an error if the row number is
incompatible with the -into object. If wcfgGroupVbusObj is
a string instead of an object, it is treated as the name of
a group in the current WCFG. If no such group is found,
the names of the virtual buses of the current WCFG are
searched. If still not found, the names of all WCFG objects
are searched. If no -into object is specified, the current
wave configuration is assumed.

[-at_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-after_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-before_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-color] color color: set the color property of the new wave
object(s) to color Default: default

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[name] Creates a divider whose display name is name Default:
new_divider

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 54

Tcl Commands Listed Alphabetically

Description
Creates a wave divider in the wave form viewer. The wave divider can be used to separate
groups of related objects, for easier viewing.

The wave divider can be added into a specified or current waveform configuration at the
specified location. If no location is specified the wave divider is inserted at the end of the
waveform configuration.

This command returns the name of the newly-created wave divider.

Note This command can only be used when running a simulation.

Arguments
-into wcfgGroupVbusObj - (Optional) Specifies the wave configuration, group, or virtual bus
into which the new wave object(s) are inserted. If wcfgGroupVbusObj is a string instead of an
object, it is treated as the name of a group in the current WCFG. If no such group is found,
the tool searches the names of the virtual buses of the current WCFG. If still not found, the
tool searches the names of all WCFG objects. If no -into object is specified, the current wave
configuration is assumed.

-at_wave waveObj - (Optional) Adds a wave divider at a specified wave object. If waveObj is
a string, it is treated as the display name of a wave object.

-after_wave waveObj - (Optional) Adds a wave divider after a specified wave object. If waveObj
is a string, it is treated as the display name of a wave object.

-before_wave waveObj - (Optional) Adds a wave divider before a specified wave object. If
waveObj is a string, it is treated as the display name of a wave object.

-color arg - (Optional) Sets the color property of the new wave object(s) to a pre-defined color
name or a color specified by a six-digit RGB format (RRGGBB).

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Optional) Creates a divider with the specified display name. The default name is
new_divider .

Examples
The following example inserts a wave divider named Div1, after the CLK wave object:
add_wave_divider -after_wave CLK Div1

See Also
• add_wave
• add_wave_group
• add_wave_marker
• add_wave_virtual_bus

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 55

Tcl Commands Listed Alphabetically

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 56

Tcl Commands Listed Alphabetically

add_wave_group
Add a new group.

Syntax
add_wave_group [-into args] [-at_wave args] [-after_wave args]
[-before_wave args] [-quiet] [-verbose] [name]

Returns
The new group

Usage
Name Description

[-into] into: the wave configuration, or group into which the new
wave object(s) will be inserted. If no -*_row or -*_wave
option is specified, the new wave object(s) will be added to
the end of the -into object. If such an option is specified
in addition to -into, it is an error if the row number is
incompatible with the -into object. If wcfgGroupVbusObj is
a string instead of an object, it is treated as the name of
a group in the current WCFG. If no such group is found,
the names of the virtual buses of the current WCFG are
searched. If still not found, the names of all WCFG objects
are searched. If no -into object is specified, the current
wave configuration is assumed.

[-at_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-after_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-before_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[name] Creates a group wave object whose display name is name
Default: new_group

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 57

Tcl Commands Listed Alphabetically

Description
Creates a wave group into a specified or current waveform configuration. New wave objects
and wave_dividers can be added into the wave group to build up the waveform display.

The wave group can be inserted at a specified location. If no location is specified the group is
inserted at the end of the specified waveform configuration.

The command returns the name of the newly created wave group object.

Note This command can only be used when running a simulation.

Arguments
-into wcfgGroupVbusObj - (Optional) Specifies the wave configuration, group, or virtual bus
into which the new wave object(s) are inserted. If wcfgGroupVbusObj is a string instead of an
object, it is treated as the name of a group in the current WCFG. If no such group is found,
the tool searches the names of the virtual buses of the current WCFG. If still not found, the
tool searches the names of all WCFG objects. If no -into object is specified, the current wave
configuration is assumed.

-at_wave waveObj - (Optional) Adds a wave group at a specified wave object. If waveObj is
a string, it is treated as the display name of a wave object.

-after_wave waveObj - (Optional) Adds a wave group after a specified wave object. If waveObj
is a string, it is treated as the display name of a wave object.

-before_wave waveObj - (Optional) Adds a wave group before a specified wave object. If
waveObj is a string, it is treated as the display name of a wave object.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Optional) Creates a wave group with the specified display name. The default name
is new_group .

Examples
Add a clk to the existing waveform configuration:
add_wave_group clk
group10

See Also
• add_wave
• add_wave_divider
• add_wave_marker
• add_wave_virtual_bus

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 58

Tcl Commands Listed Alphabetically

add_wave_marker
Create a new wave marker.

Syntax
add_wave_marker [-into arg] [-name arg] [-quiet] [-verbose] [time]
[unit]

Returns
The new created marker

Usage
Name Description

[-into] into: a WCFG object or name of a WCFG object in which
to create the marker

[-name] name: the optional name of the marker

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[time] Creates a new marker at the specified time Default: 0

[unit]

Categories
Waveform

Description
Creates a wave marker at the specified time and of the specified name in the current waveform
configuration.

This command returns nothing.

Note This command can only be used when running a simulation.

Arguments
-into wcfg - (Optional) Specifies the WCFG object into which the new wave marker is inserted.
If -into is not specified, the wave marker is added to the current wave configuration.

-name arg - (Optional) Creates a marker with the specified name. The default name is
new_marker .

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 59

Tcl Commands Listed Alphabetically

time - (Optional) Is the simulation runtime within the waveform at which to set the marker.
The default is time 0.

unit - (Optional) Is the time unit. Allowable units are s, ms, us, ns, and ps. The default is the
time unit used in the specified waveform configuration.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
Add a marker to the existing waveform configuration at 500ns:
add_wave_marker 500 ns

See Also
• add_wave
• add_wave_divider
• add_wave_group
• add_wave_virtual_bus

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 60

Tcl Commands Listed Alphabetically

add_wave_virtual_bus
Add a new virtual bus.

Syntax
add_wave_virtual_bus [-into args] [-at_wave args] [-after_wave args]
[-before_wave args] [-reverse] [-radix arg] [-color arg] [-quiet]
[-verbose] [name]

Returns
The new virtual bus

Usage
Name Description

[-into] into: the wave configuration, group, or virtual bus into
which the new wave object(s) will be inserted. If no -*_row
or -*_wave option is specified, the new wave object(s)
will be added to the end of the -into object. If such an
option is specified in addition to -into, it is an error if
the row number is incompatible with the -into object. If
wcfgGroupVbusObj is a string instead of an object, it is
treated as the name of a group in the current WCFG. If
no such group is found, the names of the virtual buses
of the current WCFG are searched. If still not found, the
names of all WCFG objects are searched. If no -into object
is specified, the current wave configuration is assumed.

[-at_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-after_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-before_wave] waveObj: similar to -*_row, except located using a wave
object instead of a row number. If waveObj is a string, it is
treated as the display name of a wave object

[-reverse] reverse: set the is_reversed property of the new wave
object(s) to true

[-radix] radix radix: set the radix property of the new wave object(s)
to radixAllowed values are: default, dec, bin, oct, hex,
unsigned, ascii

[-color] color color: set the color property of the new wave
object(s) to color Default: default

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 61

Tcl Commands Listed Alphabetically

Name Description

[name] Creates a new virtual bus whose display name is name
Default: new_divider

Categories
Waveform

Description
The add_wave_virtual_bus command creates a new virtual bus. The command inserts the
virtual bus by specified name where specified or by default at the end of the existing waveform.
It returns a vb### for the newly-created virtual bus.

Note This command can only be used when running a simulation. At a minimum, you must
specify an name, which is the name of the new virtual bus

Arguments
-into wcfgGroupVbusObj - (Optional) Specifies the wave configuration, group, or virtual bus
into which the new wave object(s) are inserted. If wcfgGroupVbusObj is a string instead of an
object, it is treated as the name of a group in the current WCFG. If no such group is found,
the tool searches the names of the virtual buses of the current WCFG. If still not found, the
tool searches the names of all WCFG objects. If no -into object is specified, the current wave
configuration is assumed.

-at_wave waveObj - (Optional) Adds a wave object at a specified wave object. If waveObj is
a string, it is treated as the display name of a wave object.

-after_wave waveObj - (Optional) Adds a wave object after a specified wave object. If waveObj
is a string, it is treated as the display name of a wave object.

-before_wave waveObj - (Optional) Adds a wave object before a specified wave object. If
waveObj is a string, it is treated as the display name of a wave object.

-reverse - (Optional) Sets the IS_REVERSED property of the new wave object(s) to true.

-radix value - (Optional) Sets the radix property of the new wave object(s) to radix. Allowed
values are: default, dec, bin, oct, hex, unsigned, and ascii.

-color arg - (Optional) Sets the color property of the new wave object(s) to the specified color,
which can be a pre-defined color name or a color specified by a six-digit RGB format (RRGGBB).

-name customName - (Optional) Sets the display_name property of the new wave object
to customName.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 62

Tcl Commands Listed Alphabetically

Examples
Add a virtual bus of the name dout_tvalid to the existing waveform configuration:
add_wave_virtual_bus dout_tvalid

vbus200

See Also
• add_wave_divider
• add_wave_group
• add_wave_marker
• add_wave

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 63

Tcl Commands Listed Alphabetically

all_clocks
Get a list of all clocks in the current design.

Syntax
all_clocks [-quiet] [-verbose]

Returns
List of clock objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
Returns a list of all clocks that have been declared in the current design. To get a list of specific
clocks in the design, use the get_clocks command.

Clocks can be defined by using the create_clock or create_generated_clock commands.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example shows all clocks in the sample CPU netlist project:
% all_clocks
cpuClk wbClk usbClk phy_clk_pad_0_i phy_clk_pad_1_i fftClk

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 64

Tcl Commands Listed Alphabetically

The following example applies the set_propagated_clock command to all clocks, and also
demonstrates how the returned list (all_clocks) can be passed to another command:
% set_propagated_clock [all_clocks]

See Also
• create_clock
• create_generated_clock
• get_clocks
• set_propagated_clock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 65

Tcl Commands Listed Alphabetically

all_cpus
Get a list of cpu cells in the current design.

Syntax
all_cpus [-quiet] [-verbose]

Returns
List of cpu cell objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
XDC

Description
Returns a list of all CPU cell objects in the current design. Creates a list of all the CPU cell
objects that have been declared in the current design.

The all_cpus command is scoped to return the objects hierarchically, from the top-level of the
design or from the level of the current instance. By default the current instance is defined as
the top level of the design, but can be changed by using the current_instance command.

Note This command returns a list of CPU cell objects

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 66

Tcl Commands Listed Alphabetically

Examples
The following example returns all CPU objects in the current design:
all_cpus

The following example shows how the list returned can be passed to another command:
set_false_path -from [all_cpus] -to [all_registers]

See Also
• all_dsps
• all_hsios
• all_registers
• current_instance
• get_cells
• set_false_path

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 67

Tcl Commands Listed Alphabetically

all_dsps
Get a list of dsp cells in the current design.

Syntax
all_dsps [-quiet] [-verbose]

Returns
List of dsp cell objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
XDC

Description
Returns a list of all DSP cell objects that have been declared in the current design.

The all_dsps command is scoped to return the objects hierarchically, from the top-level of the
design or from the level of the current instance. By default the current instance is defined as
the top level of the design, but can be changed by using the current_instance command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns a list of all DSPs defined in the current design:
all_dsps

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 68

Tcl Commands Listed Alphabetically

The following example shows how the list returned can be passed to another command:
set_false_path -from [all_dsps] -to [all_registers]

See Also
• all_cpus
• all_hsios
• all_registers
• current_instance
• get_cells
• set_false_path

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 69

Tcl Commands Listed Alphabetically

all_fanin
Get a list of pins or cells in fanin of specified sinks.

Syntax
all_fanin [-startpoints_only] [-flat] [-only_cells] [-levels arg]
[-pin_levels arg] [-trace_arcs arg] [-quiet] [-verbose] to

Returns
List of cell or pin objects

Usage
Name Description

[-startpoints_only] Find only the timing startpoints

[-flat] Hierarchy is ignored

[-only_cells] Only cells

[-levels] Maximum number of cell levels to traverse:Value >= 0
Default: 0

[-pin_levels] Maximum number of pin levels to traverse:Value >= 0
Default: 0

[-trace_arcs] Type of network arcs to trace: Values: timing, enabled, all

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

to List of sink pins, ports, or nets

Categories
SDC, XDC

Description
Returns a list of port, pin or cell objects in the fan-in of the specified sinks.

The all_fanin command is scoped to return objects from current level of the hierarchy of
the design, either from the top-level or from the level of the current instance. By default
the current instance is defined as the top level of the design, but can be changed by using
the current_instance command. To return the fan-in across all levels of the hierarchy, use
the -flat option.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 70

Tcl Commands Listed Alphabetically

Arguments
-startpoints_only - (Optional) Find only the timing start points. When this option is used,
none of the intermediate points in the fan-in network are returned. This option can be used
to identify the primary driver(s) of the sinks.

-flat - (Optional) Ignore the hierarchy of the design. By default, only the objects at the same
level of hierarchy as the sinks are returned. When using this option, all the objects in the fan-in
network of the sinks are considered, regardless of hierarchy.

-only_cells - (Optional) Return only the cell objects which are in the fan-in path of the specified
sinks. Do not return pins or ports.

-levels value - (Optional) Maximum number of cell levels to traverse. The default value is 0.

-pin_levels value - (Optional) Maximum number of pin levels to traverse. The default value is 0.

-trace_arcs value - (Optional) Type of network arcs to trace. Valid values are "timing",
"enabled", and "all"

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

to - (Required) The pins, ports, or nets from which you want the fan-in objects reported.

Examples
The following example lists the timing fan-in of the led_pins output port:
all_fanin [get_ports led_pins[*]]

The following example traces back from the clock pin of the specified flip- flop to the clock
source (an MMCM output pin in this example):
all_fanin -flat -startpoints_only [get_pins cmd_parse_i0/prescale_reg[7]/C]

See Also
• all_fanout
• current_instance
• get_cells
• get_pins
• get_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 71

Tcl Commands Listed Alphabetically

all_fanout
Get a list of pins or cells in fanout of specified sources.

Syntax
all_fanout [-endpoints_only] [-flat] [-only_cells] [-levels arg]
[-pin_levels arg] [-trace_arcs arg] [-quiet] [-verbose] from

Returns
List of cell or pin objects

Usage
Name Description

[-endpoints_only] Find only the timing endpoints

[-flat] Hierarchy is ignored

[-only_cells] Only cells

[-levels] Maximum number of cell levels to traverse:Value >= 0
Default: 0

[-pin_levels] Maximum number of pin levels to traverse:Value >= 0
Default: 0

[-trace_arcs] Type of network arcs to trace: Values: timing, enabled, all

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

from List of source pins, ports, or nets

Categories
SDC, XDC

Description
Returns a list of port, pin, or cell objects in the fanout of the specified sources.

The all_fanout command is scoped to return objects from current level of the hierarchy of
the design, either from the top-level or from the level of the current instance. By default
the current instance is defined as the top level of the design, but can be changed by using
the current_instance command. To return the fanout across all levels of the hierarchy, use
the -flat option.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 72

Tcl Commands Listed Alphabetically

Arguments
-endpoints_only - (Optional) Find only the timing endpoints. When this option is used, none
of the intermediate points in the fan-out network are returned. This option can be used to
identify the primary loads of the drivers.

-flat - (Optional) Ignore the hierarchy of the design. By default, only the objects at the same
level of hierarchy as the sinks are returned. When using this option, all the objects in the
fan-out network of the drivers are considered, regardless of hierarchy.

-only_cells - (Optional) Return only the cell objects in the fanout path of the specified sources.

-levels value - (Optional) Maximum number of cell levels to traverse. The default value is 0.

-pin_levels value - (Optional) Maximum number of pin levels to traverse. The default value is 0.

-trace_arcs value - (Optional) Type of network arcs to trace. Valid values are "timing",
"enabled", and "all"

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

from - (Required) The source ports, pins, or nets from which to list the objects in the fanout path.

Examples
The following example gets the fanout for all input ports in the design:
all_fanout [all_inputs]

See Also
• all_fanin
• current_instance
• get_cells
• get_pins
• get_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 73

Tcl Commands Listed Alphabetically

all_ffs
Get a list of flip flop cells in the current design.

Syntax
all_ffs [-quiet] [-verbose]

Returns
List of flip flop cell objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
XDC

Description
Returns a list of all flip flop instances in the current design.

The all_ffs command is scoped to return the objects hierarchically, from the top-level of the
design or from the level of the current instance. By default the current instance is defined as
the top level of the design, but can be changed by using the current_instance command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 74

Tcl Commands Listed Alphabetically

Examples
The following example returns the count of all flops in the design, then returns the count of
all flops in the fftEngine module:
current_instance
INFO: [Vivado 12-618] Current instance is the top level of design 'netlist_1'.
top
llength [all_ffs]
15741
current_instance fftEngine
fftEngine
llength [all_ffs]
1519

The following example reports the currently assigned properties on the specified flop:
report_property [lindex [all_ffs] 2]

See Also
• all_latches
• all_registers
• current_instance
• get_cells
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 75

Tcl Commands Listed Alphabetically

all_hsios
Get a list of hsio cells in the current design.

Syntax
all_hsios [-quiet] [-verbose]

Returns
List of hsio cell objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
XDC

Description
Returns a list of all High Speed IO (HSIO) cell objects that have been declared in the current
design. These HSIO cell objects can be assigned to a variable or passed into another command.

The all_hsios command is scoped to return the objects hierarchically, from the top-level of the
design or from the level of the current instance. By default the current instance is defined as
the top level of the design, but can be changed by using the current_instance command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns all HSIO objects in the current design:
all_hsios

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 76

Tcl Commands Listed Alphabetically

The following example shows how the list returned can be directly passed to another command:
set_false_path -from [all_hsios] -to [all_registers]

See Also
• all_cpus
• all_dsps
• all_registers
• get_cells
• set_false_path

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 77

Tcl Commands Listed Alphabetically

all_inputs
Get a list of all input ports in the current design.

Syntax
all_inputs [-quiet] [-verbose]

Returns
List of port objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
Returns a list of all input port objects in the current design.

The all_inputs command is scoped to return the objects hierarchically, from the top-level of the
design or from the level of the current instance. By default the current instance is defined as
the top level of the design, but can be changed by using the current_instance command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns all input port objects in the current design:
all_inputs

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 78

Tcl Commands Listed Alphabetically

The following example shows how the list returned can be passed to another command:
set_input_delay 5 -clock REFCLK [all_inputs]

See Also
• all_clocks
• all_outputs
• current_instance
• get_clocks
• get_ports
• set_input_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 79

Tcl Commands Listed Alphabetically

all_latches
Get a list of all latch cells in the current design.

Syntax
all_latches [-quiet] [-verbose]

Returns
List of latch cell objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
XDC

Description
Returns a list of all latches that have been declared in the current design.

The all_latches command is scoped to return the objects hierarchically, from the top-level of
the design or from the level of the current instance. By default the current instance is defined
as the top level of the design, but can be changed by using the current_instance command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns a list of all latches in the current design:
all_latches

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 80

Tcl Commands Listed Alphabetically

The following example shows how the list returned can be passed to another command:
set_false_path -from [all_mults] -to [all_latches]

See Also
• all_ffs
• all_registers
• current_instance
• get_cells
• set_false_path

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 81

Tcl Commands Listed Alphabetically

all_outputs
Get a list of all output ports in the current design.

Syntax
all_outputs [-quiet] [-verbose]

Returns
List of port objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
Returns a list of all output port objects that have been declared in the current design.

The all_outputs command is scoped to return the objects hierarchically, from the top-level of
the design or from the level of the current instance. By default the current instance is defined
as the top level of the design, but can be changed by using the current_instance command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns all the output ports in the current design:
all_outputs

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 82

Tcl Commands Listed Alphabetically

The following example sets the output delay for all outputs in the design:
set_output_delay 5 -clock REFCLK [all_outputs]

See Also
• all_inputs
• current_instance
• get_ports
• set_output_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 83

Tcl Commands Listed Alphabetically

all_rams
Get a list of ram cells in the current design.

Syntax
all_rams [-quiet] [-verbose]

Returns
List of ram cell objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
XDC

Description
Returns a list of all the RAM cell objects present in the current instance, including Block RAMS,
Block RAM FIFOs, and Distributed RAMS. These RAM cell objects can be assigned to a variable
or passed into another command.

The all_rams command is scoped to return the objects hierarchically, from the top-level of the
design or from the level of the current instance. By default the current instance is defined as
the top level of the design, but can be changed by using the current_instance command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 84

Tcl Commands Listed Alphabetically

Examples
The following example returns all RAM objects in the design:
all_rams

The following example sets the current instance, and returns all RAM objects hierarchically from
the level of the current instance:
current_instance usbEngine0
all_rams

See Also
• all_clocks
• all_cpus
• all_dsps
• all_fanin
• all_fanout
• all_ffs
• all_hsios
• all_inputs
• all_latches
• all_outputs
• all_registers
• current_instance
• get_cells

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 85

Tcl Commands Listed Alphabetically

all_registers
Get a list of register cells or pins in the current design.

Syntax
all_registers [-clock args] [-rise_clock args] [-fall_clock args]
[-cells] [-data_pins] [-clock_pins] [-async_pins] [-output_pins]
[-level_sensitive] [-edge_triggered] [-no_hierarchy] [-quiet]
[-verbose]

Returns
List of cell or pin objects

Usage
Name Description

[-clock] Consider registers of this clock

[-rise_clock] Consider registers triggered by clock rising edge

[-fall_clock] Consider registers triggered by clock falling edge

[-cells] Return list of cells (default)

[-data_pins] Return list of register data pins

[-clock_pins] Return list of register clock pins

[-async_pins] Return list of async preset/clear pins

[-output_pins] Return list of register output pins

[-level_sensitive] Only consider level-sensitive latches

[-edge_triggered] Only consider edge-triggered flip-flops

[-no_hierarchy] Only search the current instance

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
Returns a list of sequential register cells or register pins in the current design.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 86

Tcl Commands Listed Alphabetically

The list of returned objects can be limited by the use of the arguments described below. You
can limit the list of registers returned to a specific clock or clocks, or to registers triggered by
the rising or falling edge of a specified clock.

You can also get a list of the pins of collected registers instead of the register objects by
specifying one or more of the pin arguments.

Arguments
-cells - (Optional) Return a list of register cell objects as opposed to a list of pin objects.
This is the default behavior of the command.

-clock args - (Optional) Return a list of all registers whose clock pins are in the fanout of
the specified clock.

-rise_clock args - (Optional) Return a list of registers triggered by the rising edge of the
specified clocks.

-fall_clock args - (Optional) Return a list of registers triggered by the falling edge of the
specified clocks.

Note Do not combine -clock, -rise_clock, and -fall_clock in the same command.

-level_sensitive - (Optional) Return a list of the level-sensitive registers or latches.

-edge_triggered - (Optional) Return a list of the edge-triggered registers or flip-flops.

-data_pins - (Optional) Return a list of data pins of all registers in the design, or of the registers
that meet the search requirement.

-clock_pins - (Optional) Return a list of clock pins of the registers that meet the search
requirement.

-async_pins - (Optional) Limit the search to asynchronous pins of the registers that meet the
search requirement.

-output_pins - (Optional) Return a list of output pins of the registers that meet the search
requirement.

Note Use the *_pins arguments separately. If you specify multiple arguments, only one
argument is applied in the following order of precedence: -data_pins, -clock_pins, -async_pins,
-output_pins.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns a list of registers that are triggered by the falling edge of any
clock in the design:
all_registers -fall_clock [all_clocks]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 87

Tcl Commands Listed Alphabetically

The following example shows how the list returned can be passed to another command:
set_min_delay 2.0 -to [all_registers -clock CCLK -data_pins]

See Also
• all_clocks
• set_msg_limit
• set_min_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 88

Tcl Commands Listed Alphabetically

apply_bd_automation
Runs an automation rule on an IPI object.

Syntax
apply_bd_automation [-config args] -rule arg [-quiet]
[-verbose] objects ...

Returns
Returns success or failure

Usage
Name Description

[-config] List of parameter value pairs

-rule Rule ID string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects The objects to run the automation rule on

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 89

Tcl Commands Listed Alphabetically

archive_project
Archive the current project.

Syntax
archive_project [-force] [-exclude_run_results] [-quiet] [-verbose]
[file]

Returns
True

Usage
Name Description

[-force] Overwrite existing archived file

[-exclude_run_results] Exclude run results from the archive

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[file] Name of the archive file

Categories
Project

Description
Archives a project to store as backup, or to encapsulate the design and send it to a remote site.
The tool parses the hierarchy of the design, copies the required source files, include files, and
remote files from the library directories, copies the constraint files, copies the results of the
various synthesis, simulation, and implementation runs, and then creates a ZIP file of the project.

Tip An alternative method of archiving the project is using write_project_tcl to create a Tcl
script that will recreate the project in its current form

Arguments
-force - (Optional) Overwrite an existing ZIP file of the same name. If the ZIP file exists, the
tool returns an error unless the -force argument is specified.

-exclude_run_results - (Optional) Exclude the results of any synthesis or implementation runs.
This command can greatly reduce the size of a project archive.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 90

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Optional) The name of the ZIP file to be created by the archive_project command. If file
is not specified, a ZIP file with the same name as the project is created.

Examples
The following command archives the current project:
archive_project

Note The project archive is named project_name.zip because no file name is specified.

The following example specifies project_3 as the current project, and then archives that
project into a file called proj3.zip :
current_project project_3
archive_project -force -exclude_run_results proj3.zip

Note The use of the -force argument causes the tool to overwrite the proj3.zip file if one
exists. The use of the -exclude_run_results argument causes the tool to leave any results from
synthesis or implementation runs out of the archive. The various runs defined in the project are
included in the archive, but not any of the results.

See Also
• current_project
• write_project_tcl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 91

Tcl Commands Listed Alphabetically

assign_bd_address
Automatically assign addresses to unmapped IP.

Syntax
assign_bd_address [-target_address_space arg] [-quiet] [-verbose]
[objects ...]

Returns
The newly mapped segments, "" if failed

Usage
Name Description

[-target_address_space] Target address space to place segment into

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] The objects to assign

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 92

Tcl Commands Listed Alphabetically

check_timing
Check the design for possible timing problems.

Syntax
check_timing [-file arg] [-name arg] [-override_defaults args]
[-include args] [-exclude args] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-name] Output the results to GUI panel with this name

[-override_defaults] Overrides the checks in the default timing checks listed
below

[-include] Add this list of checks to be performed along with default
timing checks listed below

[-exclude] Exclude this list of checks to be performed from the default
timing checks listed below

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Timing

Description
Checks the design elements of ports, pins, and paths, against the current timing constraints.
Use this command to identify possible problems with design data and timing constraints before
running the report_timing command. The check_timing command runs a series of default
timing checks, and reports a summary of any violations found. To get detailed information
about violations, use the -verbose option.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to the GUI, or to a file.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 93

Tcl Commands Listed Alphabetically

Default Timing Checks:

• no_clock - Reports unclocked registers. In this case, no setup or hold checks are performed
on data pins related to the register clock pin.

• unconstrained_internal_endpoints - This warning identifies timing path endpoints at
register data pins that are not constrained. Endpoints at register data pins are constrained
by clock assignment using the create_clock command. Endpoints at output ports are
checked and reported by the no_output_delay check.

• no_input_delay - Reports the input ports without an input delay constraint. Input delays
can be assigned using the set_input_delay command. Input ports that are unclocked will
not be checked for input delays.

• no_output_delay - Reports the output ports without an output delay constraint. Output
delays can be assigned using the set_output_delay command. Output ports that are
unclocked will not be checked for output delays.

• multiple_clock - Warns if multiple clocks reach a register clock pin. If more than one
clock signal reaches a register clock pin it is unclear which clock will be used for analysis.
In this case, use the set_case_analysis command so that only one clock will propagate
to the register clock pin.

• generated_clocks - Checks for loops, or circular definitions within the generated clock
network. This check will return an error if a generated clock uses a second generated clock
as its source, when the second generated clock uses the first clock as its source.

• loops - Checks for and warns of combinational feedback loops in the design.
• partial_input_delay - Reports the input ports having partially defined input delay

constraints. Assigning set_input_delay -max or set_input_delay -min to an input port,
without assigning the other, creates a partially defined input delay. In such cases, paths
starting from the input port may become unconstrained and no timing checks will be done
against the port. Assigning set_input_delay without specifying either -min or -max allows
the tool to assume both min and max delays, and so does not result in a partial input delay.

Note Unclocked input ports are not checked for partial input delays.

• partial_output_delay - Reports the output ports having partially defined output delay
constraints. Assigning set_output_delay -max or set_output_delay -min to an output port,
without assigning the other, creates a partially defined output delay. In such cases, paths
reaching the port may become unconstrained and no timing checks will be done against
the port. Assigning set_output_delay without specifying either -min or -max allows the
tool to assume both min and max delays, and so does not result in a partial output delay.

Note Unclocked output ports are not checked for partial output delays.

• unexpandable_clocks - Reports clock sets in which the period is not expandable with
respect to each other, when there is at least 1 path between the clock sets. A clock is
unexpandable if no common multiples are found within 1000 cycles between the source
and destination clocks.

• latch_loops - Checks for and warns of combinational latch loops in the design.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 94

Tcl Commands Listed Alphabetically

Arguments
-file arg - (Optional) Write the results to the specified file on disk. By default, the output of
this command is written to the Tcl console.

Note If the path is not specified as part of the file name, the tool will write the named file into
the current working directory, or the directory from which the tool was launched.

-name arg - (Optional) Creates the named report in the Timing Results view of the GUI.

-override_defaults {args} - (Optional) Override the default timing checks and run the specified
checks. Specify the checks to be performed from the list of checks described above.

-include args - (Optional) Run the specified checks in addition to the current default checks.
Specify the checks to be performed from the list of checks described above.

-exclude args - (Optional) Exclude the specified checks from the default checks performed
by the check_timing command. Specify the checks to be excluded from the list of checks
described above.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example runs check_timing, but excludes the specified checks from the default
timing checks:
check_timing -exclude {loops generated_clocks}

The following example uses the -verbose argument to obtain detailed results running just the
multiple_clocks check, and then uses get_clocks to look further into the issue:
check_timing -verbose -override_defaults {multiple_clock}
Checking multiple_clock.
There are 2 register/latch pins with multiple clocks.
procEngine/mode_du/set_reg[0]/C
provEngine/mode_du/set_reg[1]/C
get_clocks -of_objects [get_pin procEngine/mode_du/set_reg[0]/C]
sysClk coreClk

See Also
• create_clock
• get_clocks
• report_timing
• set_case_analysis
• set_input_delay
• set_max_delay
• set_output_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 95

Tcl Commands Listed Alphabetically

checkpoint_vcd
Create a VCD checkpoint (equivalent of Verilog $dumpall system task).

Syntax
checkpoint_vcd [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Description
The checkpoint_vcd command inserts current HDL object signal values into the Value Change
Dump (VCD) file. Nothing is returned. This Tcl command is the equivalent of the Verilog
$dumpall system task, providing the initial values of the specified signals.

VCD is an ASCII file containing header information, variable definitions, and value change
details of a set of HDL signals. The VCD file can be used to view simulation result in a VCD
viewer or to estimate the power consumption of the design. See the IEEE Standard for Verilog
Hardware Description Language (IEEE Std 1364-2005) for a description of the VCD file format.

You must execute the open_vcd and log_vcd commands before using the checkpoint_vcd
command. After you execute the checkpoint_vcd command, run or rerun the simulation to
capture the signal values.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 96

Tcl Commands Listed Alphabetically

Examples
The following is an example of the checkpoint_vcd command where the command dumps
signal values of specified HDL objects into the open VCD file:
checkpoint_vcd

See Also
• flush_vcd
• log_vcd
• open_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 97

Tcl Commands Listed Alphabetically

close_bd_design
Close a design.

Syntax
close_bd_design [-quiet] [-verbose] name

Returns
The design object, "" if failed

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of design to close

Categories
IPIntegrator

Description
Closes the specified IP subsystem design in the IP Integrator feature of the Vivado Design Suite.

If the design has been modified, you will not be prompted to save the design prior to closing.
You will need to run save_bd_design to save any changes made to the design before using the
close_bd_design command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - The name of the IP subsystem design object to close.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 98

Tcl Commands Listed Alphabetically

Example
The following example closes the current IP subsystem design in the current project:
close_bd_design [current_bd_design]

See Also
• create_bd_design
• current_bd_design
• get_bd_designs
• open_bd_design
• save_bd_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 99

Tcl Commands Listed Alphabetically

close_design
Close the current design.

Syntax
close_design [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Closes the currently active design. If the design has been modified, you will not be prompted
to save the design prior to closing. You will need to run save_design or save_design_as to
save any changes made to the design before using the close_design command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example closes the current design:
close_design

Note If multiple designs are open, you can specify the current design with the current_design
command prior to using close_design.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 100

Tcl Commands Listed Alphabetically

The following example sets the current design, then closes it:
current_design rtl_1
close_design

current_design sets rtl_1 as the active design, then the close_design command closes it.

See Also
current_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 101

Tcl Commands Listed Alphabetically

close_hw
Close the hardware tool.

Syntax
close_hw [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 102

Tcl Commands Listed Alphabetically

close_hw_target
Close a hardware target.

Syntax
close_hw_target [-quiet] [-verbose] [hw_target]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_target] hardware target Default: current hardware target

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 103

Tcl Commands Listed Alphabetically

close_project
Close current opened project.

Syntax
close_project [-delete] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-delete] Delete the project from disk also

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Closes the current open project.

Arguments
-delete - (Optional) Delete the project data from the hard disk after closing the project.

Note Use this argument with caution. You will not be prompted to confirm the deletion of
project data.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 104

Tcl Commands Listed Alphabetically

Examples
The following command closes the active project:
close_project

This example closes the current project. If you have multiple projects open, the close_project
command applies to the current project which can be defined with the current_project
command.

The following example sets project_1 as the current project, and then closes the project
and deletes it from the computer hard disk:
current_project project_1
close_project -delete

Note Use the -delete argument with caution. You will not be prompted to confirm the deletion
of project data.

See Also
current_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 105

Tcl Commands Listed Alphabetically

close_saif
Flush SAIF toggle information to the SAIF output file and close the file.

Syntax
close_saif [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Description
Closes the open SAIF file.

Only one SAIF file can be open in the Vivado simulator at one time, using open_saif. You must
close the currently opened SAIF file before opening another file.

This command returns nothing if it is successful, or an error if it fails.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following is an example:
close_saif

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 106

Tcl Commands Listed Alphabetically

See Also
• log_saif
• open_saif

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 107

Tcl Commands Listed Alphabetically

close_sim
Unload the current simulation without exiting Vivado.

Syntax
close_sim [-force] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-force] Forces the closing of the simulation, even if changes would
be lost. Default behavior is to reject the closing with an
error if changes would be lost.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Description
Close the current Vivado simulation.

Note This command does not support third party simulators.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example closes the current simulation:
close_sim

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 108

Tcl Commands Listed Alphabetically

See Also
• current_sim
• launch_xsim

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 109

Tcl Commands Listed Alphabetically

close_vcd
Flush VCD information to the VCD output file and close the file.

Syntax
close_vcd [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Description
Closes the open Value Change Dump (VCD) file.

Only one VCD file can be open in the Vivado simulator at one time. You must close the
currently opened VCD file before opening another file.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example closes the current VCD object:
close_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 110

Tcl Commands Listed Alphabetically

See Also
open_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 111

Tcl Commands Listed Alphabetically

close_wave_config
Closes the wave config.

Syntax
close_wave_config [-force] [-quiet] [-verbose] [wcfgobj]

Returns
Nothing

Usage
Name Description

[-force] Forces the closing of the wave configuration, even if
changes would be lost. Default behavior is to reject the
closing with an error if changes would be lost.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[wcfgobj] Closes and destroys the specified wave configuration
object, or the current wave configuration if none specified
Default: NULL

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 112

Tcl Commands Listed Alphabetically

commit_hw_sio
Commit the property changes of the current hardware object. Inputs can be any hardware
object. At least one object is required.

Syntax
commit_hw_sio [-quiet] [-verbose] hw_objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_objects hardware objects

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 113

Tcl Commands Listed Alphabetically

commit_hw_vio
Write hardware VIO probe OUTPUT_VALUE properties values to VIO core(s).

Syntax
commit_hw_vio [-quiet] [-verbose] hw_objects ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_objects List of hardware VIO and hardware probe objects.

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 114

Tcl Commands Listed Alphabetically

compile_simlib
Compile simulation libraries.

Syntax
compile_simlib [-cfg_file] [-directory arg] [-exclude_sublib]
[-exclude_superseded] [-family arg] [-force] [-language arg]
[-library arg] [-precompiled_directory arg] [-simulator arg]
[-simulator_exec_path arg] [-source_library_path arg] [-32bit] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-cfg_file] Create new configuration file with default settings Default:
compile_simlib.cfg

[-directory] Directory path for saving the compiled results Default: .

[-exclude_sublib] Exclude the sub-lib(s) defined in the edk .pao file for
compilation (For edk library only)

[-exclude_superseded] Exclude the superseded edk lib(s) for compilation (For edk
library only)

[-family] Select device architecture Default: all

[-force] Overwrite the pre-compiled libraries

[-language] Compile libraries for this language Default: all

[-library] Select library to compile Default: all

[-precompiled_directory] Specify the existing directory where previously
compile_simlib-compiled libraries are located

[-simulator] Compile libraries for this simulator

[-simulator_exec_path] Use simulator executables from this directory

[-source_library_path] If specified, this directory will be searched for the library
source files before searching the default path(s) found in
environment variable XILINX_PLANAHEAD (for Vivado) or
XILINX_EDK (for EDK)

[-32bit] Perform the 32-bit compilation

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 115

Tcl Commands Listed Alphabetically

Categories
Simulation

Description
Compile Xilinx simulation libraries.

Xilinx HDL-based simulation libraries come pre-compiled for use with the Vivado simulator
and Isim. The compile_simlib command compiles the simulation libraries for use by other
simulators. Libraries must generally be compiled or recompiled with a new software release to
update simulation models and to support a new version of a simulator.

When this command is run with a project open, the tool will use the device family, target
language, and library settings specified by the project as the default values, rather than the
default settings of the command defined below. The default settings can be overridden by
specifying the necessary options when the command is run.

The command returns information related to the compiled libraries.

Arguments
-cfg_file - (Optional) Create a configuration file called compxlib.cfg with the default settings
if it is not present in the current directory.

-directory arg - (Optional) Directory path for saving the compiled results.

Note By default the libraries are saved to the current working directory, or the directory the
tool was launched from.

-exclude_sublib - (Optional) Exclude the sub-library defined in the EDK .pao file for
compilation. This option is only for use with for EDK libraries. See the Embedded System Tools
Reference Guide (UG111) for information on sub-libraries.

-exclude_superseded - (Optional) Exclude the superseded EDK library from compilation. This
option is only for use with for EDK libraries. See the Embedded System Tools Reference Manual
(UG111) for more information on superseded libraries.

-family arg - (Optional) Compile selected libraries to the specified device family. All device
families will be generated by default. The following are the device families that can be specified:
• virtex7 (for Virtex-7)
• kintex7 (for Kintex-7)
• kintex7l (for Kintex-7 Lower Power)
• artix7 (for Artix-7)
• artix7l (for Atix-7 Lower Power)
• zynq (for Zynq-7000 EPP)

-force - (Optional) Overwrite the current pre-compiled libraries.

-language [verilog | vhdl | all] - (Optional) Compile libraries for the specified language. If this
option is not specified then the language will be set according to the simulator selected with
-simulator. For multi-language simulators both Verilog and VHDL libraries will be compiled.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 116

Tcl Commands Listed Alphabetically

-library arg - (Optional) Specify the library to compile. Valid values for library are:
• all

• unisim

• simprim

• xilinxcorelib

• edk

To specify multiple libraries, repeat the -lib options for each library. For example:
.. -library unisim -library simprim ..

Note If you select EDK libraries (-lib edk), all ISE libraries will be compiled because EDK libraries
are dependent on UNISIM and SIMPRIM.

-precompiled_directory arg - (Optional) Specify the directory where pre-compiled libraries
are currently located.

-simulator arg - (Optional) Compile libraries for the specified simulator. Valid simulator
values are:

• modelsim

• questasim

• ies (Linux only)

• vcs_mx (Linux only)

• riviera

• Active-HDL

-simulator_exec_path arg - (Optional) Specify the directory to locate the simulator executable.
This option is required if the target simulator is not specified in the $PATH or %PATH%
environment variable; or to override the path from the $PATH or %PATH% environment variable.

-source_library_path arg - (Optional) If specified, this directory will be searched for the library
source files before searching the default path(s) defined by the environment variables ($XILINX,
$XILINX_PLANAHEAD, or $XILINX_EDK).

Note Do not use this option unless explicitly instructed to by Xilinx Technical Support.

-32bit - (Optional) Perform 32-bit compilation instead of the default 64-bit compilation.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 117

Tcl Commands Listed Alphabetically

Examples
The following example shows how to compile UNISIM and SIMPRIM libraries for ModelSim
(VHDL) for a design using a Virtex-7 device:
compile_simlib -simulator modelsim -family virtex7 -library unisim \

-library simprim -language vhdl

See Also
launch_modelsim

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 118

Tcl Commands Listed Alphabetically

config_timing_analysis
Configure timing analysis general settings.

Syntax
config_timing_analysis [-enable_input_delay_default_clock arg]
[-enable_preset_clear_arcs arg] [-disable_flight_delays arg] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-enable_input_delay_default _clock] Launch SDC unclocked input delays from an internally
defined clock: Values: true, false; This option is not
supported for UCF constraints

[-enable_preset_clear_arcs] Time paths through asynchronous preset or clear timing
arcs: true, false;

[-disable_flight_delays] Disable adding package times to IO Calculations : Values:
true, false;

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Timing

Description
This command configures general features of timing analysis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-enable_input_delay_default_clock [true | false] - (Optional) Launch unclocked input delays
from an internally defined clock for timing analysis. The valid values are true or false, with
a default setting of false.

-enable_preset_clear_arcs [true | false] - (Optional) Time paths through asynchronous preset
or clear timing arcs. The valid values are true or false, with a default setting of false.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 119

Tcl Commands Listed Alphabetically

-disable_flight_delays [true | false] - (Optional) Do not add package delays to I/O
calculations when this option is true.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example ignores the package delays during timing analysis:
config_timing_analysis -disable_flight_delays true

See Also
• config_timing_corners
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 120

Tcl Commands Listed Alphabetically

config_timing_corners
Configure single / multi corner timing analysis settings.

Syntax
config_timing_corners [-corner arg] [-delay_type arg] [-setup] [-hold]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-corner] Name of the timing corner to be modified : Values: Slow,
Fast

[-delay_type] Type of path delays to be analyzed for specified timing
corner: Values: none, max, min, min_max

[-setup] Enable timing corner for setup analysis (equivalent to
-delay_type max)

[-hold] Enable timing corner for hold analysis (equivalent to
-delay_type min)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Timing

Description
This command configures the Slow and Fast timing corners for single or multi-corner timing
analysis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-corner [Slow | Fast] - (Optional) Specifies the name of the timing corner to be configured.
Valid values are "Slow" and "Fast".

Note The names of the corners are case sensitive.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 121

Tcl Commands Listed Alphabetically

-delay_type value - (Optional) Specify the type of path delays to be analyzed for the specified
timing corner. Valid values are "max", "min" and "min_max".

-setup - (Optional) Specifies setup analysis for the specified timing corner. This is the same
as -delay_type max.

-hold - (Optional) Specifies hold analysis for the timing corner. This is the same as -delay_type
min.

Note You can specify both -setup and -hold which is the same as -delay_type min_max.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example configures the Slow timing corner for both setup and hold analysis:
config_timing_corners -corner Slow -setup -hold
config_timing_corners -corner Slow -delay_type min_max

Note The two preceding examples have the same effect.

The following example configures the Fast corner for min delay analysis:
config_timing_corners -corner Fast -delay_type min

See Also
• config_timing_analysis
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 122

Tcl Commands Listed Alphabetically

config_webtalk
Enable/disable WebTalk to send software, IP and device usage statistics to Xilinx.

Syntax
config_webtalk [-info] [-user arg] [-install arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-info] Show whether WebTalk is currently enabled or disabled

[-user] Enable/disable WebTalk for the current user. Specify either
'on' to enable or 'off' to disable. Default: empty

[-install] Enable/disable WebTalk for all users of the current
installation. Specify either 'on' to enable or 'off' to disable.
If you specify 'off', individual users will not be able to
enable WebTalk using the -user option. You may need
administrator rights to use this option. Default: empty

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
FileIO

Description
WebTalk is a secure design data collection feature of Xilinx software that helps Xilinx understand
how you are using Xilinx FPGA devices, software, and Intellectual Property (IP).

This command returns the current state of the WebTalk feature for the current user and
software installation. You can also enable or disable WebTalk to send software, IP and device
usage statistics to Xilinx. No data is sent if you disable WebTalk, except for the use of the
WebPACK license to generate a bitstream.

Participation in WebTalk is voluntary, except for the use of the WebPACK license. WebTalk data
transmission is mandatory, and is always enabled for WebPACK users. WebTalk ignores user
and install preference when a bitstream is generated using the WebPACK license.

Note If a design is using a device contained in WebPACK and a WebPACK license is available,
the WebPACK license will be used. To change this, please see answer record 34746.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 123

Tcl Commands Listed Alphabetically

Arguments
-info - (Optional) Returns information about the current Webtalk configuration. The state of
WebTalk is dependant on both the user and install setting. If either of these settings is disabled,
then WebTalk is disabled.

-user arg - (Optional) Enables or disables WebTalk for the current user.

-install - (Optional) Enables or disables WebTalk for the current software installation.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the current state of the WebTalk configuration:
config_webtalk -info
INFO: [Coretcl-120] Webtalk has been disabled by the current user.
INFO: [Coretcl-123] Webtalk has been enabled for the current installation.
INFO: [Coretcl-110] This combination of user/install settings means that WebTalk is currently disabled.

The following example enables WebTalk for the current user:
config_webtalk -user on

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 124

Tcl Commands Listed Alphabetically

connect_bd_intf_net
Connect intf_port and intf_pin list.

Syntax
connect_bd_intf_net [-intf_net arg] [-quiet]
[-verbose] object1 object2

Returns
0 if successful, error otherwise

Usage
Name Description

[-intf_net] The single intf_net that all objects connect to

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

object1 Name of intf_port or intf_pin to connect

object2 Name of intf_port or intf_pin to connect

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 125

Tcl Commands Listed Alphabetically

connect_bd_net
Connect port and pin object list.

Syntax
connect_bd_net [-net arg] [-quiet] [-verbose] objects ...

Returns
0 if successful, error otherwise

Usage
Name Description

[-net] The single net that all objects connect to

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects The objects connect to the net

Categories
IPIntegrator

Description
Creates a block diagram (bd) net in the current design connecting the specified list of block
diagram port and pin objects.

Use the get_bd_ports and get_bd_pins commands to specify the port and pin objects.

The command returns the connected block diagram net object.

Arguments
-net arg - (Optional) Create a single block diagram net that all the specified block diagram
pins and ports connect to.

Note The -net argument is optional. When the objects being connected are not in the same
level of hierarchy, the net argument should not be specified.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 126

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - Connect the specified list of block diagram port and pin objects.

Examples
The following example connects a bd_port to a bd_pin on different level of hierarchy:
connect_bd_net [get_bd_ports /clk] [get_bd_pins /mycell/mysubcell/clk]

Note Because /clk and /mycell/mysubcell/clk are in different levels of the hierarchy, the
-net option is not specified. In this case, multiple nets are created for connection across the
hierarchy.

See Also
• get_bd_pins
• get_bd_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 127

Tcl Commands Listed Alphabetically

connect_debug_port
Connect nets and pins to debug port channels.

Syntax
connect_debug_port [-channel_start_index arg] [-quiet]
[-verbose] port nets ...

Returns
Nothing

Usage
Name Description

[-channel_start_index] Connect nets starting at channel index

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

port Debug port name

nets List of nets or pins

Categories

Description
Connects a signal from the Netlist design to a port on a ChipScope debug core. The signal
can either be connected to a specific channel index on the port, or simply connected to an
available channel on the port.

If you try to connect too many signals to a port, or there are not enough channels to support
the connection, the tool will return an error.

Additional ports can be added to a debug core through the use of the create_debug_port
command, and you can increase the available channels on an existing port with the
set_property port_width command. See the examples below.

You can disconnect signals from ports using the disconnect_debug_port command.

When the ChipScope debug core has been defined and connected, you can implement the
debug core as a block for inclusion in the Netlist Design. Use the implement_debug_core
command to use CoreGen to implement the core.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 128

Tcl Commands Listed Alphabetically

Arguments
-channel_start_index arg - (Optional) The channel index to use for the connection. If more
than one signal has been specified, this is the channel index where connections will start to be
added. Channel indexes are numbered starting at 0.

Note If this argument is not specified, the tool will place connections on the first available
channel index.

port - (Required) The name of the port to connect signals to. The port must be referenced by
the core_name/port_name.

nets - (Required) A list of one or more net names from the Netlist Design to connect to the
specified debug port.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example creates a new TRIG port on the myCore debug core, increases the
port_width of the port in order to prepare it to receive the number of signals to be connected,
then connects the signals to the port starting at the third channel position (index 2).
create_debug_port myCore TRIG
set_property port_width 8 [get_debug_ports myCore/TRIG0]
connect_debug_port myCore/TRIG0 [get_nets [list m0_ack_o m0_cyc_i m0_err_o \
m0_rty_o m0_stb_i m0_we_i]] -channel_start_index 2

Note If you specify too many nets to connect to the available channels on the port, the tool
will return an error and will not connect the ports.

See Also
• create_debug_port
• disconnect_debug_port
• get_debug_ports
• get_nets
• implement_debug_core
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 129

Tcl Commands Listed Alphabetically

connect_hw_server
Open a connection to a hardware server.

Syntax
connect_hw_server [-host arg] [-port arg] [-password arg]
[-launch arg] [-quiet] [-verbose]

Returns
Hardware server

Usage
Name Description

[-host] server host name Default: localhost

[-port] server port number Default: 60001

[-password] server password Default: none

[-launch] launch server process Default: No

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 130

Tcl Commands Listed Alphabetically

connect_net
Connect a net to pins or ports.

Syntax
connect_net [-hier] [-basename arg] -net arg -objects args [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-hier] Allow hierarchical connection, creating nets and pins as
needed (see -basename).

[-basename] base name to use for net / pin names needed when doing
hierarchical connection (see -hier). Default value is inferred
from the name of the net being connected (see -net).

-net Net to connect

-objects List of pins or ports to connect

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Netlist

Description
This command allows the user to connect a specified net to one or more pins or ports in the
netlist of an open Synthesized or Implemented Design.

The connect_net command will also connect nets across levels of hierarchy in the design, by
adding pins and hierarchical nets as needed to complete the connection. Added nets and pins
can be assigned a custom basename to make them easy to identify, or will be assigned a
basename by the Vivado tool.

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 131

Tcl Commands Listed Alphabetically

Arguments
-hier - (Optional) Connect the net across different levels of the hierarchy.

Note If -hier is not specified, attempting to connect to hierarchical pins will fail with a warning

-basename arg - (Optional) Specifies a custom name to use for any hierarchical nets or pins
that are needed to connect the specified net across levels of the hierarchy. If this option is not
used, the basename is automatically derived from the net being connected.

-net arg - (Required) Specifies the net to connect.

Note Although you can create a bus using the -from and -to arguments of the create_net
command, you must connect each bit of the bus separately using the connect_net command

-objects args - (Required) Specified the list of pins or ports to connect the net to. You can
connect a net to one or more pin or port objects.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Example
The following example creates a port; creates a pin on the myDMA instance; creates a net called
myEnable; and connects the net to the newly created port and pin:
create_port -direction IN enableIn
create_pin -direction IN myDMA/en
create_net myEnable
connect_net -net myEnable -objects {enableIn myDMA/en}

The following example creates 32-bit bus ports, pins, and nets, then connects them together
one bit at a time using a for loop to connect each bit individually:
create_port -from 0 -to 31 -direction IN dataIN
create_pin -from 0 -to 31 -direction IN myDMA/data
create_net -from 0 -to 31 dataBus
for {set x 0} {$x<32} {incr x} { \

connect_net -net dataBus[$x] -objects {dataIN[$x] myDMA/data[$x] } }

Note Attempting to connect the dataBus will result in a "Net not found error." Each bit of the
bus must be separately connected.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 132

Tcl Commands Listed Alphabetically

See Also
• create_net
• create_pin
• create_port
• disconnect_net
• remove_net
• resize_net_bus
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 133

Tcl Commands Listed Alphabetically

copy_bd_objs
Make copies of the objects and add the copies to the given hierarchical cell.

Syntax
copy_bd_objs [-prefix arg] [-from_design arg] [-quiet]
[-verbose] parent_cell objects ...

Returns
0, "" if failed

Usage
Name Description

[-prefix] Prefix name to add to cells

[-from_design] The design to own the original objects

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

parent_cell Parent cell

objects The objects to copy

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 134

Tcl Commands Listed Alphabetically

copy_ip
Copy an existing IP.

Syntax
copy_ip -name arg [-dir arg] [-quiet] [-verbose] objects ...

Returns
IP file object that was added to the project

Usage
Name Description

-name Name of copied IP

[-dir] Directory path for remote IP to be created and managed
outside the project

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects IP to be copied

Categories
Project, IPFlow

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 135

Tcl Commands Listed Alphabetically

create_bd_addr_seg
Create a new segment.

Syntax
create_bd_addr_seg -range arg -offset arg [-quiet] [-verbose]
[parent_addr_space] [slave_segment] name

Returns
The newly created segment object, "" if failed

Usage
Name Description

-range Range of segment. e.g. 4096, 4K, 16M, 1G

-offset Offset of segment. e.g. 0x00000000

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[parent_addr_space] Parent address space of segment

[slave_segment] Slave segment of the created segment
name Name of segment to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 136

Tcl Commands Listed Alphabetically

create_bd_cell
Add an IP cell from the IP catalog, or add a new hierarchical block.

Syntax
create_bd_cell [-vlnv arg] [-type arg] [-quiet] [-verbose] name

Returns
The newly created cell object. Returns nothing if the command fails

Usage
Name Description

[-vlnv] Vendor:Library:Name:Version of the IP cell to add from the
IP catalog.

[-type] Type of cell to create. Valid values are IP and hier. Default:
IP

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of cell to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 137

Tcl Commands Listed Alphabetically

create_bd_design
Create a new design and its top level hierarchy cell with the same name.

Syntax
create_bd_design [-quiet] [-verbose] name

Returns
The newly created design object, "" if failed

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of design to create

Categories
IPIntegrator

Description
Create a new IP subsystem design module to add to the current project, and for use with the IP
Integrator feature of the Vivado Design Suite.

An empty IP subsystem module is created and added to the source files of the current project.
The subsystem module and file are created with the specified name in the current project at:

project_name/project_name.srcs/sources_1/bd/name/name.bd

This command returns the file path and name of the IP subsystem design created if the
command is successful. An error is returned if the command fails.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - The name of the IP subsystem design module to create.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 138

Tcl Commands Listed Alphabetically

Example
The following example creates a new empty IP subsystem module called design_1 , adds the
module to the current project, and creates a file called design_1.bd in the sources directory
of the project:
create_bd_design design_1

See Also
• close_bd_design
• current_bd_design
• open_bd_design
• save_bd_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 139

Tcl Commands Listed Alphabetically

create_bd_intf_net
Create a new intf_net.

Syntax
create_bd_intf_net [-quiet] [-verbose] name

Returns
The newly created intf_net object, "" if failed

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of intf_net to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 140

Tcl Commands Listed Alphabetically

create_bd_intf_pin
Create a new intf_pin.

Syntax
create_bd_intf_pin -vlnv arg -mode arg [-quiet] [-verbose] name

Returns
The newly created intf_pin object, "" if failed

Usage
Name Description

-vlnv Bus vlnv

-mode Bus interface mode

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of intf_pin to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 141

Tcl Commands Listed Alphabetically

create_bd_intf_port
Create a new interface port.

Syntax
create_bd_intf_port -vlnv arg -mode arg [-quiet] [-verbose] name

Returns
The newly created interface port object, "" if failed

Usage
Name Description

-vlnv Bus vlnv

-mode Bus interface mode

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of port to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 142

Tcl Commands Listed Alphabetically

create_bd_net
Create a new net.

Syntax
create_bd_net [-quiet] [-verbose] name

Returns
The newly created net object, "" if failed

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of net to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 143

Tcl Commands Listed Alphabetically

create_bd_pin
Create a new pin.

Syntax
create_bd_pin [-from arg] [-to arg] -dir arg [-type arg] [-quiet]
[-verbose] name

Returns
The newly created pin object, "" if failed

Usage
Name Description

[-from] Begin index Default: Unspecified

[-to] End index Default: Unspecified

-dir Pin direction

[-type] Pin type

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of pin to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 144

Tcl Commands Listed Alphabetically

create_bd_port
Create a new port for an IP subsystem design.

Syntax
create_bd_port [-from arg] [-to arg] -dir arg [-type arg] [-quiet]
[-verbose] name

Returns
The newly created port object. Returns nothing if the command fails

Usage
Name Description

[-from] Beginning index Default: Unspecified

[-to] Ending index Default: Unspecified

-dir Port direction. Valid values are I, O, or IO.

[-type] Port type. Valid values are clk, ce, rst, intr, data.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of port to create

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 145

Tcl Commands Listed Alphabetically

create_cell
Create cells in the current design.

Syntax
create_cell -reference arg [-black_box] [-quiet] [-verbose] cells ...

Returns
Nothing

Usage
Name Description

-reference Library cell or design which cells reference

[-black_box] Create black box instance

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

cells Names of cells to create

Categories
Netlist

Description
Add cells to the netlist of the current Synthesized or Implemented design.

Note You cannot add cells to library macros, or macro-primitives.

New cell instances can be added to the top-level of the design, or hierarchically within any
module of the design. Instances can reference an existing cell from the library or design source
files, or a black box instance can be added that reference cells that have not yet been created.

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

This command returns the name of the created cell instance or instances.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 146

Tcl Commands Listed Alphabetically

Arguments
-reference arg - (Required) The library cell or source file module referenced by the new cell
instances.

-black_box - (Optional) Define a black box instance of the specified reference cell. Use this
argument when the reference cell does not exist yet, but you would like to create a black box
instance of the cell for a top-down design approach.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

cells - (Required) Instance names of the cells to create. The instance name can be specified as a
hierarchical name, from the top-level of the design. In this case, you must use the hierarchy
separator character in the hierarchical instance name. You can determine the current hierarchy
separator with the get_hierarchy_separator command.

Examples
The following example creates three new cell instances of the or1200_cpu module with the
specified instance names:
create_cell -reference or1200_cpu myCell1 myCell2 myCell3

The following example sets the hierarchy separator character, then creates a black box instance
for the referenced cell, specifying a hierarchical instance name:
set_hierarchy_separator |
create_cell -reference dmaBlock -black_box usbEngine0|myDMA

Note The tool will return an error when -black_box is used, but the -reference cell already exists

See Also
• remove_cell
• set_hierarchy_separator
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 147

Tcl Commands Listed Alphabetically

create_clock
Create a clock object.

Syntax
create_clock -period arg [-name arg] [-waveform args] [-add] [-quiet]
[-verbose] [objects]

Returns
New clock object

Usage
Name Description

-period Clock period: Value > 0

[-name] Clock name

[-waveform] Clock edge specification

[-add] Add to the existing clock in source_objects

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] List of clock source ports, pins or nets

Categories
SDC, XDC

Description
Create a clock object with the specified period or waveform. This command defines primary
clocks which are used by the timing engine as the delay propagation starting point of any clock
edge. The defined clock can be added to the definition of an existing clock, or overwrite the
existing clock.

A virtual clock can be created that has no source in the design. A virtual clock can be used as a
time reference for setting input and output delays but does not physically exist in the design.

A clock can also be generated from an existing physical clock, and derive many of its properties
from the master clock. Use the create_generated_clock command to derive a clock from
an existing physical clock.

Note This command returns the name of the clock object that is created.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 148

Tcl Commands Listed Alphabetically

Arguments
-period arg - (Required) Specifies the clock period of the clock object to be created. The value
must be greater than zero (>0), and has a default value of 10.0 time units.

Note The time units are defined by the set_units command. The default time units is
nanoseconds (ns), with a resolution of one picosecond (ps)

-name arg - (Optional) The name of the clock object to be created. If the name is omitted, a
system-generated name will be used based on the specified source objects. You can also use
the -name option without source objects to create a virtual clock for the design that is not
associated with a physical source on the design.

-waveform arg1 arg2 ... - (Optional) The rise and fall edge times of the waveform of the
defined clock, in nanoseconds, over one full clock cycle. There must be an even number of
edges, representing both the rising and falling edges of the waveform. The first time specified
is the first rising transition, and the second time specified is the falling edge. If the value for
the falling edge is smaller than the value for the rising edge, it means that the falling edge
happens before the rising edge.

Note If you do not specify the waveform, the default waveform is assumed to have a rising
edge at time 0.0 and a falling edge at one half the specified period (-period/2)

-add - (Optional) Define multiple clocks on the same source for simultaneous analysis with
different clock waveforms. Use -name to specify the new clock to add. If you do not specify
this option, the create_clock command will automatically assign a name and will overwrite any
existing clock of the same name.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) The ports, pins, or nets which are the source of the specified clock. If you
specify a clock on a source object that already has a clock, the new clock will overwrite the
original clock unless you also specify the -add option. If no objects are specified to attach the
clock object to, the clock will be created as a virtual clock in the design.

Note The first driver pin of a specified net will be used as the source of the clock

Examples
The following example creates a physical clock called bftClk and defines the clock period:
create_clock -name bftClk -period 5.000 [get_ports bftClk]

Note If the get_ports command defining the objects is left off of this example, a virtual clock is
created in the design rather than a physical clock.

The following example creates a clock named clk on the input port, clk_pin_p, with a period of
10ns, the rising edge at 2.4ns and the falling edge at 7.4ns:
create_clock -name clk -period 10.000 -waveform {2.4 7.4} [get_ports clk_pin_p]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 149

Tcl Commands Listed Alphabetically

The following example creates a virtual clock since no clock source is specified:
create_clock -name virtual_clock -period 5.000

The following example creates a clock with the falling edge at 2ns and the rising edge at 7ns:
create_clock -name clk -period 10.000 -waveform {7 2} [get_ports clk_pin_p]

See Also
• all_clocks
• create_generated_clock
• get_clocks
• report_clocks
• report_clock_interaction
• report_clock_networks
• report_clock_utilization
• set_clock_groups
• set_clock_latency
• set_clock_uncertainty
• set_input_delay
• set_output_delay
• set_propagated_clock
• set_units

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 150

Tcl Commands Listed Alphabetically

create_debug_core
Create a new Integrated Logic Analyzer debug core.

Syntax
create_debug_core [-quiet] [-verbose] name type

Returns
New debug_core object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of the new debug core instance

type Type of the new debug core

Categories

Description
Adds a new Integrated Logic Analyzer (ILA) debug core, labtools_ila_v2, to an open Netlist
Design in the current project. The ILA debug core defines ports for connecting nets to for
debug purposes.

Note A debug core can only be added to an open Netlist Design in the tool.

The default core that is created includes a CLK port and a trigger (TRIG) port. The CLK port only
supports one clock signal, and so you must create a separate debug core for each clock domain.

Once the core is created you can add new ports to the debug core with the create_debug_port
command, and connect signals to the ports using the connect_debug_port command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 151

Tcl Commands Listed Alphabetically

name - (Required) The name of the ILA debug core to add to the project.

type - (Required) The type of debug core to insert. Only the labtools_ila_v2 debug core is
currently supported in the Vivado tool. The ILA debug core simply adds another load onto
a connected net without otherwise altering it. Refer to the Vivado Design Suite User Guide:
Programming and Debugging (UG908) for more information on debug core types and purpose.

Note When the ILA core is added to the project, the tool also adds a Debug Hub core
(labtools_xsdbmasterlib_v2) as a container for one or more ILA cores. However, you cannot
directly add a Debug Hub to the project.

Examples
The following example opens the Netlist Design, and creates a new ILA debug core:
open_netlist_design -name netlist_1
create_debug_core myCore labtools_ila_v2

The following example creates a new debug core called myCore and returns the properties
of the newly created core:
report_property [create_debug_core myCore labtools_ila_v2]

The properties of the debug core can be customized by using the set_property command as
in the following example:
set_property enable_storage_qualification false [get_debug_cores myCore]

See Also
• connect_debug_port
• create_debug_port
• delete_debug_core
• get_debug_cores
• implement_debug_core
• report_debug_core
• report_property
• set_property
• write_chipscope_cdc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 152

Tcl Commands Listed Alphabetically

create_debug_port
Create a new debug port.

Syntax
create_debug_port [-quiet] [-verbose] name type

Returns
New debug_port object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of the debug core instance

type Type of the new debug port

Categories

Description
Defines a new port to be added to an existing ILA debug core. The port provides connection
points to a debug core to attach nets from the design for debug purposes.

When a new debug core is created using the create_debug_core command, it includes a
CLK and trigger (TRIG) port by default. However, you can also add DATA and trigger_output
(TRIG_OUT) ports to the debug core as well as additional TRIG ports.

A port can have one or more connection points to support one or more nets to debug. As a
default new ports are defined as having a width of 1, allowing only one net to be attached.
You can change the port width of TRIG and DATA ports to support multiple signals using the
set_property port_width command (see Examples).

Note CLK and TRIG_OUT ports can only have a width of 1.

You can connect signals to ports using the connect_debug_port command, and disconnect
signals with the disconnect_debug_port command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 153

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the ILA debug core to add the new port to. The debug core
must already exist in the project having been created with create_debug_port.

type - (Required) The type of debug port to insert. There are four port types supported: CLK,
DATA, TRIG, and TRIG_OUT. Refer to the Vivado Design Suite User Guide: Programming and
Debugging (UG908) for more information on port types and purpose.

Note Each ILA debug core can have only one CLK, DATA, and TRIG_OUT port. However, you
can create multiple trigger (TRIG) ports.

Examples
The following example creates a new ChipScope debug core, and then adds a DATA port to
that core:
create_debug_core myCore labtools_ila_v2
create_debug_port myCore DATA

The following example creates a new port on the myCore debug core, and then sets the port
width to 8, and begins connecting signals to the port:
create_debug_port myCore TRIG
set_property PORT_WIDTH8 [get_debug_ports myCore/TRIG0]
connect_debug_port -channel_start_index 1 myCore/TRIG0 {m1_cyc_i \

m1_ack_o m1_err_o m1_rty_o}

Note The debug core is referenced by its name, and the debug port is referenced by the
core_name/port_name.

See Also
• connect_debug_port
• create_debug_core
• disconnect_debug_port
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 154

Tcl Commands Listed Alphabetically

create_drc_check
Create a user defined drc rule.

Syntax
create_drc_check [-category arg] -name arg [-desc arg] [-msg arg]
-rule_body arg [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-category] Specify the category for this rule. This is the major
grouping for your rule. It is optional and will default to
User Defined. Default: User Defined

-name Specify the name for this rule. This must be of the form
PREFIX-id where XXXX is a 4-6 letter abbreviation and id is
an integer identifying a particular rule. Similar rules should
have the same abbreviation and each a unique id.

[-desc] Specify the short description for this rule. It is optional and
will default to . Default: User rule - default description

[-msg] Specify the full description for this rule. Including
the substitutions. Values are: %MSG_STRING
%NETLIST_ELEMENT %SITE_GROUP %CLOCK_REGION
%BANK.

-rule_body The string representing the body of the rule. This can be a
tcl proc name or any string of tcl code to be evaluated.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
DRC, Object

Description
Create a new user-defined DRC rule check, drc_check, for use by the tool when running
report_drc.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 155

Tcl Commands Listed Alphabetically

This command allows you to define a unique name or abbreviation for the user-defined rule
check, optionally group the rule into a special category and provide a description of the rule,
define a general placeholder message for the check when violations are encountered, and refer
to the Tcl code associated with the design rule check to be run during the report_drc command.

The general placeholder message defined in this command is populated with specific
information related to the design objects and violations found by the Tcl checker procedure,
and by the create_drc_violation command.

The process in brief is:

• Write a Tcl checker procedure to define the method applied when checking the user-defined
rule, and the objects to check against the rule. The Tcl checker procedure is defined in a
separate Tcl script that must be loaded by the source command prior to running report_drc.

• Use create_drc_violation in the Tcl checker to identify and flag violations found when
checking the rule against a design.

• Define a user-defined DRC rule check using the create_drc_check command that calls
the Tcl checker proc from the -rule_body.

• Create a rule deck using the create_drc_ruledeck command, and add the user-defined rule
check to the rule deck using the add_drc_checks command.

• Run report_drc, and specify either the rule deck, or the user-defined rule check to check
for violations.

If a drc_check of the specified name is already defined in the tool, an error is returned. In this
case, to overwrite or redefine and existing drc_check, you must first delete the check using the
delete_drc_check command.

The DRC rule check object features the is_enabled property that can be set to TRUE or FALSE
using the set_property command. When a new rule check is created, the is_enabled property
is set to TRUE as a default. Set the is_enabled property to FALSE to disable the rule check
from being used when report_drc is run. This lets you create new DRC checks, add them to
rule decks using add_drc_checks, and then enable them or disable them as needed without
having to remove them from the rule deck.

Each user defined DRC rule check has the 'USER_DEFINED' property, which lets you quickly
identify and select user-defined rule checks.

Arguments
-category arg - (Optional) Defines a grouping for the rule. The default is "User Defined". This
is used as the first level of hierarchy in the GUI when listing DRC rules. All newly created DRC
checks are also added to the "all"category used by default by the report_drc command.

-name arg - (Required) The unique name for the design rule. This should match the name used
by the create_drc_violation commands in the Tcl checker procedure specified in -rule_body.
The name will appear in the DRC report with any associated violations. The name should
consist of a short 4 to 6 letter abbreviation for the rule group, and an ID to differentiate it from
other checks in the same group, for instance ABCD-1 or ABCD-23.

-desc arg - (Optional) A brief description of the rule. The default is "User Rule". This is displayed
when listing DRC rules in the GUI. The description is also used in the DRC report and summary.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 156

Tcl Commands Listed Alphabetically

-msg arg - (Optional) This is the message displayed when a violation of the rule is found. The
message can include placeholders for dynamic substitution with design elements found in
violation of the rule. The design data is substituted into the message at the time report_drc
is run. Each substitution key has a long form, and a short form as shown below. Valid
substitutions keys are:

• %MSG_STRING (%STR) - This is the message string defined by the -msg option in the
create_drc_violation command for the specific violation.

Note %STR is the default message for the create_drc_check command if the -msg option
is not specified. In this case, any message defined by create_drc_violation in the -rule_body
is simply passed through to the DRC report.

• %NETLIST_ELEMENT (%ELG) - Netlist elements including cells, pins, ports, and nets.

• %SITE_GROUP (%SIG) - Device site.

• %CLOCK_REGION (%CRG) - Clock region.

• %BANK (%PBG) - Package IO bank.

-rule_body arg - (Required) This is the name of the Tcl procedure which defines the rule
checking functionality. The Tcl procedure can be embedded here, into the -rule_body option,
or can be separately defined in a Tcl script that must be loaded with the source command
when the tool is launched, or prior to running the report_drc command.

The Tcl checker procedure can create DRC violation objects, using the create_drc_violation
command, containing the design elements that are associated with a design rule violation. The
tool populates the substitution keys in the message defined by -msg with the design elements
from the violation object.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example defines a new design rule check named RAMW-1, with the category
and description defined, using the default severity of Warning, and calling the dataWidthCheck
procedure when the check is run:
create_drc_check -name {RAMW-1} -category {RAMB} \
-desc {Data Width Check} -rule_body dataWidthCheck

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 157

Tcl Commands Listed Alphabetically

The following Tcl script defines the dataWidthCheck procedure which is called by the
-rule_body argument of the RAMW-1 check. This Tcl script file must be loaded into the tool
using the source command, prior to running the report_drc command.
This is a simplistic check -- report BRAMcells with WRITE_WIDTH_Bwider than 36.
proc dataWidthCheck {} {
list to hold violations
set vios {}
iterate through the objects to be checked
foreach bram [get_cells -hier -filter {PRIMITIVE_SUBGROUP == bram}] {
set bwidth [get_property WRITE_WIDTH_B$bram]
if { $bwidth > 36} {
define the message to report when violations are found
set msg "On cell %ELG, WRITE_WIDTH_Bis $bwidth"
set vio [create_drc_violation -name {RAMW-1} -msg $msg $bram]
lappend vios $vio

}
}
if {[llength $vios] > 0} {
return -code error $vios

} else {
return {}

}
}
create_drc_check -name {RAMW-1} \

-category {RAMB Checks} \
-desc {Data Width Check} \
-rule_body dataWidthCheck

Note The script file can contain both the Tcl checker procedure, and the create_drc_check
command that defines it for use by report_drc command. In this case, when the Tcl script file
is sourced, both the dataWidthCheck proc and the RAMW-1 design rule check are loaded
into the tool.

See Also
• add_drc_checks
• create_drc_ruledeck
• create_drc_violation
• delete_drc_check
• get_drc_checks
• get_drc_vios
• report_drc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 158

Tcl Commands Listed Alphabetically

create_drc_ruledeck
Create one or more user defined drc rule deck objects.

Syntax
create_drc_ruledeck [-quiet] [-verbose] ruledecks ...

Returns
Drc_ruledeck

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

ruledecks Names of rule decks to create

Categories
DRC, Object

Description
Create one or more user-defined rule decks for use when running report_drc.

A drc_ruledeck object is a collection of design rule checks, grouped for convenience, to be run
at different stages of the FPGA design flow, such as during I/O planning or placement. The tool
comes with a set of factory predefined rule decks. Use the get_drc_ruledecks command to
return a list of the currently defined rule decks.

The rule decks created by this command are empty, without any checks. You must add design
rule checks to the rule deck using the add_drc_checks command. Checks can be removed from
a rule deck using the remove_drc_checks command. To see a list of design rule checks that are
available to include in the ruledeck, use the get_drc_checks command.

This command returns the list of drc_ruledecks created.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 159

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ruledecks - (Required) Specify the name of one or more user-defined DRC rule decks to create.

Examples
The following example creates two new drc_ruledeck objects:
create_drc_ruledeck my_rules project_rules

See Also
• add_drc_checks
• delete_drc_ruledeck
• get_drc_checks
• get_drc_ruledecks
• remove_drc_checks
• report_drc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 160

Tcl Commands Listed Alphabetically

create_drc_violation
Create a drc violation.

Syntax
create_drc_violation -name arg [-severity arg] [-msg arg] [-quiet]
[-verbose] [objects ...]

Returns
Nothing

Usage
Name Description

-name Specify the name for this rule. This is the typically a 4-6
letter specification for your rule.

[-severity] Specify severity level for a drc rule. Default: WARNING.
Values: FATAL, ERROR, CRITICAL WARNING, WARNING,
ADVISORY.

[-msg] Specify your message string for this drc rule.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] Cells, ports, pins, nets, clock regions, sites, package banks
to query.

Categories
DRC, Report

Description
Create a DRC violation object and manage the list of design objects associated with the
violation for reporting by the report_drc command.

The create_drc_violation command is specified as part of the Tcl checker procedure that
defines and implements the checking feature of a user-defined design rule check created by
the create_drc_check command. A violation object is created by the Tcl checker each time a
violation of the design rule is encountered.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 161

Tcl Commands Listed Alphabetically

The process in brief is:

• Write a Tcl checker procedure to define the method applied when checking the user-defined
rule, and the objects to check against the rule. The Tcl checker procedure is defined in a
separate Tcl script that must be loaded by the source command prior to running report_drc.

• Use create_drc_violation in the Tcl checker to identify and flag violations found when
checking the rule against a design.

• Define a user-defined DRC rule check using the create_drc_check command that calls
the Tcl checker proc from the -rule_body.

• Create a rule deck using the create_drc_ruledeck command, and add the user-defined rule
check to the rule deck using the add_drc_checks command.

• Run report_drc, and specify either the rule deck, or the user-defined rule check to check
for violations.

Violations are reported by the report_drc command, and violation objects can be returned by
the get_drc_vios command.

Arguments
-name arg - (Required) The name of the design rule check associated with the violation. This
should be the same name used by the create_drc_check command which calls the associated
Tcl checker procedure from its -rule_body argument. Messages from the create_drc_violation
command are passed up to the drc_check with the same -name.

-severity arg - (Optional) The severity of the violation. The default severity level for user-defined
DRCs is WARNING. The supported values are:

• FATAL

• ERROR

• "CRITICAL WARNING"

• WARNING

• ADVISORY

Note The SEVERITY is stored as a property on the DRC rule associated with the DRC violation
object. The severity can be changed on the rule by using the set_property command on
the associated DRC check.

-msg arg - (Optional) This is a violation specific message that is substituted for the
general string variable (%STR) specified in the optional placeholder message defined in the
create_drc_check command.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 162

Tcl Commands Listed Alphabetically

objects - (Optional) Cell, port, pin, net, clock region, site, and package I/O bank objects
associated with violations found by the Tcl checker procedure that are substituted into
the placeholder message of the drc_object with the same -name. Design objects map to
substitution keys in the message as follows:
• %ELG - netlist elements such as cells, ports, pins, and nets.
• %CRG - clock regions.
• %SIG - device sites.
• %PBG - package I/O banks.

Note Both the order and the type of objects passed from the create_drc_violation command
must match the -msg specification from the create_drc_check command, or the expected
substitution will not occur

Examples
The following Tcl script defines the dataWidthCheck procedure which is called by the
-rule_body argument of the RAMW-1 check. This Tcl script file must be loaded into the tool
using the source command, prior to running the report_drc command.

Some features of the Tcl checker proc to notice are:
• A list variable is created to store violations ($vios)
• A violation object is created, and added to the list variable, each time a violation is found.
• The placeholder key %ELG in the $msg string is dynamically substituted with the specific

$bram cell associated with the violation.
• The dataWidthCheck proc returns an error code when any violations are found ($vios >0)

to inform the report_drc command of the results of the check.
• The list of violations is passed along with the return code, and the violations are reported

by report_drc.

This is a simplistic check -- report BRAMcells with WRITE_WIDTH_Bwider than 36.
proc dataWidthCheck {} {
list to hold violations
set vios {}
iterate through the objects to be checked
foreach bram [get_cells -hier -filter {PRIMITIVE_SUBGROUP == bram}] {
set bwidth [get_property WRITE_WIDTH_B$bram]
if { $bwidth > 36} {
define the message to report when violations are found
set msg "On cell %ELG, WRITE_WIDTH_Bis $bwidth"
set vio [create_drc_violation -name {RAMW-1} -msg $msg $bram]
lappend vios $vio

}
}
if {[llength $vios] > 0} {
return -code error $vios

} else {
return {}

}
}
create_drc_check -name {RAMW-1} \

-category {RAMB Checks} \
-desc {Data Width Check} \
-rule_body dataWidthCheck

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 163

Tcl Commands Listed Alphabetically

Note The script file can contain both the Tcl checker procedure, and the create_drc_check
command that defines it for use by report_drc command. In this case, when the Tcl script file
is sourced, both the dataWidthCheck proc and the RAMW-1 design rule check are loaded
into the tool.

See Also
• add_drc_checks
• create_drc_ruledeck
• create_drc_check
• get_drc_checks
• get_drc_vios
• report_drc
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 164

Tcl Commands Listed Alphabetically

create_fileset
Create a new fileset.

Syntax
create_fileset [-constrset] [-simset] [-blockset]
[-clone_properties arg] -define_from arg [-quiet] [-verbose] name

Returns
New fileset object

Usage
Name Description

[-constrset] Create fileset as constraints fileset (default)

[-simset] Create fileset as simulation source fileset

[-blockset] Create fileset as block source fileset

[-clone_properties] Fileset to initialize properties from

-define_from Name of the module in the source fileset to be the top of
the blockset

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of the fileset to be create

Categories
Project, Simulation

Description
Defines a new fileset within your project.

A fileset is a list of files with a specific function within the project. One or more constraint
files is a constraint set (-constrset); one or more simulation test benches is a simulation set
(-simset). Only one fileset option can be specified when using the create_fileset command. As
a default, the tool will create a constraint fileset if the type is not specified.

The create_fileset command returns the name of the newly created fileset, or will return an
error message unless the -quiet argument has been specified.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 165

Tcl Commands Listed Alphabetically

Arguments
-constrset - (Optional) Creates a constraint set to hold one or more constraint files. This is the
default fileset created if neither the -constrset or -simset argument is specified.

-simset - (Optional) Create a simulation fileset to hold one or more simulation source files. You
can only specify one type of fileset argument, either -constrset or -simset. You will get an
error if both are specified.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the fileset to be created.

Examples
The following example creates a new constraint file set named constraints2:
create_fileset -constrset -quiet constraints2

Note With -quiet specified, the tool will not return anything if it encounters an error in trying
to create the specified fileset.

The following example creates a new simulation fileset named sim_1 :
create_fileset -simset sim_1

Files can be added to the newly created fileset using the add_files command.

See Also
• add_files
• current_fileset

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 166

Tcl Commands Listed Alphabetically

create_generated_clock
Create a generated clock object.

Syntax
create_generated_clock [-name arg] [-source args] [-edges args]
[-divide_by arg] [-multiply_by arg] [-combinational] [-duty_cycle arg]
[-edge_shift args] [-add] [-master_clock arg] [-quiet]
[-verbose] objects

Returns
New clock object

Usage
Name Description

[-name] Generated clock name

[-source] Master clock source object pin/port

[-edges] Edge Specification

[-divide_by] Period division factor: Value >= 1 Default: 0

[-multiply_by] Period multiplication factor: Value >= 1 Default: 0

[-combinational] Create a divide_by 1 clock through combinational logic

[-duty_cycle] Duty cycle for period multiplication: Range: 0.0 to 100.0
Default: 0.0

[-edge_shift] Edge shift specification

[-add] Add to the existing clock in source_objects

[-master_clock] Use this clock if multiple clocks present at master pin

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects List of clock source ports, pins, or nets

Categories
SDC, XDC

Description
Generate a new clock object from an existing physical clock object in the design.

Note This command returns the name of the clock object that is created.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 167

Tcl Commands Listed Alphabetically

Arguments
-name arg - (Optional) The name of the generated clock to create on the specified object. If no
name is specified, the generated clock will be given the name of the object it is assigned to. If
assigned to multiple objects, the name will be the first object in the list.

-source arg - (Optional) The pin or port of the master clock from which to derive the generated
clock. The master clock must be a previously defined physical clock, not a virtual clock; but can
be a primary clock or another generated clock. If the source pin or port currently has multiple
clocks defined, the -master_clock option must be used to identify which clock on the source is
to be used to define the generated clock.

-edges arg - (Optional) Specifies the edges of the master clock to use in defining transitions on
the generated clock. Specify transitions on the generated clock in a sequence of 1, 2, 3, by
referencing the appropriate edge count from the master clock in numerical order, counting
from the first edge. The sequence of transitions on the generated clock defines the period and
duty cycle of the clock: position 1 is the first rising edge of the generated clock, position 2 is
the first falling edge of the generated clock and so defines the duty cycle, position 3 is the
second rising edge of the generated clock and so defines the clock period. Enclose multiple
edge numbers in braces {}. See the example below for specifying edge numbers.

-divide_by arg - (Optional) Divide the frequency of the master clock by the specified value
to establish the frequency of the generated clock object. The value specified must be >= 1,
and must be specified as an integer.

-multiply_by arg - (Optional) Multiply the frequency of the master clock by the specified
value to establish the frequency of the generated clock object. The value specified must be
>= 1, and must be specified as an integer.

-combinational - (Optional) Define a combinational path to create a "-divide_by 1" generated
clock.

-duty_cycle arg - (Optional) The duty cycle of the generated clock defined as a percentage
of the new clock period when used with the -multiply_by argument. The value is specified
as a percentage from 0.0 to 100.

-edge_shift arg - (Optional) Shift the edges of the generated clock by the specified values
relative to the master clock. See the example below for specifying edge shift.

-add - (Optional) Add the generated clock object to an existing clock group specified by objects.
Note -master_clock and -name options must be specified with -add

-master_clock arg - (Optional) If there are multiple clocks found on the source pin or port, the
specified clock is the one to use as the master for the generated clock object.

Note -add and -name options must be specified with -master_clock
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) The pin or port objects to which the generated clock should be assigned.
If the specified objects already have a clock defined, use the -add option to add the new
generated clock and not overwrite any existing clocks on the object.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 168

Tcl Commands Listed Alphabetically

Examples
The following example defines a generated clock that is divided from the master clock found
on the specified CLK pin. Since -name is not specified, the generated clock is assigned the
same name as the pin it is assigned to:
create_generated_clock -divide_by 2 -source [get_pins clkgen/sysClk] fftEngine/clk

The following example defines a generated clock named CLK1 from the specified source clock,
specifying the edges of the master clock to use as transition points for the generated clock,
with edges shifted by the specified amount. In this example, the -edges option indicates that
the second edge of the source clock is the first rising edge of the generated clock, the third
edge of the source clock is the first falling edge of the generated clock, and the eighth edge of
the source clock is the second rising edge of the generated clock. These values determine the
period of the generated clock as the time from edge 2 to edge 8 of the source clock, and the
duty cycle as the percentage of the period between edge 2 and edge 3 of the source clock. In
addition, each edge of the generated clock is shifted by the specified amount:
create_generated_clock -name CLK1 -source CMB/CLKIN -edges {2 3 8} \
-edge_shift {0 -1.0 -2.0} CMB/CLKOUT

Note The waveform pattern of the generated clock is repeated based on the transitions defined
by the -edges argument.

This example creates two generated clocks from the output of a MUX, using -master_clock
to identify which clock to use, using -add to assign the generated clocks to the Q pin of
a flip flop, and using -name to define a name for the generated clock, since the object it
is assigned to has multiple clocks assigned:
create_generated_clock -source [get_pins muxOut] -master_clock M_CLKA \
-divde_by 2 -add -name gen_CLKA [get_pins flop_Q]
create_generated_clock -source [get_pins muxOut] -master_clock M_CLKB \
-divde_by 2 -add -name gen_CLKB [get_pins flop_Q]

See Also
• check_timing
• create_clock
• get_generated_clocks
• get_pins
• set_clock_latency
• set_clock_uncertainty
• set_propagated_clock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 169

Tcl Commands Listed Alphabetically

create_hw_sio_link
Create a new link between hardware RX and TX endpoints. There must be at least one hardware
TX or RX endpoint specified. If one is missing, the endpoint will be treated as Unknown. The
unknown endpoint can be renamed in a link property.

Syntax
create_hw_sio_link [-quiet] [-verbose] [hw_sio_rx] [hw_sio_tx]

Returns
The new hardware SIO link

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_sio_rx] RX endpoint. Default: None

[hw_sio_tx] TX endpoint. Default: None

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 170

Tcl Commands Listed Alphabetically

create_hw_sio_linkgroup
Create a new hardware SIO link group.

Syntax
create_hw_sio_linkgroup [-quiet] [-verbose] hw_sio_links

Returns
The new hardware SIO link group

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_links hardware SIO links

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 171

Tcl Commands Listed Alphabetically

create_hw_sio_scan
Create a new hardware SIO scan.

Syntax
create_hw_sio_scan [-quiet] [-verbose] scan_type [hw_sio_rx]

Returns
The new hardware SIO scan

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

scan_type Scan Type Options: 1d_bathtub, 2d_full_eye

[hw_sio_rx] RX endpoint to perform scan on. Default: None

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 172

Tcl Commands Listed Alphabetically

create_interface
Create a new I/O port interface.

Syntax
create_interface [-parent arg] [-quiet] [-verbose] name

Returns
New interface object

Usage
Name Description

[-parent] Assign new interface to this parent interface

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name for new I/O port interface

Categories
PinPlanning

Description
Creates a new interface for grouping scalar or differential I/O ports.

Arguments
-parent arg - (Optional) Assign the new interface to the specified parent interface.

Note If the specified parent interface does not exist, an error will be returned.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the I/O port interface to create.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 173

Tcl Commands Listed Alphabetically

Examples
Create a new USB interface:
create_interface USB0

Create an Ethernet interface within the specified parent interface:
create_interface -parent Top_Int ENET0

See Also
• delete_interface
• create_port
• make_diff_pair_ports
• place_ports
• remove_port
• set_package_pin_val
• split_diff_pair_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 174

Tcl Commands Listed Alphabetically

create_ip
Create an instance of a configurable IP and add it to the fileset.

Syntax
create_ip [-vlnv arg] -module_name arg [-dir arg] [-vendor arg]
[-library arg] [-name arg] [-version arg] [-quiet] [-verbose]

Returns
List of file objects that were added

Usage
Name Description

[-vlnv] VLNV string for the Catalog IP from which the new IP will
be created (colon delimited Vendor, Library, Name, Version)

-module_name Name for the new IP that will be added to the project

[-dir] Directory path for remote IP to be created and managed
outside the project

[-vendor] IP Vendor name

[-library] IP Library name

[-name] IP Name

[-version] IP Version

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
IPFlow

Description
This command creates an XCI file for a configurable IP core from the IP catalog, and adds it
to the source files of the current project. This creates an IP source object which must be
instantiated into the HDL design to create an instance of the IP core in the netlist.

For multiple instances of the same core, simply instantiate the core module into the HDL design
as many times as needed. However, to use the same IP core with different customizations, use
the create_ip command to create separate IP source objects.

The create_ip command is used to import IP cores from the current IP catalog. Use the
import_ip command to read existing XCI and XCO files directly, without having to add IP to
a catalog.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 175

Tcl Commands Listed Alphabetically

This command returns a transcript of the IP generation process, concluding with the file path
and name of the imported IP core file.

Note IP cores are native to Vivado, and can be customized and regenerated within that tool.
The convert_ip command lets you to convert legacy IP to native IP supported by Vivado.

Arguments
-vlnv <arg> - (Optional) Specifies the VLNV string for the existing Catalog IP from which the
new IP will be created. The VLNV is the Vendor:Library:Name:Version string which identifies the
IP in the catalog. The VLNV string maps to the IPDEF property on the IP core.

Note You must specify either -vlnv or all of -vendor, -library, -name, and -version

-module_name <arg> - (Required) Specifies the name for the new IP instance that will be
added to the project

-dir <arg> - (Optional) The directory to write the IP core files into. If this option is not specified,
the IP core files (.xci, .ngc, .veo...) are written into the hierarchy of the <project_name>.srcs
directory.

-vendor <arg> - (Optional) Specifies the vendor name for the IP's creator.

-library <arg> - (Optional) Specifies the IP library from which the core should be added.

-name <arg> - (Optional) Specifies the name of the IP core in the catalog.

-version <arg> - (Optional) Specifies the version number for the IP core.

Note You must specify either -vlnv or all of -vendor, -library, -name, and -version

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The example below imports the IP core specified by the -vlnv string, and gives it the specified
module name in the current project:
create_ip -vlnv xilinx.com:ip:c_addsub:11.0 -module_name test_addr

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 176

Tcl Commands Listed Alphabetically

The following example, from Vivado, creates an IP block with the specified -vendor, -library,
-name, -version values, and assigns it the specified module name. After the IP is created,
attributes of the IP are customized using set_property commands. Then the instantiation
template and the synthesis targets are generated for the IP:
create_ip -name c_addsub -version 11.0 -vendor xilinx.com -library ip \

-module_name c_addsub_v11_0_0
set_property -name CONFIG.Component_Name -value {c_addsub_v11_0_0} \

-objects [get_ips c_addsub_v11_0_0]
set_property -name CONFIG.A_Width -value {32} \

-objects [get_ips c_addsub_v11_0_0]
set_property -name CONFIG.B_Width -value {32} \

-objects [get_ips c_addsub_v11_0_0]
set_property -name CONFIG.Add_Mode -value {Add_Subtract} \

-objects [get_ips c_addsub_v11_0_0]
set_property -name CONFIG.C_In -value {true} \

-objects [get_ips c_addsub_v11_0_0]
generate_target {instantiation_template synthesis} \

[get_files C:/Data/c_addsub_v11_0_0/c_addsub_v11_0_0.xci \
-of_objects [get_filesets sources_1]]

See Also
• generate_target
• import_ip
• upgrade_ip
• validate_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 177

Tcl Commands Listed Alphabetically

create_macro
Create A Macro.

Syntax
create_macro [-quiet] [-verbose] name

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Macro to create.

Categories
XDC

Description
Create a macro for the relative placement of cells.

Macros are primarily used to place small groups of associated cells together to improve resource
efficiency and enable faster interconnections. The create_macro command lets you define
macros in an open synthesized or implemented design for relative placement by place_design,
like RPMs defined by the RLOC constraint in RTL source files. Refer to the Vivado Design Suite
User Guide: Implementation (UG904) for more information on defining relatively placed macros.

After creating the macro, specific cells can be assigned to the macro using the update_macro
command. To change a currently defined macro, you must delete the macro with delete_macro,
recreate the macro, and update the macro with the new contents. You cannot simply overwrite
an existing macro.

Use delete_macro to delete a defined macro. Use get_macros to return a list of currently
defined macros in the design.

This command operates silently and does not return anything.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 178

Tcl Commands Listed Alphabetically

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) Specify the name of the macro to create.

Examples
The following example creates a macro called :
create_macro usbMacro1

See Also
• delete_macros
• get_macros
• place_design
• update_macro

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 179

Tcl Commands Listed Alphabetically

create_net
Create nets in the current design.

Syntax
create_net [-from arg] [-to arg] [-quiet] [-verbose] nets ...

Returns
Nothing

Usage
Name Description

[-from] Starting bus index

[-to] Ending bus index

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

nets Names of nets to create

Categories
Netlist

Description
Create new nets in the current netlist of an open Synthesized or Implemented Design.

Note You cannot add nets to library macros, or macro-primitives.

Nets can be created hierarchically from the top-level of the design, or within any level of the
hierarchy by specifying the hierarchical net name.

Bus nets can be created with increasing or decreasing bus indexes, using negative and positive
index values.

New nets are unconnected in the netlist at the time of creation. You must connect nets
as desired using the connect_net command. Connected nets can be unconnected using
the disconnect_net command, and can be removed from the netlist using the remove_net
command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 180

Tcl Commands Listed Alphabetically

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Arguments
-from arg - (Optional) The starting index of a new bus.

-to arg - (Optional) The ending index of a new bus.

Note Specifying -from or -to without the other will results in a one-bit bus with index value
specified by the -from or -to argument

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

nets - (Required) The names of nets to create. Net names can be specified from the top-level, as
name only (net1), or can be specified within the design hierarchy by specifying the hierarchical
net name (cell1/cellA/net1).

Example
The following example creates a new 24-bit bus in the current Synthesized or Implemented
Design:
create_net tempBus -from 23 -to 0

See Also
• connect_net
• create_pin
• create_port
• disconnect_net
• get_nets
• remove_net
• resize_net_bus
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 181

Tcl Commands Listed Alphabetically

create_pblock
Create a new Pblock.

Syntax
create_pblock [-quiet] [-verbose] name

Returns
New pblock object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of the new pblock

Categories
XDC, Floorplan

Description
Defines a Pblock to allow you to add logic instances for floorplanning purposes.

You can add logic elements to the Pblock using the add_cells_to_pblock command, and
then place the Pblocks onto the fabric of the FPGA using the resize_pblocks command. The
resize_pblock command can also be used to manually move and resize pblocks.

You can nest one Pblock inside another for hierarchical floorplanning using the -parent option
as shown in the first example. You can also nest an existing Pblock inside another Pblock using
the set_property command to define the PARENT property as shown in the second example.

Arguments
-parent arg - (Optional) The name of the parent Pblock to allow creation of nested Pblocks. If
the parent is not specified, the default parent of Root is assumed, placing the Pblock at the
top of the design. You can use the get_pblocks command to report currently defined Pblocks
that can be used as parents.

Note If the specified parent does not exist an error will be returned

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 182

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the Pblock to be created.

Examples
The following example creates a Pblock called Video1 inside another Pblock called Vid_Array:
create_pblock -parent Vid_Array Video1

The following example creates Pblocks called cpu1 and cpu2, and creates a third Pblock called
cpuEngine. Then cpu1 and cpu2 are nested inside cpuEngine using the set_property command:
create_pblock cpu1
create_pblock cpu2
create_pblock cpuEngine
set_property PARENTcpuEngine [get_pblocks {cpu1 cpu2}]

See Also
• add_cells_to_pblock
• get_pblocks
• place_pblocks
• resize_pblock
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 183

Tcl Commands Listed Alphabetically

create_pin
Create pins in the current design.

Syntax
create_pin [-from arg] [-to arg] -direction arg [-quiet]
[-verbose] pins ...

Returns
Nothing

Usage
Name Description

[-from] Starting bus index

[-to] Ending bus index

-direction Pin direction Values: IN, OUT, INOUT

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pins Names of pins to create

Categories
Netlist

Description
Add single pins or bus pins to the current netlist of an open Synthesized or Implemented Design.
You may define attributes of the pin such as direction and bus width, as well as the pin name.

Bus pins can be created with increasing or decreasing bus indexes, using negative and positive
index values.

The pins must be created on an existing cell instance, or it is considered a top-level pin which
should be created using the create_port command. If the instance name of a cell is not
specified as part of the pin name, an error will be returned.

Note You cannot add pins to library macros, or macro-primitives.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 184

Tcl Commands Listed Alphabetically

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Arguments
-from arg - (Optional) The starting index of a bus pin.

-to arg - (Optional) The ending index of a bus pin.

-direction - (Required) The direction of the pin. Valid values are IN, OUT, and INOUT.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pins - (Required) The name of the pins to create. You must specify the pin names hierarchically
from the cell instance the pin is assigned to. Pins created at the top-level of the design are
ports, and should be created with the create_port command.

Examples
The following example creates a new input pin on the cpuEngine module with the specified
pin name:
create_pin -direction IN cpuEngine/inPin

The following example sets the hierarchy separator, creates a new black box instance of the
reference cell, and creates a twenty-four bit bidirectional bus for that instance:
set_hierarchy_separator |
create_cell -reference dmaBlock -black_box usbEngine0|myDMA
create_pin -direction INOUT -from 0 -to 23 usbEngine0|myDMA|dataBus

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 185

Tcl Commands Listed Alphabetically

See Also
• create_cell
• create_net
• create_port
• connect_net
• disconnect_net
• remove_cell
• remove_pin
• resize_pin_bus
• set_hierarchy_separator
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 186

Tcl Commands Listed Alphabetically

create_port
Create scalar or bus port.

Syntax
create_port -direction arg [-from arg] [-to arg] [-diff_pair]
[-interface arg] [-quiet] [-verbose] name [negative_name]

Returns
List of port objects that were created

Usage
Name Description

-direction Direction of port. Valid arguments are IN, OUT and INOUT

[-from] Beginning index of new bus

[-to] Ending index of new bus

[-diff_pair] Create differential pair of ports

[-interface] Assign new port to this interface

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of the port

[negative_name] Optional negative name of a diff-pair

Categories
PinPlanning

Description
Creates a port and specifies such parameters as direction, width, single-ended or differential,
and optionally assigns it to an existing interface. New ports are added at the top-level of
the design hierarchy.

Bus ports can be created with increasing or decreasing bus indexes, using negative and
positive index values.

The create_port command can be used to create a new port in an I/O Planning project, or
while editing the netlist of an open Synthesized or Implemented design.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 187

Tcl Commands Listed Alphabetically

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Arguments
-direction - (Required) The direction of the port. Valid arguments are IN, OUT, and INOUT.

-from arg - (Optional) The beginning index of a new bus. A bus can start from a negative
index value.

-to arg - (Optional) The ending index of a new bus. A bus can end on a negative index value.

-diff_pair - (Optional) Create the specified port as a differential pair of ports. In this case both
a positive and negative side port will be created. If only name is specified, the positive side
port will be assigned the specified name, and the negative side port will be assigned name_N.
If both name and negative_name are specified, the positive side port will be assigned name,
and the negative side port will be assigned negative_name.

-interface arg - (Optional) Assign the port to the specified interface.

Note The interface must first be defined with the create_interface command.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the port to create. If -diff_pair is specified, name is assigned to
the positive side port, and the negative side port is name_N.

negative_name - (Optional) Use this option to specify the name of the negative side port
when -diff_pair is specified. In this case, name will be assigned to the positive side port, and
negative_name will be assigned to the negative side port.

Examples
The following example creates a new input port, named PORT0:
create_port -direction IN PORT0

The following example creates a new interface called Group1, and then creates a four-bit,
differential pair output bus utilizing the specified interface. Since the bus ports are defined
as differential pairs, and only name is specified, the negative side ports are automatically
named D_BUS_N:
create_interface Group1
create_port -direction OUT -from 0 -to 3 -diff_pair -interface Group1 D_BUS

Note This command results in the creation of eight ports: D_BUS[0] D_BUS_N[0] D_BUS[1]
D_BUS_N[1] D_BUS[2] D_BUS_N[2] D_BUS[3] D_BUS_N[3]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 188

Tcl Commands Listed Alphabetically

With only name specified, the following example creates differential pair output ports named
data and data_N.
create_port -direction OUT -diff_pair data

With both name and negative_name specified, the following example creates differential pair
output ports named data_P and data_N.
create_port -direction OUT -diff_pair data_P data_N

See Also
• create_interface
• make_diff_pair_ports
• place_ports
• remove_port
• resize_port_bus
• split_diff_pair_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 189

Tcl Commands Listed Alphabetically

create_project
Create a new project.

Syntax
create_project [-part arg] [-force] [-quiet] [-verbose] [name] [dir]

Returns
New project object

Usage
Name Description

[-part] Target part

[-force] Overwrite existing project directory

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[name] Project name

[dir] Directory where the project file is saved Default: .

Categories
Project

Description
Creates a project file (.xpr) in the specified directory.

Arguments
-part arg - (Optional) Specifies the Xilinx part to be used for the project. This can be changed
after the project is created. If the -part option is not specified, the default part will be used.

-force - (Optional) This option is required to overwrite an existing project. If the project name
is already define in the specified dir then you must also specify the -force option for the tool
to overwrite the existing project.

Note If the existing project is currently open in the tool, the new project will overwrite the
existing project on the disk, but both projects will be opened in the tool. In this case you
should probably run the close_project command prior to running create_project.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 190

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Optional) This argument does not require a parameter name, however, it must appear
before the specified dir. Since these commands do not have parameters, the tool interprets
the first argument as name and uses the second argument as dir. A project file is created
name.xpr , and a project data folder is also created name.data and both are written into
the specified directory dir.

Note The project file created by the tool is an RTL source file by default. You must use the
set_property command to set the DESIGN_MODE property to change the project from an RTL
source project to another type of project, such as an I/O Pin Planning project for instance.

dir - (Optional) This argument specifies the directory name to write the new project file into.
If the specified directory does not exist a new directory will be created. If the directory is
specified with the complete path, the tool uses the specified path name. However, if dir is
specified without a path, the tool looks for or creates the directory in the current working
directory, or the directory from which the tool was launched.

Note When creating a project in GUI-mode, the tool appends the filename name to the
directory name dir and creates a project directory with the name dir/name and places the new
project file and project data folder into that project directory.

Examples
The following example creates a project called Project1 in a directory called myDesigns:
create_project Project1 myDesigns

Note Because the dir is specified as the folder name only, the tool will create the project in the
current working directory, or the directory from which the tool was launched.

The following example creates a project called Proj1 in a directory called FPGA in C:/Designs.
In addition, the tool will overwrite an existing project if one is found to exist in the specified
location. In the second and third lines, the location of -force is changed to show the flexibility
of argument placement.
create_project Proj1 C:/Designs/FPGA -force
-or-
create_project Proj1 -force C:/Designs/FPGA
-or-
create_project -force Proj1 C:/Designs/FPGA

Note In all cases the first argument without a preceding keyword is interpreted as the name
variable, and the second argument without a preceding keyword is the dir variable.

The following example creates a new project called pin_project , and then sets the
design_mode property as required for an I/O Pin Planning project, and finally opens an IO
design:
create_project pin_project C:/Designs/PinPlanning
set_property design_mode PinPlanning [current_fileset]
open_io_design -name io_1

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 191

Tcl Commands Listed Alphabetically

See Also
• current_project
• set_property
• open_io_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 192

Tcl Commands Listed Alphabetically

create_property
Create property for class of objects(s).

Syntax
create_property [-type arg] [-quiet] [-verbose] name class

Returns
The property that was created if success, "" if failure

Usage
Name Description

[-type] Type of property to create; valid values are: string, int, long,
double, bool Default: string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of property to create

class Object type to create property for; valid values are: design,
net, cell, pin, port, pblock

Categories
PropertyAndParameter

Description
Creates a new property of the type specified with the user-defined name for the specified class
of objects. The property that is created can be assigned to an object of the specified class with
the set_property command, but is not automatically associated with all objects of that class.

The report_property -all command will not report the newly created property for an object of
the specified class until the property has been assigned to that object.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 193

Tcl Commands Listed Alphabetically

Arguments
-type arg - (Optional) The type of property to create. There are four allowed property types:
• string - Allows the new property to be defined with string values. This is the default

value when -type is not specified.
• int - Allows the new property to be defined with long integer values. If a decimal value is

specified for an int property type, the tool will return an error.
• double - Allows the new property value to be defined with a floating point number.

• bool - Allows the new property to be defined as a boolean with a true (1) or false (0) value.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the property to be defined. The name is case sensitive.

class - (Required) The class of object to assign the new property to. All objects of the specified
class will be assigned the newly defined property. Valid classes are: design, net, cell, pin,
port, and pblock.

Examples
The following example defines a property called PURPOSE for cell objects:
create_property PURPOSEcell

Note Because the -type was not specified, the value will default to strings.

The following example creates a pin property called COUNT which holds an Integer value:
create_property -type int COUNTpin

See Also
• get_property
• list_property
• list_property_value
• report_property
• reset_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 194

Tcl Commands Listed Alphabetically

create_run
Define a synthesis or implementation run for the current project.

Syntax
create_run [-constrset arg] [-parent_run arg] [-part arg] -flow arg
[-strategy arg] [-quiet] [-verbose] name

Returns
Run object

Usage
Name Description

[-constrset] Constraint fileset to use

[-parent_run] Synthesis run to link to new implementation run

[-part] Target part

-flow Flow name

[-strategy] Strategy to apply to the run

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name for new run

Categories
Project

Description
Defines a synthesis or implementation run. The attributes of the run can be configured with the
use of the set_property command.

Arguments
-constrset arg - (Optional) The constraint set to use for the synthesis or implementation run.

-parent_run arg - The synthesis run which the implementation run will implement. For an
RTL sources project, the parent_run must be specified for implementation runs, but is not
required for synthesis runs. For netlist-based projects the parent_run argument is not required
to define an implementation run.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 195

Tcl Commands Listed Alphabetically

-part partName - (Optional) The Xilinx part to be used for the run. If the -part option is not
specified, the default part defined for the project will be assigned as the part to use.

-flow arg - (Required) The tool flow and release version for the synthesis tool {Vivado Synthesis
2012} or the implementation tool {Vivado Implementation 2012}.

-strategy arg - (Optional) The strategy to employ for the synthesis or implementation run.
There are many different strategies to choose from within the tool, including custom strategies
you can define. Refer to the appropriate user guide for a discussion of the available synthesis
and implementation strategies. If the strategy argument is not specified, "Synthesis Defaults" or
"Implementation Defaults" will be used as appropriate.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the synthesis or implementation run to be created.

Examples
The following example creates a run named synth_1 referencing the Vivado synthesis tool flow:
create_run -flow {Vivado Synthesis 2013} synth_1

Note The defaults of sources_1, constrs_1, and the default part for the project will be used in
the synthesis run. In addition, since this is a synthesis run, the -parent_run argument is not
required.

The following example creates an implementation run based on the Vivado Implementation
2013 tool flow, and attaches it to the synth_1 synthesis run previously created:
create_run impl_2 -parent_run synth_1 -flow {Vivado Implementation 2013}

Note The -parent_run argument is required in this example because it is an implementation of
synthesized RTL sources.

See Also
• current_run
• launch_runs
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 196

Tcl Commands Listed Alphabetically

create_slack_histogram
Create Histogram.

Syntax
create_slack_histogram [-to args] [-delay_type arg] [-num_bins arg]
[-slack_less_than arg] [-slack_greater_than arg] [-group args]
[-report_unconstrained] [-significant_digits arg] [-scale arg]
[-name arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-to] To clock

[-delay_type] Type of path delay: Values: max, min, min_max Default:
max

[-num_bins] Maximum number of bins: Value >=1 Default: 10

[-slack_less_than] Display paths with slack less than this Default: 1e+30

[-slack_greater_than] Display paths with slack greater than this Default: -1e+30

[-group] Limit report to paths in this group(s)

[-report_unconstrained] Report unconstrained end points

[-significant_digits] Number of digits to display: Range: 0 to 3 Default: 3

[-scale] Type of scale on which to draw the histogram; Values:
linear, logarithmic Default: linear

[-name] Output the results to GUI panel with this name

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Create a slack histogram grouping paths into slack ranges, and displaying the results graphically.

This command provides a graphical slack histogram that requires the tool to be running in
GUI mode the -name argument to be used.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 197

Tcl Commands Listed Alphabetically

Arguments
-to args - (Optional) Specify a clock name, to analyze paths that end in the specified clock
domain.

-delay_type arg - (Optional) Specifies the type of path delay to analyze when creating the slack
report. The valid values are min, max, and min_max. The default setting for -delay_type is max.

-num_bins args - (Optional) Specify the number of slack bins to divide the results into. The
number of bins determines the granularity of the histogram returned. The range of slack values
calculated is divided evenly into the specified number of bins, and the paths are grouped
into the bins according to their slack values. The value can be specified as a number => 1,
with a default value of 10.

-slack_less_than arg - (Optional) Report slack on paths with a calculated slack value less
than the specified value. Used with -slack_greater_than to provide a range of slack values
of specific interest.

-slack_greater_than arg - (Optional) Report slack on paths with a calculated slack value
greater than the specified value. Used with -slack_less_than to provide a range of slack values
of specific interest.

-group args - (Optional) Report slack for paths in the specified path groups. Currently defined
path groups can be determined with the get_path_groups command.

-report_unconstrained - (Optional) Report delay slack on unconstrained paths. By default,
unconstrained paths are not analyzed.

-significant_digits arg - (Optional) The number of significant digits in the output results. The
valid range is 0 to 3. The default setting is 3 significant digits.

-scale [linear | logarithmic] - (Optional) Specify the Y-axis scale to use when presenting the
slack histogram. Logarithmic allows for a smoother presentation of greatly different values, but
linear is the default.

-name arg - (Optional) Specifies the name of the results set for the GUI. If the name specified is
currently opened, the create_slack_histogram will overwrite the current results.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example creates a slack histogram of the current design, using the default values,
and outputting the results to the named result set in the GUI:
create_slack_histogram -name slack1

See Also
• delete_timing_results
• get_path_groups
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 198

Tcl Commands Listed Alphabetically

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 199

Tcl Commands Listed Alphabetically

create_sysgen
Create DSP source for Xilinx System Generator and add to the source fileset.

Syntax
create_sysgen [-quiet] [-verbose] name

Returns
Name for the new sub module

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Sub module name

Categories
SysGen

Description
Create a DSP sub-module for use in the current project, and add it to the source files.

This command will launch System Generator for DSP to let you design the hardware portion of
the embedded processor system. System Generator is a DSP design tool from Xilinx that allows
the RTL source files, Simulink and MATLAB software models, and C/C++ components of a DSP
system to come together in a single simulation and implementation environment.

For more information on using specific features of the tool refer to System Generator for DSP
Getting Started Guide (UG639).

You can also add existing DSP model files (.mdl) from System Generator into the current project
using the add_files command.

The command returns the name of the DSP module created and added to the project.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 200

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the DSP module to create and add to the current project.

Examples
The following example launches System Generator and allows you to define and configure
the specified DSP module:
create_sysgen DSP_mod1

See Also
• add_files
• generate_target
• list_targets
• make_wrapper

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 201

Tcl Commands Listed Alphabetically

create_wave_config
Creates a new wave config.

Syntax
create_wave_config [-quiet] [-verbose] [name]

Returns
The new wave config

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[name] Creates a new wave configuration of the specified name,
or a default name if no name given. A new wave window
showing that WCFG is also created and made the current
wave window

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 202

Tcl Commands Listed Alphabetically

create_xps
Create embedded source for XPS and add to the source fileset.

Syntax
create_xps [-quiet] [-verbose] name

Returns
Source file name that was created

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Source name

Categories
XPS

Description
Create an Embedded Processor source for use in the current project, and add it to the source
files.

This command will launch the Xilinx Platform Studio (XPS) to let you design the hardware
portion of the embedded processor system. In XPS you can define and configure the
microprocessor, peripherals, and the interconnection of these components. After you exit XPS,
the created files for the Embedded Processor sub-design will be written to the local project
directory (project_name.srcs/sources_1/edk/name), and added to the source files.

For more information on using specific features of XPS refer to EDK Concepts, Tools, and
Techniques (UG683).

You can also add existing Xilinx Microprocessor Project (.xmp) files from XPS in the current
project using the add_files command.

The command returns the name of the Embedded Processor sub-design created.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 203

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the Embedded Processor sub-design to create and add to
the current project.

Examples
The following example launches XPS to define and configure the specified Embedded Processor
sub-design:
create_xps xpsTest1

See Also
• add_files
• generate_target
• list_targets
• make_wrapper

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 204

Tcl Commands Listed Alphabetically

current_bd_design
Set or get current design.

Syntax
current_bd_design [-quiet] [-verbose] [design]

Returns
The current design object, "" if failed

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[design] Name of current design to be set

Categories
IPIntegrator

Description
Defines the current IP subsystem design for use with the IP Integrator feature of the Vivado
Design Suite, or returns the name of the current design in the active project.

The current IP subsystem design and current IP subsystem instance are the target of most of
the IP integrator Tcl commands and design changes made in the tool. The current IP subsystem
instance can be defined using the current_bd_instance command.

You can use the get_bd_designs command to get a list of open IP subsystem designs in the
active project.

A complete list of IP integrator Tcl commands can be returned using the following command
from the Vivado Design Suite Tcl shell:
load_features IPIntegrator
help -category IPintegrator

Note The load_features command is only needed if the IP Integrator feature is not currently
loaded in the Vivado Design Suite.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 205

Tcl Commands Listed Alphabetically

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

design - (Optional) The name of an IP subsystem design to set as the current design in the IP
Integrator. If a design is not specified, the command returns the current IP subsystem design
of the active project.

Examples
The following example sets the IP subsystem design as the current design:
current_design design_1

See Also
• get_bd_designs
• open_bd_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 206

Tcl Commands Listed Alphabetically

current_bd_instance
Set or get current cell instance.

Syntax
current_bd_instance [-quiet] [-verbose] [instance]

Returns
The current cell instance object, "" if failed

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[instance] Name of current cell instance to be set

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 207

Tcl Commands Listed Alphabetically

current_board
Get the current board object.

Syntax
current_board [-quiet] [-verbose]

Returns
Current board object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Object, Project, Board

Description
Return the board in use in the current project.

The board file, board.xml located in the data/boards folder of the Vivado Design
Suite installation area, stores information regarding board attributes. The board provides a
representation of the overall system that the Xilinx device is a part of, and can help define key
aspects of the FPGA design, such as clock constraints, I/O port assignments, and supported
interfaces.

The board is specified as part of a Targeted Reference Design, when the project is defined; or by
setting the BOARD property on the current project as shown in the example; or by selecting the
Project Device in the Project Settings dialog box in the Vivado IDE. Refer to the Vivado Design
Suite User Guide: Using the Vivado IDE (UG893) for more information on project settings.

Important! When you specify the board with the set_property command, the target part is also
changed to match the part required by the specified BOARD property.

The current_board command returns the Vendor:Library:Name:Version attributes of the
current board. The command returns nothing when the project targets a Xilinx FPGA device
instead of a TRD and board, or when the BOARD property has not been defined.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 208

Tcl Commands Listed Alphabetically

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Example
The following example sets the BOARD property for the current project, then reports the
board in use by the project:
set_property board xilinx.com:kintex7:kc705:1.0 [current_project]
current_board

xilinx.com:kintex7:kc705:1.0

This example shows the results of setting the BOARD property, causing the target part to be
changed as a result. The target part is changed automatically, and a warning is returned:
set_property board xilinx.com:artix7:ac701:1.0 [current_project]

WARNING: [Project 1-153] The current project part 'xc7k325tffg900-2' does
not match with the 'XILINX.COM:ARTIX7:AC701:1.0' board part settings. The
project part will be reset to 'XILINX.COM:ARTIX7:AC701:1.0' board part.
INFO: [Project 1-152] Project part set to artix7 (xc7a200tfbg676-2)

Note You can use the report_property command to check the BOARD and PART property
on the current_project to see the changes

See Also
• current_project
• get_board_interfaces
• get_board_pins
• get_boards
• report_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 209

Tcl Commands Listed Alphabetically

current_design
Set or get the current design.

Syntax
current_design [-quiet] [-verbose] [design]

Returns
Design object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[design] Name of current design to be set

Categories
SDC, XDC

Description
Defines the current design or returns the name of the current design in the active project.

The current design and current instance are the target of most Tcl commands, design edits
and constraint changes made in the tool. The current instance can be defined using the
current_instance command.

You can use the get_designs command to get a list of open designs in the active project, and
use the get_projects command to get a list of open projects.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

design - (Optional) The name of design to set as the current design. If a design is not specified,
the command returns the current design of the active project.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 210

Tcl Commands Listed Alphabetically

Examples
The following example sets the design rtl_1 as the current design:
current_design rtl_1

See Also
• current_instance
• get_designs
• get_projects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 211

Tcl Commands Listed Alphabetically

current_fileset
Get the current fileset (any type) or set the current fileset (applicable to simulation filesets only).

Syntax
current_fileset [-constrset] [-simset] [-quiet] [-verbose] [fileset ...]

Returns
Current fileset (the current srcset by default)

Usage
Name Description

[-constrset] Get the current constraints fileset

[-simset] Get the current active simulation fileset

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[fileset] Specify the simulation fileset to set as current (active);
optional

Categories
Project

Description
Get the active source, constraint, or simulation fileset within the current project.

When used without any options, current_fileset sets and returns the sources_1 set as the active
fileset.

This command can also be used to set the current simulation fileset.

Note Use set_property CONSTRSET to define the active constraint set on a synthesis or
implementation run

Arguments
-constrset - (Optional) Return the currently active constraint set.

-simset - (Optional) Return or set the currently active simulation fileset.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 212

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

fileset - (Optional) The name of the simulation fileset to make active. This argument sets the
active simulation fileset in projects with multiple filesets. When fileset is not specified, the
sources_1 fileset is returned as the active fileset.

Examples
The following example returns the name of the currently active constraint fileset:
current_fileset -constrset

The following example sets sim_2 as the active simulation set:
current_fileset -simset sim_2

See Also
• create_fileset
• delete_fileset
• get_filesets

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 213

Tcl Commands Listed Alphabetically

current_hw_device
Get or set the current hardware device.

Syntax
current_hw_device [-quiet] [-verbose] [hw_device]

Returns
Hardware device

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_device] hardware device to set as current; optional

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 214

Tcl Commands Listed Alphabetically

current_hw_ila
Get or set the current hardware ILA.

Syntax
current_hw_ila [-quiet] [-verbose] [hw_ila]

Returns
Hardware ILA

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_ila] hardware ILA

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 215

Tcl Commands Listed Alphabetically

current_hw_ila_data
Get or set the current hardware ILA data.

Syntax
current_hw_ila_data [-quiet] [-verbose] [hw_ila_data]

Returns
Hardware ILA data

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_ila_data] hardware ILA data

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 216

Tcl Commands Listed Alphabetically

current_hw_server
Get or set the current hardware server.

Syntax
current_hw_server [-quiet] [-verbose] [hw_server]

Returns
Hardware server

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_server] hardware server

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 217

Tcl Commands Listed Alphabetically

current_hw_target
Get or set the current hardware target.

Syntax
current_hw_target [-quiet] [-verbose] [hw_target]

Returns
Hardware target

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_target] hardware target

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 218

Tcl Commands Listed Alphabetically

current_instance
Set or get the current instance.

Syntax
current_instance [-quiet] [-verbose] [instance]

Returns
Instance name

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[instance] Name of instance

Categories
SDC, XDC

Description
Set the current instance in the design hierarchy to the specified instance cell or to the top
module. By default, current_instance points to the top module of the current_design, which is
not an instantiated cell object. You can also set current_instance to reference an instantiated
hierarchical cell in the design.

Since the top module is not an instantiated object, this command returns a string with the
name of the current instance, rather than an object.

The current design and current instance are the target of most of the commands and design
changes you will make. The current design can be defined using the current_design command.

You must specify the instance name relative to the currently defined instance, and use the
established hierarchy separator to define instance paths. You can determine the current
hierarchy separator with the get_hierarchy_separator command.

Use '..' to traverse up the hierarchical instance path when specifying the current instance.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 219

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

instance - (Optional) The name of the instance to be set as the current instance of the current
design.

• The instance is specified relative to the presently defined current instance, using the defined
hierarchy separator.

• Use '..' to move up one level of the hierarchy relative to the current instance.

• If the instance argument is omitted, the current instance is reset to the top module in
the design hierarchy.

• If the instance is specified as '.' then the name of the current instance is returned, and the
instance is not changed.

Examples
The following example sets the current instance to the top module of the current design:
current_instance

INFO: [Vivado 12-618] Current instance is the top level of design 'netlist_1'.
top

The following example first sets the hierarchy separator character, and then sets the current
instance relative to the presently defined current instance:
set_hierarchy_separator |
current_instance ..|cpu_iwb_dat_o|buffer_fifo

The following example returns the name of the presently defined current instance:
current_instance .
cpuEngine|cpu_iwb_dat_o|buffer_fifo

See Also
• current_design
• get_hierarchy_separator
• set_hierarchy_separator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 220

Tcl Commands Listed Alphabetically

current_project
Set or get current project.

Syntax
current_project [-quiet] [-verbose] [project]

Returns
Current or newly set project object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[project] Project to set as current

Categories
Project

Description
Specifies the current project or returns the current project when no project is specified.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

project - (Optional) The name of the project to make current. This command can be used prior
to the close_project to make a specific project active and then to close the project.

Examples
The following example sets project_2 as the current project:
current_project project_2

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 221

Tcl Commands Listed Alphabetically

This command makes the current project the focus of all the tool commands. In the GUI mode,
the current project is defined automatically when switching the GUI between projects.

The following example returns the name of the current project in the tool:
current_project

Note The returned value is the name of the project and not the name or path of the project file.

See Also
• close_project
• current_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 222

Tcl Commands Listed Alphabetically

current_run
Set or get the current run.

Syntax
current_run [-synthesis] [-implementation] [-quiet] [-verbose] [run]

Returns
Run object

Usage
Name Description

[-synthesis] Set or get the current synthesis run

[-implementation] Set or get the current implementation run (default unless
'-synthesis' is specified)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[run] Run to set as current; optional

Categories
Project

Description
Defines the current synthesis or implementation run, or returns the name of the current
run. The current run is the one automatically selected when the Synthesize or Implement
commands are launched.

You can use the get_runs command to determine the list of defined runs in the current design.

Arguments
-synthesis - (Optional) Specifies that the current_run command should set or return the
name of the current synthesis run.

-implementation - (Optional) Specifies that the current_run command should set or return
the name of the current implementation run. This is the default used when neither -synthesis
or -implementation are specified.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 223

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

run - (Optional) Sets the name of the synthesis or implementation run to make the current run.

Examples
The following example defines the synth_1 run as the current_run:
current_run synth_1

Note The -synthesis and -implementation arguments are not required because the name
allows the tool to identify the specific run of interest.

The following command returns the name of the current implementation run:
current_run -implementation -quiet

See Also
• create_run
• get_runs
• launch_runs

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 224

Tcl Commands Listed Alphabetically

current_scope
Get the current scope or set the current scope.

Syntax
current_scope [-quiet] [-verbose] [hdl_scope]

Returns
The current scope

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hdl_scope] Default: NULL

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 225

Tcl Commands Listed Alphabetically

current_sim
Set the current simulation object or get the current simulation object.

Syntax
current_sim [-quiet] [-verbose] [simulationObject]

Returns
Returns the current simulation object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[simulationObject] Simulation Object to set the current simulation object to
Default: NULL

Categories
Simulation

Description
Returns the name of the current Vivado simulation.

This command can be used after the Vivado simulator has been launched to return the
simulation name.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the name of the current simulation:
current_sim

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 226

Tcl Commands Listed Alphabetically

See Also
• close_sim
• launch_xsim

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 227

Tcl Commands Listed Alphabetically

current_time
Report current simulation time.

Syntax
current_time [-quiet] [-verbose]

Returns
Prints the current simulation time on the console in textual format

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 228

Tcl Commands Listed Alphabetically

current_wave_config
Gets the current WCFG object and sets it to the specified WCFG object if given.

Syntax
current_wave_config [-quiet] [-verbose] [wcfgObj]

Returns
Returns the new or current wave configuration object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[wcfgObj] Sets the current WCFG object to the given value of
wcfgObj. Defaults to current

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 229

Tcl Commands Listed Alphabetically

data2mem
Data to memory translation.

Syntax
data2mem [-bd arg] [-bm arg] [-bt arg] [-bx arg] [-d arg] [-i]
[-o arg] [-ofmt arg] [-p arg] [-u] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-bd] Input ELF or MEM files

[-bm] Input Block RAM Memory Map (BMM) file

[-bt] Input bitstream (BIT) file

[-bx] File path to output individual memory device MEM files for
performing HDL simulations.

[-d] Dump mode Default: r

[-i] Ignore ELF or MEM data that is outside the address space
defined in BMM file

[-o] Output file

[-ofmt] Output format (.ucf/.v/.vhd/.bit/.dmp)

[-p] Input target part

[-u] Update -o text output files for all address spaces, even if
no data has been transformed into an address space

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 230

Tcl Commands Listed Alphabetically

delete_bd_objs
Delete specified objects.

Syntax
delete_bd_objs [-quiet] [-verbose] objects ...

Returns
Pass if successful in deleting objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects The objects to be deleted

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 231

Tcl Commands Listed Alphabetically

delete_clock_networks_results
Clear a set of clock networks results from memory.

Syntax
delete_clock_networks_results [-quiet] [-verbose] name

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name for the set of results to clear

Categories
Report

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 232

Tcl Commands Listed Alphabetically

delete_debug_core
Delete a debug core.

Syntax
delete_debug_core [-quiet] [-verbose] cores ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
cores Debug cores to delete

Categories

Description
Removes debug cores from the current project that were added by the create_debug_core
command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

cores - (Required) One or more debug core names to remove from the current project.

Examples
The following command deletes the myCore debug core from the current project:
delete_debug_core myCore

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 233

Tcl Commands Listed Alphabetically

The following command deletes all debug cores from the current project:
delete_debug_core [get_debug_cores]

Note The get_debug_cores command returns all debug cores as a default.

See Also
• create_debug_core
• get_debug_cores

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 234

Tcl Commands Listed Alphabetically

delete_debug_port
Delete debug port.

Syntax
delete_debug_port [-quiet] [-verbose] ports ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

ports Debug ports to delete

Categories

Description
Deletes ports from ChipScope debug cores in the current project. You can disconnect a signal
from a debug port using disconnect_debug_port, or remove the port altogether using this
command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ports - (Required) The core_name/port_name of the debug port to be removed from the core.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 235

Tcl Commands Listed Alphabetically

Examples
The following example deletes the DATA port from myCore:
delete_debug_port myCore/DATA

Note Some ports cannot be deleted because an ILA port requires one CLK port and one
TRIG port as a minimum.

The following example deletes the trigger ports (TRIG) from the myCore debug core:
delete_debug_port [get_debug_ports myCore/TRIG*]

Note This example will not delete all TRIG ports from myCore, because an ILA core must have
at least one TRIG port. The effect of this command will be to delete the TRIG ports starting at
TRIG0 and removing all of them except the last port.

See Also
• disconnect_debug_port
• get_debug_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 236

Tcl Commands Listed Alphabetically

delete_drc_check
Delete one or more user-defined drc checks.

Syntax
delete_drc_check [-quiet] [-verbose] name...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Specify the key for the check to remove. This is the

typically of the form PREFIX-id where PREFIX is a 4-6
letter abbreviation and id is a unique identifier. Use
get_drc_checks to determine the correct name to use. Only
user-defined rules may be deleted.

Categories
DRC, Object

Description
Delete a single user-defined design rule checks from the current project. User-defined design
rule checks are created using the create_drc_checks command.

Note You cannot delete factory defined rule checks.

Once it has been deleted there is no way to recover a rule check. The undo command will
not work.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 237

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) Specify the name of a user-defined design rule check to be deleted from
the current project.

Examples
The following example deletes the specified design rule check:
delete_drc_check LJH-1

See Also
create_drc_check

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 238

Tcl Commands Listed Alphabetically

delete_drc_ruledeck
Delete one or more user defined drc rule deck objects.

Syntax
delete_drc_ruledeck [-regexp] [-nocase] [-filter arg] [-quiet]
[-verbose] [patterns]

Returns
Drc_ruledeck

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'drc_ruledeck' objects against patterns. Default: *

Categories
DRC, Object

Description
Delete one or more user-defined drc_ruledeck objects from the current project. The rule deck
does not have to be empty to be deleted, and once it is deleted there is no way to recover
it. The undo command will not restore a deleted rule deck.

Note You cannot delete factory defined rule decks.

A rule deck is a collection of design rule checks grouped for convenience, to be run with the
report_drc command at different stages of the FPGA design flow, such as during I/O planning
or placement. The tool comes with a set of factory defined rule decks, but you can also create
new user-defined rule decks with the create_drc_ruledeck command.

Note This command operates silently and does not return direct feedback of its operation.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 239

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.
-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by the search pattern, based on specified property values. You
can find the properties on an object with the report_property or list_property commands.
The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Delete the drc_ruledeck objects that match the specified patterns. The
default pattern is the wildcard '*' which deletes all user-defined rule decks from the current
project. More than one pattern can be specified to delete multiple rule decks based on
different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example deletes all user-defined rule decks from the current project:
delete_drc_ruledeck

See Also
• create_drc_ruledeck
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 240

Tcl Commands Listed Alphabetically

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 241

Tcl Commands Listed Alphabetically

delete_fileset
Delete a fileset.

Syntax
delete_fileset [-merge arg] [-quiet] [-verbose] fileset

Returns
Nothing

Usage
Name Description

[-merge] Fileset to merge files from the deleted fileset into

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

fileset Fileset to be deleted

Categories
Project, Simulation

Description
Deletes the specified fileset. However, if the fileset cannot be deleted, then no message is
returned.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

fileset - (Required) The name of the fileset to delete. The last constraint or simulation fileset will
not be deleted, and no error will be returned under these circumstances.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 242

Tcl Commands Listed Alphabetically

Examples
The following example deletes the sim_2 fileset from the current project.
delete_fileset sim_2

Note The fileset and all of its files are removed from the project. The files are not removed
from the hard drive.

See Also
• create_fileset
• current_fileset

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 243

Tcl Commands Listed Alphabetically

delete_interface
Delete I/O port interfaces from the project.

Syntax
delete_interface [-all] [-quiet] [-verbose] interfaces ...

Returns
Nothing

Usage
Name Description

[-all] Also remove all of the ports and buses belonging to the
interface

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

interfaces I/O port interfaces to remove

Categories
PinPlanning

Description
Deletes an existing interface and optionally deletes all of the associated ports and buses
using the interface.

Arguments
-all - (Optional) Delete all ports, buses, or nested interfaces associated with the specified
interface.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

interfaces - (Required) The name of interfaces to delete.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 244

Tcl Commands Listed Alphabetically

Examples
The following example deletes the specified interface and all of its associated ports and buses:
delete_interface USB0

See Also
• create_interface
• create_port

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 245

Tcl Commands Listed Alphabetically

delete_macros
Delete a list of macros.

Syntax
delete_macros [-quiet] [-verbose] macros

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
macros Macros to delete

Categories
XDC

Description
Create a new relatively placed macro, similar to that created by the RPM property.

New cell instances can be added to the top-level of the design, or hierarchically within any
module of the design. Instances can reference an existing cell from the library or design source
files, or a black box instance can be added that reference cells that have not yet been created.

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

This command returns the name of the created cell instance or instances.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 246

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) Specify the name of the macro to create.

Examples
The following example creates a macro called :
create_macro

See Also
• remove_cell
• set_hierarchy_separator
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 247

Tcl Commands Listed Alphabetically

delete_pblock
Remove Pblock.

Syntax
delete_pblock [-hier] [-quiet] [-verbose] pblocks ...

Returns
Nothing

Usage
Name Description

[-hier] Also delete all the children of Pblock

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pblocks Pblocks to delete

Categories
Floorplan, XDC

Description
Deletes the specified Pblocks from the design. Pblocks are created using the create_pblock
command.

Arguments
-hier - (Optional) Specifies that Pblocks nested inside the specified Pblock should also be
deleted. If the parent Pblock is deleted without the -hier option specified, the nested Pblocks
will simply be moved up one level.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pblocks - (Required) One or more Pblocks to be deleted.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 248

Tcl Commands Listed Alphabetically

Examples
The following example deletes the specified Pblock as well as any Pblocks nested inside:
delete_pblock -hier cpuEngine

See Also
create_pblock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 249

Tcl Commands Listed Alphabetically

delete_power_results
Delete power results that were stored in memory under a given name.

Syntax
delete_power_results -name arg [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

-name Name for the set of results to clear

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Power

Description
Deletes the power analysis results for the specified results set.

Note This command operates silently and does not return direct feedback of its operation

Arguments
-name arg - (Required) The name of the results set to delete. This name was either explicitly
defined, or was automatically defined when the report_power command was run.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 250

Tcl Commands Listed Alphabetically

Examples
The following example runs power analysis, and then clears the results:
report_power -name my_set
delete_power_results -name my_set

See Also
• power_opt_design
• report_power
• reset_switching_activity
• set_switching_activity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 251

Tcl Commands Listed Alphabetically

delete_rpm
Delete an RPM.

Syntax
delete_rpm [-quiet] [-verbose] rpm

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
rpm RPM to delete

Categories
Floorplan

Description
Deletes the specified Relationally Placed Macro (RPM) from the design.

An RPM is a list of logic elements (FFS, LUT, CY4, RAM, etc.) collected into a set (U_SET, H_SET,
and HU_SET). The placement of each element within the set, relative to other elements of
the set, is controlled by Relative Location Constraints (RLOCs). Logic elements with RLOC
constraints and common set names are associated in an RPM. Refer to the Constraints Guide
(UG625) for more information on defining these constraints.

Only user-defined RPMs can be deleted from the design. RPMs defined by the hierarchy or
defined in the netlist cannot be deleted by this command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 252

Tcl Commands Listed Alphabetically

rpm - (Required) The RPM to be deleted.

Examples
The following example deletes the specified RPM (cs_ila_0/U0) from the design:
delete_rpm cs_ila_0/U0

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 253

Tcl Commands Listed Alphabetically

delete_run
Delete an existing run.

Syntax
delete_run [-noclean_dir] [-quiet] [-verbose] run

Returns
Nothing

Usage
Name Description

[-noclean_dir] Do not remove all output files and directories from disk

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
run Run to modify

Categories
Project

Description
Deletes the specified run from the project, and deletes all results of the run from the project
directory on the hard drive unless otherwise specified.

Arguments
-noclean_dir - Do not delete the run results from the hard drive. The run will be deleted from
the project, but the run files will remain in the project directory.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

run - (Required) The name of the synthesis or implementation run to delete from the project.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 254

Tcl Commands Listed Alphabetically

Examples
The following example deletes the first_pass run from the project:
delete_run first_pass

Note In this example, all run results will also be removed from the project directory on the
hard drive.

The following command deletes the first_pass run, but leaves the run results on the hard drive:
delete_run -noclean_dir first_pass

See Also
• create_run
• current_run

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 255

Tcl Commands Listed Alphabetically

delete_timing_results
Clear a set of timing results from memory.

Syntax
delete_timing_results [-type arg] [-quiet] [-verbose] name

Returns
Nothing

Usage
Name Description

[-type] Type of timing results to clear; Values: timing_path,
slack_histogram, clock_interaction, check_timing,
pulse_width, timing_summary

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name for the set of results to clear

Categories
Report, Timing

Description
Clear the specified timing results from the named result set. Both the type of the timing report,
and the name of the timing report must be specified, or the command will fail.

Arguments
-type arg - (Optional) Specifies the type of timing results to be cleared. The available types are:
• timing_path - Delete the named report_timing report.
• slack_histogram - Delete the named create_slack_histogram report.
• clock_interaction - Delete the named report_clock_interaction report.
• check_timing - Delete the named check_timing report.
• pulse_width - Delete the named report_pulse_width report.
• timing_summary - Delete the named report_timing_summary report.

Note The default -type is timing_path, to delete reports generated by the report_timing
command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 256

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

-name arg - (Required) Specifies the name of the timing results to be cleared.

Examples
The following example clears the specified results set from memory:
delete_timing_results -type clock_interaction -name clkNets

See Also
• check_timing
• create_slack_histogram
• report_clock_interaction
• report_pulse_width
• report_timing
• report_timing_summary

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 257

Tcl Commands Listed Alphabetically

delete_utilization_results
Delete utilization results that were stored in memory under a given name.

Syntax
delete_utilization_results -name arg [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

-name Name for the set of results to clear

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Clear the specified utilization results from the named result set.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

-name arg - (Required) Specifies the name of the results to be cleared.

Examples
The following example clears the specified results set from memory:
delete_utilization_results -name SSO1

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 258

Tcl Commands Listed Alphabetically

See Also
report_utilization

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 259

Tcl Commands Listed Alphabetically

describe
Describe an HDL object (variable, signal, wire, or reg) by printing type and declaration
information.

Syntax
describe [-quiet] [-verbose] hdl_object

Returns
The description of the selected objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hdl_object The hdl_object or hdl_scope to describe

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 260

Tcl Commands Listed Alphabetically

disconnect_bd_intf_net
Disconnect an intf_net.

Syntax
disconnect_bd_intf_net [-quiet] [-verbose] intf_net objects ...

Returns
0 if successful, error otherwise

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

intf_net The IntfNet that the objects connect to

objects The objects to disconnect from the intf_net

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 261

Tcl Commands Listed Alphabetically

disconnect_bd_net
Disconnect a net from the object.

Syntax
disconnect_bd_net [-quiet] [-verbose] net objects ...

Returns
0 if successful, error otherwise

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

net The Net that the objects connect to

objects The objects to disconnect from the net

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 262

Tcl Commands Listed Alphabetically

disconnect_debug_port
Disconnect nets and pins from debug port channels.

Syntax
disconnect_debug_port [-channel_index arg] [-quiet] [-verbose] port

Returns
Nothing

Usage
Name Description

[-channel_index] Disconnect the net at channel index

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

port Debug port name

Categories

Description
Disconnect signals from the debug ports.

Signals from the Netlist Design are connected to ports of a ChipScope debug core using the
connect_debug_port command.

A port can also be deleted from the debug core rather than simply disconnected by using
the delete_debug_port command.

If you need to determine the specific name of a port on a debug core, use the get_debug_ports
command to list all ports on a core. You can also use the report_debug_core command to list
all of the cores in the projects, and their specific parameters.

Arguments
-channel_index value - (Optional) The channel index of the port to disconnect.

Note The entire port is disconnected if channel_index is not specified.

port - (Required) The name of the port on the debug core to disconnect. The port name must
be specified as core_name/port_name. See the examples below.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 263

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example disconnects only the specified channel index from the TRIG0 port
of myCore:
disconnect_debug_port -channel_index 2 myCore/TRIG0

If you do not specify the channel_index, all of the channels of the specified port will be
disconnected, as in the following example:
disconnect_debug_port myCore/TRIG0

See Also
• connect_debug_port
• delete_debug_port
• get_debug_ports
• report_debug_core

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 264

Tcl Commands Listed Alphabetically

disconnect_hw_server
Close a connection to a hardware server.

Syntax
disconnect_hw_server [-quiet] [-verbose] [hw_server]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_server] hardware server Default: current hardware server

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 265

Tcl Commands Listed Alphabetically

disconnect_net
Disconnect a net from pins or ports.

Syntax
disconnect_net [-prune] -net arg -objects args [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-prune] When performing hierarchical disconnect (-hier), remove
pins and ports which are left unconnected as a result of
the disconnect_net operation.

-net Net to disconnect

-objects List of pins or ports to disconnect

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Netlist

Description
This command allows the user to disconnect a specified net from one or more pins or ports in
the netlist of an open Synthesized or Implemented Design.

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Arguments
-prune - (Optional) Remove pins or ports that are left unconnected after disconnecting the
specified nets.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 266

Tcl Commands Listed Alphabetically

-net arg - (Required) Specifies the net to disconnect.

Note Although you can create a bus using the -bus_from and -bus_to arguments of
the create_net command, you must disconnect each bit of the bus separately using the
disconnect_net command

-objects args - (Required) The list of pin or port objects to disconnect the net from.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Example
The following example disconnects the specified bit of the dataBus:
disconnect_net -net dataBus[1] -objects {dataIN[1] myDMA/data[1]}

See Also
• connect_net
• remove_net
• create_net
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 267

Tcl Commands Listed Alphabetically

display_hw_ila_data
Display hardware ILA data in viewer.

Syntax
display_hw_ila_data [-wcfg arg] [-reset] [-quiet] [-verbose]
[hw_ila_data ...]

Returns
Nothing

Usage
Name Description

[-wcfg] Use alternate wave config file

[-reset] Reset wave config file to default configuration

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_ila_data] List of hardware ILA data objects. Default: Current
hardware ILA data

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 268

Tcl Commands Listed Alphabetically

display_hw_sio_scan
Display an existing hardware SIO scan.

Syntax
display_hw_sio_scan [-quiet] [-verbose] hw_sio_scans

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_scans hardware SIO scans

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 269

Tcl Commands Listed Alphabetically

endgroup
End a set of commands that can be undone/redone as a group.

Syntax
endgroup [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
GUIControl

Description
Ends a sequence of commands that can be undone or redone as a series. Use startgroup to
start the sequence of commands.

Note You can have multiple command groups to undo or redo, but you cannot nest command
groups. You must use endgroup to end a command sequence before using startgroup to
create a new command sequence

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 270

Tcl Commands Listed Alphabetically

Examples
The following example defines a startgroup, executes a sequence of related commands, and
then executes the endgroup. This sequence of commands can be undone as a group:
startgroup
create_pblock pblock_wbArbEngine
create_pblock pblock_usbEng
add_cells_to_pblock pblock_wbArbEngine [get_cells [list wbArbEngine]] -clear_locs
add_cells_to_pblock pblock_usbEng [get_cells [list usbEngine1/usbEngineSRAM]] -clear_locs
endgroup

See Also
• startgroup
• redo
• undo

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 271

Tcl Commands Listed Alphabetically

export_hardware
Export system hardware platform for SDK.

Syntax
export_hardware [-bitstream] [-dir arg] [-quiet] [-verbose] files
[run]

Returns
Nothing

Usage
Name Description

[-bitstream] Export bitstream data to SDK export directory

[-dir] Export directory

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files Source files for which the hardware data needs to be
exported

[run] Current implementation run

Categories
XPS

Description
Export hardware for use in software development.

Export the Embedded Processor system hardware platform for use by SDK to support the
design of software for the embedded processor sources in your project. Specify the embedded
processor XPS project files to export to SDK.

As a default, the tool will write the hardware specification file (.xml) for the specified
embedded processors to the project_name.sdk/SDK/SDK_Export/hw directory, to a file
named after the embedded processor in the design, with the .XML extension.

This is a copy of the system.xml file in the embedded processor directory of the project design
sources located at: project_name.srcs/sources_1/edk/robot/__xps/ . The system.xml
file contains a description of the embedded processor, and the components of the XPS design.

The output of the export_hardware command can be redirected to a user-defined directory
with the -dir option. The output of the command can be used to invoke SDK with the
launch_sdk command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 272

Tcl Commands Listed Alphabetically

The command returns a transcript of the export process.

export_hardware -bitstream [get_files *.xmp] # Exports hardware design for the XMP source
export_hardware -bitstream [get_files *.bd] # Exports hardware design for the BD source

Arguments
-bitstream - (Optional) Export the bitstream and BMM model data for the Embedded Processor,
in addition to the hardware specification file.

Note The tool will return an error if the bitstream file does not exist

-dir arg - (Optional) Export directory. By default the hardware files will be written to the local
project directory, under project_name.sdk/SDK/SDK_Export/hw.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Required) A files object that contains the list of XPS project files (.xmp) to export.

Note Use get_files to specify a files object, rather than specifying a file name.

run - (Optional) Specify an implementation run to export.

Examples
The following example exports the Embedded Processor design to the standard SDK export
directory, and includes the Bitstream and BMM model data:
export_hardware -bitstream [get_files *.xmp]

See Also
• create_xps
• generate_target
• get_files
• launch_sdk

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 273

Tcl Commands Listed Alphabetically

filter
Filter a list, resulting in new list.

Syntax
filter [-regexp] [-nocase] [-quiet] [-verbose] [objects] [filter]

Returns
New list

Usage
Name Description

[-regexp] Operators =~ and !~ use regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] List of objects to filter

[filter] Filter list with expression

Categories
Object, PropertyAndParameter, XDC

Description
Takes a list of objects, and returns a reduced list of objects that match the specified filter
search pattern.

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 274

Tcl Commands Listed Alphabetically

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) A list of objects that should be filtered to reduce the set to the desired
results. The list of objects can be obtained by using one of the many get_* commands such as
get_parts.

filter - (Optional) The expression to use for filtering. The specified pattern filters the list of
objects returned based on property values on the objects. You can find out which properties
are on an object with the report_property or list_property command. Any property/value pair
can be used as a filter. In the case of the "part" object, "DEVICE", "FAMILY" and "SPEED" are
some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

Examples
The following example returns a list of parts filtered for the specified speed grade:
filter [get_parts] {speed == -3}

The following example filters parts based according to speed grade -3 OR speed grade -2. All
parts matching either speed grade will be returned.
filter [get_parts] {speed == -3 || speed == -2}

The following example uses regular expression and returns a list of VStatus ports in the
design, with zero or more wildcards, and the numbers 0 to 9 appearing one or more times
within square brackets:
filter -regexp [get_ports] {NAME =~ VStatus.*\[[0-9]+\]}

See Also
• get_parts

• get_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 275

Tcl Commands Listed Alphabetically

find_bd_objs
Find a list of pins, ports or interfaces with a given relationship to the given object.

Syntax
find_bd_objs -relation arg [-quiet] [-verbose] objects ...

Returns
List of pins, ports or interface objects, "" if failed

Usage
Name Description

-relation Relation to the input objs: CONNECTED_TO,
ADDRESSABLE_SLAVE, ADDRESSING_MASTER.
CONNECTED_TO will find corresponding pins, ports or
interfaces that are connected to the given source objects,
across subsystem boundaries.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects Oee or more source object to start finding from

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 276

Tcl Commands Listed Alphabetically

find_top
Find top module candidates in the supplied files, fileset, or active fileset. Returns a rank
ordered list of candidates.

Syntax
find_top [-fileset arg] [-files args] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-fileset] Fileset to parse to search for top candidates

[-files] Files to parse to search for top candidates

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Find the most likely candidates for the top module in the files defined in the current fileset, or
in the specified fileset, or in the specified list of files.

The command returns an ordered list of modules that the tool identifies as the best candidates
for the top-level of the design. You can use the lindex command, and choose index 0 to
select the best candidate for the top module.

Arguments
-fileset arg - (Optional) Search the specified simulation or source fileset for top module
candidates. The default is to search the current fileset of the current design.

-files arg - (Optional) Find the top module candidates in the specified list of files.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 277

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example chooses the best top module of the current design for synthesis:
synth_design -top [lindex [find_top] 0]

Note Since find_top returns multiple possible candidates, choosing index 0 chooses the best
top candidate for synthesis.

The following example returns the best top module candidate from the specified list of files:
find_top -files [get_files -filter {NAME =~ *or1200*}]

The following example sets the results of find_top into the variable $topVar, then uses that
variable to define the top module in the current fileset using the set_property command:
set topVar [find_top -files [get_files -filter {NAME =~ *usbf*}]]
usbf_top
set_property top $topVar [current_fileset]

See Also
• set_property
• synth_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 278

Tcl Commands Listed Alphabetically

flush_vcd
Flush VCD simulation output to the VCD output file (equivalent of $dumpflush verilog system
task).

Syntax
flush_vcd [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Description
Flush HDL signal information currently in memory into the specified Value Change Dump
(VCD) file.

VCD is an ASCII file containing header information, variable definitions, and the value change
details of a set of HDL signals. The VCD file can be used to view simulation results in a VCD
viewer, or to estimate the power consumption of the design.

Note You must run the open_vcd command to open a VCD file to write to before using the
flush_vcd command

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 279

Tcl Commands Listed Alphabetically

Examples
The following example flushes the VCD buffer into the current VCD file:
flush_vcd

See Also
open_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 280

Tcl Commands Listed Alphabetically

generate_target
Generate target data for the specified source.

Syntax
generate_target [-force] [-quiet] [-verbose] name objects

Returns
Nothing

Usage
Name Description

[-force] Force target data regeneration

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name List of targets to be generated, or 'all' to generate all

supported targets

objects The objects for which data needs to be generated

Categories
Project, XPS, IPFlow, IPIntegrator

Description
This command generates target data for the specified source file for IP cores (.xci and .xco),
DSP modules (.mdl), or Embedded Processor sub-designs (.xmp). The target data that is
generated are the files necessary to support the IP core, DSP module, or Embedded Processor,
through the FPGA design flow.

For IP Cores, Instantiation Template, Synthesis, and Simulation are the standard targets.
However, each IP in the catalog may also support its own set of targets such as Testbench,
Example, Miscellaneous, etc.

Legacy IP support only the instantiation_template and synthesis targets. Native IP, available
in the Vivado tool, can support all the different types of targets, though a specific IP core
may not offer all targets.

For DSP modules and Embedded Processor sub-designs, Synthesis, Simulation, and
Implementation are the standard targets.

You can use the list_targets command to list the targets supported by a specific source file.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 281

Tcl Commands Listed Alphabetically

Arguments
-force - (Optional) Force target data regeneration, and overwrite any existing target data files.
Without -force, the tool will not regenerate any target data that is up-to-date.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The names of the types of target data to create for the specified source.
The specific targets supported by an IP core are listed in the SUPPORTED_TARGETS property
on the object. You can query this property to see which targets a specific core supports.
Standard values are:
• all - Generate all targets for the specified core.
• instantiation_template - Generate the Instantiation template used to add the RTL module

definition for the IP core into the current design. The instantiation template can be copied
into any desired level of the design hierarchy.

• synthesis - Synthesis targets deliver HDL files that are used during synthesis for native IP,
or deliver a synthesized netlist file (NGC) generated by XST.

• simulation - Simulation targets deliver HDL files that are used in simulation.
• implementation - Implementation generates the necessary data for implementing the IP

core, DSP module, or Embedded Processor in the current design.
• example - Some native IP cores support the ability to open example projects containing

the core. You must first generate the example target data before opening the core using
the open_example_project command.

• testbench - Used to deliver a test bench that can be used to simulate the IP.
• miscellaneous - Some IP use the miscellaneous target to deliver documentation or scripts

used in working with the IP.

objects - (Required) The object to generate the target from. Supported objects can include IP
core objects, or the IP source files (XCI or XCO), DSP modules (MDL) imported from System
Generator, and Embedded Processors (XMP) imported from Xilinx Platform Studio (XPS).

Note Use get_files to specify a files object, rather than specifying a file name

Examples
The following example generates the implementation template for all of the IP cores in the
current project, forcing regeneration of any targets which are up-to-date:
generate_target instantiation_template [get_ips] -force

The following example generates the data files needed to support synthesis and simulation
for the specified IP core (XCI file):
generate_target {Synthesis Simulation} \

[get_files C:/data/Projects/test_ip/test_addr_ip/test_addr_ip.xci \
-of_objects [get_filesets sources_1]]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 282

Tcl Commands Listed Alphabetically

The following example queries the specified IP object to report the SUPPORTED_TARGETS
property, and then generates the Example target data:
report_property -all [get_ips blk_mem*]
generate_target {example} [get_ips blk_mem*]

See Also
• add_files
• create_ip
• create_sysgen
• create_xps
• import_ip
• list_targets
• open_example_project
• read_ip
• report_property
• reset_target

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 283

Tcl Commands Listed Alphabetically

get_bd_addr_segs
Get a list of segments.

Syntax
get_bd_addr_segs [-regexp] [-hierarchical] [-filter arg]
[-of_objects args] [-addressed] [-addressables] [-quiet] [-verbose]
[patterns]

Returns
List of segment objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Get segments of these pins or nets

[-addressed] Get addressed segments of given -of_objects

[-addressables] Get addressable segments of given -of_objects

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 284

Tcl Commands Listed Alphabetically

get_bd_addr_spaces
Get a list of addr_spaces.

Syntax
get_bd_addr_spaces [-regexp] [-hierarchical] [-filter arg]
[-of_objects args] [-quiet] [-verbose] [patterns]

Returns
List of addr_space objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Get addr_spaces of these pins or nets

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 285

Tcl Commands Listed Alphabetically

get_bd_cells
Get a list of cells.

Syntax
get_bd_cells [-regexp] [-hierarchical] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of cell objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Get cells of these pins or nets

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 286

Tcl Commands Listed Alphabetically

get_bd_designs
Get a list of designs.

Syntax
get_bd_designs [-regexp] [-filter arg] [-quiet] [-verbose]
[patterns ...]

Returns
List of design objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Description
Gets a list of IP subsystem designs open in the current project that match a specified search
pattern. The default command gets a list of all open IP subsystem designs in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 287

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_designs based on property values on the designs. You
can find the properties on an object with the report_property or list_property commands.
In the case of the "IP subsystem design" object, "NAME", and "FILE_NAME" are two of the
properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match designs against the specified patterns. The default pattern is the
wildcard '*' which gets all IP subsystem designs. More than one pattern can be specified to find
multiple designs based on different search criteria.

Examples
The following example gets all open IP subsystem designs in the current project:
get_bd_designs

See Also
• create_bd_design
• current_bd_design
• open_bd_design
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 288

Tcl Commands Listed Alphabetically

get_bd_intf_nets
Get a list of intf_nets.

Syntax
get_bd_intf_nets [-regexp] [-hierarchical] [-filter arg]
[-of_objects args] [-quiet] [-verbose] [patterns]

Returns
List of pin objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Of_objects, only one FullPathName for now

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 289

Tcl Commands Listed Alphabetically

get_bd_intf_pins
Get a list of intf_pins.

Syntax
get_bd_intf_pins [-regexp] [-hierarchical] [-filter arg]
[-of_objects args] [-quiet] [-verbose] [patterns]

Returns
List of pin objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Of_objects, only one FullPathName for now

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 290

Tcl Commands Listed Alphabetically

get_bd_intf_ports
Get a list of intf_ports.

Syntax
get_bd_intf_ports [-regexp] [-hierarchical] [-filter arg]
[-of_objects args] [-quiet] [-verbose] [patterns]

Returns
List of port objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Of_objects, only one FullPathName for now

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 291

Tcl Commands Listed Alphabetically

get_bd_nets
Get a list of nets.

Syntax
get_bd_nets [-regexp] [-hierarchical] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of pin objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Of_objects, only one FullPathName for now

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 292

Tcl Commands Listed Alphabetically

get_bd_pins
Get a list of pins.

Syntax
get_bd_pins [-regexp] [-hierarchical] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of pin objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-hierarchical] Hierarchical cells included

[-filter] Filter list with expression

[-of_objects] Of_objects, only one FullPathName for now

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 293

Tcl Commands Listed Alphabetically

get_bd_ports
Get a list of ports.

Syntax
get_bd_ports [-regexp] [-filter arg] [-of_objects args] [-quiet]
[-verbose] [patterns]

Returns
List of port objects, "" if failed

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Of_objects, only one FullPathName for now

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match engine names against patterns Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 294

Tcl Commands Listed Alphabetically

get_bel_pins
Get a list of bel_pins. If a design is loaded, gets the constructed site type bels.

Syntax
get_bel_pins [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
Bel_pindef

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the bel_pindef of these bels, sites, pins, or nets.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match bel_pindef against patterns Default: *

Categories
Object

Description
Returns a list of pins on the specified BELs, or matching a specified search pattern.

The default command gets a list of all pins on all BELs on the device.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 295

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_bel_pins based on property values on the pins. You
can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the PIN object, "NAME" and
"IS_INVERTED" are two of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) This option can be used with the get_bels command to return
the pins of specified BELs.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match BEL pins against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all BEL pins on the device. More than one search pattern can
be specified to find pins based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 296

Tcl Commands Listed Alphabetically

Examples
The following example returns the pins of the specified BELs associated with the specified
range of sites on the device:
get_bel_pins -of_objects [get_bels -of_objects [get_sites \

-range {SLICE_X0Y0 SLICE_X1Y1}]]

The following example returns the clock enable (CE) pins of of all BELs on the device:
get_bel_pins *CE

See Also
• get_bels
• get_sites
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 297

Tcl Commands Listed Alphabetically

get_bels
Get a list of bels. If a design is loaded, gets the constructed site type bels.

Syntax
get_bels [-regexp] [-nocase] [-filter arg] [-of_objects args] [-quiet]
[-verbose] [patterns]

Returns
Bels

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the bels of these sites cells clock_regions nets.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match bels against patterns Default: *

Categories
Object

Description
Basic Elements, or BELs, are building blocks of logic, such as flip-flops, LUTs, and carry logic,
that make up a SLICE. This command returns a list of BELs on the target part that match a
specified search pattern in an open design.

The default command gets a list of all BELs on the device.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 298

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_bels based on property values on the BELs. You can
find the properties on an object with the report_property or list_property commands. Any
property/value pair can be used as a filter. In the case of the BEL object, "IS_OCCUPIED" and
"TYPE" are two of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) This option can be used with the get_sites command to return
the BELs of specified site objects.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match BELs against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all BELs on the device. More than one search pattern can be
specified to find BELs based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example returns the total number of BELs on the target part:
llength [get_bels]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 299

Tcl Commands Listed Alphabetically

The following example returns the BELs associated with the specified site:
get_bels -of_objects [get_sites PHASER_IN_PHY_X0Y5]

See Also
• get_sites
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 300

Tcl Commands Listed Alphabetically

get_board_interfaces
Gets the list of interfaces in the board that implement busdef specified by VLNV.

Syntax
get_board_interfaces [-regexp] [-nocase] [-filter arg] [-quiet]
[-verbose] [patterns ...]

Returns
List of bus interfaces

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match Bus Interface names against patterns Default: *
Values: The default search pattern is the wildcard *, or .*
when -regexp is specified.

Categories
Object, Project, Board

Description
Gets a list of board interfaces specified on the board in use by the current project.

The current_board command returns the board in use by the current project. The get_boards
command returns a list of boards available for use by the current project.

The board file, board.xml located in the data/boards folder of the Vivado Design
Suite installation area, stores information regarding board attributes. The board provides a
representation of the overall system that the Xilinx device is a part of, and can help define key
aspects of the FPGA design, such as clock constraints, I/O port assignments, and supported
interfaces.

The interfaces defined on the board are stored in the board_rtl.xml file in the data/boards
folder of the Vivado Design Suite installation area. The board_rtl.xml file is referenced in
the board.xml file.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 301

Tcl Commands Listed Alphabetically

The interfaces available in the current_board can be used to define the interfaces required in
the IP subsystem design, using create_bd_interface_port or create_bd_port, or in the overall
FPGA design using create_interface and create_port.

Arguments
-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_board_interfaces based on property values on the
interfaces. You can find the properties on an object with the report_property or list_property
commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example gets a list of all interfaces in the current board:
join [get_board_interfaces] \n

See Also
• create_interface
• current_board
• current_project
• get_board_pins
• get_boards

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 302

Tcl Commands Listed Alphabetically

get_board_pins
Gets the list of board pins object.

Syntax
get_board_pins [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns ...]

Returns
List of pins in the board

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching

[-filter] Filter list with expression

[-of_objects] Get '' objects of these types: 'unknown'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match Board Pin names against patterns Default: * Values:
The default search pattern is the wildcard *, or .* when
-regexp is specified.

Categories
Object, Project, Board

Description
Gets a list of board pin objects in the board in use by the current project.

The current_board command returns the board in use by the current project. The get_boards
command returns a list of boards available for use by the current project.

The board file, board.xml located in the data/boards folder of the Vivado Design
Suite installation area, stores information regarding board attributes. The board provides a
representation of the overall system that the Xilinx device is a part of, and can help define key
aspects of the FPGA design, such as clock constraints, I/O port assignments, and supported
interfaces.

The pins in use on the board are stored in the board_pinmap.xml file in the data/boards
folder of the Vivado Design Suite installation area. The board_pinmap.xml file is referenced
in the board.xml file.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 303

Tcl Commands Listed Alphabetically

The board pin represents the pin on the physical board, system, or targeted reference design
(TRD) in which the Xilinx FPGA package pin is connected. It consists of properties like LOC,
IOSTANDARD, and SLEW. Board pins can be scalar or vector, so it is always represented as
bitwise.

The board_pins can be used to define and place PORTS in the FPGA design, using the
create_port and set_property PACKAGE_PIN commands.

Arguments
-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_board_pins based on property values on the board
pins. You can find the properties on an object with the report_property or list_property
commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Get the board pins of the specified board interface objects.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example gets a list of board pins assigned to the LED_8Bits board interface, stores
those pins in a Tcl variable, and then prints the LOC property for each of those pins:
set boardPins [get_board_pins \
-of_objects [get_board_interfaces -filter {NAME == LED_8Bits}]]
foreach pin $boardPins {puts "The location of $pin is: [get_property LOC $pin]"}
The location of LEDs_8Bits_TRI_O[0] is: AB8
The location of LEDs_8Bits_TRI_O[1] is: AA8
The location of LEDs_8Bits_TRI_O[2] is: AC9
The location of LEDs_8Bits_TRI_O[3] is: AB9
The location of LEDs_8Bits_TRI_O[4] is: AE26
The location of LEDs_8Bits_TRI_O[5] is: G19
The location of LEDs_8Bits_TRI_O[6] is: E18
The location of LEDs_8Bits_TRI_O[7] is: F16

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 304

Tcl Commands Listed Alphabetically

See Also
• create_interface
• current_board
• current_project
• get_board_interfaces
• get_boards

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 305

Tcl Commands Listed Alphabetically

get_boards
Get the list of boards available in the project.

Syntax
get_boards [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns ...]

Returns
List of board objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match Board names against patterns Default: * Values: The
default search pattern is the wildcard *, or .* when -regexp
is specified.

Categories
Object, Project, XPS

Description
Gets a list of evaluation boards available for use by the current project.

The board in use by the current project is returned by the current_board command.

The board file, board.xml located in the data/boards folder of the Vivado Design
Suite installation area, stores information regarding board attributes. The board provides a
representation of the overall system that the Xilinx device is a part of, and can help define key
aspects of the FPGA design, such as clock constraints, I/O port assignments, and supported
interfaces.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 306

Tcl Commands Listed Alphabetically

The board is specified as part of a Targeted Reference Design, when the project is defined; or
by setting the BOARD property on the current project; or by selecting the Project Device in
the Project Settings dialog box in the Vivado IDE. Refer to the Vivado Design Suite User Guide:
Using the Vivado IDE (UG893) for more information on project settings.

Important! When you specify the board with the set_property command, the target part is also
changed to match the part required by the specified BOARD property.

Arguments
-filter - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_boards based on property values on the boards. You
can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the board object, "NAME",
"DEVICE", and "FAMILY" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the properties of the specified evaluation board:
report_property [get_boards -filter {LIBRARY_NAME==artix7}]

See Also
• current_board
• get_board_interfaces
• get_board_pins
• list_property
• report_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 307

Tcl Commands Listed Alphabetically

get_cells
Get a list of cells in the current design.

Syntax
get_cells [-hsc arg] [-hierarchical] [-regexp] [-nocase] [-filter arg]
[-of_objects args] [-match_style arg] [-quiet] [-verbose] [patterns]

Returns
List of cell objects

Usage
Name Description

[-hsc] Hierarchy separator Default: /

[-hierarchical] Search level-by-level in current instance

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get cells of these pins, timing paths, nets, bels or sites

[-match_style] Style of pattern matching Default: sdc Values: ucf, sdc

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match cell names against patterns Default: *

Categories
SDC, XDC, Object

Description
Gets a list of cell objects in the current design that match a specified search pattern. The default
command returns a list of all cells in the design.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 308

Tcl Commands Listed Alphabetically

Arguments
-hsc arg - (Optional) Set the hierarchy separator. The default hierarchy separator is '/'.

-hierarchical - (Optional) Get cells from all levels of the design hierarchy. Without this
argument, the command will only get cells from the top of the design hierarchy. When using
-hierarchical, the search pattern should not contain a hierarchy separator because the search
pattern is applied at each level of the hierarchy, not to the full hierarchical cell name. For
instance, searching for U1/* searches each level of the hierarchy for instances with U1/ in the
name. This may not return the intended results. This is illustrated in the examples below.

Important! When used with -regexp, the specified search string is matched against the full
hierarchical name, and the U1/* search pattern will work as intended

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_cells based on property values on the cells. You can
find the properties on an object with the report_property or list_property commands. In the
case of the "cell" object, "IS_PARTITION", "IS_PRIMITIVE" and "IS_LOC_FIXED" are some of the
properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get the cells connected to the specified pin or net objects.

Note -of_objects cannot be used with -hierarchy or with a search pattern

-match_style - (Optional) Indicates that the search pattern matches UCF constraints or SDC
constraints. The default is SDC.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 309

Tcl Commands Listed Alphabetically

patterns - (Optional) Match cells against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all cells in the project. More than one pattern can be specified
to find multiple cells based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example searches all levels of the hierarchy for cells beginning with cpu, or fft,
and joins each cell returned with the newline character to put it on a separate line:
join [get_cells -hier {cpu* fft*}] \n

This example gets a list of properties and property values attached to the second object of the
list returned by get_cells:
report_property [lindex [get_cells] 1]

Note If there are no cells matching the pattern you will get a warning.

This example prints a list of the library cells instantiated into the design at all levels of the
hierarchy, sorting the list for unique names so that each cell is only printed one time:
foreach cell [lsort -unique [get_property LIB_CELL [get_cells -hier \
-filter {IS_PRIMITIVE==1}]]] {puts $cell}

The following example demonstrates the effect of -hierarchical searches, without and with
-regexp:
get_cells -hierarchical *mmcm*

mmcm_replicator_inst_1
mmcm_replicator_inst_1/mmcm_stage[0].mmcm_channel[0].mmcm

get_cells -hierarchical -regexp .*mmcm.*
mmcm_replicator_inst_1
mmcm_replicator_inst_1/mmcm_stage[0].mmcm_channel[0].mmcm
mmcm_replicator_inst_1/mmcm_stage[0].mmcm_channel[0].mmcm/GND
mmcm_replicator_inst_1/mmcm_stage[0].mmcm_channel[0].mmcm/MMCM_Base

Note The last two cells (GND and MMCM_Base) were not returned in the first example (without
-regexp) because the cell names do not match the search pattern, as it is applied to each
level of the hierarchy.

See Also
• get_lib_cells
• get_nets
• get_pins
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 310

Tcl Commands Listed Alphabetically

get_clock_regions
Get the clock regions for the current device.

Syntax
get_clock_regions [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
Clock_regions

Usage
Name Description

[-regexp] Patterns are full regular expressions.

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified).

[-filter] Filter list with expression

[-of_objects] Get the clock_regions of these sites, or cells

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match objects' name against patterns. Default: *

Categories
Object

Description
Gets a list of clock regions on the target part that match a specified search pattern. The default
command gets a list of all clock regions on the device in an open design.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 311

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_clock_regions based on property values on the clock
regions. You can find the properties on an object with the report_property or list_property
commands. Any property/value pair can be used as a filter. In the case of the clock region
object, "COLUMN_INDEX", "HIGH_X", and "LOW_X" are some of the properties that can be
used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) This option can be used with the get_sites command to return
the clock region that the specified site is found in.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match clock regions against the specified patterns. The default pattern
is the wildcard '*' which gets a list of all clock regions on the device. More than one search
pattern can be specified to find clock regions based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 312

Tcl Commands Listed Alphabetically

Examples
The following example returns the clock regions matching the search pattern:
get_clock_regions X0*

The following example returns the clock regions filtered by the specified property:
get_clock_regions -filter {LOW_X==0}

Note These two examples return the same set of clock regions

See Also
• get_sites
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 313

Tcl Commands Listed Alphabetically

get_clocks
Get a list of clocks in the current design.

Syntax
get_clocks [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-match_style arg] [-include_generated_clocks] [-quiet] [-verbose]
[patterns]

Returns
List of clocks

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get clocks of these pins or nets

[-match_style] Style of pattern matching, valid values are ucf, sdc Default:
sdc

[-include_generated_clocks] Include auto-inferred/generated_clocks also.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match clock names against patterns Default: *

Categories
SDC, XDC, Object

Description
Gets a list of clocks in the current design that match a specified search pattern. The default
command gets a list of all clocks in the design, like the all_clocks command.

Clocks can be created using the create_clock or the create_generated_clock commands, or
can be automatically generated by the tool, at the output of MMCM for instance.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 314

Tcl Commands Listed Alphabetically

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_clocks based on property values on the clocks. You
can find the properties on an object with the report_property or list_property commands. In
the case of the clock object, "PERIOD", "WAVEFORM", and "IS_GENERATED" are some of the
properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Get the clocks connected to the specified pin or net objects.

Note -of_objects cannot be used with a search pattern

-match_style - (Optional) Indicates that the search pattern matches UCF constraints or SDC
constraints. The default is SDC.

-include_generated_clocks - (Optional) Returns all clocks, including generated clocks that
match the specified pattern as the source or master clock. This argument should be used when
clock patterns are specified in order to return generated clocks of the specified master clocks.

Note You can get just the generated clocks with the get_generated_clocks command.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 315

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match clocks against the specified patterns. The default pattern is the
wildcard '*' which gets all clocks in the project. More than one pattern can be specified to find
multiple clocks based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example gets a list of clocks matching the various search patterns:
get_clocks {*clock *ck *Clk}

Note If there are no clocks matching the pattern you will get a warning.

The following example gets the master clock object, and all generated clocks derived from
that clock:
get_clocks -include_generated_clocks wbClk

The following example gets all properties and property values attached to the specified clock:
report_property -all [get_clocks wbClk]

See Also
• all_clocks
• create_clock
• create_generated_clock
• get_generated_clocks
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 316

Tcl Commands Listed Alphabetically

get_debug_cores
Get a list of debug cores in the current design.

Syntax
get_debug_cores [-filter arg] [-of_objects args] [-regexp] [-nocase]
[-quiet] [-verbose] [patterns]

Returns
List of debug_core objects

Usage
Name Description

[-filter] Filter list with expression

[-of_objects] Get cores of these debug ports or nets

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match debug cores against patterns Default: *

Categories
Object

Description
Gets a list of LabTools debug cores in the current project that match a specified search pattern.
The default command gets a list of all debug cores in the project.

Debug cores are added to the project with the create_debug_core command. When a ILA
debug core (labtools_ila_v2) is added to the project, it is contained within a Debug Hub core
(labtools_xsdbmasterlib_v2), and includes a CLK port and a trigger port (TRIG) as a default.
Additional ports can be added to the debug core with the use of the create_debug_port
command.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 317

Tcl Commands Listed Alphabetically

Arguments
-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_debug_cores based on property values on the parts.
You can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Get the ChipScope debug cores associated with the specified
debug ports, or nets.

Note -of_objects cannot be used with a search pattern

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match debug cores against the specified patterns. The default pattern is
the wildcard '*' which gets all debug cores. More than one pattern can be specified to find
multiple debug cores based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 318

Tcl Commands Listed Alphabetically

Examples
The following command gets a list of the ChipScope debug cores in the current project:
get_debug_cores

Note An ICON core is returned as one of the debug cores in the project. You cannot directly
create this core, but it is automatically added by the tool when you add any ILA cores to
the project.

The following example gets the properties of the specified debug core:
report_property [get_debug_cores myCore]

The values of the properties returned depend on how the core is configured. You can use the
set_property command to configure specific core properties as shown in the following example:
set_property enable_storage_qualification false [get_debug_cores myCore]

See Also
• create_debug_core
• create_debug_port
• get_debug_ports
• list_property
• report_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 319

Tcl Commands Listed Alphabetically

get_debug_ports
Get a list of debug ports in the current design.

Syntax
get_debug_ports [-filter arg] [-of_objects args] [-regexp] [-nocase]
[-quiet] [-verbose] [patterns]

Returns
List of debug_port objects

Usage
Name Description

[-filter] Filter list with expression

[-of_objects] Get ports of these debug cores

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match debug ports against patterns Default: *

Categories
Object

Description
Gets a list of ports defined on ILA debug cores in the current project that match a specified
search pattern. The default command gets a list of all debug ports in the project.

Debug ports are defined when ILA debug cores are created with the create_debug_core
command. Ports can be added to existing debug cores with the create_debug_port command.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 320

Tcl Commands Listed Alphabetically

Arguments
-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_debug_ports based on property values on the ports.
You can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the debug_port object,
"PORT_WIDTH", and "MATCH_TYPE" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Get the ChipScope debug ports associated with the specified
debug cores.

Note -of_objects cannot be used with a search pattern

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match debug ports against the specified patterns. The default pattern is
the wildcard '*' which gets all debug ports. More than one pattern can be specified to find
multiple debug ports based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 321

Tcl Commands Listed Alphabetically

Examples
The following command gets a list of the ports from the ILA debug cores in the current project,
with a PORT_WIDTH property of 8:
get_debug_ports -filter {PORT_WIDTH==8}

The following example gets the properties attached to the specified debug port:
report_property [get_debug_ports myCore/TRIG0]

Note The debug port is defined by the core_name/port_name combination.

See Also
• create_debug_core
• create_debug_port
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 322

Tcl Commands Listed Alphabetically

get_delays
Returns delay objects.

Syntax
get_delays [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the delays of the objects.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 323

Tcl Commands Listed Alphabetically

get_designs
Get a list of designs in the current project.

Syntax
get_designs [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns]

Returns
List of design objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match design names against patterns Default: *

Categories
Object

Description
Gets a list of open designs in the current project that match a specified search pattern. The
default command gets a list of all open designs in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 324

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_designs based on property values on the designs. You
can find the properties on an object with the report_property or list_property commands.
In the case of the "design" object, "CONSTRSET", and "PART" are some of the properties that
can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match designs against the specified patterns. The default pattern is the
wildcard '*' which gets all designs. More than one pattern can be specified to find multiple
designs based on different search criteria.

Examples
The following example gets all open designs in the current project:
get_designs

The following example gets the assigned properties of an open design matching the search
pattern:
report_property [get_designs r*]

Note If there are no designs matching the pattern you will get a warning.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 325

Tcl Commands Listed Alphabetically

See Also
report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 326

Tcl Commands Listed Alphabetically

get_drc_checks
Get a list of drc rule check objects.

Syntax
get_drc_checks [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-abbrev arg] [-quiet] [-verbose] [patterns]

Returns
Drc_check

Usage
Name Description

[-of_objects] Get 'drc_rule' objects of these types: 'drc_ruledeck'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-abbrev] Get the largest ID for this abbrev

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'drc_rule' objects against patterns. Default: *

Categories
DRC, Object

Description
Gets a list of the currently defined DRC checks. This list includes both factory defined design
rule checks, and user-defined checks created by the create_drc_check command.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 327

Tcl Commands Listed Alphabetically

Arguments
-of_objects args - (Optional) Get the design rule checks associated with a rule deck object. The
ruledeck object must be specified by the get_drc_ruledeck command.

Note -of_objects cannot be used with a search pattern

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of rule checks returned by get_drc_checks based on property values on the rule
checks. You can find the properties on an object with the report_property or list_property
commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-abbrev arg - (Optional) Get the design rule checks associated with the specified rule name
or abbreviation.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match design rule checks against the specified patterns. The default
pattern is the wildcard '*' which gets all rule checks. More than one pattern can be specified to
find multiple rule checks based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 328

Tcl Commands Listed Alphabetically

Examples
The following command gets a list of all AVAL design rule checks:
get_drc_checks AVAL*

The following example gets the checks associated with the specified rule deck:
get_drc_checks -of_objects [get_drc_ruledeck placer_checks]

See Also
• create_drc_check
• get_drc_ruledecks
• list_property
• report_drc
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 329

Tcl Commands Listed Alphabetically

get_drc_ruledecks
Get a list of drc rule deck objects.

Syntax
get_drc_ruledecks [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns]

Returns
Drc_ruledeck

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'drc_ruledeck' objects against patterns. Default: *

Categories
DRC, Object

Description
Gets a list of currently defined rule decks for use with the report_drc command.

A rule deck is a collection of design rule checks grouped for convenience, to be run at different
stages of the FPGA design flow, such as during I/O planning or placement. The tool comes with
a set of factory defined rule decks, but you can also create new user-defined rule decks with
the create_drc_ruledeck command, and add checks to the rule deck using the add_drc_checks
command.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 330

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_drc_ruledecks based on property values on the parts.
You can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match rule decks against the specified patterns. The default pattern is the
wildcard '*' which gets all rule decks. More than one pattern can be specified to find multiple
rule decks based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example gets a list of rule decks defined in the current project:
get_drc_ruledecks

The following example lists each of the checks associated with the placer_checks rule deck on
a separate line:
foreach rule [get_drc_checks -of_objects [get_drc_ruledecks placer_checks]] \

{puts $rule}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 331

Tcl Commands Listed Alphabetically

See Also
• add_drc_checks
• create_drc_ruledeck
• list_property
• report_drc
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 332

Tcl Commands Listed Alphabetically

get_drc_vios
Get a list of drc violations from a previous report_drc run.

Syntax
get_drc_vios [-name arg] [-regexp] [-filter arg] [-nocase] [-quiet]
[-verbose] [patterns]

Returns
List of vio objects

Usage
Name Description

[-name] Get the results with this name

[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match drc_vios against patterns Default: * Values: The
default search pattern is the wildcard *, or .* when -regexp
is specified.

Categories
DRC, Object

Description
Gets a list of violation objects created by the create_drc_violation command when the
associated DRC checks are run by the report_drc command. The properties of individual
violation objects can be queried using report_property or list_property commands for details
of the violation.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 333

Tcl Commands Listed Alphabetically

Arguments
-name arg - (Optional) Get the violations associated with the named DRC result set. In this
case the report_drc command must have been run with the -name option.

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_drc_vios based on property values on the violations.
You can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match violations against the specified patterns. The default pattern is the
wildcard '*' which gets all violations. More than one pattern can be specified to find multiple
violations based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example reports the DRC violations found in the current design, then returns a
list of all those violations:
report_drc
get_drc_vios

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 334

Tcl Commands Listed Alphabetically

The following example gets the properties of the specified violation:
report_property [lindex [get_drc_vios] 0]

The following example returns the list of violations that match the specified search pattern in
the named DRC results set:
get_drc_vios -name drc_1 {*BUF* *DPIP*}

See Also
• create_drc_check
• create_drc_violation
• report_drc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 335

Tcl Commands Listed Alphabetically

get_files
Get a list of source files.

Syntax
get_files [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-compile_order] [-quiet] [-verbose] [patterns]

Returns
List of file objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get files of these filesets or composite files

[-compile_order] Give files ordered for synthesis or simulation for the object
specified (valid only with -of_objects)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match file names against patterns Default: *

Categories
Object, Project

Description
Gets a list of files in the current project that match a specified search pattern. The default
command gets a list of all files in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 336

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_files based on property values on the files.You can
find the properties on an object with the report_property or list_property commands. Any
property/value pair can be used as a filter. In the case of the "file" object, "FILE_TYPE", and
"IS_ENABLED" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Specifies one or more filesets to search for the files. The default is
to search all filesets.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match files against the specified patterns. The default pattern is the
wildcard '*' which gets all files in the project or of_objects. More than one pattern can be
specified to find multiple files based on different search criteria.

Examples
The following example returns the Verilog files in the design:
get_files -filter {FILE_TYPE == Verilog}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 337

Tcl Commands Listed Alphabetically

The following example gets a list of the Verilog files (*.v) found in the constrs_1 and sim_1
filesets:
get_files -of_objects {constrs_1 sim_1} *.v

Note If there are no files matching the pattern you will get a warning.

See Also
report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 338

Tcl Commands Listed Alphabetically

get_filesets
Get a list of filesets in the current project.

Syntax
get_filesets [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns]

Returns
List of fileset objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match fileset names against patterns Default: *

Categories
Object, Project

Description
Gets a list of filesets in the current project that match a specified search pattern. The default
command gets a list of all filesets in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 339

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_filesets based on property values on the filesets. You
can find the properties on an object with the report_property or list_property commands. In
the case of the fileset object, "DESIGN_MODE", and "FILESET_TYPE" are some of the properties
that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match fileset names against the specified patterns. The default pattern is
the wildcard '*' which gets all filesets. More than one pattern can be specified to find filesets
based on multiple search criteria.

Examples
The following example returns the source files in the Source Set:
get_files -of_objects [get_filesets sources_1]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 340

Tcl Commands Listed Alphabetically

The following example makes project_2 the active project, and then gets a list of filesets
beginning with the letter s or the letter r:
current_project project_2
get_filesets s* r* -quiet

Note If there are no filesets matching the pattern, such as r*, you will get a warning that
no filesets matched the specified pattern. However, in the above example the use of -quiet
will suppress that warning message.

The following example gets filesets beginning with the letter C, using a case insensitive regular
expression:
get_filesets C.* -regexp -nocase

In the above example, constrs_1 and constrs_2 constraint sets would be returned if defined in
the current project.

See Also
• get_files
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 341

Tcl Commands Listed Alphabetically

get_generated_clocks
Get a list of generated clocks in the current design.

Syntax
get_generated_clocks [-regexp] [-nocase] [-filter arg]
[-of_objects args] [-match_style arg] [-quiet] [-verbose] [patterns]

Returns
List of clocks

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get generated clocks of these pins or nets

[-match_style] Style of pattern matching, valid values are ucf, sdc Default:
sdc

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match generated clock names against patterns Default: *

Categories
XDC, Object

Description
Gets a list of generated clocks in the current project that match a specified search pattern. The
default command gets a list of all generated clocks in the project.

A generated clock can be added to the design using the create_generated_clock command, or
can be automatically generated by the tool, at the output of MMCM for instance.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 342

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - Filter the results list with the specified expression. The -filter argument filters the
list of objects returned by get_generated_clocks based on property values on the clocks. You
can find the properties on an object with the report_property or list_property commands. In
the case of the generated_clock object, "DUTY_CYCLE" and "MASTER_CLOCK" are some of the
properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) One or more pins or nets to which the generated clocks are
assigned.

Note -of_objects cannot be used with a search pattern

-match_style - (Optional) Indicates that the search pattern matches UCF constraints or SDC
constraints. The default is SDC.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match generated clocks against the specified patterns. The default pattern
is the wildcard '*' which gets all generated clocks in the project.

Examples
The following example gets the names of all generated clocks in the current project:
get_generated_clocks

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 343

Tcl Commands Listed Alphabetically

See Also
• create_generated_clock
• get_clocks
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 344

Tcl Commands Listed Alphabetically

get_hierarchy_separator
Get hierarchical separator character.

Syntax
get_hierarchy_separator [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
Gets the character currently used for separating levels of hierarchy in the design. You can set
the hierarchy separator using the set_hierarchy_separator command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example gets the currently defined hierarchy separator:
get_hierarchy_separator

See Also
set_hierarchy_separator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 345

Tcl Commands Listed Alphabetically

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 346

Tcl Commands Listed Alphabetically

get_hw_devices
Get a list of hardware devices.

Syntax
get_hw_devices [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware devices

Usage
Name Description

[-of_objects] Get 'hw_device' objects of these types: 'hw_target'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_device' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 347

Tcl Commands Listed Alphabetically

get_hw_ila_datas
Get a list of hardware ILA data objects.

Syntax
get_hw_ila_datas [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware ILA data

Usage
Name Description

[-of_objects] Get 'hw_ila_data' objects of these types: 'hw_ila'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_ila_data' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 348

Tcl Commands Listed Alphabetically

get_hw_ilas
Get a list of hardware ILA.

Syntax
get_hw_ilas [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware ILAs

Usage
Name Description

[-of_objects] Get 'hw_ila' objects of these types: 'hw_device'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_ila' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 349

Tcl Commands Listed Alphabetically

get_hw_probes
Get a list of hardware probes.

Syntax
get_hw_probes [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware probes

Usage
Name Description

[-of_objects] Get 'hw_probe' objects of these types: 'hw_ila hw_vio'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_probe' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 350

Tcl Commands Listed Alphabetically

get_hw_servers
Get a list of hardware servers.

Syntax
get_hw_servers [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns]

Returns
Hardware servers

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_server' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 351

Tcl Commands Listed Alphabetically

get_hw_sio_commons
Get list of hardware SIO GT commons.

Syntax
get_hw_sio_commons [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO GT commons

Usage
Name Description

[-of_objects] Get 'hw_sio_common' objects of these types: 'hw_server
hw_target hw_device hw_sio_ibert hw_sio_pll'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_common' objects against patterns.
Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 352

Tcl Commands Listed Alphabetically

get_hw_sio_gtgroups
Get list of hardware SIO GT groups.

Syntax
get_hw_sio_gtgroups [-of_objects args] [-regexp] [-nocase]
[-filter arg] [-quiet] [-verbose] [patterns]

Returns
Hardware SIO GT groups

Usage
Name Description

[-of_objects] Get 'hw_sio_gtgroup' objects of these types: 'hw_server
hw_target hw_device hw_sio_ibert hw_sio_common
hw_sio_pll hw_sio_gt hw_sio_tx hw_sio_rx'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_gtgroup' objects against patterns.
Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 353

Tcl Commands Listed Alphabetically

get_hw_sio_gts
Get list of hardware SIO GTs.

Syntax
get_hw_sio_gts [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO GTs

Usage
Name Description

[-of_objects] Get 'hw_sio_gt' objects of these types: 'hw_server hw_target
hw_device hw_sio_ibert hw_sio_pll hw_sio_tx hw_sio_rx
hw_sio_link'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_gt' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 354

Tcl Commands Listed Alphabetically

get_hw_sio_iberts
Get list of hardware SIO IBERT cores.

Syntax
get_hw_sio_iberts [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO IBERT cores

Usage
Name Description

[-of_objects] Get 'hw_sio_ibert' objects of these types: 'hw_server
hw_target hw_device hw_sio_gt hw_sio_common hw_sio_pll
hw_sio_tx hw_sio_rx hw_sio_link'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_ibert' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 355

Tcl Commands Listed Alphabetically

get_hw_sio_linkgroups
Get list of hardware SIO link groups.

Syntax
get_hw_sio_linkgroups [-of_objects args] [-regexp] [-nocase]
[-filter arg] [-quiet] [-verbose] [patterns]

Returns
Hardware SIO link groups

Usage
Name Description

[-of_objects] Get 'hw_sio_linkgroup' objects of these types: 'hw_sio_link'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_linkgroup' objects against patterns.
Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 356

Tcl Commands Listed Alphabetically

get_hw_sio_links
Get list of hardware SIO links.

Syntax
get_hw_sio_links [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO links

Usage
Name Description

[-of_objects] Get 'hw_sio_link' objects of these types: 'hw_server
hw_target hw_device hw_sio_ibert hw_sio_gt hw_sio_tx
hw_sio_rx hw_sio_linkgroup'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_link' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 357

Tcl Commands Listed Alphabetically

get_hw_sio_plls
Get list of hardware SIO PLLs.

Syntax
get_hw_sio_plls [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO PLLs

Usage
Name Description

[-of_objects] Get 'hw_sio_pll' objects of these types: 'hw_server hw_target
hw_device hw_sio_ibert hw_sio_gt hw_sio_common'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_pll' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 358

Tcl Commands Listed Alphabetically

get_hw_sio_rxs
Get list of hardware SIO RXs.

Syntax
get_hw_sio_rxs [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO RXs

Usage
Name Description

[-of_objects] Get 'hw_sio_rx' objects of these types: 'hw_server hw_target
hw_device hw_sio_ibert hw_sio_gt hw_sio_link'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_rx' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 359

Tcl Commands Listed Alphabetically

get_hw_sio_scans
Get list of hardware SIO scans.

Syntax
get_hw_sio_scans [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO scans

Usage
Name Description

[-of_objects] Get 'hw_sio_scan' objects of these types: 'hw_sio_rx'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_scan' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 360

Tcl Commands Listed Alphabetically

get_hw_sio_txs
Get list of hardware SIO TXs.

Syntax
get_hw_sio_txs [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware SIO TXs

Usage
Name Description

[-of_objects] Get 'hw_sio_tx' objects of these types: 'hw_server hw_target
hw_device hw_sio_ibert hw_sio_gt hw_sio_link'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_sio_tx' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 361

Tcl Commands Listed Alphabetically

get_hw_targets
Get a list of hardware targets.

Syntax
get_hw_targets [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware targets

Usage
Name Description

[-of_objects] Get 'hw_target' objects of these types: 'hw_server'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_target' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 362

Tcl Commands Listed Alphabetically

get_hw_vios
Get a list of hardware VIOs.

Syntax
get_hw_vios [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Hardware VIOs

Usage
Name Description

[-of_objects] Get 'hw_vio' objects of these types: 'hw_device'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'hw_vio' objects against patterns. Default: *

Categories
Hardware, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 363

Tcl Commands Listed Alphabetically

get_interfaces
Get a list of I/O port interfaces in the current design.

Syntax
get_interfaces [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of interface objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get interfaces of these pins or nets

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match I/O port interfaces against patterns Default: *

Categories
Object

Description
Gets a list of IO interfaces in the current project that match a specified search pattern. The
default command gets a list of all IO interfaces in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 364

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_interfaces based on property values on the interfaces.
You can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) One or more pins or nets to which the interfaces are assigned.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - Match interfaces against the specified pattern. The default pattern is the wildcard '*'
which gets a list of all interfaces in the project.

Examples
The following example gets a list of all interfaces in the project:
get_interfaces

See Also
• create_interface
• delete_interface

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 365

Tcl Commands Listed Alphabetically

get_io_standards
Get a list of IO standards.

Syntax
get_io_standards [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
IO standards

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the IO standards of these bels, sites, package_pins,
io_banks, ports.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match IO standards against patterns Default: *

Categories
Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 366

Tcl Commands Listed Alphabetically

get_iobanks
Get a list of iobanks.

Syntax
get_iobanks [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
Iobanks

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the iobanks of these package_pins.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match iobanks against patterns Default: *

Categories
XDC, Object

Description
Gets a list of I/O Banks on the target device in the current project that match a specified search
pattern. The default command gets a list of all I/O Banks on the target device.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 367

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_iobanks based on property values on the I/O Banks.
You can find the properties on an object with the report_property or list_property commands.
Some of the properties that can be used with for an iobank object include "DCI_CASCADE",
and "INTERNAL_VREF".

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get a list of the I/O Banks connected to these objects. Valid
object types are package_pins, ports, and sites.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match I/O Banks against the specified pattern. The default pattern is the
wildcard '*' which gets a list of all I/O Banks in the design.

Examples
The following example returns the I/O Bank of the specified package pin:
get_iobanks -of_objects [get_package_pins H4]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 368

Tcl Commands Listed Alphabetically

See Also
• get_package_pins
• get_ports
• get_sites
• place_ports
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 369

Tcl Commands Listed Alphabetically

get_ipdefs
Get a list of IP from the current IP Catalog.

Syntax
get_ipdefs [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns ...]

Returns
List of Catalog IP objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match Catalog IP names against patterns Default: * Values:
The default search pattern is the wildcard *, or .* when
-regexp is specified.

Categories
Object, IPFlow

Description
Get a list of IP cores defined in the IP catalog of the current project, based on the specified
search pattern. The default is to return all IP cores defined in the catalog.

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 370

Tcl Commands Listed Alphabetically

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - Filter the results list with the specified expression. The -filter argument filters
the list of objects returned by get_ipdefs based on property values on the objects. You can
find the properties on an object with the report_property or list_property commands. In
the case of the "ipdefs" object, "VLNV", "NAME" and "IS_AXI" are some of the properties
that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match IP core definitions in the IP catalog against the specified search
patterns. The default pattern is the wildcard '*' which gets a list of all IP cores in the catalog.
More than one pattern can be specified to find multiple core definitions based on different
search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example returns a list of all IP cores with NAME property matching the specified
pattern:
get_ipdefs -filter {NAME=~*agilent*}

Note The filter operator '=~' loosely matches the specified pattern

The following example returns a list of all AXI compliant IP cores:
get_ipdefs -filter {IS_AXI==1}

See Also
• create_ip
• generate_target
• get_ips
• import_ip
• update_ip_catalog

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 371

Tcl Commands Listed Alphabetically

get_ips
Get a list of IPs in the current design.

Syntax
get_ips [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns ...]

Returns
List of IP objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match IP names against patterns Default: * Values: The
default search pattern is the wildcard *, or .* when -regexp
is specified.

Categories
Object, Project, IPFlow

Description
Get a list of IP cores in the current project based on the specified search pattern. The default
command returns a list of all IPs in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 372

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_ips based on property values on the objects. You
can find the properties on an object with the report_property or list_property commands.
In the case of the "IP" object, "NAME" and "DELIVERED_TARGETS" are some of the properties
that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match IP cores in the design against the specified search patterns. The
default pattern is the wildcard '*' which gets a list of all IP cores in the project. More than one
pattern can be specified to find multiple cores based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example returns a list of IP cores with names beginning with the string "EDK":
get_ips EDK*

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 373

Tcl Commands Listed Alphabetically

See Also
• create_ip
• generate_target
• get_ipdefs
• import_ip
• update_ip_catalog

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 374

Tcl Commands Listed Alphabetically

get_lib_cells
Get a list of Library Cells.

Syntax
get_lib_cells [-regexp] [-filter arg] [-nocase] [-include_unsupported]
[-of_objects args] [-quiet] [-verbose] patterns

Returns
List of library cells

Usage
Name Description

[-regexp] Patterns are regular expressions

[-filter] Filter list with expression

[-nocase] Perform case-insensitive matching when a pattern has been
specified. This argument applies to the use of -regexp only.

[-include_unsupported] Include test-only library cells.

[-of_objects] Get the library cells of the objects passed in here: .

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

patterns Match library cell names against patterns.

Categories
Object

Description
Get a list of cells in the library for the target part of the current design. Use this command to
query and look for a specific library cell, or type of cell and to get the properties of the cells.

This command requires a hierarchical name which includes the library name as well as the cell
name: lib_name/cell_name.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 375

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_lib_cells based on property values on the cells. You
can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get a list of library cells of specific instances (cells/insts), or
library pins (get_lib_pins).

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Required) Match library cells against the specified patterns. The pattern must specify
both the library name and the cell name.

Examples
The following example gets the number of the cells in the library for the target part in the
current design, and then gets the number of AND type cells in that library:
llength [get_lib_cells [get_libs]/*]
795
llength [get_lib_cells [get_libs]/AND*]
18

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 376

Tcl Commands Listed Alphabetically

The following example gets the library cell for the specified cell object:
get_lib_cells -of_objects [lindex [get_cells] 1]

See Also
• get_cells
• get_libs
• get_lib_pins
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 377

Tcl Commands Listed Alphabetically

get_lib_pins
Get a list of Library Cell Pins.

Syntax
get_lib_pins [-regexp] [-filter arg] [-nocase] [-of_objects args]
[-quiet] [-verbose] patterns

Returns
List of library cell pins

Usage
Name Description

[-regexp] Patterns are regular expressions

[-filter] Filter list with expression

[-nocase] Perform case-insensitive matching when a pattern has been
specified. This argument applies to the use of -regexp only.

[-of_objects] Get the library cell pins of the objects passed in here.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

patterns Match library cell pin names against patterns of the form /.

Categories
Object

Description
Gets a list of the pins on a specified cell of the cell library for the target part in the current
design.

Note This command requires a hierarchical name which includes the library name and cell
name as well as the pins: lib_name/cell_name/pins.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 378

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_lib_pins based on property values on the pins. You
can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get a list of library cell pins of the specified pin objects or library
cells (get_lib_cells).

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Required) Match lib pins against the specified patterns. The pattern must specify
the library name, cell name, and the pins.

Examples
The following example gets a list of all library cell pins:
get_lib_pins xt_virtex6/AND2/*

The following example gets a list of all pins, of all cells in the cell library for the target device:
get_lib_pins [get_libs]/*/*

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 379

Tcl Commands Listed Alphabetically

See Also
• get_libs
• get_lib_cells
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 380

Tcl Commands Listed Alphabetically

get_libs
Get a list of Libraries.

Syntax
get_libs [-regexp] [-filter arg] [-nocase] [-quiet] [-verbose]
[patterns]

Returns
List of libraries

Usage
Name Description

[-regexp] Patterns are regular expressions

[-filter] Filter list with expression

[-nocase] Perform case-insensitive matching when a pattern has been
specified. This argument applies to the use of -regexp only.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match library names against patterns. Default: *

Categories
Object

Description
Gets the cell library for the target device in the current design. There is a library for each device
family because there are primitives that may be available in one device family but not in others.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 381

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_libs based on property values on the libs. You can find
the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get a list of libraries of the specified object.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match libraries against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all libraries in the project.

Examples
The following example gets the cell library for the target part:
get_libs

See Also
• get_lib_cells
• get_lib_pins
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 382

Tcl Commands Listed Alphabetically

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 383

Tcl Commands Listed Alphabetically

get_macros
Get a list of macros in the current design.

Syntax
get_macros [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of macro objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get macros of these cells

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match macro names against patterns Default: *

Categories
XDC, Object

Description
Gets a list of macros in the current design that match a specified search pattern. The default
command returns a list of all macros in the design.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 384

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_macros based on property values on the macros. You
can find the properties on an object with the report_property or list_property commands.
In the case of the "macro" object, "NAME", "ABSOLUTE_GRID" and "RLOCS" are some of the
properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get the macros connected to the specified pin or net objects.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match macros against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all macros in the project. More than one pattern can be
specified to find multiple macros based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 385

Tcl Commands Listed Alphabetically

Examples
The following example returns the properties currently assigned to the macro matching the
specified search pattern:
report_property [get_macro *Macro1]

Note If there are no macros matching the pattern you will get a warning.

See Also
• create_macro
• list_property
• report_property
• update_macro

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 386

Tcl Commands Listed Alphabetically

get_msg_config
Returns the current message count, limit, or the message configuration rules previously defined
by the set_msg_config command.

Syntax
get_msg_config [-id arg] [-severity arg] [-rules] [-limit] [-count]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-id] The message id to match. Should be used in conjunction
with -limit or -count Default: empty

[-severity] The message severity to match. Should be used in
conjunction with -limit or -count Default: empty

[-rules] Show a table displaying all message control rules for the
current project

[-limit] Show the limit for the number of messages matching either
-id or -severity that will be displayed

[-count] Show the number of messages matching either -id or
-severity that have been displayed

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Returns the current message limit or count applied to a specified message ID or severity, or
returns all message configuration rules defined in the current project. Message configuration
rules are defined using the set_msg_config command.

When used with -count this command will display the total number of messages that have
been generated with the matching message id, or for the specified severity.

When used with -limit this command will display the current limit of messages with the
matching message id, or for the specified severity.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 387

Tcl Commands Listed Alphabetically

When used with -rules, it will display a table of all message configuration rules currently
in effect.

Note You can only return the limit, the count, or the rules in a single get_msg_config
command. An error is returned if more than one action is attempted.

Arguments
-id arg - (Optional) The message ID, which is included in all returned messages. For
example,"Common 17-54" and "Netlist 29-28".

-severity value - (Optional) The severity of the message. There are five message severities:
• ERROR - An ERROR condition implies an issue has been encountered which will render

design results unusable and cannot be resolved without user intervention.
• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain

input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {}.

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

-rules - (Optional) Return the message configuration rules in the current project as defined
by the set_msg_config command.

Note When -rule is specified, all configuration rules for the current project are returned
regardless of any message qualifier such as -id or -severity.

-limit - (Optional) Return the current limit of messages that match the message ID or the
message severity.

-count - (Optional) Return the current count of messages that match the specified message ID
or message severity.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example gets the current count of the specified INFO message:
get_msg_config -id "Common 17-81" -count

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 388

Tcl Commands Listed Alphabetically

The following example returns the message configuration rules in the current project:
get_msg_config -rules

See Also
• reset_msg_config
• set_msg_config

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 389

Tcl Commands Listed Alphabetically

get_msg_count
Get message count.

Syntax
get_msg_count [-severity arg] [-id arg] [-quiet] [-verbose]

Returns
Message count

Usage
Name Description

[-severity] Message severity to query (not valid with -id,) e.g. "ERROR"
or "CRITICAL WARNING" Default: ALL

[-id] Unique message id to be queried (not valid with -severity,)
e.g. "Common 17-99"

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Gets the number of messages, of a specific severity or message ID, that have been returned
by the tool since it was invoked.

Every message delivered by the tool has a unique global message ID that consists of an
application sub-system code and a message identifier. This results in a message ID that looks
like the following:
"Common 17-54"
"Netlist 29-28"
"Synth 8-3295"

This command can give you an idea of how close to the message limit the tool may be getting.
You can check the current message limit with the get_msg_limit command. You can change
the message limit with the set_msg_limit command.

By default this command returns the message count for all messages. You can also get the
count of a specific severity of message, or for a specific message ID.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 390

Tcl Commands Listed Alphabetically

Arguments
-severity value - (Optional) Specifies the severity of the message. There are five message
severities:

• ERROR - An ERROR condition implies an issue has been encountered which will render
design results unusable and cannot be resolved without user intervention.

• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain
input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {} or "".

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

-id value - (Optional) The message ID is found in the tool in the Messages view or other reports
when the message is reported. Use the specific message ID to get the count for that message.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example gets the message count for all messages:
get_msg_count -severity ALL
get_msg_count

Note Both lines return the same thing since the default is to return the count for all messages
when -severity or -id is not specified.

The following example gets the message count of the specified message ID:
get_msg_count -id "Netlist 29-28"

See Also
• get_msg_limit
• set_msg_limit

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 391

Tcl Commands Listed Alphabetically

get_msg_limit
Get message limit.

Syntax
get_msg_limit [-severity arg] [-id arg] [-quiet] [-verbose]

Returns
Message limit

Usage
Name Description

[-severity] Message severity to query (not valid with -id,) e.g. "ERROR"
or "CRITICAL WARNING" Default: ALL

[-id] Unique message id to be queried (not valid with -severity,)
e.g "Common 17-99"

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Gets the number of messages that will be reported by the tool while invoked. When the
tool reaches the defined message limit, it stops reporting messages. The default value is
4,294,967,295. This default value can be changed with the set_msg_limit command.

Every message delivered by the tool has a unique global message ID that consists of an
application sub-system code and a message identifier. This results in a message ID that looks
like the following:
"Common 17-54"
"Netlist 29-28"
"Synth 8-3295"

Arguments
-id arg - (Optional) The message ID to return the limit of. For example, "Common 17-54" or
"Netlist 29-28".

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 392

Tcl Commands Listed Alphabetically

-severity value - (Optional) Specifies the severity of the message. There are five message
severities:

• ERROR - An ERROR condition implies an issue has been encountered which will render
design results unusable and cannot be resolved without user intervention.

• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain
input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {}.

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the limit for CRITICAL WARNING messages:
get_msg_limit -severity {CRITICAL WARNING}

The default when -severity or -id is not specified is to return the limit for all messages.

The following example returns the message limit of the specified message ID:
get_msg_limit -id "Netlist 29-28"

See Also
• set_msg_limit
• set_msg_severity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 393

Tcl Commands Listed Alphabetically

get_net_delays
Get the routed or estimated delays on a net from the driver to each load pin.

Syntax
get_net_delays [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-through] [-to args] [-quiet] [-verbose] [patterns]

Returns
Net_delays

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the net_delays of these nets.

[-through] Get the delay through the given pip. Default is to not
include the pip delay.

[-to] Get the net_delay to the given load(s).

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match net_delays against patterns Default: *

Categories
Timing, Netlist, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 394

Tcl Commands Listed Alphabetically

get_nets
Get a list of nets in the current design.

Syntax
get_nets [-hsc arg] [-hierarchical] [-regexp] [-nocase] [-filter arg]
[-of_objects args] [-match_style arg] [-top_net_of_hierarchical_group]
[-segments] [-boundary_type arg] [-quiet] [-verbose] [patterns]

Returns
List of net objects

Usage
Name Description

[-hsc] Hierarchy separator Default: /

[-hierarchical] Search level-by-level in current instance

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get nets of these pins/ports,cells,timing paths or clocks

[-match_style] Style of pattern matching, valid values are ucf, sdc Default:
sdc

[-top_net_of_hierarchical _group] Return net segment(s) which belong(s) to the high level of
a hierarchical net

[-segments] Return all segments of a net across the hierarchy

[-boundary_type] Return net segment connected to a hierarchical pin which
resides at the same level as the pin (upper) or at the level
below (lower), or both. Valid values are : upper, lower,
both Default: upper

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match net names against patterns Default: *

Categories
SDC, XDC, Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 395

Tcl Commands Listed Alphabetically

Description
Gets a list of nets in the current design that match a specified search pattern. The default
command gets a list of all nets in the design.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Arguments
-hsc arg - (Optional) The default hierarchy separator is '/'. Use this argument to specify a
different hierarchy separator.

-hierarchical - (Optional) Get nets from all levels of the design hierarchy. Without this argument,
the command will only get nets from the top of the design hierarchy. When using -hierarchical,
the search pattern should not contain a hierarchy separator because the search pattern is
applied at each level of the hierarchy, not to the full hierarchical cell name. For instance,
searching for U1/* searches each level of the hierarchy for instances with U1/ in the name. This
may not return the intended results. See get_cells for examples of -hierarchical searches.

Note When used with -regexpr, the specified search string is matched against the full
hierarchical name, and the U1/* search pattern will work as intended

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_nets based on property values on the nets. You can
find the properties on an object with the report_property or list_property commands. In the
case of the nets object, "PARENT", "TYPE" and "MARK_DEBUG" are some of the properties
that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 396

Tcl Commands Listed Alphabetically

-of_objects arg - (Optional) Get a list of the nets connected to the specified cell, pin, port, or
clock.

Note -of_objects cannot be used with -hierarchy or with a search pattern

-match_style [sdc | ucf] - (Optional) Indicates that the search pattern matches UCF constraints
or SDC constraints. The default is SDC.

-top_net_of_hierarchical_group - (Optional) Get the top net segments of a hierarchical net.
Use this argument to return the top-level net name from a lower-level net segment, or to
return the top-level net segments of all nets.

-segments - (Optional) Get all the segments of a hierarchical net, across all levels of the
hierarchy. This differs from the -hierarchical argument in that it returns all segments of the
specified net, rather than just the specified net.

-boundary_type - (Optional) Gets the net segment at the level (upper) of a specified
hierarchical pin, at the level below (lower) the pin or port, or both the level of and the level
below. Valid values are upper, lower, or both. The default value is upper.

Note This argument must be used with the -of_objects argument to specify the hierarchical pin.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match nets against the specified patterns. The default pattern is the
wildcard '*' which returns a list of all nets in the project. More than one pattern can be specified
to find multiple nets based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example gets a list of nets attached to the specified cell:
get_nets -of_objects [lindex [get_cells] 1]

Note If there are no nets matching the pattern you will get a warning.

The following example returns a list of nets that have been marked for debug with the
connect_debug_port command:
get_nets -hier -filter {MARK_DEBUG==1}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 397

Tcl Commands Listed Alphabetically

See Also
• connect_debug_port
• get_cells
• get_clocks
• get_pins
• get_ports
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 398

Tcl Commands Listed Alphabetically

get_nodes
Get a list of nodes in the device.

Syntax
get_nodes [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-uphill] [-downhill] [-flyover] [-from args] [-to args] [-quiet]
[-verbose] [patterns]

Returns
Nodes

Usage
Name Description

[-of_objects] Get 'node' objects of these types: 'net tile node bel_pin
site_pin wire pip'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-uphill] Get the nodes uphill (driver) from the site_pin, pip, node
or tile(s) provided in the -of_objects.

[-downhill] Get the nodes downhill (loads) from the site_pin, pip, node
or tile(s) provided in the -of_objects.

[-flyover] Get the nodes that fly over the given tile(s).

[-from] -from Return the nodes beginning at this pip or site
pin. May be used in combination with uphill. Default is
downhill. -all is implied.

[-to] -to Return the nodes ending at this wire or site pin. May
be used in combination with uphill. Default is downhill.
-all is implied.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'node' objects against patterns. Default: *

Categories
Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 399

Tcl Commands Listed Alphabetically

Description
Returns a list of nodes on the device that match a specified search pattern in an open design.

The default command gets a list of all nodes on the device.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - Filter the results list with the specified expression. The -filter argument filters
the list of objects returned by get_nodes based on property values on the nodes. You can
find the properties on an object with the report_property or list_property commands. Any
property/value pair can be used as a filter. In the case of the node object, "IS_INPUT_PIN",
"IS_BEL_PIN" and "NUM_WIRES" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Return the nodes of the specified site_pins, nodes, tiles, or wires.

Note -of_objects cannot be used with a search pattern

-uphill - (Optional) Return the nodes uphill of objects specified by the -of_objects option.
Uphill nodes precede the specified object in the logic network.

-downhill - (Optional) Return the nodes downhill of objects specified by the -of_objects
option. Downhill nodes follow the specified object in the logic network.

-flyover - (Optional) Return the nodes that pass through (or flyover) the specified tiles.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 400

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Return nodes matching the specified search patterns. The default pattern
is the wildcard '*' which gets a list of all nodes on the device. More than one search pattern can
be specified to find nodes based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example returns the nodes associated with the specified tile:
get_nodes -of_objects [get_tiles CLBLM_R_X11Y158]

The following example returns the nodes downhill from the specified node:
get_nodes -downhill -of_objects [get_nodes LIOB33_SING_X0Y199/IOB_PADOUT0]

See Also
• get_nodes
• get_site_pins
• get_tiles
• get_wires
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 401

Tcl Commands Listed Alphabetically

get_objects
Get a list of HDL objects in one or more HDL scopes as per the specified pattern.

Syntax
get_objects [-filter arg] [-recursive] [-r] [-regexp] [-nocase]
[-quiet] [-verbose] [patterns ...]

Returns
Returns all the objects found given the specified pattern

Usage
Name Description

[-filter] Filter the results with the specified expression

[-recursive] Searches recursively for objects

[-r] Searches recursively for objects

[-regexp] Search using regular expressions, search design objects
from which to create wave objects by design object name.
The application supplying the design objects determines
how the match is to be performed. Items must be strings.

[-nocase] Perform a case insensitive match (only used with regexp)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Patterns to search for. Default is * where all HDL objects
are returned

Categories
Simulation

Description
Returns a list of HDL objects matching the specified search pattern in one or more HDL scopes.

HDL objects include HDL signals, variables, or constants as defined in the Verilog or VHDL
testbench and source files. An HDL signal includes Verilog wire or reg entities, and VHDL
signals. Examples of HDL variables include Verilog real, realtime, time, and event. HDL constants
include Verilog parameters and localparams, and VHDL generic and constants.

The HDL scope, or scope, is defined by a declarative region in the HDL code such as a module,
function, task, process, or begin-end blocks in Verilog. VHDL scopes include entity/architecture
definitions, block, function, procedure, and process blocks.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 402

Tcl Commands Listed Alphabetically

Arguments
-recursive | -r - (Optional) Apply the command to the current scope, and all sub-scopes
of the current scope.

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_cells based on property values on the cells. You
can find the properties on an object with the report_property or list_property commands.
In the case of the HDL object, "NAME", "SCOPE" and "TYPE" are some of the properties that
can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match HDL objects against the specified patterns. The default pattern is
the wildcard '*' which returns all the children in the current scope. The search pattern can be
defined in two ways:

• patterns - Specifies only the search pattern for the objects to get. This method returns all
objects in the current scope (and any sub-scopes when -recursive is used).

• scope/pattern - Specifies the scope of interest, relative to the current scope, and the pattern
for objects to locate. In this case, the specified scope, and any sub-scopes of it if -recursive
is used, are identified starting from the current scope. Then all objects matching the search
pattern are identified and returned.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 403

Tcl Commands Listed Alphabetically

Examples
The following example specifies the current_scope, then gets all HDL objects in that scope:
current_scope ./cpuEngine
get_objects

The following example returns the count of all objects in the current scope, and then returns
the count of all objects in the current scope, and all sub-scopes of it:
llength [get_objects]

182
llength [get_objects -recursive]

2182

The following example specifies the scope/pattern search pattern as discussed above. Notice
that the cpuEngine scope and various sub-scopes of it are identified, then objects matching
the cl* pattern in those scopes are returned:
get_objects filter {type == internal_signal} cpuEngine/cl* -recursive

/top/cpuEngine/clk_i
/top/cpuEngine/iwb_biu/clk
/top/cpuEngine/iwb_biu/clmode
/top/cpuEngine/or1200_cpu/clk
...
/top/cpuEngine/or1200_immu_top/or1200_immu_tlb/itlb_mr_ram/clk

Search the current scope, and all sub-scopes, for any internal signals whose names start with
cl or ma:
get_objects filter {type == internal_signal} ma* cl* -recursive

See Also
• current_scope
• list_property
• report_objects
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 404

Tcl Commands Listed Alphabetically

get_package_pins
Get a list of package pins.

Syntax
get_package_pins [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of package pin objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the list of package pin objects of these sites iobanks
ports.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match list of package pin objects against patterns Default: *

Categories
XDC, Object

Description
Gets a list of the pins on the selected package for the target device. The default command gets
a list of all pins on the package.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 405

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_package_pins based on property values on the pins.
You can find the properties on an object with the report_property or list_property commands.
In the case of the package pin object, "IS_CLK_CAPABLE", "IS_VREF" and "IS_GLOBAL_CLK" are
some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get the package pins connected to the specified objects. Valid
objects include sites, I/O Banks, or ports.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match pins against the specified patterns. The default pattern is the
wildcard '*' which returns all pins on the package. More than one pattern can be specified to
find multiple pins based on different search criteria.

Examples
The following example gets a list of all pins on the package of the target device:
get_package_pins

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 406

Tcl Commands Listed Alphabetically

The following example gets the number of clock capable (CC) pins on the package:
llength [get_package_pins -filter {IS_CLK_CAPABLE==1}]

Note If there are no pins matching the pattern you will get a warning.

See Also
• get_iobanks
• get_sites
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 407

Tcl Commands Listed Alphabetically

get_param
Get a parameter value.

Syntax
get_param [-quiet] [-verbose] name

Returns
Parameter value

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Parameter name

Categories
PropertyAndParameter

Description
This command gets the currently defined value for a specified tool parameter. These parameters
are user-definable configuration settings that control various behaviors within the tool. Refer to
report_param for a description of what each parameter configures or controls.

Arguments
name - (Required) The name of the parameter to get the value of. The list of user-definable
parameters can be obtained with list_param. This command requires the full name of the
desired parameter. It does not perform any pattern matching, and accepts only one parameter
at a time.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 408

Tcl Commands Listed Alphabetically

Examples
The following example returns the current value of the MaxThreads parameter used for
multi-threaded processes:
get_param general.MaxThreads

See Also
• list_param
• report_param
• reset_param
• set_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 409

Tcl Commands Listed Alphabetically

get_parts
Get a list of parts available in the software.

Syntax
get_parts [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns]

Returns
List of part objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match part names against patterns Default: * Values: The
default search pattern is the wildcard *, or .* when -regexp
is specified.

Categories
Object

Description
Gets a list of parts in the current project that match a specified search pattern. The default
command gets a list of all parts in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 410

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_parts based on property values on the parts. You can
find the properties on an object with the report_property or list_property commands. Any
property/value pair can be used as a filter. In the case of the part object, "DEVICE", "FAMILY"
and "SPEED" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match parts against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all parts. More than one search pattern can be specified to
find parts based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example gets a list of 7vx485t parts, speed grade -1:
get_parts -filter {DEVICE =~ xc7vx485t* && speed == -1}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 411

Tcl Commands Listed Alphabetically

The following example gets the number of 7 series and 6 series Virtex parts:
llength [get_parts -regexp {xc7v.* xc6V.*} -nocase]

Note If there are no parts matching the pattern, the tool will return a warning.

See Also
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 412

Tcl Commands Listed Alphabetically

get_path_groups
Get a list of path groups in the current design.

Syntax
get_path_groups [-regexp] [-nocase] [-quiet] [-verbose] [patterns]

Returns
List of path groups

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match path group names against patterns Default: *

Categories
XDC, Object

Description
Gets a list of timing path groups in the current project that match a specified search pattern.
The default command gets a list of all path groups in the design.

Path groups are automatically created when a new clock is created in the design, containing
all paths in that clocks domain. Path groups can also be manually created with the use of
the group_path command.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 413

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match path groups against the specified patterns. The default pattern
is the wildcard '*' which gets all path groups in the project.

Examples
The following example gets a list of all the path groups in the design.
get_path_groups

The following example gets all path groups with the string "Clk" somewhere in the name:
get_path_groups *Clk*

Note If no path groups match the pattern you will get a warning.

See Also
group_path

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 414

Tcl Commands Listed Alphabetically

get_pblocks
Get a list of pblocks in the current design.

Syntax
get_pblocks [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of pblock objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get pblocks of these cells

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match pblock names against patterns Default: *

Categories
Object, Floorplan, XDC

Description
Gets a list of Pblocks defined in the current project that match a specific pattern. The default
command gets a list of all Pblocks in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 415

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_pblocks based on property values on the Pblocks. You
can find the properties on an object with the report_property or list_property commands.
In the case of the Pblock object, "NAME" and "GRID_RANGES" are some of the properties
that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get the Pblocks to which the specified cells are assigned.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match Pblocks against the specified patterns. The default pattern is the
wildcard '*' which returns all Pblocks in the project.

Examples
The following example gets a list of all Pblocks in the current project:
get_pblocks

The following example gets a list of all Pblocks which do not have a Slice Range defined:
get_pblocks -filter {GRIDTYPES !~ SLICE}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 416

Tcl Commands Listed Alphabetically

The following example gets the Pblock assignments of the specified cell:
get_pblocks -of [get_cells CORE/BR_TOP/RLD67_MUX/REG_PMBIST_C1]

See Also
• create_pblock
• get_cells

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 417

Tcl Commands Listed Alphabetically

get_pins
Get a list of pins in the current design.

Syntax
get_pins [-hsc arg] [-hierarchical] [-regexp] [-nocase] [-leaf]
[-filter arg] [-of_objects args] [-match_style arg] [-quiet]
[-verbose] [patterns]

Returns
List of pin objects

Usage
Name Description

[-hsc] Hierarchy separator Default: /

[-hierarchical] Search level-by-level in current instance

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-leaf] Get leaf/global pins of nets with -of_objects

[-filter] Filter list with expression

[-of_objects] Get pins of these cells, nets, timing paths or clocks

[-match_style] Style of pattern matching, valid values are ucf, sdc Default:
sdc

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match pin names against patterns Default: *

Categories
SDC, XDC, Object

Description
Gets a list of pin objects in the current design that match a specified search pattern. The default
command gets a list of all pins in the design.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 418

Tcl Commands Listed Alphabetically

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Arguments
-hsc arg - (Optional) The default hierarchy separator is '/'. Use this argument to specify a
different hierarchy separator.

-hierarchical - (Optional) Get pins from all levels of the design hierarchy. Without this argument,
the command will only get pins from the top of the design hierarchy. When using -hierarchical,
the search pattern should not contain a hierarchy separator because the search pattern is
applied at each level of the hierarchy, not to the full hierarchical cell name. For instance,
searching for U1/* searches each level of the hierarchy for instances with U1/ in the name. This
may not return the intended results. See get_cells for examples of -hierarchical searches.

Note When used with -regexpr, the specified search string is matched against the full
hierarchical name, and the U1/* search pattern will work as intended

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-leaf - (Optional) Include leaf pins, from primitive or black box cells, for the objects specified
with the -of_object argument.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_pins based on property values on the pins. You
can find the properties on an object with the report_property or list_property commands.
In the case of the pins object, "PARENT" and "TYPE" are some of the properties that can be
used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get the pins connected to the specified cell, port, or clock.

Note -of_objects cannot be used with -hierarchy or with a search pattern

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 419

Tcl Commands Listed Alphabetically

-match_style [sdc | ucf] - (Optional) Indicates that the search pattern matches UCF constraints
or SDC constraints. The default is SDC.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match pins against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all pins in the project. More than one pattern can be specified
to find multiple pins based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example gets a list of pins attached to the specified cell:
get_pins -of_objects [lindex [get_cells] 1]

Note If there are no pins matching the pattern, the tool will return a warning.

See Also
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 420

Tcl Commands Listed Alphabetically

get_pips
Get a list of programmable interconnect points (pips) on the current device.

Syntax
get_pips [-regexp] [-nocase] [-filter arg] [-of_objects args] [-uphill]
[-downhill] [-from args] [-to args] [-quiet] [-verbose] [patterns]

Returns
Pips

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the pips of these sites, tiles, wires, nodes, pips, or nets.

[-uphill] Get the pips uphill from the provided wire or pip.

[-downhill] Get the pips downhill from the provided wire or pip.

[-from] -from Return the ordered list of pips beginning at this
pip or site pin. May be used in combination with uphill.
Default is downhill. -all is implied.

[-to] -to Return the ordered list of pips ending at this wire or
site pin. May be used in combination with uphill. Default
is downhill. -all is implied.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match pips against patterns Default: *

Categories
Object

Description
Programmable interconnect points, or PIPs, provide the physical routing paths on the device
used to connect logic networks. This command returns a list of PIPs on the device that match a
specified search pattern. The command requires a design to be open.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 421

Tcl Commands Listed Alphabetically

The default command gets a list of all PIPs on the device. However, this is not a recommended
use of the command due to the number of pips on a device. You should specify the -of_objects
argument to limit the number of pips returned.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_pips based on property values on the PIPs. You can
find the properties on an object with the report_property or list_property commands. Any
property/value pair can be used as a filter. In the case of the PIP object, "IS_DIRECTIONAL" and
"FROM_PIN" are two of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Return the PIPs of the specified site, tile, or wire objects.

Note Xilinx recommends that you always use the -of_objects argument to limit the runtime and
memory used by the get_pips command. The number of programmable interconnect points
returned can be considerable. The -of_objects option cannot be used with a search pattern

-uphill - (Optional) Return the PIPs uphill of the specified wire or PIPs. Uphill PIPs precede the
specified object in the logic network.

-downhill - (Optional) Return the PIPs downhill of the specified wire or PIPs. Downhill PIPs
follow the specified object in the logic network.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 422

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Return PIPs matching the specified search patterns. The default pattern is
the wildcard '*' which gets a list of all PIPs on the device. More than one search pattern can
be specified to find PIPs based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example returns the PIPs associated with the specified tile:
get_pips -of_object [get_tiles DSP_R_X9Y75]

See Also
• get_sites
• get_tiles
• get_wires
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 423

Tcl Commands Listed Alphabetically

get_ports
Get a list of ports in the current design.

Syntax
get_ports [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-match_style arg] [-quiet] [-verbose] [patterns]

Returns
List of port objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-of_objects] Get ports of these nets, instances, sites, clocks, timing
paths, io standards, io banks, package pins

[-match_style] Style of pattern matching, valid values are ucf, sdc Default:
sdc

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match port names against patterns Default: *

Categories
SDC, XDC, Object

Description
Gets a list of port objects in the current design that match a specified search pattern. The
default command gets a list of all ports in the design.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 424

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_ports based on property values on the ports. You can
find the properties on an object with the report_property or list_property commands. In
the case of the "ports" object, "PARENT" and "TYPE" are some of the properties that can be
used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects arg - (Optional) Get the ports connected to the specified cell, net, clock, or
timing path objects.

Note -of_objects cannot be used with a search pattern

-match_style [sdc | ucf] - (Optional) Indicates that the search pattern matches UCF constraints
or SDC constraints. The default is SDC.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match ports against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all ports in the project. More than one pattern can be specified
to find multiple ports based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 425

Tcl Commands Listed Alphabetically

Examples
The following example gets a list of pins attached to the specified cell:
get_ports -of_objects [lindex [get_cells] 1]

Note If there are no ports matching the pattern, the tool will return a warning.

See Also
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 426

Tcl Commands Listed Alphabetically

get_projects
Get a list of projects.

Syntax
get_projects [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns]

Returns
List of project objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match project names against patterns Default: *

Categories
Object, Project

Description
Gets a list of open projects that match the specified search pattern. The default gets a list
of all open projects.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 427

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_projects based on property values on the projects.
You can find the properties on an object with the report_property or list_property commands.
In the case of the "projects" object, "NAME", "DIRECTORY" and "TARGET_LANGUAGE" are some
of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match projects against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all parts. More than one pattern can be specified to find multiple
projects based on different search criteria.

Examples
The following example gets a list of all open projects.
get_projects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 428

Tcl Commands Listed Alphabetically

The following example sets a variable called project_found to the length of the list of projects
returned by get_projects, then prints either that projects were found or were not found
as appropriate:
set project_found [llength [get_projects ISC*]]
if {$project_found > 0} {puts "Project Found."} else {puts "No Projects Found."}

Note If there are no projects matching the pattern you will get a warning.

See Also
• create_project
• current_project
• open_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 429

Tcl Commands Listed Alphabetically

get_property
Get properties of object.

Syntax
get_property [-quiet] [-verbose] name object

Returns
Property value

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of property whose value is to be retrieved

object Object to query for properties

Categories
Object, PropertyAndParameter

Description
Gets the current value of the named property from the specified object. If the property is
not currently assigned to the object, or is assigned without a value, then the get_property
command returns nothing.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the property to be returned. The name is not case sensitive.

object - (Required) The object to query.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 430

Tcl Commands Listed Alphabetically

Examples
The following example gets the NAME property from the specified cell:
get_property NAME[lindex [get_cells] 3]

See Also
• create_property
• get_cells
• list_property
• list_property_value
• report_property
• reset_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 431

Tcl Commands Listed Alphabetically

get_runs
Get a list of runs.

Syntax
get_runs [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns]

Returns
List of run objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching (valid only when -regexp
specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match run names against patterns Default: *

Categories
Object, Project

Description
Gets a list of synthesis and implementation runs in the current project that match a specified
search pattern. The default command gets a list of all runs defined in the project.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 432

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_runs based on property values on the runs. You
can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the runs object, "CONSTRSET",
"IS_IMPLEMENTATION", "IS_SYNTHESIS", and "FLOW" are some of the properties that can be
used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match run names against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all defined runs in the project. More than one pattern can be
specified to find multiple runs based on different search criteria.

Examples
The following example gets a list of all incomplete runs in the current project:
get_runs -filter {PROGRESS< 100}

The following example gets a list of runs matching the specified pattern:
get_runs imp*

Note If there are no runs matching the pattern you will get a warning.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 433

Tcl Commands Listed Alphabetically

See Also
• create_run
• current_run
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 434

Tcl Commands Listed Alphabetically

get_scopes
Get a list of children HDL scopes of a scope.

Syntax
get_scopes [-filter arg] [-regexp] [-nocase] [-recursive] [-r] [-quiet]
[-verbose] [patterns ...]

Returns
Returns HDL scope objects from the given arguments

Usage
Name Description

[-filter] filter filter_expression: Filter the results list with the
specified expression. The filter argument filters the list of
HDL scopes returned by get_scopes based on property
values on the HDL scope Tcl object. You can find out what
properties are on a Tcl object with the report_property or
report_property commands. In the case of the HDL scopes,
"process", "block" and "task" are some of the property
values that can be used to filter results.

[-regexp] regexp: using regular expressions, search design objects
from which to create wave objects by design object name.
The application supplying the design objects determines
how the match is to be performed. items must be strings.

[-nocase] nocase: Only when regexp is used, perform a case
insensitive match

[-recursive] Recursive: Applicable only when a glob or regular
expression pattern is used. Descend recursively into
children scopes and apply the pattern

[-r] r: Recursive: Applicable only when a glob or regular
expression pattern is used. Descend recursively into
children scopes and apply the pattern

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Default for patterns is * i.e. all children scopes are returned

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 435

Tcl Commands Listed Alphabetically

get_selected_objects
Get selected objects.

Syntax
get_selected_objects [-primary] [-quiet] [-verbose]

Returns
List of selected objects

Usage
Name Description

[-primary] Do not include objects that were selected due to selection
rules

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Object, GUIControl

Description
Gets the objects currently selected in the Vivado IDE by the select_objects command. Can get
the primary selected object and any secondary selected objects as well.

Note This Tcl command works only when Vivado is run in GUI mode

Primary objects are directly selected, while secondary objects are selected based on the
selection rules currently defined by the Tools > Options command. Refer to the Vivado Design
Suite User Guide: Using the IDE (UG893) for more information on setting selection rules.

Arguments
-primary - (Optional) Indicates that only the primary selected object or objects should be
returned; not secondary objects. As a default get_selected_objects will return all currently
selected objects.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 436

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the properties of all currently selected objects, both primary
and secondary:
report_property [get_selected_objects]

See Also
select_objects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 437

Tcl Commands Listed Alphabetically

get_site_pins
Get a list of site_pins.

Syntax
get_site_pins [-of_objects args] [-regexp] [-nocase] [-filter arg]
[-quiet] [-verbose] [patterns]

Returns
Site_pins

Usage
Name Description

[-of_objects] Get 'site_pin' objects of these types: 'site xdef_site node
pin net'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'site_pin' objects against patterns. Default: *

Categories
Object

Description
Returns a list of site pins of the specified site, BELs, or logical cell pin objects in an open design.
This command requires the use of the -of_objects argument.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 438

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_site_pins based on property values on the site pins.
You can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the site pin object, "IS_CLOCK",
"IS_DATA" and "IS_PART_OF_BUS" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Return the site pins of specified site, routed sites, BELs, or logical
cell pin objects.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the site_pins of the specified BELs:
get_site_pins -of_objects [get_bels SLICE_X21Y92/B5FF]
CE CK D SR Q
get_site_pins -of_objects [get_bels SLICE_X21Y92/A5LUT]
A1 A2 A3 A4 A5 O5
get_site_pins -of_objects [get_bels SLICE_X21Y92/CARRY4_CMUX]
0 1 S0 OUT

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 439

Tcl Commands Listed Alphabetically

The following example returns the site_pins associated with the specified site:
get_site_pins -of_objects [get_sites SLICE_X21Y92]
A1 A2 A3 A4 A5 A6 AX B1 B2 B3 B4 B5 B6 BX C1 C2 C3 C4 C5 C6 CE CIN CLK CX \
D1 D2 D3 D4 D5 D6 DX SR A AMUXAQ B BMUXBQ C CMUXCOUTCQ D DMUXDQ

See Also
• get_bels
• get_sites
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 440

Tcl Commands Listed Alphabetically

get_site_pips
Get a list of site_pips from the given object.

Syntax
get_site_pips [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
Site_pips

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the site_pips of these sites.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match site_pips against patterns Default: *

Categories
Object

Description
Programmable interconnect points, or PIPs, provide the physical routing paths on the device
used to connect logic networks. This command returns a list of PIPs on specified sites that
match a specified search pattern. The command requires a design to be open.

This command requires the use of the -of_objects option to specify the sites to return PIPs from.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 441

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_site_pips based on property values on the PIPs. You
can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the PIP object, "IS_DIRECTIONAL"
and "FROM_PIN" are two of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) This option can be used with the get_bels command to return
the pins of specified BELs.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match BEL pins against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all BEL pins on the device. More than one search pattern can
be specified to find pins based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 442

Tcl Commands Listed Alphabetically

Examples
The following example returns the pins of the specified BELs associated with the specified
range of sites on the device:
get_site_pips -of_objects [get_sites SLICE_X21Y92]

The following example returns the clock enable (CE) pins of of all BELs on the device:
get_bel_pins *CE

See Also
• get_bels
• get_sites
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 443

Tcl Commands Listed Alphabetically

get_sites
Get a list of Sites.

Syntax
get_sites [-regexp] [-filter arg] [-range args] [-of_objects args]
[-quiet] [-verbose] [patterns]

Returns
List of site objects

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-range] Match site names which fall into the range. Range is
defined by exactly two site names.

[-of_objects] Get the sites of the objects passed in here.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match site names against patterns. Bonded sites will also
match on package pin names. Default: *

Categories
XDC, Object

Description
Gets a list of sites on the target device that match a specified search pattern. The default
command gets a list of all sites on the target device.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 444

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_sites based on property values on the sites. You can
find the properties on an object with the report_property or list_property commands. In the
case of the site object, "SITE_TYPE", "IS_OCCUPIED", "NUM_INPUTS", and "NUM_OUTPUTS" are
some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-range arg - (Optional) Get all the sites that fall into a specified range. The range of sites must
be specified with two site values, of the same SITE_TYPE, such as {SLICE_X2Y12 SLICE_X3Y15}.
The SITE_TYPE of a site can be determined by the report_property command.

Note Specifying a range with two different types will result in an error

-of_objects arg - (Optional) Get sites from the specified object or objects. Valid objects include:
tiles, BELs, pins, package pins, ports, Pblocks, I/O Banks, cells, and clock_regions.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match sites against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all sites on the target device.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 445

Tcl Commands Listed Alphabetically

Examples
The following example gets a list of all sites available on the target device:
get_sites

The following example gets the number of unoccupied sites on the device:
llength [get_sites -filter {IS_OCCUPIED==0}]

Note If no sites match the pattern you will get a warning.

The following example gets all of the sites on the device, and returns the unique SITE_TYPEs:
set sites [get_sites]
set type {}
foreach x $sites {

set prop [get_property SITE_TYPE $x]
if { [lsearch -exact $type $prop] == -1 } {

lappend type $prop
}

}
foreach y $type {

puts "SITE_TYPE: $y"
}

The following example shows three different forms for specifying the range of sites to return:
get_sites -range {SLICE_X0Y0 SLICE_X1Y1}
SLICE_X0Y0 SLICE_X0Y1 SLICE_X1Y0 SLICE_X1Y1
get_sites -range SLICE_X0Y0 -range SLICE_X1Y1
SLICE_X0Y0 SLICE_X0Y1 SLICE_X1Y0 SLICE_X1Y1
get_sites -range {SLICE_X0Y0:SLICE_X1Y1}
SLICE_X0Y0 SLICE_X0Y1 SLICE_X1Y0 SLICE_X1Y1

See Also
• get_cells
• get_property
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 446

Tcl Commands Listed Alphabetically

get_slrs
Get a list of Super Logic Regions (SLRs).

Syntax
get_slrs [-regexp] [-filter arg] [-no_case] [-of_objects args] [-quiet]
[-verbose] [patterns]

Returns
List of SLRs

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-no_case] Perform case-insensitive matching. (valid only when
-regexp specified)

[-of_objects] Get the SLRs of the objects passed in here.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match SLR names against patterns. Default: *

Categories
Object

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 447

Tcl Commands Listed Alphabetically

get_tiles
Get a list of tiles.

Syntax
get_tiles [-regexp] [-nocase] [-filter arg] [-of_objects args] [-quiet]
[-verbose] [patterns]

Returns
Tiles

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the tiles of these sites, bels, site_pins, bel_pins, nodes,
wires, pips, nets, clock_regions.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match tiles against patterns Default: *

Categories
Object

Description
This command returns a list of tiles on the device in an open design. The default command
gets a list of all tiles on the device.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 448

Tcl Commands Listed Alphabetically

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_tiles based on property values on the tile objects. You
can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the tile object, "NUM_ARCS",
"NUM_SITES", and "IS_GT_SITE_TILE" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Can be used to return the tiles associated with specified sites,
BELs, site_pins, nodes, wires, and PIPs.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

patterns - (Optional) Match tiles against the specified patterns. The default pattern is the
wildcard '*' which gets a list of all tiles on the device. More than one search pattern can be
specified to find tiles based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 449

Tcl Commands Listed Alphabetically

Examples
The following example returns the total number of tiles where the number of timing arcs is
greater than 100 and 150 respectively:
llength [get_tiles -filter {NUM_ARCS>100}]
13468
llength [get_tiles -filter {NUM_ARCS>150}]
11691

See Also
• get_bels
• get_nodes
• get_pips
• get_site_pins
• get_sites
• get_wires
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 450

Tcl Commands Listed Alphabetically

get_timing_arcs
Get a list of timing arcs.

Syntax
get_timing_arcs [-from args] [-to args] [-filter arg]
[-of_objects args] [-quiet] [-verbose]

Returns
List of timing arc objects

Usage
Name Description

[-from] List of pin or ports

[-to] List of pin or ports

[-filter] Filter list with expression

[-of_objects] Get timing arcs for these cells

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC, Object, Timing

Description
Gets a list of timing arcs for the specified objects. You can filter the timing arcs according to
specified properties.

Timing arcs are a part of a timing path. A timing arc can be a wire between two pins, or can
be the internal path of a logic instance between an input pin and output pin, or clock input
and data output pins.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 451

Tcl Commands Listed Alphabetically

Arguments
-from args - (Optional) The starting points of the timing arcs to be returned. Ports, pins, or
cells can be specified as startpoints. You can also specify a clock object, and all timing arcs with
the specified startpoints clocked by the named clock will be returned.

-to args - (Optional) The endpoints or destination objects of timing arcs to be returned. Ports,
pins, and cell objects can be specified as endpoints. A clock object can also be specified, in
which case the timing arcs with endpoints clocked by the named clock are returned.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_timing_arcs based on property values on the objects.
You can find the properties on an object with the report_property or list_property commands.
In the case of the "timing arc" object, "FROM_PIN", "TO_PIN" and "LIB_CELL" are some of the
properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Get timing arcs from the Specified cell objects. If a cell is specified,
all cell_arcs of that cell are returned.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the timing arc from the output pin of the specified buffer:
report_property -all [get_timing_arcs -of_objects [get_cells go_IBUF_inst]]

The following example returns the timing arcs of the specified cell:
get_timing_arcs -of_objects [get_cells count_reg[6]]
{count_reg[6]/C --> count_reg[6]/Q [Reg Clk to Q] }
{count_reg[6]/C --> count_reg[6]/D [setup] }
{count_reg[6]/C --> count_reg[6]/D [hold] }
{count_reg[6]/C --> count_reg[6]/CLR [recovery] }
{count_reg[6]/C --> count_reg[6]/CE [hold] }
{count_reg[6]/C --> count_reg[6]/CLR [removal] }
{count_reg[6]/C --> count_reg[6]/CE [setup] }
{count_reg[6]/CLR --> count_reg[6]/Q [Reg Set/Clr] }

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 452

Tcl Commands Listed Alphabetically

See Also
• report_timing
• set_msg_limit

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 453

Tcl Commands Listed Alphabetically

get_timing_paths
Get timing paths.

Syntax
get_timing_paths [-from args] [-rise_from args] [-fall_from args]
[-to args] [-rise_to args] [-fall_to args] [-through args]
[-rise_through args] [-fall_through args] [-delay_type arg]
[-setup] [-hold] [-max_paths arg] [-nworst arg] [-unique_pins]
[-slack_lesser_than arg] [-slack_greater_than arg] [-group args]
[-no_report_unconstrained] [-user_ignored] [-sort_by arg] [-filter arg]
[-regexp] [-nocase] [-match_style arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-from] From pins, ports, cells or clocks

[-rise_from] Rising from pins, ports, cells or clocks

[-fall_from] Falling from pins, ports, cells or clocks

[-to] To pins, ports, cells or clocks

[-rise_to] Rising to pins, ports, cells or clocks

[-fall_to] Falling to pins, ports, cells or clocks

[-through] Through pins, ports, cells or nets

[-rise_through] Rising through pins, ports, cells or nets

[-fall_through] Falling through pins, ports, cells or nets

[-delay_type] Type of path delay: Values: max, min, min_max, max_rise,
max_fall, min_rise, min_fall Default: max

[-setup] Get max delay timing paths (equivalent to -delay_type max)

[-hold] Get min delay timing paths (equivalent to -delay_type min)

[-max_paths] Maximum number of paths to return: Value >=1 Default: 1

[-nworst] List N worst paths to endpoint: Value >=1 Default: 1

[-unique_pins] for each unique set of pins, show at most 1 path per path
group

[-slack_lesser_than] Include paths with slack less than this Default: 1e+30

[-slack_greater_than] Include paths with slack greater than this Default: -1e+30

[-group] Limit paths in this group(s)

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 454

Tcl Commands Listed Alphabetically

Name Description

[-no_report_unconstrained] Do not get unconstrained paths

[-user_ignored] only report paths which have infinite slack because of
set_false_path or set_clock_groups timing constraints

[-sort_by] Sorting order of paths: Values: group, slack Default: slack

[-filter] Filter list with expression

[-regexp] Patterns specified in filter are full regular expressions

[-nocase] Perform case-insensitive matching for patterns specified in
filter (valid only when -regexp specified)

[-match_style] Style of pattern matching, valid values are ucf, sdc Default:
ucf

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, Object, Timing

Description
Gets timing path objects that meet the specified criteria. This command can be used to
predefine timing paths to pass to the report_timing command for instance. Another usage
of this command is to create custom reporting and analysis.

The get_timing_paths command is very similar to the report_timing command. However,
get_timing_paths returns timing path objects which can be queried for properties, or passed
to other Tcl commands for processing, where report_timing returns a file or a string.

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Arguments
-from args - (Optional) Defines the starting points of the timing paths to be analyzed. Ports,
pins, or cells can be specified as timing path startpoints. You can also specify a clock object,
and all startpoints clocked by the named clock will be analyzed.

-rise_from args - (Optional) Similar to the -from option, but only the rising edge of signals
coming from the startpoints are considered for timing analysis. If a clock object is specified,
only the paths launched by the rising edge of the clock are considered as startpoints.

-fall_from args - (Optional) Similar to the -from option, but only the falling edge of signals
coming from the startpoints are considered for timing analysis. If a clock object is specified,
only the paths launched by the falling edge of the clock are considered as startpoints.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 455

Tcl Commands Listed Alphabetically

-to args - (Optional) Specifies the endpoints, or destination objects of timing paths to be
analyzed. Ports, pins, and cell objects can be specified as endpoints. A clock object can also be
specified, in which case endpoints clocked by the named clock are analyzed.

-rise_to args - (Optional) Similar to the -to option, but only the rising edge of signals going to
the endpoints is considered for timing analysis. If a clock object is specified, only the paths
captured by the rising edge of the named clock are considered as endpoints.

-fall_to args - (Optional) Similar to the -to option, but only the falling edge of signals going to
the endpoints is considered for timing analysis. If a clock object is specified, only the paths
captured by the falling edge of the named clock are considered as endpoints.

-through args - (Optional) Specifies that only paths through the specified pins, cell instance,
or nets are considered during timing analysis. You can specify individual -through (or
-rise_through and -fall_through) points in sequence to define a specific path through the
design for analysis. The order of the specified through points is important to define a specific
path. You can also specify through points with multiple objects, in which case the timing path
can pass through any of the specified through objects.

-rise_through args - (Optional) Similar to the -through option, but timing analysis is only
performed on paths with a rising transition at the specified objects.

-fall_through args - (Optional) Similar to the -through option, but timing analysis is only
performed on paths with a falling transition at the specified objects.

-delay_type arg - (Optional) Specifies the type of delay to analyze when running the timing
report. The valid values are min, max, min_max, max_rise, max_fall, min_rise, min_fall. The
default setting for -delay_type is max.

-setup - (Optional) Check for setup violations. This is the same as specifying -delay_type max.

-hold - (Optional) Check for hold violations. This is the same as specifying -delay_type min.

Note -setup and -hold can be specified together, which is the same as specifying -delay_type
min_max.

-max_paths arg - (Optional) The maximum number of paths to output when sorted by slack; or
the maximum number of paths per path group when sorted by group, as specified by -sort_by.
This is specified as a value greater than or equal to 1. The default value is 1, returning the single
worst timing path, or the worst path per group.

-nworst arg - (Optional) The number of timing paths to show to each endpoint. The timing
report will report the N worst paths based on the specified value. This is specified as a value
greater than or equal to 1. The default setting is 1.

-slack_greater_than arg - (Optional) Report timing on paths with a calculated slack value
greater than the specified value. Used with -slack_lesser_than to provide a range of slack
values of specific interest.

-slack_lesser_than arg - (Optional) Report timing on paths with a calculated slack value less
than the specified value. Used with -slack_greater_than to provide a range of slack values
of specific interest.

-group args - (Optional) Report timing for paths in the specified path groups.

-no_report_unconstrained - (Optional) Do not report timing on unconstrained paths.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 456

Tcl Commands Listed Alphabetically

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_timing_paths based on property values on the
objects. You can find the properties on an object with the report_property or list_property
commands. In the case of the timing path object, "DATAPATH_DELAY", "ENDPOINT_PIN" and
"ENDPOINT_CLOCK" are some of the properties that can be used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

The following example gets the first 100 most critical timing paths objects and returns only
those from the path group clk_tx_clk_core_1:
get_timing_paths -max_paths 100 -filter {GROUP == clk_tx_clk_core_1}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-match_style [sdc | ucf] - (Optional) Indicates that the search pattern matches UCF constraints
or SDC constraints. The default is UCF.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example gets the five worst timing paths from the specified endpoint, and
reports all the properties of the fourth timing path in the list:
report_property -all [lindex [get_timing_paths -to [get_ports led_pins[*]]\
-nworst 5] 3]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 457

Tcl Commands Listed Alphabetically

The following example defines a procedure called custom_report, then reports the 100 worst
paths from the clk_tx_clk_core_1 path group using that proc:
proc custom_report { listOfPaths } {

puts [format {%-40s %-40s %-20s %-20s %7s} "Startpoint" "Endpoint" "Launch Clock" "Capture Clock" "Slack"]
puts [string repeat "-" 140]
foreach path $listOfPaths {

set startpoint [get_property STARTPOINT_PIN $path]
set startclock [get_property STARTPOINT_CLOCK$path]
set endpoint [get_property ENDPOINT_PIN $path]
set endclock [get_property ENDPOINT_CLOCK$path]
set slack [get_property SLACK $path]
puts [format {%-40s %-40s %-20s %-20s %7s} $startpoint $endpoint $startclock $endclock $slack]

}
}
set paths [get_timing_paths -group clk_tx_clk_core_1 -max_paths 100]\
custom_report $path

The following example illustrates how timing path objects can be used with the report_timing
command:
set paths [get_timing_paths -group clk_tx_clk_core_1 -max_paths 100]
report_timing -of_objects $paths

Which is the equivalent of:
report_timing -group clk_tx_clk_core_1 -max_paths 100

See Also
• report_property
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 458

Tcl Commands Listed Alphabetically

get_value
Get current value of the selected HDL object (variable, signal, wire, reg).

Syntax
get_value [-radix arg] [-quiet] [-verbose] hdl_object

Returns
Returns a string representation of value of a hdl_object

Usage
Name Description

[-radix] radix specifies the radix to use for printing the values of
the hdl_objects. Allowed values are: default, dec, bin,
oct,hex, unsigned, ascii

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hdl_object The hdl_object to retrieve the current value

Categories
Simulation

Description
Get the value of a single HDL object at the current simulation run time.

Tip Use the report_values command to return the values of more than one HDL objects.

HDL objects include HDL signals, variables, or constants as defined in the Verilog or VHDL
testbench and source files. An HDL signal includes Verilog wire or reg entities, and VHDL
signals. Examples of HDL variables include Verilog real, realtime, time, and event.

HDL constants include Verilog parameters and localparams, and VHDL generic and constants.
The HDL scope, or scope, is defined by a declarative region in the HDL code such as a module,
function, task, process, or begin-end blocks in Verilog. VHDL scopes include entity/architecture
definitions, block, function, procedure, and process blocks.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 459

Tcl Commands Listed Alphabetically

Arguments
-radix arg - (Optional) Specifies the radix to use when returning the value of the specified
object. Allowed values are: default, dec, bin, oct, hex, unsigned, and ascii.

Note The radix dec indicates a signed decimal. Specify the radix unsigned when dealing
with unsigned data

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

hdl_object - (Required) Specifies a single HDL object to get the value of. The object can be
specified by name, or can be returned as an object from the get_objects command.

Examples
The following example gets the value of the sysClk signal:
get_value sysClk

Z

This example shows the difference between the bin, dec, and unsigned radix on the value
returned from the specified bus:
get_value -radix bin /test/bench_VStatus_pad_0_i[7:0]

10100101
get_value -radix unsigned /test/bench_VStatus_pad_0_i[7:0]

165
get_value -radix dec /test/bench_VStatus_pad_0_i[7:0]

-91

See Also
• current_time
• get_objects
• set_value
• report_values

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 460

Tcl Commands Listed Alphabetically

get_wave_configs
Gets the wave configs that match the given options.

Syntax
get_wave_configs [-regexp] [-nocase] [-filter arg] [-quiet] [-verbose]
[patterns ...]

Returns
Wave configs that match the given options

Usage
Name Description

[-regexp] regexp: using regular expressions, search design objects
from which to create wave objects by design object name.
The application supplying the design objects determines
how the match is to be performed. items must be strings.

[-nocase] nocase: Only when regexp is used, perform a case
insensitive match

[-filter] filter args: Filter the results list with the specified
expression. The filter argument filters the list of wave
configuration objects based on property values of the wave
configuration objects. You can find out what properties
are on an object with the report_property or list_property
commands. In the case of the wave configuration objects,
"has_time", and "needs_save" are some of the properties
that can be used to filter results. The specific operators
that can be used in the filter expression are ==, !=, and
=~, as well as && and || between filter patterns.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Searches all wave configurations for the ones whose name
property matches patterns

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 461

Tcl Commands Listed Alphabetically

get_wires
Get a list of wires.

Syntax
get_wires [-regexp] [-nocase] [-filter arg] [-of_objects args]
[-uphill] [-downhill] [-from args] [-to args] [-quiet] [-verbose]
[patterns]

Returns
Wires

Usage
Name Description

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

[-of_objects] Get the wires of these tiles, nodes, pips, or nets.

[-uphill] Get the wires uphill from the provided pip.

[-downhill] Get the wires downhill from the provided pip.

[-from] -from Return the ordered list of wires beginning at this
pip or site pin. May be used in combination with uphill.
Default is downhill. -all is implied.

[-to] -to Return the ordered list of wires ending at this wire or
site pin. May be used in combination with uphill. Default
is downhill. -all is implied.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match wires against patterns Default: *

Categories
Object

Description
Returns a list of wires in the design that match a specified search pattern in an open design.

The default command gets a list of all wires in the design.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 462

Tcl Commands Listed Alphabetically

Note To improve memory and performance, the get_* commands return a container list of a
single type of objects (e.g. cells, nets, pins, or ports). You can add new objects to the list
(using lappend for instance), but you can only add the same type of object that is currently
in the list. Adding a different type of object, or string, to the list is not permitted and will
result in a Tcl error.

Arguments
-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by get_wires based on property values on the wires. You
can find the properties on an object with the report_property or list_property commands.
Any property/value pair can be used as a filter. In the case of the wire object, "NAME",
"NUM_DOWNHILL_PIPS" and "NUM_UPHILL_PIPS" are some of the properties that can be
used to filter results.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-of_objects args - (Optional) Return the wires of the specified nodes, PIPs, or tiles.

Note -of_objects cannot be used with a search pattern

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 463

Tcl Commands Listed Alphabetically

patterns - (Optional) Return wires matching the specified search patterns. The default pattern is
the wildcard '*' which gets a list of all wires in the design. More than one search pattern can
be specified to find wires based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example returns the wires associated with the specified tile:
get_wires -of_objects [get_tiles IO_INT_INTERFACE_L_X0Y198]

See Also
• get_nodes
• get_pips
• get_tiles
• list_property
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 464

Tcl Commands Listed Alphabetically

group_bd_cells
Create a hierarchical cell, and then move the group of cells into the hierarchy cell. The
connections between these cells are maintained; the connections between these cells and other
cells are maintained through crossing hierarchy cell.

Syntax
group_bd_cells [-prefix arg] [-quiet] [-verbose] [target_cell_name]
[cells ...]

Returns
0 if success

Usage
Name Description

[-prefix] Prefix name to add to cells

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[target_cell_name] Target cell

[cells] Match engine names against cell names Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 465

Tcl Commands Listed Alphabetically

group_path
Groups paths for cost function calculations.

Syntax
group_path [-name arg] [-from args] [-to args] [-through args]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-name] Name of the group

[-from] Filter by paths starting at these path startpoints

[-to] Filter by paths terminating at these path endpoints

[-through] Consider paths through pins, cells or nets

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
Groups a set of paths for cost function calculations, primarily for timing analysis. Timing paths
can be specified generally as from a startpoint, or to an endpoint, or as from-through-to
specific points. Once a path group has been created, some timing analysis can be performed
against it with the report_timing command.

Note This command operates silently and does not return direct feedback of its operation.

The path groups currently defined in a design can be found by using the get_path_groups
command.

Arguments
-name <arg> - (Optional) Specifies the name of the path group. If the path group name
already exists, the specified paths will be added to the existing group.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 466

Tcl Commands Listed Alphabetically

-from <args> - (Optional) Include paths starting at the specified startpoints. The startpoints
can be specified as pins, ports, or clocks.

-to <path_names> - (Optional) Include all paths to the specified endpoints. Endpoints can be
specified as pins, ports, or clocks.

-through <element_names> - (Optional) Include paths routed through the specified pins,
cells, or nets.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example creates a group named signal_grp to the specified registers endpoints
matching *signal*reg/D, and then reports timing on the specified group:
group_path -to [get_pins *signal*reg/D -hierarchical] -name signal_grp
report_timing -group signal_grp

The path group signal_grp is also returned by the get_path_groups command:
get_path_groups
signal_grp

See Also
• get_path_groups
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 467

Tcl Commands Listed Alphabetically

help
Display help for one or more topics.

Syntax
help [-category arg] [-args] [-syntax] [-long] [-prop arg]
[-class arg] [-quiet] [-verbose] [pattern_or_object]

Returns
Nothing

Usage
Name Description

[-category] Search for topics in the specified category

[-args] Display arguments description

[-syntax] Display syntax description

[-long] Display long help description

[-prop] Display property help for matching property names
Default: *

[-class] Display object type help

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[pattern_or_object] Display help for topics that match the specified pattern
Default: *

Categories
Project

Description
Returns a long description of the specified Tcl command; or a list of available Xilinx Tcl
command categories; or a list of commands matching a specific pattern.

The default help command without any arguments returns a list of Tcl command categories that
can be further explored. Command categories are groups of commands performing a specific
function, like File I/O commands for instance.

Available options for the help command can return just the command syntax for a quick
reminder of how the command should be structured; the command syntax and a brief
description of each argument; or the long form of the command with more detailed
descriptions and examples of the command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 468

Tcl Commands Listed Alphabetically

To limit the memory usage of the Vivado Design Suite, some features of the tool are only
loaded into memory when that feature set is used. To access the complete list of Tcl commands
and help text associated with a given feature, you must load the feature into memory using the
load_features command.

The help command can also return any available information related to various properties
assignable to design objects. Use the -prop and -class options to return help information
for properties.

This command returns the specified help text, or an error.

Arguments
-category arg - (Optional) Get a list of the commands grouped under the specified command
category.

-syntax - (Optional) Returns only the syntax line for the command as a quick reminder of the
proper form for using the command.

-args - (Optional) Get abbreviated help text for the specified command. The default is to return
the extended help for the specified command. Use this argument to keep it brief.

-long - (Optional) Returns the extended help description for the command, including the
syntax, a brief description of the arguments, and a more detailed description of the command
with examples. This is the default setting for the help command.

-prop arg - (Optional) Return information related to a specific property of a design object or
class of design objects. This option requires the addition of -class, or the specification of a
single design object.

-class arg - (Optional) Return information related to the properties of a specified class of objects.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pattern - (Optional) Returns information related to the specified command, or a list of
commands that match the specified pattern.

Note A design object must be specified when used with -prop or -class to return information
about properties.

Examples
The following example returns a list of Xilinx Tcl command categories:
help

This example loads the simulator feature of the Vivado Design Suite, and then returns a list
of Tcl commands in the simulation and waveform categories:
load_features simulator
help -category simulation
help -category waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 469

Tcl Commands Listed Alphabetically

Returns a list of all commands matching the specified search pattern:
help *file*

This list can be used to quickly locate a command for a specific purpose, such as remove_files
or delete_files.

The following help command returns a long description of the remove_files command and
its arguments:
help remove_files

Note You can also use the -args option to get a brief description of the command.

This example defines a procedure called short, and returns the -args form of help for the
specified command:
proc short cmdName {help -args $cmdName}

Note You can add this procedure to your init.tcl file to load this command every time the
tool is launched. Refer to Chapter 1, Introduction of the Vivado Design Suite Tcl Command
Reference (UG835) for more information on the init.tc l file

The following examples show how to obtain help for properties of design objects, or a class of
design objects:
help -prop NAME-class cell
help -prop NAME[get_cell cpuEngine]

Note In the preceding example, the first command returns general information related to the
NAME property, while the second command also returns the value of the NAME property on
the specified design object

See Also
• list_features

• list_property

• load_features

• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 470

Tcl Commands Listed Alphabetically

highlight_objects
Highlight objects in different colors.

Syntax
highlight_objects [-color_index arg] [-rgb args] [-color arg] [-quiet]
[-verbose] objects

Returns
Nothing

Usage
Name Description

[-color_index] Color index

[-rgb] RGB color index list

[-color] Valid values are red green blue magenta yellow cyan and
orange

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects Objects to highlight

Categories
GUIControl

Description
Highlights the specified object or objects in a color as determined by one of the color options.
Objects can be unhighlighted with the unhighlight_objects command.

Note Only one color option should be used to specify the highlight color. However, if more
than one color option is specified, the order of precedence used to define the color is -rgb,
-color_index, and -color

Arguments
-color_index arg - (Optional) The color index to use for highlighting the selected object
or objects. The color index is defined by the Highlight category of the Tools > Options >
Themes command. Refer to the Vivado Design Suite User Guide: Using the IDE (UG893) for
more information on setting themes.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 471

Tcl Commands Listed Alphabetically

-rgb args - (Optional) The color to use in the form of an RGB code specified as {R G B}. For
instance, {255 255 0} specifies the color yellow.

-color arg - (Optional) The color to use for highlighting the specified object or objects.
Supported highlight colors are: red, green, blue, magenta, yellow, cyan, and orange.

Note White is the color used to display selected objects with the select_objects command

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) Specifies one or more objects to be highlighted.

Examples
The following example highlights the currently selected objects in the color red:
highlight_objects -color red [get_selected_objects]

See Also
• get_selected_objects
• unhighlight_objects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 472

Tcl Commands Listed Alphabetically

implement_debug_core
Implement debug core.

Syntax
implement_debug_core [-quiet] [-verbose] [cores ...]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[cores] Debug core

Categories

Description
Implements the debug cores in the Vivado tool. The tools will be run once for any ILA debug
cores specified, and run one more time for the Debug Hub core if all cores are specified. The
ILA core (labtools_ila_v2) is the only core type currently supported by the create_debug_core
command. The tool automatically adds a Debug Hub core (labtools_xsdbmasterlib_v2) to
contain and configure the ILA cores in the project.

The Vivado tool creates Debug Hub core and ILA cores initially as black boxes. These cores
must be implemented prior to running through place and route. After the core is created with
create_debug_core, and while ports are being added and connected with create_debug_port
and connect_debug_port, the content of the debug core is not defined or visible within
the design.

Debug core implementation is automatic when you launch an implementation run using the
launch_runs command. However, you can also use the implement_debug_core command to
implement one or more of the cores in the CORE Generator tool without having to implement
the whole design.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 473

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

cores - (Optional) One or more debug cores to implement. All debug cores will be implemented
if no cores are specified.

Examples
The following example implements all debug cores in the current project:
implement_debug_core [get_debug_cores]

See Also
• connect_debug_port
• create_debug_core
• create_debug_port
• get_debug_cores
• launch_runs

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 474

Tcl Commands Listed Alphabetically

import_files
Import files and/or directories into the active fileset.

Syntax
import_files [-fileset arg] [-force] [-norecurse] [-flat]
[-relative_to arg] [-quiet] [-verbose] [files ...]

Returns
A list of file objects that were imported

Usage
Name Description

[-fileset] Fileset name

[-force] Overwrite files of the same name in project directory

[-norecurse] Disables the default behavior of recursive directory searches

[-flat] Import the files into a flat directory structure

[-relative_to] Import the files with respect to the given relative directory

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[files] Name of the files to import into fileset

Categories
Project, Simulation

Description
Imports one or more files or the source file contents of one or more directories to the specified
fileset.

This command is different from the add_files command, which adds files by reference into
the specified fileset. This command imports the files into the local project folders under
project.srcs\<fileset>\imports and then adds the file to the specified fileset.

Arguments
-fileset name - (Optional) The fileset to which the specified source files should be added. If the
specified fileset does not exist, the tool will return an error. If no fileset is specified the files
will be added to the source fileset by default.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 475

Tcl Commands Listed Alphabetically

-force - (Optional) Overwrite files of the same name in the local project directory and in
the fileset.

-norecurse - (Optional) Do not recurse through subdirectories of any specified directories.
Without this argument the tool will also search through any subdirectories for additional
source files that can be added to a project.

-flat - (Optional) Import all files into the imports folder without preserving their relative paths.
By default the directory structure of files is preserved as they are imported into the design.

-relative_to arg - (Optional) Import the files relative to the specified directory. This allows you
to preserve the path to the imported files in the directory structure of the local project. The
files will be imported to the imports folder with the path relative to the specified directory.

Note The relative_to argument is ignored if the -flat argument is also specified. The -flat
command eliminates the directory structure of the imported files.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Optional) One or more file names or directory names to be added to the specified
fileset. If a directory name is specified, all valid source files found in the directory, and in
subdirectories of the directory, will be added. If no files are specified, the tool imports files in
the source set for the current project.

Note If the path is not specified as part of the file name, the current working directory is used,
or the directory from which the tool was launched.

Examples
The following example imports the top.ucf file into the constrs_1 constraint fileset.
import_files -fileset constrs_1 top.ucf

The following example imports the valid source files into the source fileset (sources_1) as
a default since the -fileset argument is not specified. In addition, the -norecurse argument
restricts the tool to looking only in the specified \level1 directory and not searching any
subdirectories. All valid source files will be imported into the \imports folder of the project
because the -flat argument has been specified.
import_files C:/Data/FPGA_Design/level1 -norecurse -flat

Note Without the -flat option a \level1 directory would be created inside of the \imports
folder of the project.

The following example imports files into the source fileset (sources_1) because the -fileset
argument is not specified. Valid source files are imported from the \level1 directory, and all
subdirectories, and the files will be written into the \imports folder of the project starting at
the \Data directory due to the use of the -relative_to argument.
import_files C:/Data/FPGA_Design/level1 -relative_to C:/Data

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 476

Tcl Commands Listed Alphabetically

See Also
add_files

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 477

Tcl Commands Listed Alphabetically

import_ip
Import an IP file and add it to the fileset.

Syntax
import_ip [-srcset arg] [-name arg] [-quiet] [-verbose] [files]

Returns
List of file objects that were added

Usage
Name Description

[-srcset] Source set name

[-name] New name for the imported IP, may not be used with
multiple files

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[files] Names of the IP files to be imported

Categories
Project, IPFlow

Description
Imports an existing XCI or XCO file as an IP source into the current project.

The import_ip command allows you to read existing IP files directly, and import them into the
local project folders. Use the read_ip or add_files command to add IP files by reference into
the current project.

Use the create_ip command to create new IP files from the current IP catalog.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 478

Tcl Commands Listed Alphabetically

Arguments
-files arg - (Optional) The IP file to be imported into the current project. The IP must be in
the form of an existing XCI file or XCO file. An XCI file is an IP-XACT format file that contains
information about the IP parameterization. An XCO file is a CORE Generator log file that
records all the customization parameters used to create the IP core and the project options
in effect when the core was generated. The XCI or XCO files are used to recreate the core in
the current project.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

-name arg - (Optional) The name to assign to the IP object as it is added to the current
source fileset.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example imports the 10gig ethernet core into the current project, and assigns it a
name of IP_block1:
import_ip C:/Data/FPGA_Design/10gig_eth.xci -name IP_block1

See Also
• add_files
• create_ip
• generate_target
• read_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 479

Tcl Commands Listed Alphabetically

import_synplify
Imports the given Synplify project file.

Syntax
import_synplify [-copy_sources] [-quiet] [-verbose] file

Returns
List of files object that were imported from the Synplify file

Usage
Name Description

[-copy_sources] Copy all the sources from synplify project file into the
created project

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Name of the Synplify project file to be imported

Categories
Project

Description
Imports Synplify synthesis project files (.prj) into the current project, including the various
source files used in the synthesis run.

Arguments
-copy_sources - (Optional) Copy Synplify project source files to the local project directory
structure rather than referencing them from their current location. The default is to reference
source files from their current location.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The name of the Synplify project file from which to import the source files.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 480

Tcl Commands Listed Alphabetically

Examples
The following example creates a new project and imports the specified Synplify project file,
copying the various source files from the Synplify project into the local project directories:
create_project syn_test C:/Data/FPGA_Design/syn_test
import_synplify -copy_sources C:/Data/syn_data.prj

See Also
create_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 481

Tcl Commands Listed Alphabetically

import_xise
Import XISE project file settings into the created project.

Syntax
import_xise [-copy_sources] [-quiet] [-verbose] file

Returns
True

Usage
Name Description

[-copy_sources] Copy all ISE sources into the created project

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Name of the XISE project file to be imported

Categories
Project

Description
Imports an ISE project file (XISE) into the current project. This allows ISE projects to be quickly
migrated into the Vivado Design Suite for synthesis, simulation, and implementation. All project
source files, constraint files, simulation files, and run settings are imported from the ISE project
and recreated in the current project.

This command should be run on a new empty project. Since source files, constraints, and
run settings are imported from the ISE project, any existing source files or constraints may
be overwritten.

Arguments
-copy_sources - (Optional) Copy source files in the ISE project to the local project directory
structure rather than referencing them from their current location. The default is to reference
source files from their current location.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 482

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The name of the ISE project file (.XISE) to be imported into the current project.

Examples
The following example creates a new project called importISE, and then imports the ISE project
file (first_use.xise) into the new project.
create_project importISE C:/Data/importISE import_xise \
C:/Data/FPGA_design/ise_designs/drp_des/first_use.xise

Note This example does not specify the -copy_sources argument, so all source files in the ISE
project will be added to the current project by reference.

See Also
create_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 483

Tcl Commands Listed Alphabetically

import_xst
Imports the given XST project file.

Syntax
import_xst [-copy_sources] [-quiet] [-verbose] file

Returns
List of files object that were imported from the XST file

Usage
Name Description

[-copy_sources] Copy all the sources from xst project file into the created
project

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Name of the XST project file to be imported

Categories
Project

Description
Imports XST synthesis project files into the current project, including the various source files
used in the XST run.

Arguments
-copy_sources - (Optional) Copy XST project source files to the local project directory structure
rather than referencing them from their current location. The default is to reference source files
from their current location.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The name of the XST project file from which to import the source files.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 484

Tcl Commands Listed Alphabetically

Examples
The following example creates a new project called xst_test , and imports the drp_des.xst
file:
create_project xst_test C:/Data/FPGA_Design/xst_test
import_xst C:/Data/ise_designs/drp_des.xst

See Also
create_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 485

Tcl Commands Listed Alphabetically

infer_diff_pairs
Infer differential pairs, typically for ports just imported from a CSV or XDC file.

Syntax
infer_diff_pairs [-file_type arg] [-quiet] [-verbose] [file ...]

Returns
Nothing

Usage
Name Description

[-file_type] Input file type: 'csv' or 'xdc' Default: file type

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[file] Pin Planning CSV or XDC file Default: file

Categories
FileIO

Description
The infer_diff_pairs command can be used in an I/O Pin Planning project, after importing the
I/O pin information using the read_csv or read_xdc command.

There are several attributes that identify differential pairs in the file: Signal Name, DiffPair
Signal, DiffPair Type, and I/O Standard.

The tool will identify differential pairs using the following methods:
• Matching Diff Pair - This is a direct definition of the two signals which make up a differential

pair. Two port entries, each have DiffPair Signal values linking to the Signal Name of the
other, and have complementary DiffPair Type values, one N and one P. The tool checks to
ensure that the other attributes such as I/O Standard are compatible when forming the
diff pair.

• Unmatched Diff Pair - Two port entries, with complementary DiffPair Type values (one N,
one P), but only one port has a DiffPair Signal linking to the other Signal Name. The tool
will create the differential pair if all other attributes are compatible.

• Single Port Diff Pair - A single port entry with a differential I/O Standard, a DiffPair Type
value, and a DiffPair Signal that does not otherwise appear in the CSV. The tool will create
the opposite side of the differential pair (the N or P side), with all properties matching
those on the original port.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 486

Tcl Commands Listed Alphabetically

• Inferred Diff Pair - Two ports entries, with Signal Names that imply the N and P side. The
tool will infer a differential pair if all other attributes are compatible.

After reading the port definitions from a CSV or XDC file, the tool will report that some
differential pairs can be inferred from the data. You can run the infer_diff_pairs command to
infer these differential pairs if you choose.

Arguments
-file_type [csv | xdc] - (Optional) Specify the type of file to import when inferring differential
pairs. The valid file types are CSV and XDC. There is no default; the -file_type must be specified.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Optional) The name of the file previously imported.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example imports the specified XDC file, and then infers differential pairs from
the file:
read_xdc C:/Vivado_Install/io_1.xdc
infer_diff_pairs C:/Vivado_Install/io_1.xdc -file_type xdc

See Also
• read_csv
• read_xdc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 487

Tcl Commands Listed Alphabetically

launch_chipscope_analyzer
Launch ChipScope Analyzer tool for a run.

Syntax
launch_chipscope_analyzer [-run arg] [-csproject arg] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-run] Implemented run to launch ChipScope Analyzer with

[-csproject] ChipScope project

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
ToolLaunch, ChipScope

Description
Launches the ChipScope™ Pro Analyzer tool for the active run, or a specified Implemented
Design run. You can setup a Netlist Design for use with ChipScope prior to implementation,
using the create_debug_core, create_debug_port, and connect_debug_port commands.

The Implemented Design must also have a bitstream file generated by BitGen for
launch_chipscope_analyzer to run. If BitGen has not been run, an error will be returned.

Note It is not enough to use the write_bitstream command to create a bitstream file. You
must follow the steps outlined below in the second example

Arguments
-run arg - The run name to use when launching the ChipScope Pro Analyzer. The specified
run must be implemented and have a bitstream (.bit) file generated. ChipScope will use the
bitstream file and the debug_nets.cdc file from the specified run.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 488

Tcl Commands Listed Alphabetically

-csproject arg - The name of the project to open in ChipScope Pro Analyzer. If you do not
specify the project name, the default project name of csdefaultproj.cpj will be used.
When you specify the project name, you should also specify the .cpj extension.

Note The project is created in the project/project.data/sources_1/cs folder.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example launches ChipScope Pro Analyzer, specifying the implementation run to
use and the name of the ChipScope project to create:
launch_chipscope_analyzer -run impl_3 -csproject impl_3_cs_project

The following example sets the add_step Bitgen property for the impl_4 run, launches the
impl_4 run, and then launches the ChipScope Pro Analyzer on the specified run:
set_property add_step Bitgen [get_runs impl_4]
launch_runs impl_4 -jobs 2
launch_chipscope_analyzer -run impl_4

Note In this example the ChipScope project will be called csdefaultproj.cpj .

See Also
• connect_debug_port
• create_debug_core
• create_debug_port
• launch_runs
• set_property
• write_bitstream

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 489

Tcl Commands Listed Alphabetically

launch_impact
Launch iMPACT configuration tool for a run.

Syntax
launch_impact [-run arg] [-ipf arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-run] Implemented run to launch iMPACT with

[-ipf] Project for iMPACT

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
ToolLaunch, ChipScope

Description
Launch iMPACT to configure your device and generate programming files. You can also read
back and verify design configuration data, debug configuration problems, or execute XSVF files.

You must generate the bitstream file using write_bitstream prior to using iMPACT.

The command returns the list of files read.

Arguments
-run - (Optional) Launch iMPACT with the specified run. If no run is specified, then iMPACT is
launched with the active implementation run.

-ipf - (Optional) Specify the iMPACT project file to use to save the results to. The iMPACT
Project File (IPF) contains information from a previous session of iMPACT. The target device is
configured according to the settings in the specified IPF file. If you do not specify -ipf, the
target device is configured according to the default settings.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 490

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example launches iMPACT using the specified implementation run:
launch_impact -run impl_3

See Also
write_bitstream

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 491

Tcl Commands Listed Alphabetically

launch_modelsim
Launch simulation using ModelSim simulator.

Syntax
launch_modelsim [-simset arg] [-mode arg] [-type arg] [-noclean_dir]
[-scripts_only] [-install_path arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-simset] Name of the simulation fileset

[-mode] Simulation mode. Values: behavioral, post-synthesis,
post-implementation Default: behavioral

[-type] Netlist type. Values: functional, timing. This is only
applicable when mode is set to post-synthesis or
post-implementation

[-noclean_dir] Do not remove simulation run directory files

[-scripts_only] Only generate scripts

[-install_path] Custom ModelSim installation directory path

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
ToolLaunch, Simulation

Description
Launch the Mentor Graphics ModelSim or Questa Advanced Simulator tool. The specified
simulator must be installed, and appear in your $PATH in order to be properly invoked when
launching simulation.

To launch ModelSim or Questa, you must first set the target simulator property for the project:
set_property target_simulator ModelSim [current_project]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 492

Tcl Commands Listed Alphabetically

In order to support the use of ModelSim/Questa you must compile the Xilinx simulation libraries
for use with the target simulator using the compile_simlib command. After the libraries are
compiled, the simulator will reference these compiled libraries using the modelsim.ini
file. The modelsim.ini file is the default initialization file and contains control variables
that specify reference library paths, optimization, compiler and simulator settings. The
modelsim.ini is located as follows:

• The path specified by -directory argument at the time compile_simlib is run.
• The path defined by MODELSIMenvironment variable.

• The path defined by MGC_WDenvironment variable.

• The simulation run directory of the project.

Note If the modelsim.ini file is not found at any of these locations a warning message is
returned by the simulator.

The command returns the transcript of the simulator.

Arguments
-simset arg - (Optional) Name of the simulation fileset containing the simulation test benches
and sources to be used during simulation. If not specified, the current simulation fileset is used.

-mode [behavioral | post_synthesis | post_implementation] - (Optional) Simulation mode.
Specifies either a behavioral simulation of the HDL design sources to verify syntax and confirm
that the design performs as intended, a functional or timing simulation of the post-synthesis
netlist, or a functional or timing simulation of the post implementation design to verify circuit
operation after place and route. The default mode is behavioral.

-type [functional | timing] - (Optional) Cannot be used with -mode behavioral. Specifies
functional simulation of just the netlist, or timing simulation of the netlist and SDF file. The
default is functional. Post-synthesis timing simulation uses SDF component delays from the
synth_design command. Post-implementation timing simulation uses SDF delays from the
place_design and route_design commands.

Note Do not use -type with -mode behavioral, or the tool will return an error.

-noclean_dir - (Optional) Do not remove simulation run directory files prior to launching the
simulator. However, some of the files generated for use by the simulator will be overwritten or
updated by re-launching the simulator. The default is to remove the simulation run directory
before launching the simulator.

-scripts_only - (Optional) Indicates that the command scripts for launching ModelSim should
be generated at this time. The scripts can be used to launch the simulator at a later time.

-install_path arg - (Optional) Specifies the directory containing the ModelSim executables
(vlog.exe, vcom.exe and vsim.exe). If this option is not specified, the tool will be looked for in
the current PATH definition.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 493

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example launches the ModelSim simulator in post-implementation timing mode:
launch_modelsim -mode post-implementation -type timing

See Also
• compile_simlib
• launch_xsim
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 494

Tcl Commands Listed Alphabetically

launch_runs
Launch a set of runs.

Syntax
launch_runs [-jobs arg] [-scripts_only] [-all_placement] [-dir arg]
[-to_step arg] [-next_step] [-host args] [-remote_cmd arg]
[-email_to args] [-email_all] [-pre_launch_script arg]
[-post_launch_script arg] [-force] [-quiet] [-verbose] runs ...

Returns
Nothing

Usage
Name Description

[-jobs] Number of jobs Default: 1

[-scripts_only] Only generate scripts

[-all_placement] Export all fixed and non-fixed placement to ISE (by default
only fixed placement will be exported)

[-dir] Launch directory

[-to_step] Last Step to run. Ignored when launching multiple runs.
Not valid with -next_step

[-next_step] Run next step. Ignored when launching multiple runs. Not
valid with -to_step.

[-host] Launch on specified remote host with a specified number
of jobs. Example: -host {machine1 2} -host {machine2 4}

[-remote_cmd] Command to log in to remote hosts Default: ssh -q -o
BatchMode=yes

[-email_to] List of email addresses to notify when jobs complete

[-email_all] Send email after each job completes

[-pre_launch_script] Script to run before launching each job

[-post_launch_script] Script to run after each job completes

[-force] Run the command, even if there are pending constraint
changes, which will be lost (in a Partial Reconfig design)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
runs Runs to launch

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 495

Tcl Commands Listed Alphabetically

Categories
Project

Description
Launches synthesis and implementation runs when running the Vivado tools in Project Mode.
Refer to the Vivado Design Suite User Guide: Design Flows Overview (UG892) for a complete
description of Project Mode and Non-Project Mode.

A run must be previously defined using the create_run command, and the properties of the
run must be previously configured using the set_property command. Both synthesis and
implementation runs can be specified in the same launch_runs command. However, to launch
an implementation run, the parent synthesis run must already be complete.

In Non-Project Mode, Vivado synthesis can be launched directly using the synth_design
command, and does not require the use of a defined run.

In Non-Project Mode, Vivado implementation steps can be launched individually with
the opt_design, power_opt_design, place_design, route_design, phys_opt_design, and
write_bitstream commands.

Arguments
-jobs arg - (Optional) The number of parallel jobs to run on the local host. The number of
jobs for a remote host is specified as part of the -host argument. You do not need to specify
both -jobs and -host.

-scripts_only - (Optional) Generate a script called runme.bat for each specified run so you
can queue the runs to be launched at a later time.

-all_placement - (Optional) Export all user-assigned (fixed) placements as well as auto-assigned
(unfixed) placements for implementation. As a default, the tool will export only the fixed or
user-assigned placement for implementation.

-dir arg - (Optional) The directory for the tool to write run results into. A separate folder for
each run is created under the specified directory. As a default the tool will write the results of
each run into a separate folder under the project.runs directory.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 496

Tcl Commands Listed Alphabetically

-to_step arg - (Optional) Launch the run through the specified step in the implementation
process, and then stop. For instance, run implementation through the place_design step, and
then stop. This will allow you to look at specific stages of a run without completing the entire
run. The following are the valid steps for implementation runs.
• opt_design - Optionally optimize the logical design to more efficiently use the target device

resources. This step is usually enabled by default even though it is an optional step.
• power_opt_design - Optionally optimize elements of the logic design to reduce power

demands of the implemented FPGA.
• place_design - Place logic cells onto the target device. This is a required step.
• power_opt_design (Post-Place) - Optionally optimize power demands of the placed logic

elements. This step must be enclosed in quotes or braces since it includes multiple words
(e.g. -to_step "power_opt_design (Post-Place)").

• phys_opt_design - Optionally optimize design timing by replicating drives of high-fanout
nets to better distribute the loads.

• route_design - Route the connections of the design onto the target FPGA. This is a required
step.

• write_bitstream - Generate a bitstream file for Xilinx device configuration. This is a required
step.

Note The specified -to_step must be enabled for the implementation run using the
set_property command, or the Vivado tool will return an error

-next_step - (Optional) Continue a prior run from the step at which it was stopped. This option
can be used to complete a run previously launched with the -to_step argument.

Note The -to_step and -next_step arguments may not be specified together, and are ignored
when launching multiple runs

-host args - (Optional) Launch on the named remote host with a specified number of jobs.
The argument is in the form of {hostname jobs}, for example: -host {machine1 2}. If the -host
argument is not specified, the runs will be launched from the local host.

Note This argument is supported on the Linux platform only.

-remote_cmd arg - (Optional) The command to use to login to the remote host to launch jobs.
The default remote command is "ssh -q -o BatchMode=yes".

-email_to args - (Optional) Email addresses to send a notification when the runs have
completed processing.

-email_all - (Optional) Send a separate Email for each run as it completes.

-pre_launch_script arg - (Optional) A Tcl script to run before launching each job.

-post_launch_script arg - (Optional) A Tcl script to run after completion of all jobs.

-force - (Optional) Launch the run regardless of any pending constraint changes for Partial
Reconfiguration designs.

Note This argument applies only to Partial Reconfiguration projects. Any pending constraint
changes will be lost to the specified runs.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 497

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

runs - (Required) The names of synthesis and implementation runs to launch. One or more run
names may be specified.

Examples
The following command launches three different synthesis runs with two parallel jobs:
launch_runs synth_1 synth_2 synth_4 -jobs 2

Note The results for each run will be written to a separate folder synth_1 , synth_2 , and
synth_4 inside of the project.runs directory.

The following example creates a results directory to write run results. In this case a separate
folder named impl_3 , impl_4 , and synth_3 will be written to the specified directory. In
addition, the -scripts_only argument tells the tool to write runme.bat scripts to each of these
folders but not to launch the runs at this time.
launch_runs impl_3 impl_4 synth_3 -dir C:/Data/FPGA_Design/results -scripts_only

The following example configures the impl_1 run, setting options for Vivado Implementation
2013, enabling some of the optional optimizations, and then launches the run to the
place_design step:
set_property flow {Vivado Implementation 2013} [get_runs impl_1]
set_property STEPS.POWER_OPT_DESIGN.IS_ENABLEDtrue [get_runs impl_1]
set_property STEPS.POST_PLACE_POWER_OPT_DESIGN.IS_ENABLEDtrue [get_runs impl_1]
set_property STEPS.PHYS_OPT_DESIGN.IS_ENABLEDtrue [get_runs impl_1]
launch_runs -to_step place_design impl_1

See Also
• create_run
• get_runs
• opt_design
• phys_opt_design
• place_design
• power_opt_design
• reset_run
• route_design
• set_property
• synth_design
• write_bitstream

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 498

Tcl Commands Listed Alphabetically

launch_sdk
Launch Xilinx Software Development Kit (SDK).

Syntax
launch_sdk [-bit arg] [-bmm arg] [-workspace arg] [-hwspec arg]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-bit] Specify the bitstream file for FPGA programming

[-bmm] Specify the BMM file for BRAM initialization

[-workspace] Specify the workspace directory for SDK projects

[-hwspec] Specify the hardware platform specification file (.xml)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
ToolLaunch, XPS

Description
Launch the Software Development Kit (SDK) to design the software for embedded processor
sources in your project.

This command follows the export_hardware command, which exports the embedded processor
hardware specification file (system.xml) for use by SDK. By default, the export_hardware
command will write the hardware specification file (.xml) for the specified embedded
processors to the project_name.sdk/SDK/SDK_Export/hw directory, to a file named after the
embedded processor in the design, with the .XML extension.

The command returns a transcript of the SDK tool launch.

Arguments
-bit arg - (Optional) Specify the bitstream file for FPGA programming.

-bmm arg - (Optional) Specify the BMM file for BRAM initialization.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 499

Tcl Commands Listed Alphabetically

-workspace arg - (Optional) Specify the workspace directory for SDK projects. This is the folder
in which your software projects are stored.

-hwspec arg - (Optional) The hardware platform specification file (.xml) for the Embedded
Processor design. This is the file exported by the export_hardware command, or is the
system.xml file found in the sources/edk directory of the project.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example launches SDK, loading the specified hardware specification file for the
project, and indicates the workspace to use:
launch_sdk -hwspec C:/Data/export_sdk/hw/robot.xml -workspace C:/Data/sdk_work/

See Also
export_hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 500

Tcl Commands Listed Alphabetically

launch_xsim
Launch simulation using XSim simulator.

Syntax
launch_xsim [-simset arg] [-noclean_dir] [-scripts_only] [-mode arg]
[-type arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-simset] Name of the simulation fileset

[-noclean_dir] Do not remove simulation run directory files

[-scripts_only] Only generate scripts

[-mode] Simulation mode. Values: behavioral, post-synthesis,
post-implementation Default: behavioral

[-type] Netlist type. Values: functional, timing

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
ToolLaunch, Simulation

Description
Launch the integrated Vivado simulator in behavioral mode, or for functional or timing
simulation of the post-synthesis or post-implementation nestlist.

Launching the Vivado simulator first runs xelab, the RTL elaborator, compiler, and linker used to
create a simulation snapshot used by the Vivado simulator.

The Vivado simulator is then launched, using the xelab created snapshot.

The command returns the transcript of xelab and xsim.

Arguments
-simset arg - (Optional) Name of the simulation fileset containing the simulation test benches
and sources to be used during simulation. If not specified, the current simulation fileset is used.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 501

Tcl Commands Listed Alphabetically

-noclean_dir - (Optional) Do not remove simulation run directory files prior to launching the
simulator. However, some of the files generated for use by the simulator will be overwritten or
updated by re-launching the simulator. The default is to remove the simulation run directory
before launching the simulator.

-scripts_only - (Optional) Just generate the scripts for launching the Vivado simulator, rather
than actually launching the tool. You can use the scripts to launch the simulator at a later time.

-mode [behavioral | post_synthesis | post_implementation] - (Optional) Simulation mode.
Specifies either a behavioral simulation of the HDL design sources to verify syntax and confirm
that the design performs as intended, a functional or timing simulation of the post-synthesis
netlist, or a functional or timing simulation of the post implementation design to verify circuit
operation after place and route. The default mode is behavioral.

-type [functional | timing] - (Optional) Cannot be used with -mode behavioral. Specifies
functional simulation of just the netlist, or timing simulation of the netlist and SDF file. The
default is functional. Post-synthesis timing simulation uses SDF component delays from the
synth_design command. Post-implementation timing simulation uses SDF delays from the
place_design and route_design commands.

Note Do not use -type with -mode behavioral, or the tool will return an error.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example launches the simulator in post implementation mode:
launch_xsim -mode post_implementation

See Also
• close_sim
• current_sim

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 502

Tcl Commands Listed Alphabetically

limit_vcd
Limit the maximum size of the VCD file on disk (equivalent of $dumplimit verilog task).

Syntax
limit_vcd [-quiet] [-verbose] filesize

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

filesize Specify the maximum size of the VCD file in bytes.

Categories
Simulation

Description
Specify the size limit, in bytes, of the Value Change Dump (VCD) file. This command operates
like the Verilog $dumplimit simulator directive.

When the specified file size limit has been reached, the dump process stops, and a comment is
inserted into the VCD file to indicate that the file size limit has been reached.

Note: You must run the open_vcd command before using the limit_vcd command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

filesize - (Required) Specify the file size limit of the open VCD file in bytes.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 503

Tcl Commands Listed Alphabetically

Examples
The following example limits the current VCD file:
limit_vcd 1000

See Also
• checkpoint_vcd
• flush_vcd
• log_vcd
• open_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 504

Tcl Commands Listed Alphabetically

link_design
Open a netlist design.

Syntax
link_design [-name arg] [-part arg] [-constrset arg] [-top arg]
[-mode arg] [-quiet] [-verbose]

Returns
Design object

Usage
Name Description

[-name] Design name

[-part] Target part

[-constrset] Constraint fileset to use

[-top] Specify the top module name when the structural netlist
is Verilog

[-mode] The design mode. Values: default, out_of_context Default:
default

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Tools

Description
Opens a new or existing Netlist design, linking the netlists and constraints with the target part
to create the design. This can also be accomplished with the open_run command.

The design_mode property for the current source fileset must be defined as GateLvl in order to
open a Netlist design. If not, you will get the following error:
ERROR: The design mode of 'sources_1' must be GateLvl.

Arguments
-name arg - (Optional) The name of a new or existing Netlist design.

-part arg - (Optional) The Xilinx device to use when creating a new design. If the part is
not specified the default part will be used.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 505

Tcl Commands Listed Alphabetically

-constrset arg - (Optional) The name of the constraint fileset to use when opening the design.

Note The -constrset argument must refer to a constraint fileset that exists. It cannot be used
to create a new fileset. Use create_fileset for that purpose.

-top arg - (Optional) The top module of the design hierarchy of the netlist.

-mode [default | out_of_context] - (Optional) If you have synthesized a block, and disabled
IO buffer insertion, you can load the resulting EDIF into the Vivado Design Suite using -mode
out_of_context. This enables implementation of the module without IO buffers, prevents
optimization due to unconnected inputs or outputs, and adjusts DRC rules appropriately for
the design. Refer to the Vivado Design Suite User Guide: Hierarchical Design (UG905) for
more information.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following creates a new Netlist design called Net1:
link_design -name Net1

Note The default source set, constraint set, and part will be used in this example.

The following example opens a Netlist design called Net1, and specifies the constraint set
to be used:
link_design -name Net1 -constrset con1

See Also
open_run

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 506

Tcl Commands Listed Alphabetically

list_features
List available features.

Syntax
list_features [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Tools

Description
List the available features sets of the Vivado Design Suite that can be loaded with the
load_features command.

Note If a feature has been previously loaded, it will not be listed as a feature available to load

This command returns a list of features, or an error message.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the list of features available to load into the Vivado Design Suite:
list_features

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 507

Tcl Commands Listed Alphabetically

See Also
• help
• load_features

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 508

Tcl Commands Listed Alphabetically

list_param
Get all parameter names.

Syntax
list_param [-quiet] [-verbose]

Returns
List

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
PropertyAndParameter

Description
Gets a list of user-definable configuration parameters. These parameters configure a variety
of settings and behaviors of the tool. For more information on a specific parameter use the
report_param command, which returns a description of the parameter as well as its current
value.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns a list of all user-definable parameters:
list_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 509

Tcl Commands Listed Alphabetically

See Also
• get_param
• report_param
• reset_param
• set_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 510

Tcl Commands Listed Alphabetically

list_property
List properties of object.

Syntax
list_property [-class arg] [-regexp] [-quiet] [-verbose] [object]
[pattern]

Returns
List of property names

Usage
Name Description

[-class] Object type to query for properties. Ignored if object is
specified.

[-regexp] Pattern is treated as a regular expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[object] Object to query for properties

[pattern] Pattern to match properties against Default: *

Categories
Object, PropertyAndParameter

Description
Gets a list of all properties on a specified object or class.

Note report_property also returns a list of properties on an object, but includes the property
type and property value.

Arguments
-class arg - (Optional) The class of object for which to list the properties.

Note When both -class and object are specified, the properties of the specific object are
returned.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 511

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

object - (Optional) The single object on which to report properties.

Note If you specify multiple objects you will get an error.

Examples
The following example returns all properties of the specified object:
list_property [get_cells cpuEngine]

See Also
• create_property
• get_cells
• get_property
• list_property_value
• report_property
• reset_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 512

Tcl Commands Listed Alphabetically

list_property_value
List legal property values of object.

Syntax
list_property_value [-default] [-class arg] [-quiet] [-verbose] name
[object]

Returns
List of property values

Usage
Name Description

[-default] Show only the default value.

[-class] Object type to query for legal property values. Ignored
if object is specified.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of property whose legal values is to be retrieved

[object] Object to query for legal properties values

Categories
Object, PropertyAndParameter

Description
Gets a list of valid values for an enumerated type property of either a class of objects or a
specific object.

Note The command cannot be used to return valid values for properties other than enum
properties. The report_property command will return the type of property to help you
identify enum properties.

Arguments
-defaut - (Optional) Return the default value for the specified class of objects.

-class arg - (Optional) The class of object to query. The class of object can be used in place
of an actual object.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 513

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the property to be queried. Only properties with an enumerated
value, or a predefined value set, can be queried with this command. All valid values of the
specified property will be returned.

object - (Optional) An object to query. An actual object can be used in place of the -class
argument to specify the type of object to query.

Examples
The following example returns the list of valid values for the KEEP_HIERARCHY property from
cell objects:
list_property_value KEEP_HIERARCHY-class cell

The following example returns the same result, but uses an actual cell object in place of the
general cell class:
list_property_value KEEP_HIERARCHY[get_cells cpuEngine]

The following example returns the default value for the specified property by using the current
design as a representative of the design class:
list_property_value -default BITSTREAM.GENERAL.COMPRESS[current_design]

See Also
• create_property
• current_design
• get_cells
• get_property
• list_property
• report_property
• reset_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 514

Tcl Commands Listed Alphabetically

list_targets
List applicable targets for the specified source.

Syntax
list_targets [-quiet] [-verbose] files

Returns
List of targets

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files Source file for which the targets needs to be listed

Categories
Project, XPS

Description
List the targets that are available for a specified IP core, DSP module, Embedded Processor
source, or IP Subsystem. The following file types are accepted: .xci, .xco, .mdl, .xmp, .bd

Use the generate_targets command to generate the listed targets.

The command returns the list of available targets. If no targets are available for the specified
file objects, nothing is returned.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Required) A files object that contains the list of source files to evaluate.

Note Use get_files to specify a files object, rather than specifying a file name.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 515

Tcl Commands Listed Alphabetically

Examples
The following example lists the available targets for any DSP modules in the design:
list_targets [get_files *.mdl]

See Also
• create_bd_design
• create_sysgen
• create_xps
• generate_target
• get_files
• import_ip
• read_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 516

Tcl Commands Listed Alphabetically

load_features
Load Tcl commands for a specified feature.

Syntax
load_features [-quiet] [-verbose] [features ...]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[features] Feature(s) to load, use list_features for a list of available
features.

Categories
Tools

Description
Load the specified features of the Vivado Design Suite into memory.

To limit the memory footprint of the Vivado tool, some features of the application are only
loaded into memory when a command from that feature set is run. For instance, the Vivado
simulator feature is only partially loaded prior to actually launching the simulator using the
launch_xsim command.

To access the complete list of Tcl commands associated with a feature of the Vivado Design
Suite, and the help text for these commands, you must load the feature into the application
memory using the load_features command.

You can list the features that are available to be loaded using the list_features command. The
list of features is dynamic, and changes from release to release.

The command returns nothing if successful, or an error message if failed.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 517

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

features - List of features to load.

Examples
The following example loads the Vivado simulator feature:
load_features simulator

The following example loads all of the loadable feature sets of the Vivado Design Suite:
load_features [list_features]

See Also
• help
• list_features

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 518

Tcl Commands Listed Alphabetically

lock_design
Locks or unlocks netlist, placement or routing of a design.

Syntax
lock_design [-level arg] [-unlock] [-export] [-quiet] [-verbose] [cell]

Returns
Nothing

Usage
Name Description

[-level] specify the locking level; Valid values are logical, placement,
and routing. Default: placement

[-unlock] Unlock cells, if cells are not specified, whole design is
unlocked.

[-export] mark that the constraints can be exported.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[cell] Lock cells, if cells are not specified, whole design is locked.
Default: *

Categories
Project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 519

Tcl Commands Listed Alphabetically

log_saif
Log Switching Activity Interchange Format (SAIF) toggle for specified wire, signal, or reg.

Syntax
log_saif [-quiet] [-verbose] hdl_objects ...

Returns
Does not return any object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hdl_objects The hdl_objects to log

Categories
Simulation

Description
Writes the switching activity rates for the specified HDL signals during the current simulation.

The Switching Activity Interchange format (SAIF) file is an ASCII file containing header
information, and toggle counts for the specified signals of the design. It also contains the
timing attributes which specify time durations for signals at level 0, 1, X, or Z.

The log_saif command can only be used after the open_saif command has opened an SAIF file
in the current simulation to capture switching activity rates.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

hdl_objects - Specifies the HDL signal names on which to capture code.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 520

Tcl Commands Listed Alphabetically

Examples
The followinge xample logs switching activity for all signals in the current_scope:
log_saif [get_objects]

Log SAIF for only the internal signals starting with name c of the scope /tb/UUT :
log_saif [get_objects filter { type == internal_signal }/tb/UUT/c*]

See Also
• close_saif
• get_objects
• open_saif

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 521

Tcl Commands Listed Alphabetically

log_vcd
Log Value Change Dump (VCD) simulation output for specified wire, signal, or reg.

Syntax
log_vcd [-level arg] [-quiet] [-verbose] [hdl_objects ...]

Returns
Does not return any object

Usage
Name Description

[-level] Number of levels to log (for HDL scopes) Default: 0

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hdl_objects] Which HDL objects to log

Categories
Simulation

Description
Indicates which HDL objects to write into the Value Change Dump (VCD) file. In some designs
the simulation results can become quite large; the log_vcd command lets you define the specific
content of interest. This command models the behavior of the Verilog $dumpvars system task.

HDL objects include HDL signals, variables, or constants as defined in the Verilog or VHDL
testbench and source files. An HDL signal includes Verilog wire or reg entities, and VHDL
signals. Examples of HDL variables include Verilog real, realtime, time, and event.

This command specifies which HDL objects and how many levels of design hierarchy to write
into the VCD file. The actual values of the objects are written to the VCD file when you run the
checkpoint_vcd or flush_vcd commands at a specific time during simulation.

Note: You must use the open_vcd command before using any other *_vcd commands.

Nothing is returned by this command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 522

Tcl Commands Listed Alphabetically

Arguments
-level arg - (Optional) Specifies the number of levels of design hierarchy to traverse when
locating HDL objects to write to the VCD file. The default value of 0 causes the tool to dump all
values for the specified HDL objects at the level of hierarchy defined by hdl_objects, and all
levels below that. A value of 1 indicates that only the level of hierarchy specified by hdl_objects
should be written to the VCD file.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

hdl_objects - (Optional) Specifies the HDL objects to identify and write changing values into
the VCD file. The level of hiearchy is also represented in the hdl_objects pattern. For instance
/tb/UUT/* indicates all HDL objects within the /tb/UUT level of the design.

Examples
Log value changes for all the ports from the scope /tb/UUT :
log_vcd [get_objects -filter { type == port } /tb/UUT/*]

Note Since -levels is not specified, all levels below the specified scope will be searched for
ports matching the specified pattern as well

Log VCD for all the objects in the current_scope:
log_vcd *
log_vcd [get_objects *]

Log value changes for only internal signals with names starting with C, of the root scope
/tb/UUT :
log_vcd [get_objects -filter { type == internal_signal }./C*]

See Also
• checkpoint_vcd
• flush_vcd
• open_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 523

Tcl Commands Listed Alphabetically

log_wave
Log simulation output for specified wire, signal, or reg for viewing using Vivado Simulators
waveform viewer. Unlike add_wave, this command does not add the waveform object to
waveform viewer (i.e. Waveform Configuration). It simply enables logging of output to the
Vivado Simulators Waveform Database (WDB).

Syntax
log_wave [-recursive] [-r] [-quiet] [-verbose] hdl_objects ...

Returns
Nothing

Usage
Name Description

[-recursive] Searches recursively for objects

[-r] Searches recursively for objects

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hdl_objects Which hdl_objects to trace

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 524

Tcl Commands Listed Alphabetically

ltrace
Turns on or off printing of file name and line number of the hdl statement being simulated.

Syntax
ltrace [-quiet] [-verbose] value

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

value value: on, true, yes. Otherwise set to off, false, no

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 525

Tcl Commands Listed Alphabetically

make_diff_pair_ports
Make differential pair for 2 ports.

Syntax
make_diff_pair_ports [-quiet] [-verbose] ports ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

ports Ports to join

Categories
PinPlanning

Description
Joins two existing ports to create a differential pair.

The port directions, interfaces, and other properties must match in order for the specified ports
to be joined as a differential pair. Otherwise an error will be returned.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ports - (Required) Two port objects to join as a differential pair. The first port specified will
be the positive side of the differential pair.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 526

Tcl Commands Listed Alphabetically

Examples
The following example joins the two specified ports to create a differential pair:
make_diff_pair_ports port_Pos1 port_Neg1

See Also
• create_interface
• create_port

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 527

Tcl Commands Listed Alphabetically

make_wrapper
Generate HDL wrapper for the specified source.

Syntax
make_wrapper [-top] [-testbench] [-inst_template] [-fileset arg]
[-import] [-force] [-quiet] [-verbose] files

Returns
Nothing

Usage
Name Description

[-top] Create a top-level wrapper for the specified source

[-testbench] Create a testbench for the specified source

[-inst_template] Create an instantiation template for the specified source.
The template will not be added to the project and will be
generated for reference purposes only.

[-fileset] Fileset name

[-import] Import generated wrapper to the project

[-force] Overwrite existing source(s)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files Source file for which the wrapper needs to be generated

Categories
Project, XPS, SysGen

Description
Create a Verilog or VHDL wrapper for instantiating an IP core, DSP module, or Embedded
Processor sub-design into a project.

Note The wrapper is generated in Verilog or VHDL according to the TARGET_LANGUAGE
property on the project

The command returns information related to the creation of the wrappers.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 528

Tcl Commands Listed Alphabetically

Arguments
-top - (Optional) Create a top-level Verilog or VHDL wrapper for the specified source. The
wrapper instantiates the DSP module or Embedded Processor sub-design as the top-level of
the design hiearchy.

-testbench - (Optional) Create a simulation testbench for the specified DSP module or
Embedded Processor sub-design. This includes the DUT module instantiation.

-inst_template - (Optional) Create an instantiation template for the specified source. The
template will not be added to the project and will be generated for reference purposes only.
The instantiation template can be cut and paste into another RTL file to create an instance of
the module in the hierarchy.

-fileset - (Optional) Specify the fileset to add the wrapper to when importing into the project.

-import - (Optional) Import the wrapper file into the project, adding it to the appropriate fileset.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Required) Specify the files to generate wrappers for.

Examples
The following example create the instantiation template to integrate the specified Embedded
Processor source into the design hierarchy:
make_wrapper -inst_template -fileset [get_filesets sources_1] \

[get_files C:/Data/edk/xpsTest1/xpsTest1.xmp]

See Also
• add_files
• create_sysgen
• create_xps
• generate_target
• import_ip
• list_targets
• read_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 529

Tcl Commands Listed Alphabetically

mark_objects
Mark objects in GUI.

Syntax
mark_objects [-rgb args] [-color arg] [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-rgb] RGB color index list

[-color] Valid values are red green blue magenta yellow cyan and
orange

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects Objects to mark

Categories
GUIControl

Description
Marks specified objects in GUI mode. This command places an iconic mark to aid in the
location of the specified object or objects. The mark is displayed in a color as determined by
one of the color options.

Objects can be unmarked with the unmark_objects command.

Note Use only one color option. If both color options are specified, -rgb takes precedence
over -color

Arguments
-rgb args - (Optional) The color to use in the form of an RGB code specified as {R G B}. For
instance, {255 255 0} specifies the color yellow, while {0 255 0} specifies green.

-color arg - (Optional) The color to use for marking the specified object or objects. Supported
colors are: red, green, blue, magenta, yellow, cyan, and orange.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 530

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) One or more objects to be marked.

Examples
The following example adds a red icon to mark the currently selected objects:
mark_objects -color red [get_selected_objects]

See Also
• get_selected_objects
• unmark_objects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 531

Tcl Commands Listed Alphabetically

move_bd_cells
Move cells into a hierarchy cell. The connections between these cells are maintained; the
connections between these cells and other cells are maintained through crossing hierarchy cell.

Syntax
move_bd_cells [-prefix arg] [-quiet] [-verbose] [parent_cell]
[cells ...]

Returns
0 if success

Usage
Name Description

[-prefix] Prefix name to add to cells

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[parent_cell] Parent cell

[cells] Match engine names against cell names Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 532

Tcl Commands Listed Alphabetically

move_files
Moves the files from one fileset to another while maintaining all of their original properties.

Syntax
move_files [-fileset arg] [-quiet] [-verbose] [files ...]

Returns
List of files that were moved

Usage
Name Description

[-fileset] Destination fileset name

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[files] Name of the files to be moved

Categories
Project, Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 533

Tcl Commands Listed Alphabetically

open_bd_design
Open an existing IP subsystem design from disk file.

Syntax
open_bd_design [-quiet] [-verbose] name

Returns
The design object. Returns nothing if the command fails

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of IP subsystem design to open

Categories
IPIntegrator

Description
Open an IP subsystem design in the IP Integrator feature of the Vivado IDE. The IP subsystem
must previously have been created using the create_bd_design command.

This command returns a message with the name of the opened IP subsystem design, or returns
an error if the command fails.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - The path and file name of the IP subsystem design to open in the IP Integrator feature
of the Vivado Design Suite. The name must include the file extension.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 534

Tcl Commands Listed Alphabetically

Examples
The following opens the specified IP subsystem design in the current project:
open_bd_design C:/Data/project1/project1.src/sources_1/bd/design_1/design_1.bd

See Also
• close_bd_design
• create_bd_design
• current_bd_design
• save_bd_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 535

Tcl Commands Listed Alphabetically

open_example_project
Open the example project for the indicated IP.

Syntax
open_example_project [-dir arg] [-force] [-in_process] [-quiet]
[-verbose] objects ...

Returns
The Project that was opened

Usage
Name Description

[-dir] Path to directory where example project will be created

[-force] Overwrite an example project if it exists

[-in_process] Open the example project in the same process

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects The objects whose example projects will be opened

Categories
Project, IPFlow

Description
Open an example project for the specified IP cores. The example project can be used to explore
the features of the IP core in a stand-alone project, instead of integrated into the current project.

Arguments
-dir arg - (Optional) Specifies the path to the directory where the example project will be written.

-force - (Optional) Force the opening of a new example project, overwriting an existing
example project at the specified path.

-in_process - (Optional) Open the example project in the same tool process as the current
project. As a default, without this argument, a new process instance of the tool will be launched
for the example project.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 536

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) The IP cores to open example projects for.

Examples
The following generates the target data for the example project, then opens the example
project for the specified IP core:
generate_target {example} [get_ips blk_mem*]
open_example_project -force [get_ips blk_mem*]

Note The Example target data must be generated prior to using the open_example_project
command. This will create a Tcl script to open and configure the specified IP core

See Also
• create_ip
• generate_target
• get_ips
• import_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 537

Tcl Commands Listed Alphabetically

open_hw
Open the hardware tool.

Syntax
open_hw [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 538

Tcl Commands Listed Alphabetically

open_hw_target
Open a connection to a hardware target on the hardware server.

Syntax
open_hw_target [-quiet] [-verbose] [hw_target]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_target] hardware target Default: current hardware target

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 539

Tcl Commands Listed Alphabetically

open_io_design
Open an IO design.

Syntax
open_io_design [-name arg] [-part arg] [-constrset arg] [-quiet]
[-verbose]

Returns
Design object

Usage
Name Description

[-name] Design name

[-part] Target part

[-constrset] Constraint fileset to use

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Opens a new or existing I/O Pin Planning design.

Note The design_mode property for the current source fileset must be defined as PinPlanning
in order to open an I/O design. If not, you will get the following error:
ERROR: The design mode of 'sources_1' must be PinPlanning

Arguments
-name arg - (Optional) The name of a new or existing I/O Pin Planning design.

-part arg - (Optional) The Xilinx device to use when creating a new design. If the part is
not specified the default part will be used.

-constrset arg - (Optional) The name of the constraint fileset to use when opening an I/O
design.

Note The -constrset argument must refer to a constraint fileset that exists. It cannot be used
to create a new fileset. Use create_fileset for that purpose.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 540

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following creates a new I/O design called myIO:
open_io_design -name myIO

Note The default source set, constraint set, and part will be used in this case.

The following example opens an existing I/O design called myIO, and specifies the constraint
set to be used:
open_io_design -name myIO -constrset topCon

See Also
create_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 541

Tcl Commands Listed Alphabetically

open_project
Open a Vivado project file (.xpr).

Syntax
open_project [-read_only] [-quiet] [-verbose] file

Returns
Opened project object

Usage
Name Description

[-read_only] Open the project in read-only mode

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Project file to be read

Categories
Project

Description
Opens a project file (.xpr) for editing the design source files and hierarchy, for performing I/O
pin planning and floorplanning, and to synthesize and implement the device.

Arguments
-read_only - (Optional) Open the project in read only mode. You will not be able to save any
modifications to the project unless you use the save_project_as command to save the project
to a new editable project.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The project file to open. You must include both the path to the file and the
.ppr file extension.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 542

Tcl Commands Listed Alphabetically

Examples
The following example opens the project named my_project1 located in the Designs directory.
open_project C:/Designs/project1.xpr

Note The project must be specified with the .xpr extension for the tool to recognize it as
a project file. The path to the file must be specified along with the project file name or the
tool will return an error that it cannot find the specified file.

See Also
• create_project
• current_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 543

Tcl Commands Listed Alphabetically

open_run
Open a run into a netlist or implementation design.

Syntax
open_run [-name arg] [-quiet] [-verbose] run

Returns
Design object

Usage
Name Description

[-name] Design name

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
run Run to open into the design

Categories
Project

Description
Opens the specified synthesis run into a Netlist Design or implementation run into an
Implemented Design. The run properties defining the target part and constraint set are
combined with the synthesis or implementation results to create the design view in the tool.

Arguments
-name - (Optional) The name of the design to open.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

run - (Required) Specifies the run name of the synthesis or implementation run to open. The
run must have completed synthesis or implementation before it can be opened as a design.

Note If you attempt to open a run that has not been launched the tool will return an error.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 544

Tcl Commands Listed Alphabetically

Examples
The following command opens the specified synthesis run into a Netlist Design named
synthPass1:
open_run -name synthPass1 synth_1

The following opens an Implemented Design for impl_1:
open_run impl_1

See Also
launch_runs

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 545

Tcl Commands Listed Alphabetically

open_saif
Open file for storing signal switching rate for power estimation. The switching rate is written
out in Switching Activity Interchange Format (SAIF) Only one SAIF is allowed to be open per
simulation run.

Syntax
open_saif [-quiet] [-verbose] file_name

Returns
The SAIF object that was opened

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file_name The SAIF filename to store information

Categories
Simulation

Description
Create or open a Switching Activity Interchange Format (SAIF) file for storing signal switching
rates in the current simulation for later use by the report_power command.

The Switching Activity Interchange format (SAIF) file is an ASCII file containing header
information, and toggle counts for the specified signals of the design. It also contains the
timing attributes which specify time durations for signals at level 0, 1, X, or Z.

The SAIF file is recommended for power analysis since it is smaller than the VCD file.

When an SAIF file has been opened, you can write the switching activity from the simulation
into the SAIF file using log_saif.

Only one SAIF can be open at one time during simulation. To close the SAIF file, use the
close_saif command.

This command returns the object ID of the opened SAIF file, or returns an error if the command
failed.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 546

Tcl Commands Listed Alphabetically

Arguments
-quiet - Execute the command quietly, ignore any command line errors, and return no error
messages if the command fails to execute.

-verbose - Suspends message limits during command execution.

file_name - Specifies the name of the SAIF file to open.

Examples
The following example opens the specified simulation:
open_saif myData.saif

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 547

Tcl Commands Listed Alphabetically

open_vcd
Open a Value Change Dump (VCD) file for capturing simulation output. This Tcl command
models behavior of $dumpfile Verilog system task.

Syntax
open_vcd [-quiet] [-verbose] [file_name]

Returns
Returns a Vcd Object and sets the current vcd to this object so that current_vcd command
will return this object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[file_name] file name. Defaults to dump.vcd (This is LRM standard)
Default: dump.vcd

Categories
Simulation

Description
Create or open a Value Change Dump (VCD) file to capture simulation output. This command
operates like the Verilog $dumpfile simulator directive.

VCD is an ASCII file containing header information, variable definitions, and value change
details of a set of HDL signals. The VCD file can be used to view simulation result in a VCD
viewer or to estimate the power consumption of the design.

When a VCD file has been opened, you can write the value changes from the simulation into
the VCD file using checkpoint_vcd, flush_vcd, or log_vcd. In addition, you can pause and
resume the collection of value change data with the stop_vcd and start_vcd commands.

You can limit the size of the VCD file by using the limit_vcd command.

To close the VCD file, use the close_vcd command.

Note: You must use the open_vcd command before using any other *_vcd commands. Only
one VCD file can be open at any time.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 548

Tcl Commands Listed Alphabetically

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file_name - (Optional) Is the name of the file into which to dump the current VCD information.
When a filename is not specified, the default filename of dump.vcd is used. If the specified
VCD file already exists, then open_vcd resets the VCD file to a new state, overwriting the
current contents.

Examples
The following example opens the specified VCD file (design1.vcd) so that value changes can
be written to it. The log_vcd command identifies all ports in the /tb/UUT scope, and only
that level of the design hierarchy, to be written to the VCD file. The simulation is run for a
specified period of time, and flush_vcd writes the current values of the HDL objects to the
VCD file. Then close_vcd closes the open file.
open_vcd design1.vcd
log_vcd -level 1 [get_objects filter { type == port } /tb/UUT/*]
run 1000
flush_vcd
close_vcd

See Also
• checkpoint_vcd
• close_vcd
• flush_vcd
• limit_vcd
• log_vcd
• read_vcd
• start_vcd
• stop_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 549

Tcl Commands Listed Alphabetically

open_wave_config
Open a wave config.

Syntax
open_wave_config [-data_source arg] [-quiet] [-verbose] [filename]

Returns
The wave config opened

Usage
Name Description

[-data_source] data_source open | connect: specifies whether to open the
data source referenced in the WCFG file or connect to an
already existing data source

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[filename] Loads a wave configuration object from the file filename. A
new wave window showing that WCFG is also created and
made the current wave window

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 550

Tcl Commands Listed Alphabetically

open_wave_database
Open Waveform Database (WDB) file produced by a prior simulation run and return a
simulation object.

Syntax
open_wave_database [-quiet] [-verbose] wdb

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

wdb file name

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 551

Tcl Commands Listed Alphabetically

opt_design
Optimize the current netlist. This will perform the retarget, propconst, and sweep optimizations
by default.

Syntax
opt_design [-retarget] [-propconst] [-sweep] [-bram_power_opt] [-remap]
[-resynth_area] [-directive arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-retarget] Retarget

[-propconst] Propagate constants across leaf-level instances

[-sweep] Remove unconnected leaf-level instances

[-bram_power_opt] Perform Block RAM power optimizations

[-remap] Remap logic optimally in LUTs

[-resynth_area] Resynthesis

[-directive] Mode of behavior (directive) for this command. Please
refer to Arguments section of this help for values for this
option Default: Default

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Tools

Description
Optimizes a design netlist for the target part. Optimization can provide improvements to
synthesized netlists from third-party tools, or for netlists that may not have been optimized
during synthesis. The command performs three optimizations by default: Retarget, Constant
Propagation, Sweep.

Note Expressly specifying one optimization disables the other optimizations, unless they are
also expressly specified.

To perform LUT Remapping, you must specify -remap.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 552

Tcl Commands Listed Alphabetically

To perform area-based re-synthesis, you must specify -resynth_area, or -directive ExploreArea.

Run this command prior to implementation to optimize the design and simplify the netlist
before placing and routing the design.

Arguments
-retarget - (Optional) Retarget one type of block to another when retargetting the design from
one device family to another. For example, retarget instantiated MUXCY or XORCY components
into a CARRY4 block; or retarget DCM to MMCM. The retarget optimization also absorbs
inverters into downstream logic where possible.

-propconst - (Optional) Propagate constant inputs through the circuit, resulting in a simplified
netlist. Propagation of constants can eliminate redundant combinational logic from the netlist.

-sweep - (Optional) Remove unnecessary logic, removing loadless cells and nets.

-bram_power_opt - (Optional) Enables power optimization on Block RAM cells. Changes the
WRITE_MODE on unread ports of true dual-port RAMs to NO_CHANGE, and applies intelligent
clock gating to Block RAM outputs.

-remap - (Optional) Remap the design to combine multiple LUTs into a single LUT to reduce
the depth of the logic.

-resynth_area - (Optional) Perform re-synthesis in area mode to reduce the number of LUTs.

-directive arg - (Optional) Direct the mode of optimization with specific design objectives. Only
one directive can be specified for a single opt_design command, and values are case-sensitive.
Supported values include:
• Explore - Run multiple passes of optimization to improve results.
• ExploreArea - Run multiple passes of optimization, with an emphasis on reducing area.
• AddRemap - Run the default optimization, and include LUT remapping to reduce logic

levels.
• Default - Run the default optimization.

Refer to the Vivado Design Suite User Guide: Implementation (UG904) for more information on
the effects of each directive.

Note The -directive option controls the overall optimization strategy, and is not compatible
with any specific optimization options. It can only be used with -quiet and -verbose

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command. This option displays detailed information about the logic that is affected by
each optimization.

Examples
The following example performs all three default optimizations (retarget, constant propagation,
and sweep), and returns detailed results:
opt_design -verbose

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 553

Tcl Commands Listed Alphabetically

The following example performs the sweep and retarget optimizations:
opt_design -sweep -retarget

Note Because -sweep and -retarget are expressly enabled in the prior example, -propconst
optimization is disabled

The following example directs the opt_design command to use various algorithms to achieve
potentially better results:
opt_design -directive Explore

The following example directs the opt_design command to use various algorithms to achieve
potentially better results, while focusing on area reduction:
opt_design -directive ExploreArea

See Also
• phys_opt_design
• place_design
• power_opt_design
• route_design
• synth_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 554

Tcl Commands Listed Alphabetically

phys_opt_design
Optimize the current placed netlist.

Syntax
phys_opt_design [-fanout_opt] [-placement_opt] [-rewire]
[-critical_cell_opt] [-dsp_register_opt] [-bram_register_opt]
[-hold_fix] [-retime] [-force_replication_on_nets args]
[-directive arg] [-pinswap] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-fanout_opt] Do cell-duplication based optimization on high-fanout
timing critical nets

[-placement_opt] Do placement based optimization on timing critical nets

[-rewire] Do rewiring optimization

[-critical_cell_opt] Do cell-duplication based optimization on timing critical
nets

[-dsp_register_opt] Do DSP register optimization

[-bram_register_opt] Do BRAM register optimization

[-hold_fix] Attempt to improve slack of high hold violators

[-retime] Do retiming optimization

[-force_replication_on_nets] Force replication optimization on nets

[-directive] Mode of behavior (directive) for this command. Please
refer to Arguments section of this help for values for this
option Default: Default

[-pinswap] Do pin swap optimization

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Tools

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 555

Tcl Commands Listed Alphabetically

Description
Performs timing-driven optimization on the negative-slack paths of a design. A path should
have a negative slack near the worst negative slack (WNS) to be considered for optimization.
This optional command should be run after place_design and before route_design.

The command performs the following optimizations by default: high-fanout optimization,
placement-based optimization of critical paths, rewire, critical-cell optimization, DSP register
optimization, BRAM register optimization, and a final fanout optimization.

Note Expressly specifying one optimization disables the other optimizations, unless they are
also expressly specified.

Physical optimizations involve replication, re-timing, hold fixing, and placement improvement.
The phys_opt_design command automatically performs all necessary netlist and placement
changes.

To perform hold fixing you must specify the -hold_fix option, or the -directive Explore option.

If the phys_opt_design command is used iteratively, the subsequent run optimizes the results
of the prior run.

The command reports each net processed, a summary of any optimizations performed, and the
WNS before and after optimization. Replicated objects are named by appending _replica to
the original object name, followed by the replicated object count.

Arguments
-fanout_opt - (Optional) Performs delay-driven optimization on high-fanout timing critical
nets, by replicating drivers to reduce delay.

-placement_opt - (Optional) Move cells to reduce delay on timing-critical nets.

-rewire - (Optional) Refactor logic cones to reduce logic levels and reduce delay on critical
signals.

-critical_cell_opt - (Optional) Replicate cells on timing critical nets to reduce delays.

-dsp_register_opt - (Optional) Improve critical path delay by moving registers from slices
to DSP blocks, or from DSP blocks to slices.

-bram_register_opt - (Optional) Improve critical path delay by moving registers from slices to
block RAMs, or from block RAMs to slices.

-hold_fix - (Optional) Performs optimizations to insert data path delay to fix hold time
violations.

-retime - (Optional) Re-time registers forward and backward through combinational logic to
balance path delays.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 556

Tcl Commands Listed Alphabetically

-directive arg - (Optional) Direct the mode of physical optimization with specific design
objectives. Only one directive can be specified for a single phys_opt_design command, and
values are case-sensitive. Supported values include:
• Explore - Run different algorithms in multiple passes of optimization, including hold

violation fixing and replication for very high fanout nets.
• AggressiveExplore - Similar to Explore but with different optimization algorithms and

more aggressive goals.
• AlternateReplication - Use different algorithms for performing critical cell replication.
• AggressiveFanoutOpt - Uses different algorithms for fanout-related optimizations with

more aggressive goals.
• AlternateDelayModeling - Performs all optimizations using alternate algorithms for

estimating net delays.
• AddRetime - Performs the default phys_opt_design flow and adds register re-timing.
• Default - Run phys_opt_design with default settings.

Refer to the Vivado Design Suite User Guide: Implementation (UG904) for more information on
the effects of each directive.

Note The -directive option controls the overall optimization strategy, and is not compatible
with any specific optimization options. It can only be used with -quiet and -verbose

-force_replication_on_nets args - (Optional) Force the drivers of the specified nets to be
replicated, regardless of timing slack. Replication is based on load placements and requires
manual analysis to determine if replication is sufficient. If further replication is required, nets
can be replicated repeatedly by successive commands.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example performs a physical optimization of the open design:
phys_opt_design

This example performs register re-timing, and optimization of registers across DSP blocks
and block RAMs:
phys_opt_design -retime -dsp_register_opt -bram_register_opt

This example directs phys_opt_design to run more iterations to achieve potentially better
results:
phys_opt_design -directive Explore

This example directs phys_opt_design to consider more nets for replication:
phys_opt_design -directive AggressiveFanoutOpt

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 557

Tcl Commands Listed Alphabetically

See Also
• opt_design
• place_design
• power_opt_design
• route_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 558

Tcl Commands Listed Alphabetically

place_cell
Move or place one or more instances to new locations. Sites and cells are required to be listed
in the right order and there should be same number of sites as number of cells.

Syntax
place_cell [-quiet] [-verbose] cell_site_list ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

cell_site_list a list of cells and sites in the interleaved order

Categories
Floorplan

Description
Places cells onto device resources of the target part. Cells can be placed onto specific BEL
sites (e.g. SLICE_X49Y60/A6LUT), or into available SLICE resources (e.g. SLICE_X49Y60). If
you specify the SLICE but not the BEL the tool will determine an appropriate BEL within the
specified SLICE if one is available.

When placing a cell onto a specified site, the site must not be currently occupied, or an error
will be returned: "Cannot set site and bel property of instances. Site SLICE_X49Y61 is already
occupied."

You can test if a site is occupied by querying the IS_OCCUPIED property of a BEL site:
get_property IS_OCCUPIED [get_bels SLICE_X48Y60/D6LUT]

Note The IS_OCCUPIED property of a SLICE only tells you if some of the BELs within the SLICE
are occupied; not whether or not the SLICE is fully occupied.

This command can be used to place cells, or to move placed cells from one site on the device
to another site. The command syntax is the same for placing an unplaced cell, or moving a
placed cell.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 559

Tcl Commands Listed Alphabetically

When moving a placed cell, if you specify only the SLICE for the site, the tool will attempt to
place the cell onto the same BEL site in the new SLICE as it currently is placed. For instance
moving a cell from the B6LUT, by specifying a new SLICE, will cause the tool to attempt to place
the cell onto the B6LUT in the new SLICE. If this BEL site is currently occupied, an error is
returned.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

cell_site_list - (Required) Specifies a list of cells and sites as {cell_name site}. The cell name is
listed first, followed the BEL site or SLICE to place the cell onto. If the site is specified as a
SLICE, the tool will select an available BEL within the SLICE. Multiple cells can be placed onto
multiple sites by repeating the cell/site pair multiple times as needed:

{cell_name1 site1 cell_name2 site2 cell_name3 site3 ... cell_nameN siteN}.

Examples
The following example places the specified cell onto the specified BEL site:
place_cell div_cntr_reg_inferredi_4810_15889 SLICE_X49Y60/D6LUT

The following example places the specified cell into the specified SLICE:
place_cell div_cntr_reg_inferredi_4810_15889 SLICE_X49Y61

Note The tool will select an appropriate BEL site if one is available. If no BEL is available,
and error will be returned

The following example places multiple cells onto multiple sites:
place_cell { \
cpuEngine/cpu_iwb_adr_o/buffer_fifo/i_4810_17734 SLICE_X49Y60/A6LUT \
cpuEngine/or1200_cpu/or1200_mult_mac/i_4775_15857 SLICE_X49Y60/B6LUT \
cpuEngine/cpu_iwb_adr_o/buffer_fifo/xlnx_opt_LUT_i_4810_18807_2 SLICE_X49Y60/C6LUT }

See Also
• create_cell
• remove_cell
• unplace_cell

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 560

Tcl Commands Listed Alphabetically

place_design
Automatically place ports and leaf-level instances.

Syntax
place_design [-directive arg] [-no_timing_driven] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-directive] Mode of behavior (directive) for this command. Please
refer to Arguments section of this help for values for this
option. Default: Default

[-no_timing_driven] Do not run in timing driven mode

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Tools

Description
Place the ports and logic instances in the current design onto device resources on the target
part. The tool optimizes placement to minimize negative timing slack and reduce overall wire
length, while also attempting to spread out placement to reduce routing congestion.

Placement is one step of the complete design implementation process, which can be run
automatically through the use of the launch_runs command when running the Vivado tools in
Project Mode.

In Non-Project Mode, the implementation process must be run manually with the individual
commands: opt_design, place_design, phys_opt_design, power_opt_design, and
route_design. Refer to the Vivado Design Suite User Guide: Design Flows Overview (UG892) for
a complete description of Project Mode and Non-Project Mode.

Both placement and routing can be completed incrementally, based on prior results stored
in a Design Checkpoint file (DCP), using the incremental compilation flow. Refer to the
read_checkpoint command, or to Vivado Design Suite User Guide: Implementation (UG904) for
more information on incremental place and route.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 561

Tcl Commands Listed Alphabetically

You can also manually place some elements of the design using place_ports, or by setting
LOC properties on the cell, and then automatically place the remainder of the design using
place_design.

This command requires an open synthesized design, and it is recommended that you run the
opt_design command prior to running place_design to avoid placing a suboptimal netlist.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 562

Tcl Commands Listed Alphabetically

Arguments
-directive arg - (Optional) Direct placement to achieve specific design objectives. Only one
directive can be specified for a single place_design command, and values are case-sensitive.
Supported values include:

• Explore - Increased placer effort in detail placement and post-placement optimization.
• WLDrivenBlockPlacement - Wirelength-driven placement of RAM and DSP blocks.

Override timing-driven placement by directing the Vivado placer to minimize the distance
of connections to and from blocks.

• LateBlockPlacement - Defer detailed placement of RAMB and DSP blocks to the final
stages of placement. Normally blocks are committed to valid sites early in the placement
process. Instead, the placer uses coarse block placements that may not align with proper
columns, then places blocks at valid sites during detail placement.

• ExtraNetDelay_high - Increases estimated delay of high fanout and long-distance nets.
Three levels of pessimism are supported: high, medium, and low. ExtraNetDelay_high
applies the highest level of pessimism.

• ExtraNetDelay_medium - Increases estimated delay of high fanout and long-distance nets.
Three levels of pessimism are supported: high, medium, and low. ExtraNetDelay_medium
applies the default level of pessimism.

• ExtraNetDelay_low - Increases estimated delay of high fanout and long-distance nets.
Three levels of pessimism are supported: high, medium, and low. ExtraNetDelay_low
applies the lowest level of pessimism.

• SpreadLogic_high - Distribute logic across the device. Three levels are supported: high,
medium, and low. SpreadLogic_high achieves the highest level of distribution.

• SpreadLogic_medium - Distribute logic across the device. Three levels are supported:
high, medium, and low. SpreadLogic_medium achieves a nominal level of distribution.

• SpreadLogic_low - Distribute logic across the device. Three levels are supported: high,
medium, and low. SpreadLogic_low achieves a minimal level of distribution.

• ExtraPostPlacementOpt - Increased placer effort in post-placement optimization.
• SSI_ExtraTimingOpt - Use an alternate algorithm for timing-driven partitioning across SLRs.

• SSI_SpreadSLLs - Partition across SLRs and allocate extra area for regions of higher
connectivity.

• SSI_BalanceSLLs - Partition across SLRs while attempting to balance SLLs between SLRs.
• SSI_BalanceSLRs - Partition across SLRs to balance number of cells between SLRs.
• SSI_HighUtilSLRs - Direct the placer to attempt to place logic closer together in each SLR.
• RuntimeOptimized - Run fewest iterations, trade higher design performance for faster

runtime.

• Quick - Absolute, fastest runtime, non-timing-driven, performs the minimum required
placement for a legal design.

• Default - Run place_design with default settings.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 563

Tcl Commands Listed Alphabetically

Refer to the Vivado Design Suite User Guide: Implementation (UG904) for more information on
placement strategies and the -directive option.

Note The -directive option controls the overall placement strategy, and is not compatible with
any specific place_design options. It can only be used with -quiet and -verbose. In addition,
the -directive option is ignored if the design is using the incremental compilation flow as
defined by read_checkpoint -incremental.

-no_timing_driven - (Optional) Disables the default timing driven placement algorithm. This
results in a faster placement based on wire lengths, but ignores any timing constraints during
the placement process.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example places the current design:
place_design

The following example directs the Vivado placer to try different placement algorithms to
achieve a better placement result:
place_design -directive Explore

See Also
• launch_runs
• opt_design
• place_ports
• phys_opt_design
• power_opt_design
• read_checkpoint
• route_design
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 564

Tcl Commands Listed Alphabetically

place_pblocks
Run the pblocks Placer.

Syntax
place_pblocks [-effort arg] [-utilization arg] [-quiet]
[-verbose] pblocks ...

Returns
Nothing

Usage
Name Description

[-effort] Placer effort level (per pblock) Values: LOW, MEDIUM,
HIGH Default: HIGH

[-utilization] Placer utilization (per pblock)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pblocks List of pblocks to place

Categories
Floorplan

Description
Places Pblocks onto the fabric of the FPGA. Pblocks must be created using the create_pblock
command, and should be populated with assigned logic using the add_cells_to_pblock
command.

Note An empty Pblock will be placed as directed, but results in a Pblock covering a single
CLB tile (two SLICEs).

Arguments
-effort arg - (Optional) Effort level that the Pblock placer should use in placing each Pblock
onto the fabric. Valid values are LOW, MEDIUM, HIGH, with the default being HIGH.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 565

Tcl Commands Listed Alphabetically

-utilization arg - (Optional) Percentage of device resources that should be consumed by the
logic elements assigned to a Pblock when it is placed onto the FPGA. For instance, a utilization
rate of 50% means that half of the resources should be allocated to the logic in the Pblock, and
half should be left for other design elements to be intermingled. A high utilization rate makes
the Pblock smaller but more difficult to place, while a smaller utilization makes the Pblock larger.

Note Pblock utilization is post-synthesis estimation. Actual results may be different, and may
require you to resize the Pblock using the resize_pblock command.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pblocks - (Required) One or more Pblocks to be placed onto the fabric of the FPGA.

Examples
The following example places the specified Pblocks with a utilization of 75%:
place_pblocks -effort LOW-utilization 75 block1 block2 block3 block4 block5

See Also
• add_cells_to_pblock
• create_pblock
• resize_pblock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 566

Tcl Commands Listed Alphabetically

place_ports
Automatically place a set of ports.

Syntax
place_ports [-skip_unconnected_ports] [-check_only] [-iobank args]
[-quiet] [-verbose] [ports ...]

Returns
Nothing

Usage
Name Description

[-skip_unconnected_ports] Do not place unconnected ports

[-check_only] Only check IO/Clock placement DRCs

[-iobank] Limit placement to the following banks

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[ports] Ports to place (if omitted, all ports will be placed)

Categories
PinPlanning

Description
Automatically places ports on an available I/O or clocking site, or into the specified I/O banks.

The place_ports command will not replace ports that are currently placed by the user, or
placed and fixed,

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-skip_unconnected_ports - (Optional) Do not place unconnected ports.

-check_only - (Optional) Run the clock placer DRCs, which are also available PLCK checks in
the report_drc command. This option does not result in ports being placed, only checked
for valid placement.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 567

Tcl Commands Listed Alphabetically

-iobank args - (Optional) Place the specified ports into the listed IO bank objects. IO bank
objects are returned by the get_iobanks command.

Note Limiting port placement to specific IO banks will result in a placement error if there are
insufficient placement sites for the number of ports being placed.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ports - (Optional) The names of the ports to be placed. If no ports are specified, all ports
will be placed.

Note If previously placed ports are specified, or included in the list of ports to place, the Vivado
tool will not replace or move those ports.

Examples
The following example places the port objects returned by the get_ports command, onto I/O
bank 13 of the device, as returned by get_iobanks:
place_ports -iobank [get_iobanks 13] [get_ports DataOut_pad_1_o]

The following example places all input ports onto I/O banks 12, 13, 14 and 15 of the device:
place_ports -iobank [get_iobanks {12 13 14 15}] [all_inputs]

See Also
• create_port
• get_iobanks
• make_diff_pair_ports
• remove_port

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 568

Tcl Commands Listed Alphabetically

power_opt_design
Optimize dynamic power using intelligent clock gating.

Syntax
power_opt_design [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Power

Description
Optimizes the dynamic power consumption of the design by changing clock gating to take
advantage of clock enable on a flop. Clock gating optimizations are automatically performed
on the entire design to improve power consumption while making no changes to the existing
logic or the clocks that would alter the behavior of the design.

You can configure the power optimization to include or exclude specific cells using the
set_power_opt command.

Run power optimization after synthesis, or after placement. When run before placement, this
command optimizes the design to save power. When run after placement, this command
optimizes the design to save power while preserving timing. Running after placement limits the
optimizations available to the power_opt_design command. To achieve the best results, the
command should be run prior to placement.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 569

Tcl Commands Listed Alphabetically

Examples
The following example performs power optimization of the open design:
power_opt_design

See Also
• report_power
• report_power_opt
• set_power_opt

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 570

Tcl Commands Listed Alphabetically

pr_verify
Verify the static logics in two DCP files.

Syntax
pr_verify [-quiet] [-verbose] file1 file2

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file1 DCP file one

file2 DCP file two

Categories
FileIO

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 571

Tcl Commands Listed Alphabetically

program_hw_devices
Program hardware devices.

Syntax
program_hw_devices [-quiet] [-verbose] [hw_device ...]

Returns
Hardware devices

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_device] list of hardware devices Default: current hardware device

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 572

Tcl Commands Listed Alphabetically

ptrace
Turns on or off printing of name of the hdl process being simulated.

Syntax
ptrace [-quiet] [-verbose] value

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

value value: on, true, yes. Otherwise set to off, false, no

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 573

Tcl Commands Listed Alphabetically

read_checkpoint
Read a design checkpoint.

Syntax
read_checkpoint [-incremental] [-part arg] [-quiet] [-verbose] file

Returns
Nothing

Usage
Name Description

[-incremental] Input design checkpoint file to be used for re-using
implementation.

[-part] Override the checkpoint part. Note that this may cause
errors if the checkpoint contains xdef. Ignored with -cell

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Design checkpoint file

Categories
FileIO

Description
Reads a design checkpoint file (DCP) that contains the netlist, constraints, and may optionally
have the placement and routing information of an implemented design. You can save and
restore design checkpoints at any stage in the design.

When reading a checkpoint, there is no need to create a project first. The read_checkpoint
command reads the design data into memory, opening the design in Non-Project Mode. Refer
to the Vivado Design Suite User Guide: Design Flows Overview (UG892) for more information on
Project Mode and Non-Project Mode.

You can also import a design checkpoint, and retarget the design to a new Xilinx device by
specifying a new target part.

Note When multiple design checkpoints are open in the Vivado tool, you must use the
current_project command to switch between the open designs. You can use current_design to
check which checkpoint is the active design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 574

Tcl Commands Listed Alphabetically

Arguments
-incremental arg - (Optional) Load a checkpoint file into an already open design to enable
the incremental compilation design flow, where arg specifies the path and filename of the
incremental design checkpoint (DCP) file. In the incremental compilation flow, the cell
placement and net routing from the incremental design is matched with existing design objects
and applied to the in-memory database. After loading an incremental design checkpoint, you
can use the report_incremental_reuse command to determine the percentage of physical
data reused from the incremental checkpoint, in the current design. The place_design and
route_design commands will run incremental place and route, preserving reused placement
and routing information and incorporating it into the design solution.

Note Reading a design checkpoint with -incremental, loads the physical data into the current
in-memory design. To clear out the incremental design data, you must either reload the
synthesized design, using open_run, or load a new incremental design to overwrite the one
previously loaded. Refer to the Vivado Design Suite User Guide: Implementation (UG904) for
more information on incremental place and route

-part arg - (Optional) A target part for the imported checkpoint design. This is useful when
importing a checkpoint file that has a netlist and constraints. However, you can also use the
-part argument to change the target part for a checkpoint file with placement and routing
information for an implemented design. This will usually result in an error after the netlist and
constraints have been read.

A subsequent read_checkpoint -incremental command will replace physical data reuse from the
previous incremental checkpoint. If it is not desired to run the incremental place and route flow
after loading an incremental checkpoint, then the original checkpoint must be reloaded.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The path and filename of the checkpoint file.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example imports the specified checkpoint file, and specifies the target part
for the design:
read_checkpoint C:/Data/state1/checkpoint.dcp -part xc7k325tffg900-2

See Also
• current_design
• current_project
• write_checkpoint

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 575

Tcl Commands Listed Alphabetically

read_csv
Import package pin and port placement information.

Syntax
read_csv [-quiet_diff_pairs] [-quiet] [-verbose] file

Returns
Nothing

Usage
Name Description

[-quiet_diff_pairs] Suppress warnings about differential pair inference when
importing I/O ports

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Pin Planning CSV file

Categories
FileIO

Description
Imports port definition and package pin placement information from a comma separated
value (CSV) file.

The port definitions in a CSV file can be imported into an I/O Pin Planning project. In a Pin
Planning project, importing a CSV file replaces the current port definitions. Any ports in the
design that are not found in the imported CSV file will be removed.

In all other projects the port definitions are defined in the source design data, however package
pin assignments and port attributes can be read from the specified CSV file.

The ports read from the CSV file can not have spaces in the name, or the tool will return an
error. The specific format and requirements of the CSV file are described in the Vivado Design
Suite User Guide: I/O and Clock Planning (UG899).

Arguments
-quiet_diff_pairs - (Optional) The tool transcripts messages related to pins that may be
inferred as differential pairs when importing the CSV file. This option suppresses messages
related to inferring differential pairs.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 576

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The file name of the CSV file to be imported.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example imports a CSV file into an open project:
read_csv C/Data/pinList.csv

The following example sets up a new IO Pin Planning project, and then imports the specified
CSV file into it, and infers any differential pairs in the CSV file:
create_project myPinPlan C:/Data/myPinPlan -part xc7v285tffg1157-1
set_property design_mode PinPlanning [current_fileset]
open_io_design -name io_1
read_csv C:/Data/import.csv
infer_diff_pairs -filetype csv C:/Data/import.csv

Note The design_mode property on the source fileset is what determines the nature of the
project.

See Also
• create_project
• infer_diff_pairs
• open_io_design
• set_property
• write_csv

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 577

Tcl Commands Listed Alphabetically

read_edif
Read one or more EDIF or NGC files.

Syntax
read_edif [-quiet] [-verbose] files

Returns
List of file objects that were added

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files EDIF or NGC file name(s)

Categories
FileIO

Description
Imports an EDIF or NGC netlist file into the Design Source fileset of the current project.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Required) The name of the EDIF or NGC files to be imported.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 578

Tcl Commands Listed Alphabetically

Examples
The following example imports an EDIF file into the open project:
read_edif C/Data/bft_top.edf

See Also
write_edif

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 579

Tcl Commands Listed Alphabetically

read_hw_ila_data
Read hardware ILA data from a file.

Syntax
read_hw_ila_data [-quiet] [-verbose] file

Returns
Hardware ILA data object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file hardware ILA data file name

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 580

Tcl Commands Listed Alphabetically

read_hw_sio_scan
Read hardware SIO scan data from a file. A hardware SIO scan object will be created if not
provided.

Syntax
read_hw_sio_scan [-quiet] [-verbose] file [hw_sio_scan]

Returns
Hardware SIO scan object

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file hardware SIO scan file name

[hw_sio_scan] hardware SIO scan data object Default: None

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 581

Tcl Commands Listed Alphabetically

read_ip
Read one or more IP files.

Syntax
read_ip [-quiet] [-verbose] files

Returns
List of IP file objects that were added

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files IP file name(s)

Categories
FileIO, IPFlow

Description
Read the specified list of IP files and add them to the design and the current fileset.

Files are added by reference into the current project, just as in the add_files command.

You can use this command to read the contents of source files into the in-memory design,
when running the Vivado tool in Non Project mode, in which there is no project file to maintain
and manage the various project source files. Refer to the Vivado Design Suite User Guide:
Design Flows Overview (UG892) for more information on Non Project mode.

Use the import_ip command to add the IP cores and import the files into the local project
directory.

The command returns the list of files read.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 582

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Required) The list of IP files to read into the current project. Both XCI and XCO
file formats are supported. An XCI file is an IP-XACT format file that contains information
about the IP parameterization. An XCO file is a CORE Generator log file that records all the
customization parameters used to create the IP core and the project options in effect when the
core was generated.

Examples
The following example reads the specified IP files:
read_ip C:/test_ip/char_fifo.xci

See Also
• add_files
• import_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 583

Tcl Commands Listed Alphabetically

read_saif
Import simulation data in saif format.

Syntax
read_saif [-strip_path arg] [-no_strip] [-out_file arg] [-quiet]
[-verbose] file

Returns
Nothing

Usage
Name Description

[-strip_path] Specifies the name of the instance of the current design
as it appears in the SAIF file

[-no_strip] Do not strip first two levels of hierarchy from SAIF file

[-out_file] Specifies the name of the output file that contains nets
that could not be matched

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Specifies the name of the SAIF file to be read

Categories
FileIO, Power, Simulation

Description
Reads a Switching Activity Interchange Format (SAIF) file for use during power analysis by
the report_power command. Running report_power after reading the SAIF file will use the
activity rates from the specified file.

You can also read switching activity in the form of a VCD file using the read_vcd command.

Arguments
-strip_path arg - (Optional) Strip the specified instance path prefix from elements in the SAIF
file to allow them to be mapped properly to instances in the current design.

-no_strip - (Optional) Do not strip first two levels of hierarchy from the SAIF file.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 584

Tcl Commands Listed Alphabetically

-out_file arg - (Optional) The name of an output file where unmatched nets and other
messages are reported. This file is created during the import of the SAIF file. If the -out_file
option is not specified, the information is not saved to a file.

Note If the path is not specified as part of the file name, the tool will write the specified file to
the current working directory, or the directory from which the tool was launched.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The name of the SAIF file to read.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example:
read_saif -strip_path /design//top/F1 C:/Data/design1.saif

See Also
• read_vcd
• report_power

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 585

Tcl Commands Listed Alphabetically

read_twx
Read timing results from Trace STA tool.

Syntax
read_twx [-cell arg] [-pblock arg] [-quiet] [-verbose] name file

Returns
Nothing

Usage
Name Description

[-cell] Interpret names in the report file as relative to the specified
cell

[-pblock] Interpret names in the report file as relative to the specified
pblock

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name for the set of results

file Name of the Trace import file

Categories
FileIO

Description
Imports timing results in the TWX format timing report files generated by the Xilinx Timing
Reporter And Circuit Evaluator (TRACE) tool. The TWX file can be imported at the top-level,
which is the default, or at a specific cell-level or relative to a specific Pblock.

After the TWX files are imported, the timing results display in the Timing Results view in
GUI mode.

Arguments
-cell arg - (Optional) Specify The name of a hierarchical cell in the current design to import the
TWX file into. The timing paths will be applied to the specified cell.

-pblock arg - (Optional) The name of a Pblock in the current design. The timing paths will
be imported relative to the specified block.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 586

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the Timing Results view to create when importing the timing
paths in the TWX file.

Note Both name and file are required positional arguments. The name argument must be
provided first.

file - (Required) The file name of the TWX file to be imported.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example reads the specified TWX file into the top-level of the design:
read_twx C:/Data/timing_files/bft.twx

See Also
report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 587

Tcl Commands Listed Alphabetically

read_vcd
Import simulation data in vcd format.

Syntax
read_vcd [-strip_path arg] [-no_strip] [-out_file arg] [-quiet]
[-verbose] file

Returns
Nothing

Usage
Name Description

[-strip_path] Specifies the name of the instance of the current design
as it appears in the VCD file

[-no_strip] Do not strip first two levels of hierarchy from VCD file

[-out_file] Specifies the name of the output file that contains nets
that could not be matched

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Specifies the name of the VCD file to be read

Categories
FileIO, Power, Simulation

Description
Read a Value Change Dump (VCD) file for use during power analysis by the report_power
command. The read_vcd command will annotate the design nodes with activity from the
VCD file. Running report_power after reading the VCD file will use the activity rates from
the specified file.

Note The VCD file can be written by the Vivado simulator using the open_vcd, log_vcd, and
flush_vcd commands. However, the VCD file cannot be read into the Vivado simulator using
the read_vcd command

You can also read switching activity in the form of an SAIF file using the read_saif command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 588

Tcl Commands Listed Alphabetically

Arguments
-strip_path arg - (Optional) Strip the specified instance path prefix from elements in the VCD
file to allow them to be mapped properly to instances in the current design.

-no_strip - (Optional) Do not strip first two levels of hierarchy from the VCD file.

-out_file arg - (Optional) Specify the name of an output file where unmatched nets and other
messages are reported. This file is created during the import of the VCD file. If the -out_file
option is not specified, the information is not saved to a file.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The name of the VCD file to read.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example reads a VCD file named design1:
read_vcd C:/Data/design1.vcd

See Also
• flush_vcd
• log_vcd
• open_vcd
• read_saif
• report_power

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 589

Tcl Commands Listed Alphabetically

read_verilog
Read one or more Verilog files.

Syntax
read_verilog [-library arg] [-sv] [-quiet] [-verbose] files ...

Returns
List of file objects that were added

Usage
Name Description

[-library] Library name Default: work

[-sv] Enable system verilog compilation

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files Verilog file name(s)

Categories
FileIO

Description
Reads Verilog or SystemVerilog source files. This command is similar to the add_files command.
The Verilog file is added to the source fileset as it is read. If the -library argument is specified,
the file is added with the Library property defined appropriately.

You can use this command to read the contents of source files into the in-memory design,
when running the Vivado tool in Non Project mode, in which there is no project file to maintain
and manage the various project source files. Refer to the Vivado Design Suite User Guide:
Design Flows Overview (UG892) for more information on Non Project mode.

Because SystemVerilog is a superset of the Verilog language, the read_verilog command can
read both file types. However, for SystemVerilog files, the -sv option needs to be specified
for read_verilog to enable compilation in the SystemVerilog mode. In this mode, the tool
recognizes and honors the SystemVerilog keywords and constructs.

You can have a mixture of both Verilog files (.v files), and SystemVerilog files (.sv files), as well as
VHDL (using read_vhdl). When the tool compiles these files for synthesis, it creates separate
"compilation units" for each file type. All files of the same type are compiled together.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 590

Tcl Commands Listed Alphabetically

Arguments
-library arg - (Optional) The library the Verilog file should reference. The default Verilog
library is work.

-sv -(Optional) Read the files as a SystemVerilog compilation group.

Note Since Verilog is a subset of SystemVerilog, unless a Verilog source has user-defined names
that collide with reserved SystemVerilog keywords, reading Verilog files with the -sv switch
enables SystemVerilog compilation mode for those files. However, adding a SystemVerilog file
in a Verilog compilation unit (without -sv) will not work.

files - (Required) The name of one or more Verilog files to be read.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reads the specified Verilog file and adds it to the source fileset:
read_verilog C:/Data/FPGA_Design/new_module.v

The following example creates two compilation units, one for SystemVerilog files and one
for Verilog files:
read_verilog -sv { file1.sv file2.sv file3.sv }
read_verilog { file1.v file2.v file3.v}

See Also
• add_files
• read_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 591

Tcl Commands Listed Alphabetically

read_vhdl
Read one or more VHDL files.

Syntax
read_vhdl [-library arg] [-quiet] [-verbose] files

Returns
List of file objects that were added

Usage
Name Description

[-library] VHDL library Default: work

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files VHDL file name(s)

Categories
FileIO

Description
Reads a VHDL source file. This command is similar to the add_files command. The VHDL file is
added to the source fileset as it is read. If the -library argument is specified, the file is added
with the Library property defined appropriately.

You can use this command to read the contents of source files into the in-memory design,
when running the Vivado tool in Non Project mode, in which there is no project file to maintain
and manage the various project source files. Refer to the Vivado Design Suite User Guide:
Design Flows Overview (UG892) for more information on Non Project mode.

Arguments
-library arg - (Optional) The library the VHDL file should reference. The default VHDL library is
work.

file - (Required) Filename of the VHDL file to be read.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 592

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reads the specified VHDL file and adds it to the source fileset:
read_vhdl C:/Data/FPGA_Design/new_module.vhdl

See Also
add_files

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 593

Tcl Commands Listed Alphabetically

read_xdc
Read physical and timing constraints from one of more files.

Syntax
read_xdc [-cells args] [-ref arg] [-quiet_diff_pairs] [-quiet]
[-verbose] files

Returns
List of files

Usage
Name Description

[-cells] Import constraints for these cells

[-ref] Import constraints for this ref

[-quiet_diff_pairs] Suppress warnings about differential pair inference when
importing I/O ports

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files Input file(s) to read

Categories
FileIO

Description
Imports physical constraints from a Xilinx Design Constraints file (XDC). The XDC can be
imported at the top-level, which is the default, or applied to specific cells, or to instances of
a specific cell. When imported at the top-level, the specified XDC file is added to the active
constraint fileset.

Note Constraints from the XDC file will overwrite any current constraints of the same name.
Therefore, exercise some caution when reading a XDC file to be sure you will not overwrite
important constraints.

This command is similar to the add_files command in that the XDC file is added by reference
rather than imported into the local project directory.

You can use this command to read the contents of source files into the in-memory design,
when running the Vivado tool in Non Project mode, in which there is no project file to maintain
and manage the various project source files. Refer to the Vivado Design Suite User Guide:
Design Flows Overview (UG892) for more information on Non Project mode.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 594

Tcl Commands Listed Alphabetically

Arguments
-ref arg - (Optional) Read the constraints from the XDC file and apply them to ALL instances of
the referenced module, wherever they happen to be instantiated in the current design.

-cells args - (Optional) Apply the constraints from the XDC file to the specified instance names.
The constraints will be applied ONLY to the specified cell instances, and the XDC file will
not be added to the active constraint fileset.

Note A design must be open when specifying the -cells option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The filename of the XDC file to be imported.

Note If the path is not specified as part of the file name, the tool will search for the specified
file in the current working directory and then in the directory from which the tool was launched.

Examples
The following example reads the XDC file and applies it to the current design:
read_xdc file_1.xdc

The following example reads the XDC file and applies it ALL instances of the referenced module
found in the current design:
read_xdc -ref hex2led file_2.xdc

The following example reads the XDC file and applies it ONLY to the specified instance within
the referenced module:
read_xdc -ref sixty -cells lsbcount file_3.xdc

The following example reads the XDC file and applies it to the specified instances in the current
design, even though they are instances of different modules:
read_xdc -cells one_decode sixty/msbcount file_4.xdc

See Also
• add_files
• infer_diff_pairs
• write_xdc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 595

Tcl Commands Listed Alphabetically

redo
Re-do previous command.

Syntax
redo [-list] [-quiet] [-verbose]

Returns
With -list, the list of redoable tasks

Usage
Name Description

[-list] Show a list of redoable tasks

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
GUIControl

Description
Redo a command that has been previously undone. This command can be used repeatedly to
redo a series of commands.

If a command group has been created using the startgroup and endgroup commands, the
redo command will redo the group of commands as a sequence.

Arguments
-list - (Optional) Get the list of commands that can be redone. When you use the undo
command, the tool will step backward through a list of commands. The redo command can
then be used to redo those commands.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 596

Tcl Commands Listed Alphabetically

Examples
The following example returns a list of commands that can be redone:
redo -list

See Also
• undo
• startgroup
• endgroup

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 597

Tcl Commands Listed Alphabetically

refresh_design
Refresh the current design.

Syntax
refresh_design [-part arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-part] Target part

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Reloads the current design from the project data on the hard drive. This overwrites the
in-memory view of the design to undo any recent design changes.

Arguments
-part arg - (Optional) The new target part for the design when it is reloaded. This overrides the
constraint file part specified in the project data on the hard drive.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 598

Tcl Commands Listed Alphabetically

Examples
The following command reloads the current design from the project data on hard disk. This will
overwrite the unsaved changes of the design which are in memory.
refresh_design

Note You can use the command to undo a series of changes to the design and revert to
the previously saved design.

The following example refreshes the current design using the specified V6 part as the target
device. The second command is required to make the selected part the target device for the
active implementation run.
refresh_design -part xc6vcx75tff784-1
set_property part xc6vcx75tff784-1 [get_runs impl_6]

Note The second command is not required if the target part is not changed.

See Also
set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 599

Tcl Commands Listed Alphabetically

refresh_hw_device
Refresh a hardware device. Read device and core information from device.

Syntax
refresh_hw_device [-update_hw_probes arg] [-quiet] [-verbose]
[hw_device]

Returns
Nothing

Usage
Name Description

[-update_hw_probes] Update hardware probe information, read from probes file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_device] hardware device Default: current hardware device

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 600

Tcl Commands Listed Alphabetically

refresh_hw_server
Refresh a connection to a hardware server.

Syntax
refresh_hw_server [-quiet] [-verbose] [hw_server]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_server] hardware server

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 601

Tcl Commands Listed Alphabetically

refresh_hw_sio
Refresh the status of the specified hardware objects. Inputs can be any hardware object. At
least one object is required. If properties are specified that do not exist in the object, that
property will not be refreshed.

Syntax
refresh_hw_sio [-regexp] [-properties args] [-quiet]
[-verbose] hw_objects

Returns
Nothing

Usage
Name Description

[-regexp] Properties list contains full regular expressions

[-properties] List of properties to refresh Default: All properties in object

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_objects hardware objects

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 602

Tcl Commands Listed Alphabetically

refresh_hw_target
Refresh a hardware target.

Syntax
refresh_hw_target [-quiet] [-verbose] [hw_target]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_target] hardware target

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 603

Tcl Commands Listed Alphabetically

refresh_hw_vio
Update hardware probe INPUT_VALUE and ACTIVITY_VALUE properties with values read from
hardware VIO core(s).

Syntax
refresh_hw_vio [-update_output_values arg] [-quiet] [-verbose]
[hw_vios ...]

Returns
Nothing

Usage
Name Description

[-update_output_values] Update hardware probe OUTPUT_VALUE property with
values read from VIO core(s). Default is false.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_vios] List of hardware VIO objects.

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 604

Tcl Commands Listed Alphabetically

regenerate_bd_layout
Regenerate layout.

Syntax
regenerate_bd_layout [-routing] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-routing] Preserve placement of blocks and regenerate routing

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 605

Tcl Commands Listed Alphabetically

reimport_files
Reimport files when they are found out-of-date.

Syntax
reimport_files [-force] [-quiet] [-verbose] [files ...]

Returns
List of file objects that were imported

Usage
Name Description

[-force] Force a reimport to happen even when the local files may
be newer

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[files] List of files to reimport. If no files are specified, all files in
the project that are out-of-date, will be reimported

Categories
Project

Description
Reimports project files. This updates the local project files from the original referenced source
files.

Arguments
-force - (Optional) Reimport files even when the local project files may be newer than their
referenced source files.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 606

Tcl Commands Listed Alphabetically

files - (Optional) List of files to reimport. If no files are specified, all files in the project that are
out-of-date, will be reimported. If you use -force and specify no files, all files in the project
will be reimported.

Examples
The following example reimports all project files regardless of whether they are out of date,
or the local files are newer than the referenced source file:
reimport_files -force

Note No warnings will be issued for newer local files that will be overwritten.

The following example reimports the specified files to the project, but only if the original
source file is newer than the local project file:
reimport_files C:/Data/FPGA_Design/source1.v C:/Data/FPGA_Design/source2.vhdl

See Also
• add_files
• import_files

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 607

Tcl Commands Listed Alphabetically

remove_bps
Remove breakpoints from a simulation.

Syntax
remove_bps [-all] [-file arg] [-line arg] [-quiet] [-verbose]
[BreakPointObjsOrIds ...]

Returns
Nothing

Usage
Name Description

[-all] Remove all breakpoints

[-file] The specific file to remove the breakpoint from given a
line number

[-line] The specific line number to remove the breakpoint given a
filename Default: -1

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[BreakPointObjsOrIds] A list of one or more breakpoint objects and/or breakpoint
object ID's to be removed

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 608

Tcl Commands Listed Alphabetically

remove_cell
Remove cells from the current design.

Syntax
remove_cell [-quiet] [-verbose] cells ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

cells List of cells to remove

Categories
Netlist

Description
Remove cells from the current netlist in either an open Synthesized or Implemented design.

Note You cannot remove cells from library macros, also called macro-primitives

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 609

Tcl Commands Listed Alphabetically

cells - (Required) List of cells to remove. The instance name can be specified as a hierarchical
name, from the top-level of the design. In this case, you must use the hierarchy separator
character in the hierarchical instance name. You can determine the current hierarchy separator
with the get_hierarchy_separator command.

Examples
The following example removes the fftEngine from the in-memory netlist of the current design:
remove_cell fftEngine
remove_cell usbEngine0/usb_out

See Also
• create_cell
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 610

Tcl Commands Listed Alphabetically

remove_cells_from_pblock
Remove cells from a Pblock.

Syntax
remove_cells_from_pblock [-quiet] [-verbose] pblock cells ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pblock Pblock to remove cells from

cells Cells to remove

Categories
Floorplan, XDC

Description
Removes the specified logic instances from a Pblock. Cells are added to a Pblock with the
add_cells_to_pblock command.

Note Cells that have been placed will not be unplaced as they are removed from a Pblock.
Any current LOC assignments are left intact.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pblock - (Required) The name of the Pblock from which to remove the specified instances.

cells - (Required) One or more cell objects to remove from the specified Pblock.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 611

Tcl Commands Listed Alphabetically

Examples
The following example removes the specified cells from the pb_cpuEngine Pblock:
remove_cells_from_pblock pb_cpuEngine [get_cells cpuEngine/cpu_dwb_dat_o/*]

See Also
add_cells_to_pblock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 612

Tcl Commands Listed Alphabetically

remove_conditions
Remove conditions from a simulation. The names can be specified as Tcl glob pattern.

Syntax
remove_conditions [-all] [-quiet] [-verbose] [ConditionObjs]

Returns
Nothing

Usage
Name Description

[-all] Remove all conditions

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[ConditionObjs] ConditionObjs, id's or names

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 613

Tcl Commands Listed Alphabetically

remove_drc_checks
Remove drc rule check objects from a user rule deck.

Syntax
remove_drc_checks [-of_objects args] [-regexp] [-nocase] [-filter arg]
-ruledeck arg [-quiet] [-verbose] [patterns]

Returns
Drc_check

Usage
Name Description

[-of_objects] Get 'drc_rule' objects of these types: 'drc_ruledeck'.

[-regexp] Patterns are full regular expressions

[-nocase] Perform case-insensitive matching. (valid only when
-regexp specified)

[-filter] Filter list with expression

-ruledeck DRC rule deck to modify

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[patterns] Match the 'drc_rule' objects against patterns. Default: *

Categories
DRC, Object

Description
Remove the specified design rule checks from a drc_ruledeck object.

A rule deck is a collection of design rule checks grouped for convenience, to be run with the
report_drc command at different stages of the FPGA design flow, such as during I/O planning
or placement. The tool comes with a set of factory defined rule decks, but you can also create
new user-defined rule decks with the create_drc_ruledeck command.

Checks are added to a rule deck using the add_drc_checks command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 614

Tcl Commands Listed Alphabetically

The DRC rule check object features the IS_ENABLED property that can be set to true or false
using the set_property command. When a new rule check is created, the IS_ENABLED property
is set to true as a default. Set the IS_ENABLED property to false to disable the rule check from
being used by report_drc without having to remove the rule from the rule deck.

Tip Use the reset_drc_check command to restore the DRC rule, and its properties, to the
default settings.

This command returns the list of design rule checks that were removed from the specified
rule deck.

Arguments
-of_objects arg - (Optional) Remove the rule checks of the specified drc_ruledeck object from
the specified rule deck. This has the effect of removing all the rules in one rule deck from
the target rule deck.

Note -of_objects cannot be used with a search pattern

-regexp - (Optional) Specifies that the search patterns are written as regular expressions.
Both search patterns and -filter expressions must be written as regular expressions when this
argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the
search. See http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm for help with regular expression
syntax.

Note The Tcl built-in command regexp is not anchored, and works as a standard Tcl command.
For more information refer to http://www.tcl.tk/man/tcl8.4/TclCmd/regexp.htm.

-nocase - (Optional) Perform case-insensitive matching when a pattern has been specified. This
argument applies to the use of -regexp only.

-filter args - (Optional) Filter the results list with the specified expression. The -filter argument
filters the list of objects returned by the search pattern, based on specified property values. You
can find the properties on an object with the report_property or list_property commands.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&&
and ||). The following example returns input ports that do NOT end with the “clk” substring:
get_ports * -filter {DIRECTION == IN && NAME!~ "*clk"}

Boolean (bool) type properties can be directly evaluated in filter expressions as true or not true:
-filter {IS_PRIMITIVE && !IS_LOC_FIXED}

-ruledeck arg - (Required) The name of the rule deck to remove the specified design rule
checks from.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 615

Tcl Commands Listed Alphabetically

patterns - (Optional) Remove the design rule checks that match the specified patterns from
the rule deck. The default pattern is the wildcard '*' which removes all rule checks from the
specified rule deck. More than one pattern can be specified to remove multiple rule checks
based on different search criteria.

Note You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list
as a single element.

Examples
The following example removes the rule checks matching the specified filter pattern from the
my_rules rule deck:
remove_drc_checks -filter {GROUP == AVAL} -ruledeck my_rules

The following example disables the specified DRC check without removing it from the rule deck:
set_property IS_ENABLED FALSE [get_drc_checks RAMW-1]

The following example removes all rule checks from the specified rule deck:
remove_drc_checks -ruledeck my_rules

See Also
• add_drc_checks
• create_drc_check
• create_drc_ruledeck
• get_drc_checks
• get_drc_ruledecks
• list_property
• report_drc
• report_property
• reset_drc_check

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 616

Tcl Commands Listed Alphabetically

remove_files
Remove files or directories from a fileset.

Syntax
remove_files [-fileset arg] [-quiet] [-verbose] [files ...]

Returns
List of files that were removed

Usage
Name Description

[-fileset] Fileset name

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[files] Name of the file(s) to be removed

Categories
Project, Simulation

Description
Removes the specified file objects from the current or specified fileset. The file is removed from
the current project, but is not removed from the disk.

Files can be specified as file name strings, or as file objects returned by the get_files command.
When specified as strings, the file is looked for in the current or specified fileset. When the file
object is specified by get_files, the fileset is defined by the object, and -fileset is ignored.

When successful, this command returns nothing. If the specified file is not found, an error is
returned.

Arguments
-fileset arg - (Optional) The name of the fileset to locate the specified files. As a default, the
files will be removed from the current fileset as defined by the current_fileset command.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 617

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Required) The name of the files to remove from the project.

Note If no files are specified, no files are removed.

Examples
The following example removes the file named C:/Design/top.xdc from the constraint
set constrs_1 :
remove_files -fileset constrs_1 C:/Design/top.xdc

Multiple files can be specified as follows:
remove_files -fileset sim_1 top_tb1.vhdl top_tb2.vhdl

The followng example gets all the file objects in the current project, and removes them:
remove_files [get_files]

Important! This will remove ALL files from your design.

See Also
• add_files
• current_fileset
• get_files

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 618

Tcl Commands Listed Alphabetically

remove_forces
Release force on signal, wire, or reg applied using 'add_force' command.

Syntax
remove_forces [-all] [-quiet] [-verbose] [ForceObj ...]

Returns
Nothing

Usage
Name Description

[-all] Remove all forces

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[ForceObj] ForceObj or id's

Categories
Simulation

Description
Remove the specified force objects, or force IDs from the current simulation.

Forces are applied to specific HDL objects using the add_forces command. This command
removes those forces from the current simulation.

Important! If there are force/release statements on an HDL object in the test bench or
module, these statements are overridden by the add_force command. When the remove_force
command releases these objects to resume their normal operation, the Verilog force/release
statements resume their effect

This command returns nothing if successful, or returns an error if it fails.

Arguments
-all - (Optional) Remove all forces from the current simulation.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 619

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ForceObj - (Optional) Remove only the specified force object or objects. The force ID is returned
by the add_force command when the force is created.

Examples
The following example creates a force object using the add_force command, and captures the
force ID in a Tcl variable, then removes that force object:
set f10 [add_force reset 1 300]
remove_forces $f10

The following example removes all force objects from the current simulation:
remove_forces -all

See Also
• get_objects
• add_force

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 620

Tcl Commands Listed Alphabetically

remove_hw_sio_link
Remove an existing hardware SIO link.

Syntax
remove_hw_sio_link [-quiet] [-verbose] hw_sio_links

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_links hardware SIO links

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 621

Tcl Commands Listed Alphabetically

remove_hw_sio_linkgroup
Remove an existing hardware SIO link group.

Syntax
remove_hw_sio_linkgroup [-quiet] [-verbose] hw_sio_linkgroups

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_linkgroups hardware SIO linkgroups

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 622

Tcl Commands Listed Alphabetically

remove_hw_sio_scan
Remove an existing hardware SIO scan.

Syntax
remove_hw_sio_scan [-quiet] [-verbose] hw_sio_scans

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_scans hardware SIO scans

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 623

Tcl Commands Listed Alphabetically

remove_net
Remove nets from the current design.

Syntax
remove_net [-quiet] [-verbose] nets ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

nets List of nets to remove

Categories
Netlist

Description
Remove the specified net from the netlist of an open Synthesized or Implemented Design.

Note You cannot remove nets from library macros, also called macro-primitives

To remove a bus, you must specify the primary bus name, and not specify a bus index. This
ensures that the entire bus is removed, and not just a portion of the bits associated with the bus.

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 624

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

nets - (Required) The list of nets to remove from the netlist of the current design.

Example
The following example illustrates the warning returned when trying to remove one bit of a bus
net, and then removes the entire bus by specifying the root name:
remove_net DataIn_pad_1_i[0]
WARNING: [Coretcl-82] No nets matched 'DataIn_pad_1_i[0]'.
remove_net DataIn_pad_1_i

See Also
• create_net
• disconnect_net
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 625

Tcl Commands Listed Alphabetically

remove_pin
Remove pins from the current design.

Syntax
remove_pin [-quiet] [-verbose] pins ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pins List of pins to remove

Categories
Netlist

Description
Remove pins from the current netlist in either an open Synthesized or Implemented design.

Note You cannot remove pins from library macros, or macro-primitives.

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 626

Tcl Commands Listed Alphabetically

pins - (Required) List of pins to remove from the netlist. The pins must be specified hierarchically
by the cell instance the pin is found on.

Examples
The following example removes the fftEngine from the in-memory netlist of the current design:
remove_cell fftEngine

See Also
• create_cell
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 627

Tcl Commands Listed Alphabetically

remove_port
Remove the given list of top ports from the netlist.

Syntax
remove_port [-quiet] [-verbose] ports ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

ports Ports and/or bus ports to remove

Categories
PinPlanning

Description
Removes the specified ports or buses.

The remove_port command will remove ports that have been added with the create_port
command, but cannot delete ports that are defined in the RTL or netlist design.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ports - One or more names of ports to remove.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 628

Tcl Commands Listed Alphabetically

Examples
The following example deletes the specified port:
remove_port PORT0

The following example deletes the two specified ports of a bus:
remove_port BUS[1] BUS[2]

The following example deletes both the N and P sides of a differential pair port:
remove_port D_BUS_P[0]

Note Deleting either the N or the P side of a differential pair will also delete the other side
of the pair.

See Also
• create_port
• create_interface
• place_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 629

Tcl Commands Listed Alphabetically

rename_ref
Rename a cell ref.

Syntax
rename_ref [-ref arg] [-to arg] [-prefix_all arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-ref] Cell ref to rename

[-to] New name

[-prefix_all] Rename all eligible hierarchical cell refs in the current
design. Construct the new name using the given prefix
plus the original name

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Netlist

Description
Rename the reference name of a single non-primitive cell, or apply a reference prefix to all
non-primitive cells in the current synthesized or implemented design.

This command provides a mechanism to change the non-primitive reference names in the
current design so that they do not collide with the reference names in another design. This
lets two modules or designs be synthesized or simulated together, while avoiding any name
collisions between the two designs.

This command returns nothing when renaming the reference a single cell, and returns the
number of cells renamed when used with -prefix_all. If the command fails, an error is returned.

Arguments
-ref arg - (Optional) Specify the current reference name of a non-primitive cell.

-to arg - (Optional) Change the reference name to the specified value.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 630

Tcl Commands Listed Alphabetically

-prefix_all arg - (Optional) Apply the specified prefix to the reference names of all non-primitive
cells in the current design, except the top module.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example changes the specified reference name to the value indicated:
rename_ref -ref usbf_top -to MOD1_usbf_top

The following example applies the specified reference name prefix to all non-primitive cells in
the current design:
rename_ref -prefix_all MOD1_

See Also
• launch_xsim
• synth_design
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 631

Tcl Commands Listed Alphabetically

reorder_files
Change the order of source files in the active fileset.

Syntax
reorder_files [-fileset arg] [-before arg] [-after arg] [-front]
[-back] [-auto] [-disable_unused] [-quiet] [-verbose] files ...

Returns
Nothing

Usage
Name Description

[-fileset] Fileset to reorder

[-before] Move the listed files before this file

[-after] Move the listed files after this file

[-front] Move the listed files to the front (default)

[-back] Move the listed files to the back

[-auto] Automatically re-orders the given fileset

[-disable_unused] Disables all files not associated with the TOP design unit

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

files Files to move

Categories
Project

Description
Reorders source files in the specified fileset. Takes the files indicated and places them at
the front of, the back of, or before or after other files within the fileset. This command also
has an auto reorder feature that reorders the files based on the requirements of the current
top module in the design.

Arguments
-fileset arg - (Optional) The fileset in which to reorder files. The default is the sources_1
source fileset.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 632

Tcl Commands Listed Alphabetically

-before arg - (Optional) Place the specified files before this file in the fileset. The file must be
specified with the full path name in the fileset.

-after arg - (Optional) Place the specified files after this file in the fileset. The file must be
specified with the full path name in the fileset.

-front - (Optional) Place the specified files at the front of the list of files in the fileset.

-back - (Optional) Place the specified files at the back of the list of files in the fileset.

-auto - (Optional) Enable automatic reordering based on the hierarchy requirements of the
current top-module in the project. Often used after changing the top module with the
"set_property top" command.

-disable_unused - (Optional) Disable any files not currently used by the hierarchy based on the
top-module. Often used after changing the top module with the "set_property top" command.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

files - (Required) One or more files to relocate in the fileset. Files must be specified by their full
path name in the fileset, and are reordered in the order they are specified.

Examples
The following example takes the specified files and moves them to the front of the source fileset:
reorder_files -front {C:/Data/FPGA/file1.vhdl C:/Data/FPGA/file2.vhdl}

Note The default source fileset is used in the preceding example since the -fileset argument
is not specified.

The following example sets a new top_module in the design, and then automatically reorders
and disables unused files based on the hierarchy of the new top-module:
set_property top block1 [current_fileset]
reorder_files -auto -disable_unused

See Also
• add_files
• create_fileset
• current_fileset
• remove_files

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 633

Tcl Commands Listed Alphabetically

report_bps
Print details of the given breakpoint objects.

Syntax
report_bps [-quiet] [-verbose] [BreakPointObjs ...]

Returns
Print the breakpoints id, file_name and line_number to the console in textual format

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[BreakPointObjs] List of breakpoint objects to report

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 634

Tcl Commands Listed Alphabetically

report_carry_chains
Report carry chains.

Syntax
report_carry_chains [-file arg] [-append] [-return_string]
[-max_chains arg] [-quiet] [-verbose]

Returns
Report

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append to existing file

[-return_string] return report as string

[-max_chains] Number of chains for which report is to be generated
Default: 1

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Report the details of the carry chains used by the current open design. The report includes the
average depth of all carry chains, as well as the specific depth of each carry chain reported.

By default, the longest carry chain is reported, but the number of chains reported can be
specified.

The command returns the carry chain report.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 635

Tcl Commands Listed Alphabetically

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-max_chains arg - (Optional) Number of chains to report. By default the longest carry chain is
reported.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the 10 longest carry chains in the design:
report_carry_chains -max_chains 10

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 636

Tcl Commands Listed Alphabetically

report_clock_interaction
Report on inter clock timing paths and unclocked registers.

Syntax
report_clock_interaction [-delay_type arg] [-setup] [-hold]
[-significant_digits arg] [-file arg] [-append] [-name arg]
[-return_string] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-delay_type] Type of path delay: Values: max, min, min_max Default:
max

[-setup] Consider max delay timing paths (equivalent to -delay_type
max)

[-hold] Consider min delay timing paths (equivalent to -delay_type
min)

[-significant_digits] Number of digits to display: Range: 0 to 3 Default: 2

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-name] Output the results to GUI panel with this name

[-return_string] Return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Reports clock interactions and signals that cross clock domains to identify potential problems
such a metastability or data loss or incoherency some visibility into the paths that cross clock
domains is beneficial. This command requires an open synthesized or implemented design.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 637

Tcl Commands Listed Alphabetically

Arguments
-delay_type arg - (Optional) Specifies the type of delay to analyze when running the clock
interaction report. The valid values are min, max, and min_max. The default setting for
-delay_type is max.

-setup - (Optional) Check for setup violations. This is the same as specifying -delay_type max.

-hold - (Optional) Check for hold violations. This is the same as specifying -delay_type min.

Note -setup and -hold can be specified together, which is the same as specifying -delay_type
min_max

-significant_digits arg - (Optional) The number of significant digits in the output results. The
valid range is 0 to 3. The default setting is 2 significant digits.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-name arg - (Optional) The name of the Clock Interaction Report view to display in the tool GUI
mode. If the name has already been used in an open Report view, that view will be closed
and a new report opened.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example sets the model for interconnect delay, selects a device speed grade, and
then runs report_clock_interaction:
set_delay_model -interconnect none
set_speed_grade -3
report_clock_interaction -delay_type min_max -significant_digits 3 -name "results_1"

The following example returns the clock interactions, writing the report to the GUI, to the
specified file, and returns a string which is assigned to the specified variable:
set clk_int [report_clock_interaction -file clk_int.txt -name clk_int1 \
-return_string]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 638

Tcl Commands Listed Alphabetically

See Also
• create_clock
• create_generated_clock
• report_clocks
• set_delay_model
• set_speed_grade

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 639

Tcl Commands Listed Alphabetically

report_clock_networks
Report clock networks.

Syntax
report_clock_networks [-file arg] [-append] [-name arg]
[-return_string] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-name] Output the results to GUI panel with this name

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Reports the network fanout of each clock net in the design. The graphical form of the report,
returned when the -name argument is specified, provides a hierarchical tree view of the
clock network.

The default report that is returned to the standard output, to a file, or to a string, simply
specifies the clock net names and the instance pins that is the clock start point.

The report is returned to the standard output by default, unless the -file, -return_string,
or -name arguments are specified.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 640

Tcl Commands Listed Alphabetically

Arguments
-file arg - (Optional) Write the clock network report into the specified file. The specified file will
be overwritten if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-name arg - (Optional) Specifies the name of the results to output to the GUI.

-return_string - (Optional) Directs the output to a Tcl string. The Tcl string can be captured
by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the clock network names and startpoints to the specified file:
report_clock_networks -file C:/Data/ClkNets.txt

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 641

Tcl Commands Listed Alphabetically

report_clock_utilization
Report information about clock nets in design.

Syntax
report_clock_utilization [-file arg] [-append] [-write_xdc arg]
[-return_string] [-quiet] [-verbose]

Returns
Report

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append to existing file

[-write_xdc] file to output clock constraint. If not specified the clock
constraint will be appended to clock report.

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Returns information related to clock nets in the design and clock resource utilization on the
target device.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 642

Tcl Commands Listed Alphabetically

-write_xdc arg - (Optional) Output XDC location constraints for the various clock resources
to the specified filename. If the path is not specified as part of the file name the file will be
created in the current working directory, or the directory from which the tool was launched.

Note The XDC constraints in the clock utilization report begin with the "Location of..."
statement. If the write_xdc option is specified, these lines will be output to the specified file
rather than to the standard output

-return_string - (Optional) Direct the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns information about the clock nets in the design and the clock
resources utilized on the target device, and writes it to the specified file:
report_clock_utilization -file C:/Data/FPGA_Design/clock_util.txt

The following example reports the clock nets and clock resource utilization to the standard
output, but writes the XDC location constraints to the specified file:
report_clock_utilization -write_xdc clock_util_xdc.txt

Note Because the path is not specified as part of the XDC file name, the file will be created in
the current working directory, or the directory from which the tool was launched.

See Also
• create_clock
• create_generated_clock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 643

Tcl Commands Listed Alphabetically

report_clocks
Report clocks.

Syntax
report_clocks [-file arg] [-append] [-return_string] [-quiet]
[-verbose] [clocks]

Returns
Nothing

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[clocks] List of clocks Default: *

Categories
Report

Description
Returns a table showing all the clocks in a design, including propagated clocks, generated
and auto-generated clocks, virtual clocks, and inverted clocks in the current synthesized or
implemented design. More detailed information about each clock net can be obtained with the
report_clock_utilization command.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 644

Tcl Commands Listed Alphabetically

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

clocks - (Optional) The clocks to match against the specified patterns. The default pattern is the
wildcard '*' which returns all clocks in the design. More than one pattern can be specified to
find multiple clocks based on different search criteria.

Examples
The following example returns the name, period, waveform, and sources of the clocks in the
current design:
report_clocks -file C:/Data/FPGA_Design/clock_out.txt

The following example reports the clocks in the design with "Clock" in the name:
report_clocks *Clock*

See Also
• create_clock
• create_generated_clock
• report_clock_utilization

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 645

Tcl Commands Listed Alphabetically

report_compile_order
Report the compile order by analyzing files and constructing a hierarchy.

Syntax
report_compile_order [-fileset arg] [-missing_instances] [-constraints]
[-file arg] [-append] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-fileset] Fileset to parse to determine compile order

[-missing_instances] Report missing instances in the design hierarchy

[-constraints] Report the constraint compile order

[-file] Filename to output results to.

[-append] Append output to existing file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Report the compilation order of files in the various active filesets: constraints, design sources,
and simulation sources.

This command returns the order of file processing for synthesis, implementation, and simulation.
The report can be limited by specifying the fileset of interest with -fileset, or using the
-constraints option to report the order of constraints processing in the active constraint set.

By default the report is returned to the Tcl console, or standard output, but it can also be
written to a file.

Arguments
-fileset arg - (Optional) Limit the report to the specified fileset.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 646

Tcl Commands Listed Alphabetically

-missing_instances - (Optional) Return the list of cells that are missing source files in the
current or specified fileset.

-constraints - (Optional) Report the compilation order of the constraint files in the current
design, including constraints for any IP in the design.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the compilation order of the active filesets in the current design:
report_compile_order

The following returns a list of cells with missing source files in the current design, and appends
the report to the specified file:
report_compile_order - missing_instances -file C:/Data/report1.txt -append

The following command lists the compile order of the files in the active constraint set:
report_compile_order -constraints

See Also
• current_fileset
• update_compile_order

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 647

Tcl Commands Listed Alphabetically

report_conditions
Print details of the given condition objects.

Syntax
report_conditions [-quiet] [-verbose] [ConditionObjs ...]

Returns
Prints name, id, condition_expression and commands of each condition object on the console

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[ConditionObjs] ConditionObjs, id's or names

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 648

Tcl Commands Listed Alphabetically

report_config_timing
Report settings affecting timing analysis.

Syntax
report_config_timing [-file arg] [-append] [-name arg] [-return_string]
[-all] [-no_header] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-file] Output the results to file

[-append] Append the results to file, don't overwrite the results file

[-name] Output the results to GUI panel with this name

[-return_string] return report as string

[-all] report all configuration settings (by default, only the
typically important settings are reported

[-no_header] do not generate a report header

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Timing

Description
Report the configuration of timing constraints of the current design.

By default the report is abbreviated, containing only a few key timing constraints. Use the -all
argument to return all timing related configuration.

Arguments
-file arg - (Optional) Write the timing constraints configuration report into the specified file.
The specified file will be overwritten if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 649

Tcl Commands Listed Alphabetically

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-name arg - (Optional) The name of the results to output to the GUI.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-all - (Optional) Reports the state of all timing related attributes and constraints in the design.
By default, only a limited set of important timing attributes is reported.

-no_header - (Optional) Disables the report header. By default the report includes a header
that lists:

• Report Type - timer_configuration.

• Design - The top module of the design.

• Part - The device, package, and speed grade of the target part.

• Version - The version of software used to create the report

• Date - The date of the report.

• Command - The command options used to create the report.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the current timing configuration, returns the information as a
string, and sets that string into the specified Tcl variable:
set timeConfig [report_config_timing -all -no_header -return_string]
puts $timeConfig

See Also
delete_timing_results

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 650

Tcl Commands Listed Alphabetically

report_control_sets
Report the unique control sets in design.

Syntax
report_control_sets [-file arg] [-append] [-sort_by args]
[-cells args] [-return_string] [-quiet] [-verbose]

Returns
Report

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append to existing file

[-sort_by] Sort criterion: can be used only when -verbose is used.
Options are clk, clkEn, set. Ex: report_control_sets -verbose
-sort_by {clk clkEn}

[-cells] Cells/bel_instances for which to report control sets

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Report the control sets of the current design.

Control sets are the list of control signals (Clock, CE, SR) for SLICE registers and LUTs. Registers
must belong to the same control set in order to be packed into the same device resource.
Registers without a control signal cannot be packed into devices with registers having control
signals. A high number of control sets can cause difficulty fitting the device and can cause
routing congestion and timing issues.

By default the report_control_sets command returns an abbreviated report indicating only the
number of unique control sets. However, the -verbose arguments returns a detailed report of
all control sets, for either the whole design or for the specified cells.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 651

Tcl Commands Listed Alphabetically

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-sort_by args - (Optional) Sort the detailed report generated by the -verbose argument
according to the specified criteria. Valid sort criteria are: clk, clkEn, and set.

Note The -sort_by argument is used with -verbose

-cells args - (Optional) Report control sets for the specified cell objects.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the control sets of the current design, sorted by the clk and
clkEn signals:
report_control_sets -verbose -sort_by {clk clkEn}

The following example reports the control sets of the specified cells, sorted by clk and set:
report_control_sets -verbose -sort_by {clk set} -cells [get_cells usb*]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 652

Tcl Commands Listed Alphabetically

report_datasheet
Report data sheet.

Syntax
report_datasheet [-significant_digits arg] [-file arg] [-append]
[-return_string] [-sort_by arg] [-name arg] [-show_all_corners]
[-group args] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-significant_digits] Number of digits to display: Range: 0 to 3 Default: 3

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-return_string] return report as string

[-sort_by] Sorting order: Values: clock, port Default: clock

[-name] Output the results to GUI panel with this name

[-show_all_corners] provide all corners

[-group] List of output ports for skew calculation

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Create a "datasheet" report for the current design. The datasheet has the timing characteristics
of a design at the I/O pads, similar to what is reported in the .twr file.

For example setup and hold times of input I/Os in relation to clocks, max/min delays from
clocks to output pads, skews of input/ output buses.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 653

Tcl Commands Listed Alphabetically

Arguments
-significant_digits arg - (Optional) Number of digits to display from 0 to 3. The default is 3.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-sort_by [port | clock] - (Optional) Sorting order. Valid values are clock or port. The default
is to sort the report by clocks.

-show_all_corners - (Optional) Report all process corners.

-group [get_ports {xxx1 xxx2 ... xxxN}] - (Optional) Allows you to define your own custom
group of ports for analysis. This option requires a list of port objects as returned by the
get_ports command. The first port in the list will be used as the reference for skew calculation.
In most cases, this will be a clock port of a source synchronous output interface. Multiple
groups can be specified, each with its own reference clock port. When -group is not specified
the timer automatically finds the group of output ports based on the launching clock, and
reports skew based on that clock.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns the datasheet sorted by ports, for all process corners:
report_datasheet -sort_by port -show_all_corners

The following example reports the datasheet with the skew calculation for two groups of
ports, with the first port of each group providing the reference for the skew calculation for
that group. In this example, CLK0OUT is the forwarded clock for DATA0-4 and CLK1OUT is
forwarded clock for DATA4-7:
report_datasheet -file ds.txt -group [get_ports {CLK0OUT DATA0 DATA1 DATA2 DATA3}] \
-group [get_ports {CLK1OUT DATA4 DATA5 DATA6 DATA7}]

See Also
get_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 654

Tcl Commands Listed Alphabetically

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 655

Tcl Commands Listed Alphabetically

report_debug_core
Report details on debug cores.

Syntax
report_debug_core [-file arg] [-append] [-return_string] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-return_string] Return report as a string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Writes a report of the various ILA debug cores in the current project, and the parameters of
those cores. Debug cores can be added to a project using the create_debug_core command.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-return_string - (Optional) Return report as a string. This argument can not be used with
the -file argument.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 656

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example writes the debug core report to the specified file name at the specified
location:
report_debug_core -file C:/Data/FPGA_Design/project_1_cores.txt

See Also
• create_debug_core
• write_chipscope_cdc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 657

Tcl Commands Listed Alphabetically

report_default_switching_activity
Get default switching activity on specified default types.

Syntax
report_default_switching_activity [-static_probability] [-toggle_rate]
-type args [-file arg] [-return_string] [-append] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-static_probability] report static probability

[-toggle_rate] report toggle rate

-type Reports the default seed values of specified types for
vector-less propagation engine. List of valid default type
values: input, input_set, input_reset, input_enable, register,
dsp, bram_read_enable, bram_write_enable, output_enable,
clock, all

[-file] Filename to output results to. (send output to console if
-file is not used)

[-return_string] return default switching activity as string

[-append] append default switching activity to end of file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Displays the default switching activity currently configured for the specified element type.

The reported values are defined using the set_default_switching_activity command.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 658

Tcl Commands Listed Alphabetically

Arguments
-static_probability - (Optional) Include static probability in the report but do not include
toggle rate.

-toggle_rate - (Optional) Include toggle rate in the report but do not include static probability.

Note Both toggle rate and probability will be reported unless either -toggle_rate or
-static_probability is specified to limit the results

-type <types> - (Required) The component types that are reported. Valid values are: input,
input_set, input_reset, input_enable, register, dsp, bram_read_enable, bram_write_enable,
output_enable, clock, all.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-return_string - (Optional) Return the report as a string rather than a data set.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the default switching attributes for dsps:
report_default_switching_activity -type dsp
Default Dsp Probability = 0.50
Default Dsp Toggle Rate (%) = 12.50

The following example reports the default switching attributes for all types, and stores it into
a Tcl variable swa1:
set swa1 [report_default_switching_activity -type all -return_string]

Note Without the -return_string argument, the command will perform correctly, but the $swa
variable will not be assigned the reported information.

See Also
• power_opt_design
• report_power
• report_switching_activity
• reset_default_switching_activity
• reset_switching_activity
• set_default_switching_activity
• set_switching_activity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 659

Tcl Commands Listed Alphabetically

report_disable_timing
Report disabled timing arcs.

Syntax
report_disable_timing [-file arg] [-append] [-return_string] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Timing

Description
Displays a report of timing paths that will be excluded from timing analysis in the current
synthesized or implemented design.

The format of the report is organized into columns for "Cell or Port" to define the object
associated with the timing path, "From" and "To" to define the timing path, the condition, and
the reason for excluding the path from timing. The various reasons for exclusion are as follows:
• constraint - set_disable_timing constraint is specified
• constant - Logic constant
• loop - Breaks a logic loop
• bidirect instance path - Feedback path through bidirectional instances
• bidirect net path - Feedback path on nets with bidirectional pins

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 660

Tcl Commands Listed Alphabetically

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports all timing paths that will not be included in timing analysis:
report_disable_timing

The following example outputs the disable timing report as a string, stores it in a variable, and
then puts it to the display:
set bad_time [report_disable_timing -return_string]
puts $bad_time

See Also
• report_timing
• set_disable_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 661

Tcl Commands Listed Alphabetically

report_drc
Run DRC.

Syntax
report_drc [-name arg] [-rules args] [-ruledeck arg] [-file arg]
[-format arg] [-append] [-return_string] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-name] Output the results to GUI panel with this name

[-rules] DRC rules (see get_drc_checks for available rules)

[-ruledeck] Container of DRC rule checks Default: report_drc

[-file] Filename to output results to. (send output to console if
-file is not used)

[-format] Specifies how to format the report. Default is 'text', another
option is 'xml'. Only applies if -file is used. If xml output is
used, -append is not allowed. Default: text

[-append] Append the results to file, do not overwrite the results file

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
DRC, Report

Description
Check the current design against a specified set of design rule checks, or a rule deck, and
report any errors or violations that are found.

The tool includes a large number of predefined design rule checks to be used by the report_drc
command. Use the get_drc_checks command to list the currently defined design rule checks.
You can also create new custom design rule checks using the create_drc_check command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 662

Tcl Commands Listed Alphabetically

A rule deck is a collection of design rule checks grouped for convenience, to be run at different
stages of the FPGA design flow, such as during I/O planning or placement. The tool comes with
a set of factory defined rule decks, but you can also create new user-defined rule decks with
the create_drc_ruledeck command. Use the get_drc_ruledecks command to return a list of
the currently defined rule decks available for use in the report_drc command.

The report_drc command runs a default rule deck when the -rules or -ruledeck options are
not specified. Creating a user-defined DRC automatically adds the new design rule check to
the default rule deck.

DRC rules can be enabled or disabled using the IS_ENABLED property on the rule check object.
If a rule IS_ENABLED false, the rule will not be run by the report_drc command, whether it is
specified directly using -rules, or indirectly with -ruledeck.

Tip You can reset the properties of a DRC rule to the factory default settings using the
reset_drc_check command.

This command requires an open design to check the design rules against. The command
returns a report with the results of violations found by the design rule checks. Violations can
be listed with the get_drc_vios command.

You can reset the current results of the report_drc command, clearing any found violations,
using the reset_drc command.

Arguments
-name arg - (Optional) The name to assign to the results when run in GUI mode.

-ruledeck arg - (Optional) The name of a DRC rule deck. A rule deck is a list of DRC rule check
names. You can provide the name of a factory DRC rule deck or a user-defined rule deck. The
report_drc command checks the design against the rules that are added to the given rule
deck. Custom rule decks can be defined using the create_drc_ruledeck command. Use the
get_drc_ruledecks command to list the currently defined rule decks.

-rules args - (Optional) A list of rules to run the DRC report against. All specified rules will be
checked against the current design. Rules are listed by their group name or full key. Using the
-rules option creates a temporary user-defined rule deck, with the specified design rule checks,
and uses the temporary rule deck for the run.

Note -ruledeck and -rules cannot be used together

-file arg - (Optional) Write the DRC report into the specified file. The specified file will be
overwritten if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 663

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example lists the available rule decks. The results include all factory rule decks
and all user-defined rule decks.
get_drc_ruledecks

The following example returns the list of DRC rules defined in the specified rule deck:
get_drc_checks -of_objects [get_drc_ruledecks placer_checks]

The following examples run the specified DRC rule deck and rules against the current design,
and writes the results to the specified file:
report_drc -ruledeck placer_checks -file C:/Data/DRC_Rpt1.txt
report_drc -rules {IOCNT-1 IOPCPR-1 IOPCMGT-1 IOCTMGT-1 IODIR-1} \

-file C:/Data/DRC_Rpt1.txt -append

Note The -append option adds the result of the second report_drc command to the specified
file

See Also
• create_drc_check
• create_drc_ruledeck
• create_drc_violation
• get_drc_checks
• get_drc_ruledecks
• get_drc_vios
• reset_drc
• reset_drc_check

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 664

Tcl Commands Listed Alphabetically

report_drivers
Print drivers along with current driving values for an HDL wire or signal object.

Syntax
report_drivers [-quiet] [-verbose] hdl_object

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hdl_object Which hdl_object to report

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 665

Tcl Commands Listed Alphabetically

report_environment
Report system information.

Syntax
report_environment [-file arg] [-format arg] [-append] [-return_string]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-file] Write system information to specified file.

[-format] Specifies how to format the report. Default is 'text', another
option is 'xml'. Only applies if -file is used. If xml output is
used, -append is not allowed. Default: text

[-append] Append report to existing file

[-return_string] Return report content as a string value

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Report the details of the system environment that the tool is running under. The details of the
environment report include: operating system version, CPU, memory, available disk space, and
specific settings of various environment variables.

The default is to write the report to the standard output. However, the report can be written
to a file instead.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 666

Tcl Commands Listed Alphabetically

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the current environment to the specified file:
report_environment -file C:/Data/toolEnv.txt

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 667

Tcl Commands Listed Alphabetically

report_exceptions
Report timing exceptions.

Syntax
report_exceptions [-from args] [-rise_from args] [-fall_from args]
[-to args] [-rise_to args] [-fall_to args] [-through args]
[-rise_through args] [-fall_through args] [-ignored] [-no_header]
[-file arg] [-append] [-return_string] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-from] From pins, ports, cells or clocks

[-rise_from] Rising from pins, ports, cells or clocks

[-fall_from] Falling from pins, ports, cells or clocks

[-to] To pins, ports, cells or clocks

[-rise_to] Rising to pins, ports, cells or clocks

[-fall_to] Falling to pins, ports, cells or clocks

[-through] Through pins, ports, cells or nets

[-rise_through] Rising through pins, ports, cells or nets

[-fall_through] Falling through pins, ports, cells or nets

[-ignored] only report exceptions which are ignored

[-no_header] Do not generate a report header

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 668

Tcl Commands Listed Alphabetically

Description
Report all timing exceptions applied to setup and hold checks defined by timing constraints in
the current design, or report the exceptions on the specified timing paths. Timing exceptions
can be defined by timing constraints such as set_false_path or set_multicycle_path that
change the default assumptions for timing paths in the design.

The exceptions are reported to the standard output by default, but can be redirected to a file
or to a Tcl string variable.

Arguments
-from args - (Optional) A list of start points on the timing path to report exceptions on.

-rise_from args - (Optional) A list of the start points on the timing path to report exceptions on
the rising-edge of the path.

-fall_from args - (Optional) A list of the start points on the timing path to report exceptions on
the falling-edge of the path.

-to args - (Optional) A list of the end points for the timing path to report exceptions on.

-rise_to args - (Optional) A list of the end points on the timing path to report exceptions on
the rising-edge of the path.

-fall_to args - (Optional) A list of the end points on the timing path to report exceptions on the
falling-edge of the path.

-through args - (Optional) A list of pins, cell, or nets through which the timing path passes.

-rise_through args - (Optional) A list of pins, cell, or nets through which the rising-edge
timing path passes.

-fall_through args - (Optional) Specifies the list of pins, cell, or nets through which the
falling-edge timing path passes.

-ignored - (Optional) Report only the timing exceptions which are totally ignored. For example,
if a set_max_delay is applied from a pin A to a pin B, and if there is no timing path between
these two pins, the set_max_delay will be totally ignored by the timing engine, and reported
with this option.

-file arg - (Optional) Write the report into the specified file. By default the timing exceptions
are reported to the standard output, or the Tcl console. The specified file will be overwritten if
one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 669

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
This example reports all timing exceptions in the current design:
report_exceptions

See Also
• create_clock
• create_generated_clock
• report_timing
• report_timing_summary
• set_false_path
• set_input_delay
• set_max_delay
• set_min_delay
• set_multicycle_path
• set_output_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 670

Tcl Commands Listed Alphabetically

report_high_fanout_nets
Report high fanout nets.

Syntax
report_high_fanout_nets [-file arg] [-append] [-ascending]
[-load_types] [-clock_regions] [-slr] [-max_nets arg] [-min_fanout arg]
[-max_fanout arg] [-cells args] [-return_string] [-quiet] [-verbose]

Returns
Report

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append to existing file

[-ascending] Report nets in ascending order

[-load_types] Report load details

[-clock_regions] Report clock region wise load distribution

[-slr] Report SLR wise load distribution

[-max_nets] Number of nets for which report is to be generated
Default: 10

[-min_fanout] Report nets that have fanout greater than or equal to the
specified integer Default: 1

[-max_fanout] Report nets that have fanout less than or equal to the
specified integer Default: INT_MAX

[-cells] Cells/bel_instances for which to report nets

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 671

Tcl Commands Listed Alphabetically

Description
Report the fanout of nets in the design, starting with the highest fanout nets, and working
down. Options allow you to control various aspects of the report.

This command can be run on an implemented design, or on the synthesized netlist. However,
the results will be more complete on the implemented design.

The command returns the fanout report of nets in the design.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-ascending - (Optional) Report nets in ascending order.

-load_types - (Optional) Reports the various load types on the net sorted in two different
ways: by load types (data/clock/set/reset...) and by device resource at which loads are placed
(Slices/IO...). When report_high_fanout_nets is run on the unplaced synthesized design only
the load type is reported.

-clock_regions - (Optional) Report the load distribution across clock regions. This option
reports the clock regions the various loads on the net are located in, after placement.

-slr - (Optional) Report the load distribution across SLRs. This option reports the SLRs the
various loads on the net are located in, after placement.

-max_nets arg - (Optional) Number of nets to report. Default: 10

-min_fanout arg - (Optional) Report nets that have fanout greater than or equal to the
specified integer. This allows you to report nets with specific fanout loads of interest. Default: 1.

-max_fanout arg - (Optional) Report nets that have fanout less than or equal to the specified
integer. This allows you to report nets with specific fanout loads of interest. There is no
maximum value specified by default.

-cells args - (Optional) Cells/bel_instances for which to report nets. Report the nets attached
to the specified cells or bels in the design.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 672

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the top 100 nets with fanouts greater than 50 loads:
report_high_fanout_nets -min_fanout 50 -max_nets 100

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 673

Tcl Commands Listed Alphabetically

report_incremental_reuse
Compute achievable incremental reuse for the given design-checkpoint and report.

Syntax
report_incremental_reuse [-file arg] [-append] [-cells args]
[-hierarchical] [-hierarchical_depth arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append to existing file

[-cells] Report incremental reuse of given list of cells

[-hierarchical] Generates text-based hierarchical incremental reuse report.

[-hierarchical_depth] Specifies the depth level for textual hierachical incremental
reuse report Default: 0

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
For use with the incremental compilation flow, this command reports on the amount of
design overlap between the current design and an incremental checkpoint loaded using the
read_checkpoint -incremental command.

This report analyzes the loaded incremental checkpoint against the current design to see if the
two are sufficiently correlated to drive incremental placement and routing. A low correlation
between the current design and the checkpoint should discourage using the checkpoint
as a basis for incremental place and route. Refer to the Vivado Design Suite User Guide:
Implementation (UG904) for more information on incremental place and route.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 674

Tcl Commands Listed Alphabetically

If there is a low correlation of reuse between the current design and the loaded incremental
checkpoint, you will need to restore the original design using open_run or read_checkpoint.
Alternatively, you can overload the incremental checkpoint in the current design by issuing the
read_checkpoint -incremental command again to specify a new incremental checkpoint.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified. By default, the report will be written to
the Tcl console.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-cells args - (Optional) Specifies the cells to use from the DCP file.

-hierarchical - (Optional) Generate a text-based hierarchical incremental reuse report.

-hierarchical_depth arg - (Optional) Specifies the depth level for the text-based hierarchical
incremental reuse report. The default is 0.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example loads an incremental checkpoint into the current design, and then
reports the correlation of the loaded incremental checkpoint to the current design:
read_checkpoint -incremental C:/Data/reuse_checkpoint1.dcp
report_incremental_reuse

See Also
• open_run
• place_design
• read_checkpoint
• route_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 675

Tcl Commands Listed Alphabetically

report_io
Display information about all the IO sites on the device.

Syntax
report_io [-file arg] [-append] [-return_string] [-quiet] [-verbose]

Returns
Report

Usage
Name Description

[-file] Filename to output results to. Send output to console if
-file is not used.

[-append] Append to existing file

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Report details of the IO banks of the current design. Details include device specific information
such as target part, package, and speed grade, and also provides information related to each
pin on the device.

Arguments
-file arg - (Optional) Write the report into the specified file.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 676

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the IO blocks of the current design:
report_io

See Also
report_route_status

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 677

Tcl Commands Listed Alphabetically

report_ip_status
Report on the status of the IP instances in the project.

Syntax
report_ip_status [-name arg] [-file arg] [-append] [-return_string]
[-quiet] [-verbose]

Returns
True for success

Usage
Name Description

[-name] Output the results to GUI panel with this name Values: The
name of the GUI dialog

[-file] Filename to output results to (send output to console if
-file is not used) Values: The report filename

[-append] Append to existing file

[-return_string] Return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
IPFlow

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 678

Tcl Commands Listed Alphabetically

report_objects
Print details of the given hdl objects (variable, signal, wire, or reg).

Syntax
report_objects [-quiet] [-verbose] [hdl_objects ...]

Returns
Print name, type, data_type of the HDL objects on console in textual format

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hdl_objects] The hdl_objects to report. Default is report_objects
[get_objects *]

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 679

Tcl Commands Listed Alphabetically

report_operating_conditions
Get operating conditions values for power estimation.

Syntax
report_operating_conditions [-voltage args] [-grade] [-process]
[-junction_temp] [-ambient_temp] [-thetaja] [-thetasa] [-airflow]
[-heatsink] [-thetajb] [-board] [-board_temp] [-board_layers] [-all]
[-file arg] [-return_string] [-append] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-voltage] Gets voltage value. Supported voltage supplies vary by
family.

[-grade] Temperature grade. Supported values vary by family.

[-process] Gets process

[-junction_temp] Junction Temperature (C): auto|degC

[-ambient_temp] Ambient Temperature (C): default|degC

[-thetaja] ThetaJA (C/W): auto|degC/W

[-thetasa] Gets ThetaSA

[-airflow] Airflow (LFM): 0 to 750

[-heatsink] Gets dimensions of heatsink

[-thetajb] Gets ThetaJB

[-board] Board type: jedec, small, medium, large, custom

[-board_temp] Board Temperature degC

[-board_layers] Board layers: 4to7, 8to11, 12to15, 16+

[-all] Gets all operating conditions listed in this help message

[-file] Filename to output results to. (send output to console if
-file is not used)

[-return_string] return operating conditions as string

[-append] append operating conditions to end of file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 680

Tcl Commands Listed Alphabetically

Categories
Report, SDC

Description
Displays the real-world operating conditions that are used when performing analysis of the
design.

The environmental operating conditions of the device are used for power analysis when running
the report_power command, but are not used during timing analysis. The values of operating
conditions can be defined by the set_operating_conditions command.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Arguments
-voltage - (Optional) Report the list of voltage pairs. Supported voltage supplies vary by family.

-grade - (Optional) Report the temperature grade of the target device

-process - (Optional) Report the manufacturing process characteristics to be assumed.

-junction_temp - (Optional) Report the device junction temperature used for modeling

-ambient_temp - (Optional) Reports the environment ambient temperature

-thetaja - (Optional) Report the Theta-JA thermal resistance used for modeling

-thetasa - (Optional) Report the Theta-SA thermal resistance used for modeling

-airflow - (Optional) Report the Linear Feet Per Minute (LFM) airflow to be used for modeling.

-heatsink - (Optional) Report the heatsink type to be used for modeling.

-thetajb - (Optional) Report the Theta-JB thermal resistance used for modeling

-board - (Optional) Report the board size to be used for modeling.

-board_temp - (Optional) Report the board temperature in degrees Centigrade to be used for
modeling.

-board_layers - (Optional) Report the number of board layers to be used for modeling

-all - (Optional) Report the current values of all operating conditions. Use this to avoid having
to report each condition separately.

-file arg - (Optional) Write the report into the specified file.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 681

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
Specify an industrial temperature grade device with an ambient temperature of 75 degrees C
and then write those settings to a file on disk.
set_operating_conditions -grade industrial -junction_temp 75
report_operating_conditions -grade -junction_temp -return_string -file \
~/conditions.txt

See Also
set_operating_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 682

Tcl Commands Listed Alphabetically

report_param
Get information about all parameters.

Syntax
report_param [-file arg] [-append] [-non_default] [-return_string]
[-quiet] [-verbose] [pattern]

Returns
Param report

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-non_default] Report only params that are set to a non default value

[-return_string] Return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[pattern] Display params matching pattern Default: *

Categories
PropertyAndParameter, Report

Description
Gets a list of all user-definable parameters, the current value, and a description of what the
parameter configures or controls.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 683

Tcl Commands Listed Alphabetically

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pattern - (Optional) Match parameters against the specified pattern. The default pattern is the
wildcard '*' which gets all user-definable parameters.

Examples
The following example returns the name, value, and description of all user-definable parameters:
report_param

The following example returns the name, value, and description of user-definable parameters
that match the specified search pattern:
report_param *coll*

See Also
• get_param
• list_param
• reset_param
• set_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 684

Tcl Commands Listed Alphabetically

report_phys_opt
Report details of Physical Synthesis transformations.

Syntax
report_phys_opt [-file arg] [-append] [-return_string] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-file] Output file

[-append] Append the results to file

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Reports the results of the fanout driver replication and load redistribution optimizations
performed by the phys_opt_design command.

Arguments
-file arg - (Optional) Write the physical optimization report into the specified file. The specified
file will be overwritten if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 685

Tcl Commands Listed Alphabetically

-return_string - (Optional) Directs the output of the report to a Tcl string. The Tcl string can be
captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the physical optimizations performed in the current design by
the phys_opt_design command:
report_phys_opt -file C:/Data/physOpt_Report.txt

See Also
phys_opt_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 686

Tcl Commands Listed Alphabetically

report_power
Run power estimation and display report.

Syntax
report_power [-no_propagation] [-hier arg] [-vid] [-file arg]
[-name arg] [-format arg] [-xpe arg] [-l arg] [-return_string]
[-append] [-fileset arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-no_propagation] Disables the propagation engine to estimate the switching
activity of nets.

[-hier] Hierarchy report style (logic, power, or all) Default: logic

[-vid] Voltage ID (VID) of device is used

[-file] Filename to output results to. (send output to console if
-file is not used)

[-name] Output the results to GUI panel with this name

[-format] Format for the power estimation report: text, xml Default:
text

[-xpe] Output the results to XML file for importing into XPE

[-l] Maximum number of lines to report in detailed reports (l
>= 0) Default: 10

[-return_string] return report as string

[-append] append power report to end of file

[-fileset] Fileset to parse and get .xpe file for PS7 block

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Power

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 687

Tcl Commands Listed Alphabetically

Description
Run power analysis on the current design, and report details of power consumption based on
the current operating conditions of the device, and the switching rates of the design. The
operating conditions can be set using the set_operating_conditions command. The switching
activity can be defined using the set_default_switching_activity command.

Power analysis requires a synthesized netlist, or a placed and routed design.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Arguments
-no_propagation - (Optional) For all undefined nodes power analysis uses a vector-less
propagation engine to estimate activity. This argument disables the propagation engine for a
faster analysis of the design.

-hier [logic | power | all] - (Optional) Defines the details (logic, or power) to include in the
Detailed Report section of the output. The default is logic.

-vid - (Optional) Use the Voltage ID bit of the target device. Voltage identification is a form
of adaptive voltage scaling (AVS) that enables certain devices in the Virtex-7 family to be
operated at a reduced voltage of 0.9V while delivering the same specified performance of a
device operating at the nominal supply voltage of 1.0V. Voltage identification capable devices
consume approximately 30% lower worst case (maximum) static power and correspondingly
dissipate less heat.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-name arg - (Optional) Specifies the name of the results set to report the results to.

-xpe arg - (Optional) Output the results to an XML file for importing into XPower Estimator
or XPower Analyzer.

-l arg - (Optional) Maximum number of lines to report in the Detailed Reports section. Valid
values are greater than or equal to 0.

Note This options also triggers additional levels of detail in the Detailed Report section that are
not reported when -l is not specified.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 688

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example performs power analysis, without net propagation, and writes the
results to an XML file for use in XPE:
report_power -no_propagation -xpe C:/Data/design1.xpe

See Also
• read_saif
• read_vcd
• set_default_switching_activity
• set_operating_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 689

Tcl Commands Listed Alphabetically

report_power_opt
Report power optimizations.

Syntax
report_power_opt [-cell arg] [-file arg] [-format arg] [-name arg]
[-append] [-return_string] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-cell] top level cell

[-file] output file

[-format] Specifies how to format the report. Default is 'text', another
option is 'xml'. Only applies if -file is used. If xml output is
used, -append is not allowed. Default: text

[-name] Output the results to GUI panel with this name

[-append] append if existing file. Otherwise overwrite existing file.

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Power

Description
Report power optimizations that have been performed on the design with the
power_opt_design command.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Arguments
-cell arg - (Optional) Report power optimization for a specific cell instance. By default, the
power optimizations performed on the whole design are reported.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 690

Tcl Commands Listed Alphabetically

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the power optimizations performed on the current design:
report_power_opt

See Also
• power_opt_design
• report_power

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 691

Tcl Commands Listed Alphabetically

report_property
Report properties of object.

Syntax
report_property [-all] [-class arg] [-return_string] [-file arg]
[-append] [-regexp] [-quiet] [-verbose] [object] [pattern]

Returns
Property report

Usage
Name Description

[-all] Report all properties of object even if not set

[-class] Object type to query for properties. Not valid with

[-return_string] Set the result of running report_property in the Tcl
interpreter's result variable

[-file] Filename to output result to. Send output to console if
-file is not used

[-append] Append the results to file, don't overwrite the results file

[-regexp] Pattern is treated as a regular expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[object] Object to query for properties

[pattern] Pattern to match properties against Default: *

Categories
Object, PropertyAndParameter, Report

Description
Gets the property name, property type, and property value for all of the properties on a
specified object.

Note list_property also returns a list of properties on an object, but does not include the
property type or value.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 692

Tcl Commands Listed Alphabetically

Arguments
-all - (Optional) Return all properties of an object, even if the property value is not defined.

-return_string - (Optional) Directs the output to a Tcl string. The Tcl string can be captured
by a variable definition and parsed or otherwise processed.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

object - (Optional) A single object on which to report properties.

Note If you specify multiple objects you will get an error.

Examples
The following example returns all properties of the specified object:
report_property -all [get_cells cpuEngine]

To determine which properties are available for the different design objects supported by the
tool, you can use multiple report_property commands in sequence. The following example
returns all properties of the specified current objects:
report_property -all [current_project]
report_property -all [current_fileset]
report_property -all [current_design]
report_property -all [current_run]

See Also
• create_property
• get_cells
• get_property
• list_property
• list_property_value
• reset_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 693

Tcl Commands Listed Alphabetically

report_pulse_width
Report pulse width check.

Syntax
report_pulse_width [-file arg] [-append] [-name arg] [-return_string]
[-all_violators] [-significant_digits arg] [-limit arg] [-min_period]
[-max_period] [-low_pulse] [-high_pulse] [-max_skew] [-clocks args]
[-quiet] [-verbose] [objects]

Returns
Nothing

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-name] Results name in which to store output

[-return_string] return report as string

[-all_violators] Only report pins/ports where check violations occur

[-significant_digits] Number of digits to display: Range: 0 to 3 Default: 2

[-limit] Number of checks of a particular type to report per clock:
Default is 1 Default: 1

[-min_period] Only report min period checks

[-max_period] Only report max period checks

[-low_pulse] Only report min low pulse width checks

[-high_pulse] Only report min high pulse width checks

[-max_skew] Only report max skew checks

[-clocks] List of clocks for which to report min pulse width/min
period checks

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] List of objects to check min pulse width with

Categories
Report

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 694

Tcl Commands Listed Alphabetically

Description
Reports the pulse width of the specified clock signals in the clock network and upon reaching
the flip-flop. This command also performs high pulse width checking, using maximum delay for
the rising edge and minimum delay for the falling edge of the clock. Performs low pulse width
checking using minimum delay for the rising edge, and maximum delay for the falling edge.
This results in a worst case analysis for the current Synthesis or Implemented Design because it
assumes worst-case delays for both rising and falling edges. This command also reports the
maximum skew, or maximum timing separation allowed between clock signals.

The report includes minimum pulse width, maximum pulse width, low pulse width, high pulse
width, and max skew checks by default. However, selecting a specific check will disable the
other checks unless they are also specified.

The default report is returned to the standard output, but can be redirected to a file, or to a Tcl
string variable for further processing. The report is returned to the standard output by default,
unless the -file, -return_string, or -name arguments are specified.

Arguments
-file arg - (Optional) Write the report into the specified file. If the specified file already exists, it
will be overwritten by the new report, unless the -append option is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-name arg - (Optional) Specifies the name of the results set for the GUI. Pulse Width reports in
the GUI can be deleted by the delete_timing_results command.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-all_violators - (Optional) Report only the objects where violations are found.

-significant_digits arg - (Optional) The number of significant digits in the output results. The
valid range is 0 to 3. The default setting is 2 significant digits.

-limit arg - (Optional) The number of checks of a particular type to report per clock. This is a
value >= 1, and the default is 1.

-min_period - (Optional) Report minimum period checks.

-max_period - (Optional) Report maximum period checks.

-low_pulse - (Optional) Report minimum low pulse width checks.

-high_pulse - (Optional) Report minimum high pulse width checks.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 695

Tcl Commands Listed Alphabetically

-max_skew - (Optional) Check the skew constraints between two clock pins.

Note The default of the report_pulse_width command is to report min_period, max_period,
low_pulse,high_pulse, and max_skew. Specifying one or more of these options configures the
command to only report the specified checks.

-clocks arg - (Optional) Clocks to report pulse width and period checks. All clocks are checked
if the -clocks option is not specified.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) The pin objects to report the pulse width from. All pins are checked if no
objects are specified.

Examples
The following example performs the minimum period and low pulse width check, returning
the results to a named results set in the GUI:
report_pulse_width -min_period -low_pulse -name timing_1

See Also
delete_timing_results

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 696

Tcl Commands Listed Alphabetically

report_route_status
Report on status of the routing.

Syntax
report_route_status [-return_string] [-file arg] [-append]
[-of_objects args] [-route_type arg] [-list_all_nets] [-show_all]
[-dump_routes] [-has_routing] [-ignore_cache] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-return_string] Set the result of running the report in the Tcl interpreter's
result variable

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-of_objects] Report detailed routing for these routes

[-route_type] Only show routes with the given status:
UNPLACED|NOLOADS|NODRIVER|UNROUTED|ANTEN
NAS|CONFLICTS|PARTIAL|INTRASITE|HIERPORT
|ROUTED(ignored if -of_objects is used)

[-list_all_nets] list full route information for every net in the design
(ignored if -of_objects is used)

[-show_all] list all relevant pins for routes marked as UNPLACED or
PARTIAL routes and list all relevant nodes for routes marked
as ANTENNAS or CONFLICTS routes (by default only the
first 15 pins or nodes are listed for a route)

[-dump_routes] show the full routing tree for every routed net in the
design. This is VERY VERBOSE.

[-has_routing] returns 0 if there is no routing currently stored for this
design and 1 if there is. All other options are ignored.

[-ignore_cache] throw away all cached information and recalculate the
route status for the entire design (slow)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 697

Tcl Commands Listed Alphabetically

Categories
Report

Description
Reports the state of routing in the current design.

The route status report can include a wide range of information, from a simple 1 if the design
has routing, to a complete route tree for each net in the design.

Arguments
-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-of_objects args - (Optional) Report the full routing tree for the specified route, net, or
xdef_net objects.

-route_type arg - (Optional) Only show routes with the specified route status. Valid route
states are: UNPLACED, NOLOADS, NODRIVER, UNROUTED, ANTENNAS, CONFLICTS, PARTIAL,
INTRASITE, HIERPORT, ROUTED.

Note This option is ignored if -of_objects is specified

-list_all_nets - (Optional) Report summary route status for every net in the design.

Note This option is ignored if -of_objects is specified

-show_all - (Optional) Report all relevant pins for routes marked as UNPLACED or PARTIAL
routes and list all relevant nodes for routes marked as ANTENNAS or CONFLICTS routes. As a
default only the first 15 pins or nodes are listed for a given route.

-dump_routes - (Optional) Report the full routing tree for every routed net in the design.

Note This is a very long report, and can take some time to generate.

-has_routing - (Optional) Returns false (0) if the design is unrouted, and returns true (1) if the
design has routing. All other options are ignored when -has_routing is specified.

Note Has routing does not mean fully routed.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 698

Tcl Commands Listed Alphabetically

-ignore_cache - (Optional) By default the report_route_status command is iterative, and
only updates the route information for new nets and routes as the design is implemented.
This argument will cause the command to ignore the cached information and regenerate the
report for the entire design.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the route status for the specified nets:
report_route_status -of_objects [get_nets u4*]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 699

Tcl Commands Listed Alphabetically

report_scopes
Print names of the children scopes (declarative regions) of given scope(s) or the current scope.

Syntax
report_scopes [-quiet] [-verbose] [hdl_scopes ...]

Returns
Report_scopes prints a subset of properties of the HDL scope on console in textual format

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hdl_scopes] The hdl_objects to report. Default is report_scopes
[get_scopes *]

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 700

Tcl Commands Listed Alphabetically

report_simlib_info
Report info of simulation libraries.

Syntax
report_simlib_info [-file arg] [-append] [-quiet] [-verbose] [path]

Returns
Nothing

Usage
Name Description

[-file] Output file Default: report_simlib_info.log

[-append] Append mode

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[path] Report Pre-Compiled library information

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 701

Tcl Commands Listed Alphabetically

report_ssn
Run SSN analysis on the current package and pinout.

Syntax
report_ssn [-name arg] [-return_string] [-format arg] [-file arg]
[-append] [-phase] [-quiet] [-verbose]

Returns
Ssn report

Usage
Name Description

[-name] Output the results to GUI panel with this name

[-return_string] Return report as string

[-format] Report format. Valid arguments are CSV, HTML, TXT
Default: csv

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the report to the specified file

[-phase] Account for multi-clock phase in the analysis

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Perform a simultaneous switching noise (SSN) analysis of the current design. The SSN analysis
is an accurate method for predicting how output switching affects interface noise margins. The
calculation and estimates are based on a range of variables intended to identify potential
noise-related issues in your design and should not be used as final design "sign off" criteria.

SSN analysis provides estimates of the disruption that simultaneously switching outputs can
cause on other output ports in the I/O bank, as well as input ports in the case of Spartan-6
devices. The SSN predictor incorporates I/O bank-specific electrical characteristics into the
prediction to better model package effects on SSN.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 702

Tcl Commands Listed Alphabetically

By default, report_ssn assumes that every port toggles asynchronously. This results in a
worst-case noise analysis, which may be overly pessimistic. The -phase option lets you consider
clocking information available in the design to more accurately report SSN noise. Clocks must
be defined using the create_clock and create_generated_clock commands. The period, phase
shift and duty cycle of the generated clocks have significant impact on SSN analysis.

The report_ssn command provides a detailed SSN analysis for Spartan-6, Virtex-6, Virtex-7,
Kintex-7, and Artix-7 devices. For the Spartan-3, Virtex-4, and Virtex-5 devices, the report_sso
command provides an approximation of switching noises.

The report is returned to the standard output, unless the -file, -return_string, or -name
arguments are specified.

Arguments
-name arg - (Optional) Specifies the name of the results to output to the GUI.

-return_string - (Optional) Directs the output to a Tcl string. The Tcl string can be captured
by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-format [csv | html] - (Optional) Specifies the format of the output as either comma-separated
values (CSV), or HTML. The default output is CSV.

Note The format applies when -file is specified, but is otherwise ignored.

-file arg - (Optional) Write the SSN report into the specified file. The specified file will be
overwritten if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - Append the output of the command to the specified file rather than overwriting it.

Note The -append option can only be used with the -file option

-phase - (Optional) Consider clock switching cycles in SSN analysis to provide a more accurate
result.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example performs an SSN analysis on the current design, formats the output as
HTML, and writes the output to the specified file:
report_ssn -format html -file C:/Data/devSSN.html

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 703

Tcl Commands Listed Alphabetically

The following example performs an SSN analysis, with phase analysis, and returns the output to
a string which is stored in the specified variable:
set devSSN [report_ssn -phase -format html -return_string]

Note The -format argument in the preceding example is ignored in the absence of -file.

See Also
• create_clock
• create_generated_clock
• reset_ssn

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 704

Tcl Commands Listed Alphabetically

report_switching_activity
Get switching activity on specified objects.

Syntax
report_switching_activity [-static_probability] [-signal_rate]
[-file arg] [-return_string] [-append] [-quiet] [-verbose]
[objects ...]

Returns
Nothing

Usage
Name Description

[-static_probability] report static probability

[-signal_rate] report signal rate

[-file] Filename to output results to. (send output to console if
-file is not used)

[-return_string] return switching activity as string

[-append] append switching activity to end of file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] objects

Categories
Report

Description
This command is used to report different kinds of switching activity on design nets, ports, pins,
and cells. These include simple signal rate and simple static probability on nets, ports, and pins;
and state dependent static probabilities on cells.

The reported values are defined using the set_switching_activity command.

Note This command returns the switching activity for the specified objects.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 705

Tcl Commands Listed Alphabetically

Arguments
-static_probability - (Optional) Specifies that the command returns static probability as part of
the report.

-signal_rate - (Optional) Specifies that the command returns the signal rate as part of the report.

-file filename - (Optional) Write the report to the specified path and file.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-return_string - (Optional) Returns the data as a text string for assignment to a Tcl variable.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) Specifies the list of net, port, or pin objects to return switching activity
information on.

Examples
The following example reports the signal_rate and static probability value on all output ports
in the design:
report_switching_activity -signal_rate -static_probability [all_outputs]

See Also
• power_opt_design
• report_default_switching_activity
• report_power
• reset_default_switching_activity
• reset_switching_activity
• set_default_switching_activity
• set_switching_activity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 706

Tcl Commands Listed Alphabetically

report_timing
Report timing paths.

Syntax
report_timing [-from args] [-rise_from args] [-fall_from args]
[-to args] [-rise_to args] [-fall_to args] [-through args]
[-rise_through args] [-fall_through args] [-delay_type arg]
[-setup] [-hold] [-max_paths arg] [-nworst arg] [-unique_pins]
[-path_type arg] [-input_pins] [-label_reused] [-slack_lesser_than arg]
[-slack_greater_than arg] [-group args] [-sort_by arg]
[-no_report_unconstrained] [-user_ignored] [-match_style arg]
[-of_objects args] [-significant_digits arg] [-file arg] [-append]
[-name arg] [-return_string] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-from] From pins, ports, cells or clocks

[-rise_from] Rising from pins, ports, cells or clocks

[-fall_from] Falling from pins, ports, cells or clocks

[-to] To pins, ports, cells or clocks

[-rise_to] Rising to pins, ports, cells or clocks

[-fall_to] Falling to pins, ports, cells or clocks

[-through] Through pins, ports, cells or nets

[-rise_through] Rising through pins, ports, cells or nets

[-fall_through] Falling through pins, ports, cells or nets

[-delay_type] Type of path delay: Values: max, min, min_max, max_rise,
max_fall, min_rise, min_fall Default: max

[-setup] Report max delay timing paths (equivalent to -delay_type
max)

[-hold] Report min delay timing paths (equivalent to -delay_type
min)

[-max_paths] Maximum number of paths to output when sorted by
slack, or per path group when sorted by group: Value >=1
Default: 1

[-nworst] List up to N worst paths to endpoint: Value >=1 Default: 1

[-unique_pins] for each unique set of pins, show at most 1 path per path
group

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 707

Tcl Commands Listed Alphabetically

Name Description

[-path_type] Format for path report: Values: end, summary, short, full,
full_clock, full_clock_expanded Default: full_clock_expanded

[-input_pins] Show input pins in path

[-label_reused] Label reuse status on pins in the report

[-slack_lesser_than] Display paths with slack less than this Default: 1e+30

[-slack_greater_than] Display paths with slack greater than this Default: -1e+30

[-group] Limit report to paths in this group(s)

[-sort_by] Sorting order of paths: Values: group, slack Default: slack

[-no_report_unconstrained] Do not report infinite slack paths

[-user_ignored] Only report paths which have infinite slack because of
set_false_path or set_clock_groups timing constraints

[-match_style] Style of pattern matching, valid values are ucf, sdc Default:
ucf

[-of_objects] Report timing for these paths

[-significant_digits] Number of digits to display: Range: 0 to 3 Default: 3

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-name] Output the results to GUI panel with this name

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Timing

Description
This command performs timing analysis on the specified timing paths of the current Synthesized
or Implemented Design. By default the tool reports the timing path with the worst calculated
slack within each path group. However, you can optionally increase the number of paths and
delays reported with the use of the -nworst or -max_paths arguments.

The timing engine runs in "quad" timing mode, analyzing min and max delays for both slow and
fast corners. You can configure the type of analysis performed by the config_timing_corners
command. However, it is not recommended to change the default because this reduces the
timing analysis coverage.

Note By default the report is written to the Tcl console or STD output. However, the results can
also be written to the GUI, to a file, or returned as a string if desired.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 708

Tcl Commands Listed Alphabetically

Arguments
-from args - (Optional) The starting points of the timing paths to be analyzed. Ports, pins,
or cells can be specified as timing path startpoints. You can also specify a clock object, and
all startpoints clocked by the named clock will be analyzed.

-rise_from args - (Optional) Similar to the -from option, but only the rising edge of signals
coming from the startpoints are considered for timing analysis. If a clock object is specified,
only the paths launched by the rising edge of the clock are considered as startpoints.

-fall_from args - (Optional) Similar to the -from option, but only the falling edge of signals
coming from the startpoints are considered for timing analysis. If a clock object is specified,
only the paths launched by the falling edge of the clock are considered as startpoints.

-to args - (Optional) The endpoints, or destination objects of timing paths to be analyzed.
Ports, pins, and cell objects can be specified as endpoints. A clock object can also be specified,
in which case endpoints clocked by the named clock are analyzed.

-rise_to args - (Optional) Similar to the -to option, but only the rising edge of signals going to
the endpoints is considered for timing analysis. If a clock object is specified, only the paths
captured by the rising edge of the named clock are considered as endpoints.

-fall_to args - (Optional) Similar to the -to option, but only the falling edge of signals going to
the endpoints is considered for timing analysis. If a clock object is specified, only the paths
captured by the falling edge of the named clock are considered as endpoints.

-through args - (Optional) Consider only paths through the specified pins, cell instance,
or nets during timing analysis. You can specify individual -through (or -rise_through and
-fall_through) points in sequence to define a specific path through the design for analysis.
The order of the specified through points is important to define a specific path. You can also
specify through points with multiple objects, in which case the timing path can pass through
any of the specified through objects.

-rise_through args - (Optional) Similar to the -through option, but timing analysis is only
performed on paths with a rising transition at the specified objects.

-fall_through args - (Optional) Similar to the -through option, but timing analysis is only
performed on paths with a falling transition at the specified objects.

-delay_type arg - (Optional) Specifies the type of delay to analyze when running the timing
report. The valid values are min, max, min_max, max_rise, max_fall, min_rise, min_fall. The
default setting for -delay_type is max.

-setup - (Optional) Check for setup violations. This is the same as specifying -delay_type max.

-hold - (Optional) Check for hold violations. This is the same as specifying -delay_type min.

Note -setup and -hold can be specified together, which is the same as specifying -delay_type
min_max

-max_paths arg - (Optional) The maximum number of paths to output when sorted by slack; or
maximum number of paths per path group when sorted by group, as specified by -sort_by.
This is specified as a value greater than or equal to 1. By default the report_timing command
will report the single worst timing path, or the worst path per path group.

-nworst arg - (Optional) The number of timing paths to output in the timing report. The
timing report will return the N worst paths based on the specified value, greater than or
equal to 1. The default setting is 1.

-unique_pins - (Optional) Show only one timing path for each unique set of pins.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 709

Tcl Commands Listed Alphabetically

-path_type arg - (Optional) Specify the path data to output in the timing report. The default
format is full_clock_expanded. The valid path types are:
• end - Shows the endpoint of the path only, with calculated timing values.
• summary - Displays the startpoints and endpoints with slack calculation.
• short - Displays the startpoints and endpoints with calculated timing values.
• full - Displays the full timing path, including startpoints, through points, and endpoints.
• full_clock - Displays full clock paths in addition to the full timing path.
• full_clock_expanded - Displays full clock paths between a master clock and generated clocks

in addition to the full_clock timing path. This is the default setting.

-input_pins - (Optional) Show input pins in the timing path report. For use with -path_type
full, full_clock, and full_clock_expanded.

-label_reused - (Optional) For designs using incremental place and route (read_checkpoint
-incremental), label pins with information related to the physical data reused from the specified
incremental checkpoint. Reuse labels include:
• R : Cell placement and routing to this pin are reused.
• PNR : Cell placement is reused but routing to this pin is not reused.
• NR : Neither cell placement nor routing to this pin is reused.
• N : The cell, net, or pin is new. It does not exist in the incremental checkpoint.

-slack_lesser_than arg - (Optional) Report timing on paths with a calculated slack value less
than the specified value. Used with -slack_greater_than to provide a range of slack values
of specific interest.

-slack_greater_than arg - (Optional) Report timing on paths with a calculated slack value
greater than the specified value. Used with -slack_lesser_than to provide a range of slack
values of specific interest.

-group args - (Optional) Report timing for paths in the specified path groups. Currently defined
path groups can be determined with the get_path_groups command.

Note Each clock creates a path group. Path groups can also be defined with the group_path
command.

-sort_by [slack | group] - (Optional) Sort timing paths in the report by slack values, or
by path group. Valid values are slack or group. By default, the report_timing command
reports the worst, or -nworst, timing paths in the design. However, with -sort_by group, the
report_timing command returns the worst, or -nworst, paths of each path group.

-no_report_unconstrained - (Optional) Do not report timing on unconstrained paths. As a
default, report_timing will include unconstrained paths which will have infinite slack.

-user_ignored - (Optional) Report only the paths that are usually ignored by timing due to
presence of set_false_path or set_clock_groups constraints.

Note The -user_ignored and -no_report_unconstrained options are mutually exclusive and
cannot be specified together

-match_style [sdc | ucf] - (Optional) Indicates that the patterns for objects matches UCF
constraints or SDC constraints. The default is UCF.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 710

Tcl Commands Listed Alphabetically

-of_objects args - (Optional) Report timing on the specified timing path objects. Used with
the get_timing_paths command.

Note The -of_objects option cannot be used with the various forms of -from, -to, or -through
options which are also used to identify timing paths to report

-significant_digits arg - (Optional) The number of significant digits in the output results. The
valid range is 0 to 3. The default setting is 3 significant digits.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-name arg - (Optional) Specifies the name of the results set for the GUI.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the timing for the 5 worst paths in the design, reporting the full
timing path, including input pins, with timing values:
report_timing -nworst 5 -path_type full -input_pins

The following example shows the use of the multiple through points to define both a specific
path (through state_reg1) and alternate paths (through count_3 or count_4), and writes the
timing results to the specified file:
report_timing -from go -through {state_reg1} -through { count_3 count_4 } \
-to done -path_type summary -file C:/Data/timing1.txt

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 711

Tcl Commands Listed Alphabetically

See Also
• get_path_groups
• get_timing_paths
• group_path
• place_design
• report_timing_summary
• route_design
• set_clock_groups
• set_false_path
• set_msg_limit

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 712

Tcl Commands Listed Alphabetically

report_timing_summary
Report timing summary.

Syntax
report_timing_summary [-check_timing_verbose] [-delay_type arg]
[-no_detailed_paths] [-setup] [-hold] [-max_paths arg] [-nworst arg]
[-path_type arg] [-label_reused] [-input_pins] [-slack_lesser_than arg]
[-report_unconstrained] [-significant_digits arg] [-no_header]
[-file arg] [-append] [-name arg] [-return_string] [-datasheet]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-check_timing_verbose] produce a verbose report when checking the design for
potential timing problems

[-delay_type] Type of path delay: Values: max, min, min_max Default:
min_max

[-no_detailed_paths] do not report timing paths for each clock and path group
analyzed

[-setup] Report max delay timing paths (equivalent to -delay_type
max)

[-hold] Report min delay timing paths (equivalent to -delay_type
min)

[-max_paths] Maximum number of paths to report per clock or path
group: Value >=1 Default: 1

[-nworst] List up to N worst paths to endpoint: Value >=1 Default: 1

[-path_type] Format for path report: Values: end summary short full
full_clock full_clock_expanded Default: full_clock_expanded

[-label_reused] Label reuse status on pins in the report

[-input_pins] Show input pins in path

[-slack_lesser_than] Display paths with slack less than this Default: 1e+30

[-report_unconstrained] report unconstrained paths

[-significant_digits] Number of digits to display: Range: 0 to 3 Default: 3

[-no_header] do not generate a report header

[-file] Filename to output results to. (send output to console if
-file is not used)

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 713

Tcl Commands Listed Alphabetically

Name Description

[-append] Append the results to file, don't overwrite the results file

[-name] Output the results to GUI panel with this name

[-return_string] return report as string

[-datasheet] Include data sheet report

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Timing

Description
Generate a timing summary to help understand if the design has met timing requirements. The
timing summary can be run on an open Synthesized or Implemented Design.

The timing summary report includes the following information:

• Timer Settings - Details the timing engine settings used to generate the timing information
in the report.

• Check Timing - Contains the same information that is produced by the check_timing
command, which summarizes potential timing issues.

• Design Timing Summary - Provides a summary of the timing of the design, including values
for worst and total negative slack (WNS/TNS), worst and total hold slack (WHS/THS), and
component switching limits (CSL).

• Clock Definitions - Contains the same information that is produced by the report_clocks
command, showing all the clocks that were created for the design, either by create_clock,
create_generated_clock, or automatically by the tool.

• Intra-Clock Table - Summarizes timing paths with the same source and destination clocks.

• Inter-Clock Table - Summarizes timing paths with different source and destination clocks.

• Path Group Table - Shows default path groups and user-defined path groups created by
the group_path command.

• Timing Details - Contains detailed timing paths, both max delay and min delay, as well as
component switching limits for each clock defined, similar to the report_timing command.

• Data sheet - Contains the same information that is produced by the report_datasheet
command. It contains the timing characteristics of a design at the I/O ports. The data sheet
information is added to the summary report only when the -datasheet option is specified.

This command is automatically run during implementation as part of the launch_runs command.

Note By default the report is written to the Tcl console or STD output. However, the results
can also be written to a file or returned as a string if desired.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 714

Tcl Commands Listed Alphabetically

Arguments
-check_timing_verbose - (Optional) Output a verbose timing summary report.

-delay_type arg - (Optional) Specifies the type of delay to analyze when running the timing
report. The valid values are min, max, min_max. The default setting for -delay_type is min_max.

-no_detailed_paths - (Optional) Do not report the full timing path for each clock or path
group analyzed.

-setup - (Optional) Check for setup violations. This is the same as specifying -delay_type max.

-hold - (Optional) Check for hold violations. This is the same as specifying -delay_type min.

Note -setup and -hold can be specified together, which is the same as specifying -delay_type
min_max

-max_paths arg - (Optional) The maximum number of paths to report per clock or
per path group. This is specified as a value greater than or equal to 1. By default the
report_timing_summary command will report the single worst timing path, or the worst
path per path group.

-nworst arg - (Optional) The number of timing paths to output in the timing report. The
timing report will return the N worst paths to endpoints based on the specified value, greater
than or equal to 1. The default setting is 1.

-path_type arg - (Optional) Specify the path data to output in the timing summary report. The
default format is full_clock_expanded. The valid path types are:
• end - Shows the endpoint of the path only, with calculated timing values.
• summary - Displays the startpoints and endpoints with slack calculation.
• short - Displays the startpoints and endpoints with calculated timing values.
• full - Displays the full timing path, including startpoints, through points, and endpoints.
• full_clock - Displays full clock paths in addition to the full timing path.
• full_clock_expanded - Displays full clock paths between a master clock and generated

clocks in addition to the full_clock timing path. This is the default setting.

-label_reused - (Optional) For designs using incremental place and route (read_checkpoint
-incremental), label pins with information related to the physical data reused from the specified
incremental checkpoint. Reuse labels include:
• R : Cell placement and routing to this pin are reused.
• PNR : Cell placement is reused but routing to this pin is not reused.
• NR : Neither cell placement nor routing to this pin is reused.
• N : The cell, net, or pin is new. It does not exist in the incremental checkpoint.

-input_pins - (Optional) Show input pins in the timing path report. For use with -path_type
full, full_clock, and full_clock_expanded.

-slack_lesser_than arg - (Optional) Report timing on paths with a calculated slack value less
than the specified value. Used with -slack_greater_than to provide a range of slack values
of specific interest.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 715

Tcl Commands Listed Alphabetically

-report_unconstrained - (Optional) Report timing on unconstrained paths in the current
design. As a default, the report_timing_summary command will not include unconstrained
timing paths.

-significant_digits arg - (Optional) The number of significant digits in the output results. The
valid range is 0 to 3. The default setting is 3 significant digits.

-no_header - (Optional) Do not add header information to the report. This can be useful when
returning the timing summary report to a string for further processing.

-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-name arg - (Optional) Specifies the name of the results set for the GUI. Timing summary
reports in the GUI can be deleted by the delete_timing_results command.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-datasheet - (Optional) Generate data sheet information to add to the summary report.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the timing summary of the current design:
report_timing_summary

The following example reports the hold timing summary of the current design, including
unconstrained paths, with the specified options:
report_timing_summary -delay_type min -path_type full_clock_expanded \

-report_unconstrained -max_paths 2 -nworst 1 -significant_digits 2 \
-input_pins -name {timing_6}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 716

Tcl Commands Listed Alphabetically

See Also
• check_timing
• create_clock
• create_generated_clock
• delete_timing_results
• get_path_groups
• get_timing_paths
• group_path
• report_clocks
• report_timing
• set_msg_limit
• report_datasheet

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 717

Tcl Commands Listed Alphabetically

report_transformed_primitives
Report details of Unisim primitive transformations.

Syntax
report_transformed_primitives [-file arg] [-append] [-return_string]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-file] Output file

[-append] Append the results to file

[-return_string] return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Report the transformed primitives in the current design.

As part of the process of opening the Synthesized design, and loading it into memory, the tool
will transform legacy netlist primitives to the supported subset of Unisim primitives.

As a default this report will be written to the standard output. However, the report can also be
written to a file or returned to a Tcl string variable for further processing.

Arguments
-file arg - (Optional) Write the transformed primitives report into the specified file. The
specified file will be overwritten if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 718

Tcl Commands Listed Alphabetically

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-return_string - (Optional) Directs the output to a Tcl string. The Tcl string can be captured
by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the transformed primitives in the current design, and returns the
result to the specified Tcl variable:
set transPrim [report_transformed_primitives -return_string]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 719

Tcl Commands Listed Alphabetically

report_utilization
Compute utilization of device and display report.

Syntax
report_utilization [-file arg] [-append] [-pblocks args] [-cells args]
[-return_string] [-packthru] [-name arg] [-no_primitives] [-omit_locs]
[-hierarchical] [-hierarchical_depth arg] [-quiet] [-verbose]

Returns
Report

Usage
Name Description

[-file] Filename to output results to. (send output to console if
-file is not used)

[-append] Append the results to file, don't overwrite the results file

[-pblocks] Report utilization of given list of pblocks

[-cells] Report utilization of given list of cells

[-return_string] Return report as string

[-packthru] Reports LUTs used exclusively as pack-thru

[-name] Output the results to GUI panel with this name

[-no_primitives] Removes "Primitives Section" from report_utilization o/p.

[-omit_locs] Removes "Loced" column from report_utilization o/p.

[-hierarchical] Generates text-based hierarchical report.

[-hierarchical_depth] Specifies the depth level for textual hierarchical report
Default: 0

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Report the utilization of resources on the target part by the current synthesized or implemented
design. The report is returned to the standard output, unless the -file, -return_string, or
-name arguments are specified.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 720

Tcl Commands Listed Alphabetically

Though resource utilization can be reported early in the design process, the report will be more
accurate as the design progresses from synthesis through implementation.

Arguments
-file arg - (Optional) Write the report into the specified file. The specified file will be overwritten
if one already exists, unless -append is also specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.

Note The -append option can only be used with the -file option

-pblocks arg - (Optional) Report the resources utilized by one or more Pblocks in the design.

-cells arg - (Optional) Report the resources utilized by on or more hierarchical cells in the
current design.

-return_string - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.

Note This argument cannot be used with the -file option.

-packthru - (Optional) Reports LUTs used for route through purposes. This appears in the
utilization report as "LUTs used exclusively as route-thrus".

-name arg - (Optional) Specifies the name of the results to output to the GUI.

-no_primitives - (Optional) Remove the Primitives section from the report. The Primitives
section reports the number and type of logic primitives used on the device.

-omit_locs - (Optional) Omit the LOCed column from the report. The LOCed column reports
the quantity of logic elements that have been placed onto the fabric of the device.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reports the resources utilized by the Pblocks in the design, and writes
the results to the specified file:
report_utilization -pblocks [get_pblocks] -file C:/Data/FPGA_Design/pb_util.txt

See Also
delete_utilization_results

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 721

Tcl Commands Listed Alphabetically

report_values
Print current simulated value of given HDL objects (variable, signal, wire, or reg).

Syntax
report_values [-radix arg] [-quiet] [-verbose] [hdl_objects ...]

Returns
Print name and value of HDL objects on the console in textual format

Usage
Name Description

[-radix] The radix specifies the radix to use for printing the values
of the hdl_objects. Allowed values are: default, dec, bin,
oct, hex, unsigned, ascii.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hdl_objects] The hdl_objects to report. Default is report_objects
[get_objects *]

Categories
Simulation

Description
Report the values of the specified HDL objects at the current simulation run time.

HDL objects include HDL signals, variables, or constants as defined in the Verilog or VHDL
testbench and source files. An HDL signal includes Verilog wire or reg entities, and VHDL
signals. Examples of HDL variables include Verilog real, realtime, time, and event.

HDL constants include Verilog parameters and localparams, and VHDL generic and constants.
The HDL scope, or scope, is defined by a declarative region in the HDL code such as a module,
function, task, process, or begin-end blocks in Verilog. VHDL scopes include entity/architecture
definitions, block, function, procedure, and process blocks.

Arguments
-radix arg - (Optional) Specifies the radix to use when returning the value of the specified
objects. Allowed values are: default, dec, bin, oct, hex, unsigned, and ascii.

Note The radix dec indicates a signed decimal. Specify the radix unsigned when dealing
with unsigned data

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 722

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

hdl_objects - (Required) Specifies one or more HDL objects to return the values of. The object
can be specified by name, or can be returned as an object from the get_objects command.

Examples
The following example reports the value of all objects at the current time:
report_values [get_objects]

This example shows the difference between the bin, dec, and unsigned radix on the value
returned from the specified bus:
report_values -radix bin /test/bench_VStatus_pad_0_i[7:0]
Declared: {/test/bench_VStatus_pad_0_i[7:0]} Verilog 10100101

report_values -radix unsigned /test/bench_VStatus_pad_0_i[7:0]
Declared: {/test/bench_VStatus_pad_0_i[7:0]} Verilog 165

report_values -radix dec /test/bench_VStatus_pad_0_i[7:0]
Declared: {/test/bench_VStatus_pad_0_i[7:0]} Verilog -91

See Also
• current_time
• get_objects
• get_value
• set_value

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 723

Tcl Commands Listed Alphabetically

reset_default_switching_activity
Reset switching activity on default types.

Syntax
reset_default_switching_activity [-static_probability] [-toggle_rate]
[-quiet] [-verbose] type ...

Returns
Nothing

Usage
Name Description

[-static_probability] Reset static probability

[-toggle_rate] Reset toggle rate

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

type Resets the default seed values to tool defaults on
specified types for vector-less propagation engine.
List of valid default type values: input, input_set,
input_reset, input_enable, register, dsp, bram_read_enable,
bram_write_enable, output_enable, clock, all

Categories
Power

Description
Reset the attributes of the default switching activity on nets, ports, pins, and cells in the design.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-static_probability - (Optional) Reset the static probability of the specified type.

-toggle_rate - (Optional) Reset the toggle rate of the specified type.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 724

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

type - The type to reset. List of valid values: input, input_set, input_reset, input_enable, register,
dsp, bram_read_enable, bram_write_enable, output_enable, clock, all.

Examples
The following example resets the toggle rate and static probability value on all design output
ports:
reset_default_switching_activity -toggle_rate -static_probability all

See Also
• power_opt_design
• report_default_switching_activity
• report_power
• report_default_switching_activity
• report_switching_activity
• reset_switching_activity
• set_default_switching_activity
• set_switching_activity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 725

Tcl Commands Listed Alphabetically

reset_drc
Remove DRC report.

Syntax
reset_drc [-name arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-name] DRC result name

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
DRC, Report

Description
Clear the DRC results from the specified named result set.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Optional) Specifies the name of the DRC results to be cleared. The name is established
by the -name argument in the report_drc command.

Examples
The following example clears the specified results set from memory and the GUI:
reset_drc DRC1

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 726

Tcl Commands Listed Alphabetically

See Also
report_drc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 727

Tcl Commands Listed Alphabetically

reset_drc_check
Reset one or more drc checks to factory defaults.

Syntax
reset_drc_check [-quiet] [-verbose] [rules ...]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[rules] The list of checks to reset.

Categories
DRC, Object

Description
Reset the specified DRC checks to the defaults provided by the Vivado Design Suite. This will
restore the DRC check to its default configuration, including any changes to the IS_ENABLED or
SEVERITY properties.

The IS_ENABLED property can be modified on a specific DRC check to disable the rule from
being checked, even when it is specified either directly in the report_drc command, or as part
of a ruledeck.

The SEVERITY property is a string property that can be modified to change the severity
associated with a specific DRC rule when a violation is found during the report_drc command.
The supported values are: FATAL, ERROR, "CRITICAL WARNING", WARNING, ADVISORY

reset_drc_check [-quiet] [-verbose] [<rules>...]

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 728

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

rules - (Required) The list of one or more DRC rules to reset to the tool defaults.

Examples
The following example modifies the IS_ENABLED property for the ROAS-1 rule, modifies the
SEVERITY property for the RFFC-1 rule, and then restores the default settings for all checks:
set_property IS_ENABLED false [get_drc_checks ROAS-1]
set_property SEVERITY "Critical Warning" [get_drc_checks RFFC-1]
reset_drc_check [get_drc_checks]

See Also
• add_drc_checks
• get_drc_checks
• report_drc
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 729

Tcl Commands Listed Alphabetically

reset_hw_ila
Reset hardware ILA control properties to default values.

Syntax
reset_hw_ila [-reset_compare_values arg] [-quiet] [-verbose]
[hw_ilas ...]

Returns
Nothing

Usage
Name Description

[-reset_compare_values] Reset associated hardware probe compare values.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_ilas] List of hardware ILA objects. Default: Current hardware ILA

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 730

Tcl Commands Listed Alphabetically

reset_hw_vio_activity
Reset hardware VIO ACTIVITY_VALUE properties, for hardware probes associated with specified
hardware VIO objects.

Syntax
reset_hw_vio_activity [-quiet] [-verbose] [hw_vios ...]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_vios] List of hardware VIO objects.

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 731

Tcl Commands Listed Alphabetically

reset_hw_vio_outputs
Reset hardware VIO core outputs to initial values.

Syntax
reset_hw_vio_outputs [-quiet] [-verbose] [hw_vios ...]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_vios] List of hardware VIO objects.

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 732

Tcl Commands Listed Alphabetically

reset_msg_config
Resets or removes a message control rule previously defined by the set_msg_config command.

Syntax
reset_msg_config [-string args] [-id arg] [-severity arg] [-limit]
[-suppress] [-count] [-default_severity] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-string] A qualifier, apply the selected operation only to messages
that contain the given strings Default: empty

[-id] A qualifier, the message id to match. If not specified, all
message ids will be matched

[-severity] A qualifier, apply the selected operation only to messages
at the given severity level

[-limit] reset the limit values for message controls that match the
given qualifiers for the current project

[-suppress] stop suppressing messages that match the given qualifiers
for the current project

[-count] reset the count of messages for all message controls that
match the given qualifiers for the current project. This
will prevent messages from being suppressed by a -limit
control until the message count once again exceeds the
specified limit.

[-default_severity] reset the message severity of all messages controls for the
current project that match the given qualifiers to their
default value

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 733

Tcl Commands Listed Alphabetically

Description
This command restores the default settings of the message limits or severity for messages
returned by the Vivado tool, or can unsuppress previously suppressed messages, as configured
by the set_msg_config command.

You can only perform one reset action for each reset_msg_config command. An error is
returned if more than one action is attempted in a single reset_msg_config command.

Message qualifiers of string, ID, and severity are used to determine which messages are
reset by the reset_msg_config command. Multiple qualifiers have an AND relationship; the
configuration rule will be applied only to messages matching all qualifiers.

Note You must supply at least one message qualifier to identify a message or group of
messages to apply the command to, or an error is returned.

To report the current rule configurations for messages, use the get_msg_config command.

Arguments
-string args - (Optional) Apply the selected operation only to messages that contain the
given list of strings. Strings must be enclosed in braces, and multiple strings can be specified
separated by spaces:
{{Vivado} {All Programmable}}

Note Strings are case sensitive.

-id arg - (Optional) Reset messages matching the specified message ID. The message ID is
included in all returned messages. For example,"Common 17-54" and "Netlist 29-28".

Note A wildcard * indicates all message IDs should be reset

-severity arg - Reset messages with the specified message severity. There are five message
severities:
• ERROR - An ERROR condition implies an issue has been encountered which will render

design results unusable and cannot be resolved without user intervention.
• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain

input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {}.

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

-limit - (Optional) Reset the message limit for messages matching the string, ID, or severity
qualifiers.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 734

Tcl Commands Listed Alphabetically

-suppress - (Optional) Reset, or unsuppress messages matching the string, ID, or severity
qualifiers.

-count - (Optional) Reset the message count for messages matching the string, ID, or severity
qualifiers.

-default_severity - (Optional) Restore the default message severity for messages matching
the string, ID, or severity qualifiers.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example resets the specified INFO message to its default severity:
reset_msg_config -id "Common 17-81" -default_severity

The following example unsuppresses messages with the specified message ID:
reset_msg_config -id {HDL 9-1654} -suppress

See Also
• get_msg_config
• set_msg_config

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 735

Tcl Commands Listed Alphabetically

reset_msg_count
Reset message count.

Syntax
reset_msg_count [-quiet] [-verbose] id

Returns
New message count

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

id Unique message Id to be reset, e.g. "Common 17-99".
"reset_msg_count -id *" reset all counters

Categories
Report

Description
Reset the message count for the specified message ID to 0. This restarts the message counter
toward the specified message limit. This can be used to reset the count of specific messages
that may be reaching the limit, or reset the count of all messages returned by the tool.

Every message delivered by the tool has a unique global message ID that consists of an
application sub-system code and a message identifier. This results in a message ID that looks
like the following:
"Common 17-54"
"Netlist 29-28"
"Synth 8-3295"

You can get the current message count for a specific message ID using the get_msg_count
command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 736

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

id - (Required) Specifies the message ID to reset the count to 0. Specify * to reset the count
of all messages to 0.

Examples
The following example resets the message count for all messages:
reset_msg_count *

See Also
• get_msg_count
• set_msg_config

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 737

Tcl Commands Listed Alphabetically

reset_msg_limit
Reset message limit.

Syntax
reset_msg_limit [-severity arg] [-id arg] [-quiet] [-verbose]

Returns
New message limit

Usage
Name Description

[-severity] Message severity to be reset (not valid with -id,) e.g.
"ERROR" or "CRITICAL WARNING" Default: ALL

[-id] Unique message Id to be reset (not valid with -severity,)
e.g "Common 17-99"

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Restores the default message limit. The command can be used to restore the default limit for a
specific message ID, for a specific message severity, or for all messages returned.

The current default limit for all messages returned is 4,294,967,295.

Arguments
-id value - (Optional) The ID of a specific message for which to change the message limit. Each
message returned contains its own ID. For instance, "Common 17-54" and "Netlist 29-28".

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 738

Tcl Commands Listed Alphabetically

-severity value - (Optional) The severity of the message. There are five message severities:
• ERROR - An ERROR condition implies an issue has been encountered which will render

design results unusable and cannot be resolved without user intervention.

• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain
input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {} or "".

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example resets the message limit of the specified message ID:
reset_msg_limit -id "Netlist 29-28"

See Also
• get_msg_config
• get_msg_count
• get_msg_limit
• reset_msg_config
• set_msg_config
• set_msg_limit

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 739

Tcl Commands Listed Alphabetically

reset_msg_severity
Reset Message Severity by ID.

Syntax
reset_msg_severity [-quiet] [-verbose] id

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

id Unique message id to be set, e.g. ""Common 17-99""

Categories
Report

Description
Restores the specified message ID to its default severity.

Use this command after set_msg_severity to restore a specific message ID to its original
severity level.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

id - (Required) The ID of the message for which the severity should be reset.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 740

Tcl Commands Listed Alphabetically

Examples
The following example restores the severity of message ID common-99 to its original severity:
reset_msg_severity common-99

The following example restores the severity of message ID Netlist-1129 to its original severity:
reset_msg_severity Netlist-1129

See Also
set_msg_severity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 741

Tcl Commands Listed Alphabetically

reset_operating_conditions
Reset operating conditions to tool default for power estimation.

Syntax
reset_operating_conditions [-voltage args] [-grade] [-process]
[-junction_temp] [-ambient_temp] [-thetaja] [-thetasa] [-airflow]
[-heatsink] [-thetajb] [-board] [-board_temp] [-board_layers] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-voltage] Resets voltage value. Supported voltage supplies vary by
family.

[-grade] Resets temperature grade

[-process] Resets process

[-junction_temp] Resets Junction Temperature

[-ambient_temp] Resets Ambient Temperature

[-thetaja] Resets ThetaJA

[-thetasa] Resets ThetaSA

[-airflow] Resets Airflow

[-heatsink] Resets dimensions of heatsink

[-thetajb] Resets ThetaJB

[-board] Resets Board type

[-board_temp] Resets Board Temperature

[-board_layers] Resets Board layers

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, Power

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 742

Tcl Commands Listed Alphabetically

Description
Resets the specified operating conditions to their default values. If no operating conditions are
specified, all operating conditions are reset to their default values.

Operating conditions can be set using the set_operating_conditions command. The
current values can be determined using the report_operating_conditions command. The
environmental operating conditions of the device are used for power analysis when running the
report_power command, but are not used during timing analysis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-voltage args - (Optional) Reset the voltage supply to the default value. The voltage supply
and its default depend on the device family.

-grade - (Optional)) Reset the temperature grade of the selected device. The default value
is "commercial".

-process - (Optional) Reset the manufacturing process for the target device. The default
process is "typical".

-junction_temp - (Optional) Reset the junction temperature for the target device. The default
value is "auto".

-ambient_temp - (Optional) Reset the ambient temperature of the design. The default setting
is "default".

-thetaja - (Optional) Reset the Theta-JA thermal resistance. The default setting is "auto".

-thetasa - (Optional) Reset the Theta-SA thermal resistance. The default setting is "auto".

-airflow - (Optional) Reset the Linear Feet Per Minute (LFM) airflow. The default setting varies
by device family.

-heatsink - (Optional) Reset the heatsink profile. The default setting is "medium".

-thetajb - (Optional) Reset the Theta-JB thermal resistance. The default setting is "auto".

-board - (Optional) Reset the board size to be used for modeling. The default value is "medium".

-board_temp arg - (Optional) Reset the board temperature to the default setting.

-board_layers - (Optional) Reset the number of board layers to be used for modeling to the
default setting of "12to15".

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example resets all the operating conditions for the design to their default setting:
reset_operating_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 743

Tcl Commands Listed Alphabetically

The following example resets the junction, ambient, and board temperature for the design to
their default settings:
reset_operating_conditions -junction_temp -ambient_temp -board_temp

The following example resets the voltage supply Vccint to its default value:
reset_operating_conditions -voltage Vccint

See Also
• report_operating_conditions
• report_power
• set_operating_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 744

Tcl Commands Listed Alphabetically

reset_param
Reset a parameter.

Syntax
reset_param [-quiet] [-verbose] name

Returns
Original value

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Parameter name

Categories
PropertyAndParameter

Description
Restores a user-definable configuration parameter that has been changed with the set_param
command to its default value.

You can use the report_param command to see which parameters are currently defined.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of a parameter to reset. You can only reset one parameter at a time.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 745

Tcl Commands Listed Alphabetically

Examples
The following example restores the tcl.statsThreshold parameter to its default value:
reset_param tcl.statsThreshold

See Also
• get_param
• list_param
• report_param
• set_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 746

Tcl Commands Listed Alphabetically

reset_project
Reset current project.

Syntax
reset_project [-exclude_runs] [-exclude_ips] [-exclude_sim_runs]
[-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-exclude_runs] Do not reset runs

[-exclude_ips] Do not reset ips

[-exclude_sim_runs] Do not reset simulation runs

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Reset the current project to its starting condition, with source and constraint files, by cleaning
out the various output files created during synthesis, simulation, implementation, and
write_bitstream. Also resets the state of the project to the start of the design flow.

Arguments
-exclude_runs - (Optional) Exclude the <project>.runs folder from the reset process. In this
case, the runs folder will be preserved, while the rest of the project data will be removed.

-exclude_ips - (Optional) Exclude the <project>.srcs/sources_1/ip folder from the reset
process. In this case, the IP folder, containing the IP cores and generated targets, will be
preserved, while the rest of the project data will be removed.

-exclude_sim_runs - (Optional) Exclude the <project>.sim folder from the reset process. In this
case, the simulation folder will be preserved, while the rest of the project data will be removed.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 747

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Example
The following example resets the current project, while preserving the simulation run data, and
returning all messages regardless of message limits:
reset_project -exclude_sim_runs -verbose

See Also
• create_project
• current_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 748

Tcl Commands Listed Alphabetically

reset_property
Reset property on object(s).

Syntax
reset_property [-quiet] [-verbose] property_name objects ...

Returns
The value that was set if success, "" if failure

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

property_name Name of property to reset

objects Objects to set properties

Categories
Object, PropertyAndParameter

Description
Restores the specified property to its default value on the specified object or objects. If no
default is defined for the property, the property is unassigned on the specified object.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

property_name - (Required) The name of the property to be reset.

objects - (Required) One or more objects on which the property will be restored to its default
value.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 749

Tcl Commands Listed Alphabetically

Examples
The following example resets the ALL_PROPS property on all cells:
reset_property ALL_PROPS [get_cells]

See Also
• create_property
• get_cells
• get_property
• list_property
• list_property_value
• report_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 750

Tcl Commands Listed Alphabetically

reset_run
Reset an existing run.

Syntax
reset_run [-prev_step] [-from_step arg] [-noclean_dir] [-quiet]
[-verbose] run

Returns
Nothing

Usage
Name Description

[-prev_step] Reset last run step

[-from_step] First Step to reset

[-noclean_dir] Do not remove all output files and directories from disk

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
run Run to modify

Categories
Project

Description
Resets the specified run to an unimplemented or unsynthesized state. Use this command to
reset the run to prepare it to be run again.

Arguments
-prev_step - (Optional) Reset an implementation run from the last step completed. This can be
used to reset an implementation run that is only partially completed because it was launched
with the launch_runs -to_step command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 751

Tcl Commands Listed Alphabetically

-from_step arg - (Optional) Reset an implementation run from a specified step. This lets
you restart a run from the specified step using the launch_runs -next_step command. Valid
step values include:

• opt_design - Optionally optimize the logical design to more efficiently use the target
device resources.

• power_opt_design - Optionally optimize elements of the logic design to reduce power
demands of the implemented FPGA.

• place_design - Place logic cells onto the target device. This is a required step.

• power_opt_design (Post-Place) - Optionally optimize power demands of the placed logic
elements.

• phys_opt_design - Optionally optimize design timing by replicating drives of high-fanout
nets to better distribute the loads.

• route_design - Route the connections of the design onto the target FPGA. This is a required
step.

• write_bitstream - Generate a bitstream file for Xilinx device configuration. This is a required
step.

-noclean_dir - (Optional) Do not clean up the run files output to the run directory. As a default
the tool will delete the run directory and all files within that directory when resetting the run in
order to ensure a clean start when the run is reimplemented. This argument directs the tool not
to remove the run directory and its content when resetting the run. In this case, when the run
is reimplemented a new run directory will be created in the project runs directory.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

run - (Required) The name of the run to reset.

Examples
The following example resets the implementation run:
reset_run impl_1

Note The run directory and its contents will be removed from the hard disk since -noclean_dir
is not specified.

The following example resets the synthesis run, but disables the cleanup of the run directory:
reset_run -noclean_dir synth_1

In this example, because -noclean_dir is specified, the synth_1 run directory is not removed
and a new run directory called synth_1_2 will be created when the run is launched.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 752

Tcl Commands Listed Alphabetically

See Also
• create_run
• launch_runs
• opt_design
• place_design
• route_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 753

Tcl Commands Listed Alphabetically

reset_simulation
Reset an existing simulation run.

Syntax
reset_simulation [-mode arg] [-type arg] [-quiet] [-verbose] [simset]

Returns
Nothing

Usage
Name Description

[-mode] Remove generated data for the specified mode. Values:
behavioral, post-synthesis, post-implementation Default:
behavioral

[-type] Remove generated data for the specified type. Applicable
mode is post-synthesis or post-implementation. Values:
functional, timing

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[simset] Name of the simulation fileset to reset

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 754

Tcl Commands Listed Alphabetically

reset_ssn
Clear a SSN results set from memory.

Syntax
reset_ssn [-quiet] [-verbose] name

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of the set of results

Categories
Report

Description
Clear the SSN results from the specified named result set.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) Specifies the name of the results to be cleared.

Examples
The following example clears the specified results set from memory:
reset_ssn SSN1

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 755

Tcl Commands Listed Alphabetically

See Also
report_ssn

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 756

Tcl Commands Listed Alphabetically

reset_switching_activity
Reset switching activity on specified objects.

Syntax
reset_switching_activity [-static_probability] [-signal_rate] [-hier]
[-quiet] [-verbose] objects ...

Returns
Nothing

Usage
Name Description

[-static_probability] Reset static probability

[-signal_rate] Reset signal rate

[-hier] Hierarchically resets the switching activity on a hierarchical
cells provided as .

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects Objects to reset switching activity on

Categories
Power

Description
Resets the attributes of the switching activity on nets, ports, pins, and cells in the design.

Note This command operates silently and does not return direct feedback of its operation.

The switching activity can be defined using the set_switching_activity command. The current
switching activity defined for a specific port, pin, net, or cell can be found by using the
report_switching_activity command.

Arguments
-static_probability - (Optional) Reset the static probability of the specified object.

-signal_rate - (Optional) Reset the signal rate of the specified object.

-hier - (Optional) Reset the switching activity across all levels of a hierarchical object. Without
-hier, the switching activity is applied to the specified objects at the current level of the hierarchy.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 757

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) The list of objects for which to reset the switching activity.

Examples
The following example resets the signal_rate and static probability value on all output ports:
reset_switching_activity -signal_rate -static_probability [all_outputs]

See Also
• power_opt_design
• report_default_switching_activity
• report_power
• report_switching_activity
• reset_default_switching_activity
• set_default_switching_activity
• set_switching_activity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 758

Tcl Commands Listed Alphabetically

reset_target
Reset target data for the specified source.

Syntax
reset_target [-quiet] [-verbose] name objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name List of targets to be reset, or 'all' to reset all generated

targets

objects The objects for which data needs to be reset

Categories
Project, XPS, IPFlow

Description
Remove the current target data for the specified IP core. This deletes any files that were
delivered during generation of the specified targets. This does not remove the core from the
current project, but does remove the associated target data from its referenced location.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 759

Tcl Commands Listed Alphabetically

name - (Required) Specifies the name of the type of target to reset. Valid values are:

• all - Reset all targets for the specified core.
• synthesis - Reset the synthesis netlist for the specified core. This will remove the netlist

files for the specified core.

• simulation - Reset the simulation netlist for the specified core.
• instantiation_template - Reset the instantiation template for the specified core.

objects - (Required) The IP core objects to remove the target data from.

Examples
The following example resets the instantiation template for the specified IP core:
reset_target instantiation_template [get_ips blk_mem*]

See Also
generate_target

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 760

Tcl Commands Listed Alphabetically

reset_timing
Resets the timing information on the current design.

Syntax
reset_timing [-invalid] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-invalid] Also rest invalid timing constraints.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report, Timing

Description
Reset the timing data for the current design. Use this command to clear the current in-memory
timing data, and force the timing engine to reevaluate the design comprehensively rather
than iteratively.

Note This command deletes the in-memory timing view, not the timing report. Use the
delete_timing_results command to delete the reported timing information.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 761

Tcl Commands Listed Alphabetically

Examples
The following example clears the current timing data from memory:
reset_timing

See Also
• delete_timing_results
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 762

Tcl Commands Listed Alphabetically

reset_ucf
Clear floorplan constraints read in from a file.

Syntax
reset_ucf [-quiet] [-verbose] file

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file UCF file to be reset

Categories
Floorplan

Description
Clear placement constraints defined in the specified UCF constraints file from the current
design. This command requires an open design.

The constraints found in the specified file will be removed from the current design, but are not
immediately saved to the constraints file. The specified constraint file will be updated when
you use the save_design command to rewrite the constraints.

You can save the constraints to a new file without saving the design by using the write_ucf
command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 763

Tcl Commands Listed Alphabetically

file - (Required) The UCF file to be reset.

Note The tool will look for the specified file in the constraint filesets

Examples
The following example removes placement constraints found in the specified file:
reset_ucf top_full.ucf

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 764

Tcl Commands Listed Alphabetically

resize_net_bus
Resize net bus in the current design.

Syntax
resize_net_bus [-from arg] [-to arg] [-quiet]
[-verbose] net_bus_name ...

Returns
Nothing

Usage
Name Description

[-from] New starting bus index

[-to] New ending bus index

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

net_bus_name Name of the net bus to resize

Categories
Netlist

Description
Resize an existing bus net, to grow the bus, shrink the bus, or renumber the current range of
indexes. You can only do a single grow, shrink, or renumber operation with each command.

• You can grow the bus by indicating a new range of indexes outside the current range of
indexes. Growing the bus leaves existing bits connected as they currently are.

• You can shrink the bus by indicating a new range of indexes inside the current range
of indexes. Shrinking the bus, eliminates connections to removed bits, but leaves the
remaining bits connected as they currently are.

• You can renumber the current bus indexes by providing a new range of indexes with the
same width as the current range. Renumbering bits changes bus bit numeric identifiers,
but doesn't otherwise change connections.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 765

Tcl Commands Listed Alphabetically

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

This command returns nothing if successful, and returns an error if it fails.

Arguments
-from arg - (Optional) The new starting index of the specified bus net.

-to arg - (Optional) The new ending index of the specified bus.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

net_bus_name - (Required) The names of an existing bus net.

Example
The following example creates a new 24-bit bus, then renumbers the bus indexes to include
negative indexes, and then resizes the bus to shrink it to an 8-bit bus:
create_net tempBus -from 23 -to 0
resize_net_bus tempBus -from -12 -to 11
resize_net_bus tempBus -from 0 -to 7

See Also
• connect_net
• create_net
• create_pin
• create_port
• disconnect_net
• get_nets
• remove_net
• resize_pin_bus
• resize_port_bus
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 766

Tcl Commands Listed Alphabetically

resize_pblock
Move, resize and add and/or remove UCF ranges.

Syntax
resize_pblock [-add args] [-remove args] [-from args] [-to args]
[-replace] [-locs arg] [-quiet] [-verbose] pblock

Returns
Nothing

Usage
Name Description

[-add] Add site ranges(s)

[-remove] Remove site ranges(s)

[-from] Site range(s) to move

[-to] Site range destination(s)

[-replace] Remove all existing ranges

[-locs] LOC treatment Default: keep_all

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pblock Pblock to resize

Categories
Floorplan, XDC

Description
Place, resize, move, or remove the specified Pblock. The Pblock must have been created using
the create_pblock command.

A Pblock consists of a group of cells that can be assigned to one or more independent
or overlapping rectangles. Using the various options defined below, you can add sites to a
rectangle, or remove sites from a rectangle, or define a new rectangle to be associated with
an existing Pblock.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 767

Tcl Commands Listed Alphabetically

Arguments
-add args - (Optional) Add the specified range of sites to the Pblock. The SLICE range is
specified as a rectangle from one corner to the diagonally opposite corner. For example
SLICE_X0Y0:SLICE_X20Y12.

Note Multiple site types are added as separate rectangles.

-remove args - (Optional) Remove the specified range of sites from the Pblock. Removing sites
from a Pblock may result in the Pblock being broken into multiple smaller rectangles to enforce
the requirement that Pblocks are defined as one or more rectangles.

-from args - (Optional) The -from and -to options must be used as a pair, and specify a site or
range of sites to relocate from one location to another.

-to args - (Optional) The -from and -to options must be used as a pair, and specify a site or
range of sites to relocate from one location to another.

-locs args - (Optional) Specifies how the placed logic in the Pblock will be handled as the
Pblock is moved or resized. Valid values are:
• keep_all - leave all locs placed as they are currently. This is the default setting when -locs

is not specified. Logic that is placed outside of the Pblock will no longer be assigned
to the Pblock.

• keep_only_fixed - Specifies that only user-placed logic (fixed) will be preserved. Unfixed
placed logic will be unplaced.

• keep_none - Unplace all logic.
• move - Specifies that all locs should be moved relative to the coordinates of the Pblock.
• move_unfixed - Specifies that only the unfixed placed elements should be moved. Logic

placed by the user (fixed) will not be moved.
• trim - Specifies that logic that falls outside of the new Pblock boundaries will be unplaced.

Any placed logic that still falls inside of the Pblock boundary will be left placed as it is.
• trim_unfixed - Trim only the unfixed placed logic.

-replace - (Optional) Remove all rectangles associated with the Pblock.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pblock - (Required) Specify the Pblock to be resized, moved, or removed.

Examples
The following example resizes the Pblock by adding a range of SLICEs, and removing other
SLICEs, but keeps all instances placed at their current location:
resize_pblock block3 -add SLICE_X6Y67:SLICE_X11Y71 -remove SLICE_X6Y71:SLICE_X7Y71 \
-locs keep_all

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 768

Tcl Commands Listed Alphabetically

The following example moves the specified Pblock by adding a range of SLICEs, removing the
existing range of SLICEs, and trims any placed logic that falls outside the new Pblock. Then
it adds a new range of SLICEs and block ram to the specified Pblock in a second separate
rectangle:
resize_pblock block3 -add SLICE_X3Y8:SLICE_X10Y3 -remove SLICE_X6Y67:SLICE_X11Y71 \
-locs trim
resize_pblock block3 -add {SLICE_X6Y67:SLICE_X11Y71 RAMB18_X0Y2:RAMB18_X1Y4}

See Also
• add_cells_to_pblock
• create_pblock
• place_pblocks

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 769

Tcl Commands Listed Alphabetically

resize_pin_bus
Resize pin bus in the current design.

Syntax
resize_pin_bus [-from arg] [-to arg] [-quiet]
[-verbose] pin_bus_name ...

Returns
Nothing

Usage
Name Description

[-from] New starting bus index

[-to] New ending bus index

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pin_bus_name Name of the pin bus to resize

Categories
Netlist

Description
Resize an existing bus pin, to grow the bus, shrink the bus, or renumber the current range of
pin indexes. You can only do a single grow, shrink, or renumber operation with each command.

• You can grow the bus by indicating a new range of pin indexes outside the current range of
indexes. Growing the bus leaves existing pins connected as they currently are.

• You can shrink the bus by indicating a new range of pin indexes inside the current range of
indexes. Shrinking the bus, eliminates connections to removed bus pins, but leaves the
remaining pins connected as they currently are.

• You can renumber the current bus indexes by providing a new range of pin indexes with
the same width as the current range. Renumbering pins changes the pin index, but does
not otherwise change connections.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 770

Tcl Commands Listed Alphabetically

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

This command returns nothing if successful, and returns an error if it fails.

Arguments
-from arg - (Optional) The new starting index of the specified bus pin.

-to arg - (Optional) The new ending index of the specified bus pin.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

bus_pin_name - (Required) The name of the bus pin to modify. You must specify the pin names
hierarchically from the cell instance the pin is assigned to. Pins created at the top-level of the
design are ports, and should be resized with the resize_port_bus command.

Examples
The following example creates a blackbox cell, then creates a 24-bit bidirectional bus for
the specified hierarchical cell, then resizes the bus pin to expand the width to 32-bits, then
renumbers the index to include negative bus indexes:
create_cell -reference dmaBlock -black_box usbEngine0/myDMA
create_pin -direction INOUT -from 0 -to 23 usbEngine0/myDMA/dataBus
resize_pin_bus -from 0 -to 31 usbEngine0/myDMA/dataBus
resize_pin_bus -from -16 -to 15 usbEngine0/myDMA/dataBus

See Also
• create_net
• create_pin
• create_port
• get_pins
• remove_pin
• resize_net_bus
• resize_port_bus
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 771

Tcl Commands Listed Alphabetically

resize_port_bus
Resize port bus in the current design.

Syntax
resize_port_bus [-from arg] [-to arg] [-quiet]
[-verbose] port_bus_name ...

Returns
Nothing

Usage
Name Description

[-from] New starting bus index

[-to] New ending bus index

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

port_bus_name Name of the port bus to resize

Categories
PinPlanning

Description
Resize an existing bus port, to grow the bus, shrink the bus, or renumber the current range of
port indexes. You can only do a single grow, shrink, or renumber operation with each command.

• You can grow the bus by indicating a new range of port indexes outside the current range
of indexes. Growing the bus leaves existing port indexes connected as they currently are.

• You can shrink the bus by indicating a new range of port indexes inside the current range
of indexes. Shrinking the bus, eliminates connections to removed bus ports, but leaves the
remaining ports connected as they currently are.

• You can renumber the current bus indexes by providing a new range of port indexes with
the same width as the current range. Renumbering ports changes the port index, but
does not otherwise change connections.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 772

Tcl Commands Listed Alphabetically

Netlist editing changes the in-memory view of the netlist in the current design. It does not
change the files in the source fileset, or change the persistent design on the disk. Changes
made to the netlist may be saved to a design checkpoint using the write_checkpoint
command, or may be exported to a netlist file such as Verilog, VHDL, or EDIF, using the
appropriate write_* command.

Note Netlist editing is not allowed on an RTL design.

This command returns nothing if successful, and returns an error if it fails.

Arguments
-from arg - (Optional) The new starting index of the specified bus port.

-to arg - (Optional) The new ending index of the specified bus port.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

bus_port_name - (Required) The name of the bus port to modify.

Examples
The following example creates a 32-bit output bus port, then renumbers the ports to include
negative bus indexes, then shrinks the bus width from 32-bits to 16-bits:
create_port -direction out -from 0 -to 31 outPorts
resize_port_bus -from -16 -to 15 outPorts
resize_port_bus -from -8 -to 7 outPorts

See Also
• create_net
• create_pin
• create_port
• get_ports
• remove_port
• resize_net_bus
• resize_pin_bus
• write_checkpoint
• write_edif
• write_verilog
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 773

Tcl Commands Listed Alphabetically

restart
Rewind simulation to post loading state (as if design was reloaded), time is set to 0.

Syntax
restart [-quiet] [-verbose]

Returns
Restart retains breakpoints, Tcl forces, and settings in the waveform viewer but clears up the
effects of all other Tcl commands

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 774

Tcl Commands Listed Alphabetically

route_design
Route the current design.

Syntax
route_design [-unroute] [-re_entrant arg] [-nets args] [-physical_nets]
[-pin arg] [-directive arg] [-no_timing_driven] [-preserve] [-delay]
[-free_resource_mode] -max_delay arg -min_delay arg [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-unroute] Unroute whole design or the given nets/pins if used with
-nets or -pin.

[-re_entrant] Use "-re_entrant on" to remain in re_entrant mode. Default
is to not enter re_entrant mode. Not applicable with
-pin or -nets. They are inherently re_entrant commands.
Default: off

[-nets] Operate on the given nets.

[-physical_nets] Operate on all physical nets.

[-pin] Operate on the given pin.

[-directive] Mode of behavior (directive) for this command. Please
refer to Arguments section of this help for values for this
option. Default: Default

[-no_timing_driven] Do not run in timing driven mode.

[-preserve] Preserve existing routing.

[-delay] Use with -nets or -pin option to route in delay driven mode.

[-free_resource_mode] Router will run in free resource mode

-max_delay Use with -pin option to specify the max_delay constraint
on the pin.When specified -delay is implicit.

-min_delay Use with -pin option to specify the max_delay constraint
on the pin.When specified -delay is implicit.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Tools

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 775

Tcl Commands Listed Alphabetically

Description
Route the nets in the current design to complete logic connections on the target part.

Predefined routing strategies can be quickly selected using the route_design -directive
command, or specific route options can be configured to define your own routing strategy.

Routing can be completed automatically with route_design, or can be completed iteratively
using the various arguments of the route_design command. Iterative routing provides you
some control over the routing process to route critical nets first and then route less critical nets,
and to control the level of effort and the timing algorithms for these various route passes.

Routing is one step of the complete design implementation process, which can be run
automatically through the use of the launch_runs command when running the Vivado tools in
Project Mode.

In Non-Project Mode, the implementation process must be run manually with the individual
commands: opt_design, place_design, phys_opt_design, power_opt_design, and
route_design. Refer to the Vivado Design Suite User Guide: Design Flows Overview (UG892) for
a complete description of Project Mode and Non-Project Mode.

Both placement and routing can be completed incrementally, based on prior results stored
in a Design Checkpoint file (DCP), using the incremental compilation flow. Refer to the
read_checkpoint command, or to Vivado Design Suite User Guide: Implementation (UG904) for
more information on incremental place and route.

This command requires a placed design, and it is recommended that you have optimized the
design with opt_design prior to placement.

Arguments
-unroute arg - (Optional) Unroute nets in the design. If no arguments are specified, all
nets in the design are unrouted. The route_design command will not route any nets when
the -unroute option is specified.
• Combine with the -nets option to limit unrouting to a list of nets.
• Combine with the -pin option to unroute from the pin to the nearest branch of the net.

• Combine with the -physical_nets option to unroute all logic 1 and logic 0 nets.

-re_entrant [on | off] - (Optional) Runs the router in re-entrant mode. The default setting
is off. Running route_design -re_entrant off, or running the router in the default mode,
directs the router to clean up its in-memory data structures when routing is complete. Running
route_design with -re_entrant on preserves the in-memory routing data structures so that
subsequent routing passes are faster. Run re-entrant routing when you anticipate successive
routing operations, so that initialization is not repeated for each routing pass.

Note The -re_entrant option is not required with -nets or -pin because those options are
inherently re-entrant.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 776

Tcl Commands Listed Alphabetically

-directive arg - (Optional) Direct routing to achieve specific design objectives. Only one
directive can be specified for a single route_design command, and values are case-sensitive.
Supported values are:
• Explore - Allows the Vivado router to explore different critical path routes after an initial

route.
• NoTimingRelaxation - Prevents the router from relaxing timing to complete routing.

If the router has difficulty meeting timing, it will run longer to try to meet the original
timing constraints.

• MoreGlobalIterations - Uses detailed timing analysis throughout all stages instead of just
the final stages, and will run more global iterations even when timing improves only slightly.

• HigherDelayCost - Adjusts the router's internal cost functions to emphasize delay over
iterations, allowing a trade-off of runtime for better performance.

• AdvancedSkewModeling - Uses more accurate skew modeling throughout all routing
stages which may improve design performance on higher-skew clock networks.

• RuntimeOptimized - Run fewest iterations, trade higher design performance for faster
runtime.

• Quick - Absolute fastest runtime, non-timing-driven, performs the minimum required
routing for a legal design.

• Default - Run route_design with default settings.

Refer to the Vivado Design Suite User Guide: Implementation (UG904) for more information on
the effects of each directive.

Note The -directive option controls the overall routing strategy, and is not compatible with
any specific route_design options. It can only be used with -quiet and -verbose. In addition,
the -directive option is ignored if the design is using the incremental compilation flow as
defined by read_checkpoint -incremental

-physical_nets - (Optional) Route or unroute only logic zero and logic one nets.

-nets args - (Optional) Route or unroute only the specified net objects. Net objects must
be specified using the get_nets command.

Note The router uses a quick route approach to find a routing solution for the specified nets,
ignoring timing delays, when routing with -nets or -pin specified. Use -delay to find a route
with the shortest delay.

-pin arg - (Optional) Route or unroute to the given pin which must be a cell input. If a pin is
driven by a multiple fanout net, only the route segment between the net and pin are affected.

Note The router uses a quick route approach to find a routing solution for the specified nets,
ignoring timing delays, when routing with -nets or -pin specified. Use -delay to find a route
with the shortest delay.

-delay - (Optional) Can only be used in combination with the -nets or -pin options. By default
nets are routed to achieve the fastest routing runtime, ignoring timing constraints, when using
-nets and -pin options. The -delay option directs the router to try to achieve the shortest
routed interconnect delay, but still ignores timing constraints.

-max_delay arg - (Optional) Can only be be used with -pin. Directs the router to try to achieve
a delay less than or equal to the specified delay given in picoseconds. When this options is
specified, the -delay option is implied.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 777

Tcl Commands Listed Alphabetically

-min_delay arg - (Optional) Can only be used with -pin. Directs the router to try to achieve a
delay greater than or equal to the specified delay given in picoseconds. When this option is
specified, the -delay option is implied.

-no_timing_driven - (Optional) Disables the default timing driven routing algorithm. This
results in faster routing results, but ignores any timing constraints during the routing process.

-preserve - (Optional) Existing routing will be preserved and not subject to the rip-up and
reroute phase. This does not apply to routing that is fixed using the IS_ROUTE_FIXED or
FIXED_ROUTE properties. Routing is preserved only for the current routing session.

-free_resource_mode - (Optional) This is an advanced option to control routing resources.
With the Vivado router, by default, net routing may initially overlap using the same routing
resources to speed routing solutions. These overlaps are later resolved as required to complete
the connection. This option will prevent routes from initially overlapping, requiring new routes
to use available routing resources only. This option can be used in later routing passes to
prevent new connections from overlapping or disturbing completed routes.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
Route the entire design, and direct the router to try multiple algorithms for improving critical
path delay:
route_design -directive Explore

The following example routes the specified set of timing critical nets to the shortest
interconnect delay, and then preserves those routes while routing the rest of the design with
low effort for fast routing: :
route_design -delay -nets $myCriticalNets
route_design -preserve -directive RuntimeOptimized

The following example turns on re-entrant routing, unroutes the current design, then re-routes
it using the default settings:
route_design -re_entrant on
route_design -unroute
route_design

Route the specified nets using the fastest runtime:
route_design -nets [get_nets ctrl0/ctr*]

Route the specified nets to get the shortest interconnect delays:
route_design -nets [get_nets ctrl0/ctr*] -delay

Route to a particular pin:
route_design -pin [get_pins ctrl0/reset_reg/D]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 778

Tcl Commands Listed Alphabetically

Route to a particular pin, try to achieve less than 500 ps delay:
route_design -pin [get_pins ctrl0/reset_reg/D] -max_delay 500

Route to a particular pin, try to achieve more than 200 ps delay:
route_design -pin [get_pins ctrl0/ram0/ADDRARDADDR] -min_delay 200

See Also
• get_nets
• get_pins
• launch_runs
• opt_design
• phys_opt_design
• place_design
• power_opt_design
• read_checkpoint
• write_checkpoint

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 779

Tcl Commands Listed Alphabetically

run
Run the simulation for the specified time.

Syntax
run [-all] [-quiet] [-verbose] [time] [unit]

Returns
Nothing

Usage
Name Description

[-all] Runs simulation till a breakpoint, an exception or no events
left in the queue

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[time] Length of simulation time

[unit] Unit for time from the following time units: fs, ps, ns, us,
ms, sec

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 780

Tcl Commands Listed Alphabetically

run_hw_ila
Arm hardware ILAs.

Syntax
run_hw_ila [-trigger_now arg] [-quiet] [-verbose] [hw_ilas ...]

Returns
Nothing

Usage
Name Description

[-trigger_now] Trigger and capture immediately.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_ilas] hardware ILAs Default: Current hardware ILA

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 781

Tcl Commands Listed Alphabetically

run_hw_sio_scan
Run hardware SIO scans.

Syntax
run_hw_sio_scan [-quiet] [-verbose] hw_sio_scans

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_scans hardware SIO scans

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 782

Tcl Commands Listed Alphabetically

save_bd_design
Save an existing IP subsystem design to disk file.

Syntax
save_bd_design [-quiet] [-verbose] [name]

Returns
The design object. Returns nothing if the command fails

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[name] Name of design to save.

Categories
IPIntegrator

Description
Saves any changes to the current or specified IP subsystem design in the IP Integrator feature
of the Vivado Design Suite.

This command returns the name of the file written.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - Specify the name of the IP subsystem design to save. If name is not specified, the
current IP subsystem design will be saved.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 783

Tcl Commands Listed Alphabetically

Examples
The following example saves the current IP subsystem design in the current project:
save_bd_design

See Also
• close_bd_design
• create_bd_design
• current_bd_design
• get_bd_designs
• open_bd_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 784

Tcl Commands Listed Alphabetically

save_constraints
Save the current design's constraints.

Syntax
save_constraints [-force] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-force] Force constraints save, overwriting the target and source
XDC if necessary

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Saves any changes to the constraints files of the active constraints set. This command writes
any changes to the constraints files to the project data on the hard drive; saving any work in
progress and committing any changes.

Arguments
-force - (Optional) Save the active constraints files regardless of whether any changes have
been made, overwriting the current target constraints file.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 785

Tcl Commands Listed Alphabetically

Examples
The following example saves the constraints files for the active constraints set regardless of
any changes to the files:
save_constraints -force

See Also
save_constraints_as

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 786

Tcl Commands Listed Alphabetically

save_constraints_as
Save current design's constraints as a new set of constraints files.

Syntax
save_constraints_as [-dir arg] [-target_constrs_file arg] [-quiet]
[-verbose] name

Returns
Nothing

Usage
Name Description

[-dir] Directory to save constraints to

[-target_constrs_file] Target constraints file for the new fileset

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of the new constraints fileset

Categories
Project

Description
Copies the active constraints set to create a new constraints set, with local copies of any
constraints files that are part of the constraints set. You can also specify a new constraints file
to use as the target for the copied constraints set.

Use this command to save changes to the constraints in a design without affecting the current
constraints files. This allows you to do some "what-if" type development of design constraints.

Note The new constraint set created by the save_constraints_as command will not be active in
the design, although it will be referenced by the design. To make the constraints set active
you must set the constrset property to point to the new constraints set for specific runs. See
the example below.

Arguments
-dir arg - (Optional) The directory into which constraints files are saved. If the directory is not
specified, the new constraints set is located in the project sources directory. The constraints
files from the active constraints set are copied into the specified directory.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 787

Tcl Commands Listed Alphabetically

-target_constrs_file arg - (Optional) Specifies a new target constraints file for the new
constraints fileset. If a path is not specified as part of the file name, the file will be created in
the fileset directory.

Note You must specify the .xdc file extension, or the command will report a warning that the
filetype is invalid, and cannot be set to the target constraint set. In this case, the existing
target constraints file will be used as the target

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the constraints set to write.

Examples
The following example saves the active constraints set into a new constraints set called
constrs_2, and copies any constraints files into the specified directory, as well as creating a new
target constraints file for the constraints set:
save_constraints_as -dir C:/Data/con1 -target_constrs_file rev1.xdc constrs_2

The following example saves the active constraints set as a new constraints set called newCon2,
and copies any constraint files into the newCon2 constraint directory under project sources.
The constrset property for the specified synthesis and implementation runs are then set to
point to the new constraints set:
save_constraints_as newCon2
set_property CONSTRSETnewCon2 [get_runs synth_1]
set_property CONSTRSETnewCon2 [get_runs impl_1]

Note The constraints set is not active in the design until it has been set to active for the
current runs.

See Also
save_constraints

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 788

Tcl Commands Listed Alphabetically

save_project_as
Save the current project under a new name.

Syntax
save_project_as [-force] [-quiet] [-verbose] name [dir]

Returns
Saved project object

Usage
Name Description

[-force] Overwrite existing project directory

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name New name for the project to save

[dir] Directory where the project file is saved Default: .

Categories
Project

Description
Saves a currently open project file under a new name in the specified directory, or in the
current working directory if no other directory is specified.

Arguments
-force - (Optional) Overwrite the existing project. If the project name is already define in the
specified directory then you must also specify the -force option for the tool to overwrite
the existing project.

Note If the existing project is currently open, the new project will overwrite the existing project
on the disk, but both projects will be opened in the tool. In this case you should probably run
the close_project command prior to running create_project.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 789

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) The name of the new project. This argument must appear before the
specified directory. Since these commands do not have parameters, the tool interprets the first
argument as name and uses the second argument as dir. The project file is saved as name.ppr
and is written into the specified directory dir.

dir - (Optional) The directory name in which to write the new project file. If the specified
directory does not exist a new directory will be created. If the directory is specified with the
complete path, the tool uses the specified path name. However, if dir is specified without
a path, the tool looks for or creates the directory in the current working directory, or the
directory from which the tool was launched.

Note When creating a project in GUI-mode, the tool appends the filename name to the
directory name dirI and creates a project directory with the name dir/name and places the new
project file and project data folder into that project directory.

Examples
The following example saves the active project as a new project called myProject in a directory
called myProjectDir:
save_project_as myProject myProjectDir

Note Because dir is specified as the folder name only, the tool will create the project in the
current working directory, or the directory from which the tool was launched.

The following example saves the current project to a new project called myProject in a directory
called C:/Designs/myProjectDir. If you use the -force argument, the tool will overwrite an
existing project if one is found in the specified location.
save_project_as myProject C:/Designs/myProjectDir -force

See Also
• create_project
• open_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 790

Tcl Commands Listed Alphabetically

save_wave_config
Saves the specified or current wave configuration object to the given filename.

Syntax
save_wave_config [-object args] [-quiet] [-verbose] [filename]

Returns
The wave configuration object saved

Usage
Name Description

[-object] The WCFG or wave configuration to save. Default: Current
wave configuration

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[filename] Filename to save the specified or current wave configuration
object

Categories
Waveform

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 791

Tcl Commands Listed Alphabetically

select_objects
Select objects in GUI.

Syntax
select_objects [-add] [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-add] Add to existing selection list

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects Objects to select

Categories
GUIControl

Description
Selects the specified object in the appropriate open views in the GUI mode. This command
is for display purposes only. You must use the get_selected_objects command to return the
selected objects for use in other commands.

The select_objects command may select secondary objects in addition to the primary object
specified. The selection of secondary objects is controlled through the use of Selection Rules
defined in the Tools > Options command. Refer to the Vivado Design Suite User Guide: Using
the IDE (UG893) for more information on Setting Selection Rules.

Selected objects can be unselected with the unselect_objects command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 792

Tcl Commands Listed Alphabetically

objects - (Required) Specifies one or more objects to be selected.

Examples
The following example selects the specified site on the device:
select_objects [get_sites SLICE_X56Y214]

See Also
• get_selected_objects
• unselect_objects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 793

Tcl Commands Listed Alphabetically

set_case_analysis
Specify that an input is 1, 0, rising or falling.

Syntax
set_case_analysis [-quiet] [-verbose] value objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

value Logic value on the pin: Values: 0, 1, rising, falling, zero,
one, rise, fall

objects List of ports or pins

Categories
SDC, XDC

Description
Specifies that an input is 1, 0, rising or falling. This command is usually used to force values
onto the ports and do the analysis. This is ideally suited for driving the select line of a
BUFGMUX. Driving the value on the select line of BUFGMUX, will select one of the TIMESPECs
for timing analysis. This prevents the analysis of unwanted TIMESPECs.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

value - (Required) The value to use on the port or pin for timing analysis. The valid values are 0
or zero, 1 or one, rise or rising, fall or falling. The default setting is 1.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 794

Tcl Commands Listed Alphabetically

objects - (Required) One or more ports or pins on which to apply the value.

Examples
The following example is for a design with two clocks which are multiplexed using a BUFGMUX.
Both the clocks are running at different frequencies. The default analysis of this design would
be done for the clock that is defined later in the XDC. In this case, it would be CLK_B. Using
set_case_analysis the analysis would be different. When (SEL = 0), the analysis would be based
on CLK_A. When (SEL = 1), the analysis would be based on CLK_B.
create_clock -period 10.0 [get_ports CLK_A]
create_clock -period 15.0 [get_ports CLK_B]
set_case_analysis 0 [get_ports SEL]

See Also
report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 795

Tcl Commands Listed Alphabetically

set_clock_groups
Set exclusive or asynchronous clock groups.

Syntax
set_clock_groups [-name arg] [-logically_exclusive]
[-physically_exclusive] [-asynchronous] [-group args] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-name] Name for clock grouping

[-logically_exclusive] Specify logically exclusive clock groups

[-physically_exclusive] Specify physically exclusive clock groups

[-asynchronous] Specify asynchronous clock groups

[-group] Clocks List

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
Define clocks, or groups of clocks, that are exclusive with or asynchronous to other clocks in the
design. Exclusive or asynchronous clocks are not active at the same time, and paths between
them can be ignored during timing analysis.

Using this command is similar to defining false path constraints for data paths moving between
exclusive or asynchronous clock groups.

This command can also be used for multiple clocks that are derived from a single BUFGMUX as
both of the clocks will not be active at the same time.

Note This command operates silently and does not return direct feedback of its operation.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 796

Tcl Commands Listed Alphabetically

Arguments
-name <group_name> - (Optional) Name of the clock group to be created. A name will be
automatically assigned if one is not specified.

-logically_exclusive - (Optional) The specified clocks are logically exclusive.

-physically_exclusive - (Optional) The specified clocks are physically exclusive, and cannot
exist in the design at the same time.

-asynchronous - (Optional) The specified clocks are asynchronous to one another.

Note -logically_exclusive, -physically_exclusive and -asynchronous are mutually exclusive
arguments.

-group <args> - (Optional) The list of clocks to be included in the clock group. Each group of
clocks is exclusive with or asynchronous with the clocks specified in all other groups. If only
one group of clocks is specified, that group is exclusive with or asynchronous to all other
clocks in the design.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
Group all the elements driven by src_clk and sync_clk. Both the clock groups are asynchronous.
set_clock_groups -group [get_clocks src_clk] -group [get_clocks sync_clk] \
-asynchronous

See Also
set_false_path

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 797

Tcl Commands Listed Alphabetically

set_clock_latency
Capture actual or predicted clock latency.

Syntax
set_clock_latency [-clock args] [-rise] [-fall] [-min] [-max] [-source]
[-late] [-early] [-quiet] [-verbose] latency objects

Returns
Nothing

Usage
Name Description

[-clock] List of relative clocks

[-rise] Specify clock rise latency

[-fall] Specify clock fall latency

[-min] Specify clock rise and fall min condition latency

[-max] Specify clock rise and fall max condition latency

[-source] Specify clock rise and fall source latency

[-late] Specify clock rise and fall late source latency

[-early] Specify clock rise and fall early source latency

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

latency Latency value

objects List of clocks, ports or pins

Categories
SDC, XDC

Description
This command defines a clock's source or network latency for specified clocks, ports, or pins.

Note This command operates silently and does not return direct feedback of its operation.

Source latency is the time a clock signal takes to propagate from its waveform origin to the
clock definition point in the design. For example, this would be the time delay for the clock to
propagate from its source (oscillator) on the system board to the FPGA input port.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 798

Tcl Commands Listed Alphabetically

Network latency is the time a clock signal takes to propagate from its definition point in the
design to a register clock pin on the timing path. The total clock latency at a register clock pin
is the sum of a clock's source latency and network latency.

Arguments
-clock args - (Optional) Specifies a list of clocks associated with the latency assigned to the
specified objects. If the -clock argument is not used, the clock latency will be applied to all
clocks passing through the specified pins and ports.

-rise - (Optional) Defines the latency for the rising clock edge.

-fall - (Optional) Defines the latency for the falling clock edge.

-min - (Optional) Defines the minimum latency for the specified clocks for multi-corner analysis.

-max - (Optional) Defines the maximum latency for the specified clocks for multi-corner analysis.

Note The -min and -max options are mutually exclusive

-source - (Optional) Defines the specified latency as a source latency. Clock source latencies
can only be specified for clock objects and clock source pins.

Note Without the -source argument the latency is considered as network latency

-late - (Optional) The time delay specified by -latency is how late the clock edge arrives.

-early - (Optional) The time delay specified by -latency is how early the clock edge arrives.

Note The -early and -late options are mutually exclusive, and can only be specified when
-source is also specified

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

latency - (Optional) The amount of clock latency to apply.

objects - (Optional) The clock, port, or pin objects on which to apply the latency. Specifying pin
or port objects assigns the latency to all register clock pins in the transitive fanout of the pins
or ports. If -clock is used, the latency is applied to all register clock pins of the specified clocks.

Note If objects specifies a clock, the -clock argument is unnecessary, and is ignored.

Examples
This example will set an early latency on the rising edge of CLK_A.
set_clock_latency -source -rise -early 0.4 [get_ports CLK_A]

See Also
report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 799

Tcl Commands Listed Alphabetically

set_clock_sense
Set clock sense on ports or pins.

Syntax
set_clock_sense [-positive] [-negative] [-stop_propagation]
[-pulse arg] [-clocks args] [-quiet] [-verbose] pins

Returns
Nothing

Usage
Name Description

[-positive] Specify positive unate (non_inverting) clock sense

[-negative] Specify negative unate (inverting) clock sense

[-stop_propagation] Stop clock propagation from specified pins

[-pulse] Specify pulse clock sense

[-clocks] List of clocks

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

pins List of port and/or pins

Categories
SDC, XDC

Description
Sets clock sense at specified ports or pins. This is used to define the positive or negative
unateness at the pin relative to a clock object. However, the specified unateness only applies
at a non-unate point in the clock network, at a point where the clock signal cannot be
determined. Since the clock signal is not determined, the defined clock sense propagates
forward from the given pins.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-positive - (Optional) The unate clock sense is positive (non_inverting).

-negative - (Optional) The unate clock sense is negative (inverting).

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 800

Tcl Commands Listed Alphabetically

-stop_propagation - (Optional) Stop the propagation of clocks in the -clocks argument from
the specified pins or ports. Propagation of the clock as clock and data is stopped.

-pulse arg - (Optional) The pulse clock sense.

Note -positive, -negative, -stop_propagation and -pulse are mutually exclusive.

-clocks args - (Optional) A list of clocks on which to apply the clock sense for the specified pins
and ports . If the -clocks argument is not used, the clock sense will be applied to all clocks
passing through the specified pins and ports.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

pins - (Required) List of ports and pins to propagate the clock sense to.

Examples
The following example specifies that only the positive unate paths will propagate through the
output pin of the XOR gate as compared with the original clock.
set_clock_sense -positive [get_pins xor_a.z]

See Also
• create_clock
• get_pins

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 801

Tcl Commands Listed Alphabetically

set_clock_uncertainty
Set clock uncertainty.

Syntax
set_clock_uncertainty [-setup] [-hold] [-from args] [-rise_from args]
[-fall_from args] [-to args] [-rise_to args] [-fall_to args] [-quiet]
[-verbose] uncertainty [objects]

Returns
Nothing

Usage
Name Description

[-setup] Specify clock uncertainty for setup checks

[-hold] Specify clock uncertainty for hold checks

[-from] Specify inter-clock uncertainty source clock

[-rise_from] Specify inter-clock uncertainty source clock with rising edge

[-fall_from] Specify inter-clock uncertainty source clock with falling
edge

[-to] Specify inter-clock uncertainty destination clock

[-rise_to] Specify inter-clock uncertainty destination clock with rising
edge

[-fall_to] Specify inter-clock uncertainty destination clock with falling
edge

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

uncertainty Uncertainty of clock network

[objects] List of clocks, ports or pins

Categories
SDC, XDC

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 802

Tcl Commands Listed Alphabetically

Description
This command is used to define the uncertainty of a clock in the design. Clock uncertainty
is the maximum difference between the arrival of clock signals at registers within one clock
domain or between clock domains. This is also known as skew. The clock uncertainty is used
while doing setup and hold checks.

Clocks can be created using the create_clock or the create_generated_clock commands, or
can be automatically generated by the tool, at the output of MMCM for instance.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-setup - (Optional) Specify the clock uncertainty for the setup checks

-hold - (Optional) Specify the clock uncertainty for the hold checks

-from <clock_source_name> - (Optional) Specify inter-clock uncertainty source clock

-rise_from <clock_source_name> - (Optional) Specify inter-clock uncertainty source clock with
rising edge

-fall_from <clock_source_name> - (Optional) Specify inter-clock uncertainty source clock with
falling edge

-to <clock_destination_name> - (Optional) Specify inter-clock uncertainty destination clock

-rise_to <destination_clock_name> - (Optional) Specify inter-clock uncertainty destination
clock with rising edge

-fall_to <destination_clock_name> - (Optional) Specify inter-clock uncertainty destination clock
with falling edge

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

<uncertainty> - (Required) Uncertainty of the clock network

<objects> - (Optional) List of clocks, cells, ports, or pins to apply the uncertainty to

Examples
The following examples define clock uncertainty for clock wbClk and between different clock
domains.

The following example defines the uncertainty between all clock domains:
set_clock_uncertainty 0.225 -from [get_clocks] -to [get_clocks]

The following command defines setup and hold uncertainty within the wbClk clock domain:
set_clock_uncertainty -setup 0.213 [get_clocks wbClk]
set_clock_uncertainty -hold 0.167 [get_clocks wbClk]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 803

Tcl Commands Listed Alphabetically

See Also
• create_clock
• create_generated_clock
• get_clocks

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 804

Tcl Commands Listed Alphabetically

set_data_check
Create data to data checks.

Syntax
set_data_check [-from args] [-to args] [-rise_from args]
[-fall_from args] [-rise_to args] [-fall_to args] [-setup] [-hold]
[-clock args] [-quiet] [-verbose] value

Returns
Nothing

Usage
Name Description

[-from] From pin/port of data to data check

[-to] To pin/port of the data to data check

[-rise_from] Rise from pin/port of data to data check

[-fall_from] Fall from pin/port of data to data check

[-rise_to] Rise to pin/port of data to data check

[-fall_to] Fall to pin/port of data to data check

[-setup] Specify data check setup time

[-hold] Specify data check hold time

[-clock] Specify the clock domain at related pin/port of the checks

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

value Setup or hold time of the defined checks

Categories
SDC, XDC

Description
Performs a setup and hold check for a data pin with respect to another data pin. This is
different from a conventional setup and hold check that is done with respect to a clock
pin. Setup and hold checks are referenced from the related pin, specified by -from, to the
constrained pin, specified by -to. The related pin is similar to the clock pin in a conventional
setup and hold check.

Note This command operates silently and does not return direct feedback of its operation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 805

Tcl Commands Listed Alphabetically

Arguments
-from value - (Optional) From pin/port of data to data check. The -from argument specifies
the related pin.

-to value - (Optional) To pin/port of the data to data check. The -to argument specifies the
constrained pin

-rise_from value - (Optional) Rise from pin/port of data to data check.

-fall_from value - (Optional) Fall from pin/port of data to data check.

-rise_to value - (Optional) Rise to pin/port of data to data check.

-fall_to value - (Optional) Fall to pin/port of data to data check.

-setup value - (Optional) Perform the setup data check.

-hold value - (Optional) Perform the hold data check.

-clock value - (Optional) Specify the clock domain at the related pin or port of the checks.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

value - (Required) The setup or hold time for the defined data checks.

Examples
The following example defines a data check for a setup violation from pin A_IN to pin C_IN:
set_data_check -from A_IN -to C_IN -setup 2.0

In the above example, A_IN is the related pin and C_IN is the constrained pin. The above
constraint would do a setup check of C_IN with respect to A_IN. The data at C_IN should arrive
2.0 ns prior to the edge of A_IN.

See Also
report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 806

Tcl Commands Listed Alphabetically

set_default_switching_activity
Set default switching activity on specified types.

Syntax
set_default_switching_activity [-toggle_rate arg]
[-static_probability arg] [-quiet] [-verbose] type ...

Returns
Nothing

Usage
Name Description

[-toggle_rate] Toggle rate value: 0% <= Value <= 200%. The value is %
of clock. Default: 0.0

[-static_probability] Static probability value: 0 <= Value <= 1 Default: 0.0

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

type Sets the default seed values on specified types for
vector-less propagation engine. List of valid default type
values: input, input_set, input_reset, input_enable, register,
dsp, bram_read_enable, bram_write_enable, output_enable,
clock, all

Categories
XDC, Power

Description
Sets a default activity rate for a broad class of signals when performing power estimation.

Note This command operates silently and does not return direct feedback of its operation.

The switching activity of a design affects both the static and dynamic power consumption. The
static power is often dependent on logic state transitions, and the dynamic power is directly
proportional to the toggle rate or switching activity.

The current default switching activity attributes can be found by using the
report_default_switching_activity command. The values can be set to their default values by
using the reset_default_switching_activity command.

Use the set_switching_activity command to define the activity of one or more signals, rather
than the whole class.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 807

Tcl Commands Listed Alphabetically

Arguments
-toggle_rate rate - (Optional) The toggle rate describes how often the output switches relative
to the controlling clock. Valid values are between 0 and 200%. An output that switches once
per clock cycle toggles at 100%. The toggle rate is directly used for power calculation for the
specified type of signals.

-static_probability value - (Optional) The static probability or percentage of the clock period
that the output is at a logic value of '1'. Valid values are 0 < value < 1. A value of 0 means the
output is always 0 and a value of 1 means that the output is always 1. A clock port with a 50%
duty cycle would have for example a value of 0.5. The static probability is used to calculate the
propagation of the known switching activity (toggle rate) through all the nodes of the design
and is therefore essential to perform power calculation.

Note One or both of -static_probability or -toggle_rate must be specified with the
set_switching_activity command.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

type - (Required) Specify the class of signals to apply the defined switching activity to.
Valid values are: input, input_set, input_reset, input_enable, register, dsp, bram_read_enable,
bram_write_enable, output_enable, clock, all.

Examples
The following example specifies a toggle rate of 85% for all DSP blocks:
set_default_switching_activity -toggle_rate 85 dsp

The following example specifies the toggle rate and switching probability for all supported types:
set_default_switching_activity -toggle_rate 19 -static_probability .22 all

See Also
• power_opt_design
• report_default_switching_activity
• report_power
• report_switching_activity
• reset_default_switching_activity
• reset_switching_activity
• set_switching_activity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 808

Tcl Commands Listed Alphabetically

set_delay_model
Timing Delay Model.

Syntax
set_delay_model [-interconnect arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-interconnect] Interconnect delay model used for timing analysis: Values:
estimated, actual(default), none

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Timing

Description
Sets the interconnect delay model for timing analysis. There are three settings for the
interconnect delay model: "actual", "estimated", or "none".
• If "actual" is selected, the actual delay from the routed interconnect will be used in timing

analysis. If the design is only partially routed, then the actual delay from the routed portion
will be used, along with estimated delay for the unrouted portion. The timing report will
provide details regarding the source of the calculated delay.

• If "estimated" delays are selected, the timing analysis will include an estimate of the
interconnect delays based on the placement and connectivity of the design onto the device
prior to implementation. Estimated delay can be specified even if the design is fully routed.

• If "none" is selected, then no interconnect delay is included in the timing analysis, and only
the logic delay is applied.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-interconnect [actual | estimated | none] - (Optional) Delay model to be used. The default
setting is actual.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 809

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following command will use a timing delay model which is an estimated value.
set_delay_model -interconnect estimated

See Also
report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 810

Tcl Commands Listed Alphabetically

set_disable_timing
Disable timing arcs.

Syntax
set_disable_timing [-from arg] [-to arg] [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-from] From pin on cell

[-to] To pin on cell

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects List of cells or pins, ports, lib-cells, lib-pins, libcell/cell
timing-arcs

Categories
SDC, XDC, Timing

Description
Disables timing arcs within the specified cell that lead to the output pins of the cell. Only the
I/O paths between the clock port and the outputs of the cell are disabled.

The purpose of disabling a timing arc is to prevent timing analysis through the arc.

Note This command operates silently and does not return direct feedback of its operation

Arguments
-from pin_name - (Optional) Specifies the source pin of an object cell.

-to pin_name - (Optional) Specifies the destination pin of an object cell.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 811

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) A list of objects on which to disable the timing arcs. Can be any of the
following types: cells, pins, lib-cells, lib-pins, lib-cell/cell timing arcs.

Examples
The following example disable the timing check between AX to AMUX pin of cell abc:
set_disable_timing -from AX -to AMUXabc

The following example disables the timing arcs between the specified input pin to the specified
output pin of a BRAM cell:
set_disable_timing -from WEBWE[3] -to CLKMEM\

[get_cells ldpc_dout360_channel/U_AP_FIFO_ldpc_dout360_channel_ram/mem_reg_0]

The following example disables all timing arcs of the specified cell:
set arcs [get_timing_arcs -of_objects \

[get_cells ldpc_dout360_channel/U_AP_FIFO_ldpc_dout360_channel_ram/mem_reg_0]]
set_disable_timing $arcs

See Also
• get_cells
• get_timing_arcs
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 812

Tcl Commands Listed Alphabetically

set_external_delay
Set external delay.

Syntax
set_external_delay -from arg -to arg [-min] [-max] [-quiet]
[-verbose] delay_value

Returns
Nothing

Usage
Name Description

-from Output port

-to Input port

[-min] Specifies minimum delay

[-max] Specifies maximum delay

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

delay_value External (feedback) delay value

Categories
XDC

Description
Sets the external (feedback) delay between an output and input port. The external delay is
used in the calculation of the PLL/MMCM compensation delay for PLLs/MMCMs with external
feedback.

A min or max value can be specified. By default the value specified applies to both min (hold)
and max (setup) compensation delays.

The command returns the defined delay.

Arguments
-from arg - (Required) The output port name.

-to arg - (Required) The input port name.

-min - (Optional) Specifies the delay_value is a minimum delay value for hold time analysis.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 813

Tcl Commands Listed Alphabetically

-max - (Optional) Specifies the delay_value is a maximum delay value for setup analysis.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

delay_value - (Required) The external delay value. The default value is 0.

Examples
The following example sets the external feedback delay to 1.0 ns between the port ClkOut
and ClkFb:
set_external_delay -from [get_ports ClkOut] -to [get_ports ClkFb] 1.0

See Also
• report_timing
• set_input_delay
• set_output_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 814

Tcl Commands Listed Alphabetically

set_false_path
Define false path.

Syntax
set_false_path [-setup] [-hold] [-rise] [-fall] [-reset_path]
[-from args] [-rise_from args] [-fall_from args] [-to args]
[-rise_to args] [-fall_to args] [-through args] [-rise_through args]
[-fall_through args] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-setup] Eliminate setup timing analysis for paths

[-hold] Eliminate hold timing analysis for paths

[-rise] Eliminate only rising delays for the defined paths

[-fall] Eliminate only falling delays for the defined paths

[-reset_path] Reset this path before setting false path

[-from] List of path startpoints or clocks

[-rise_from] Apply to paths rising from the list of startpoints or clocks

[-fall_from] Apply to paths falling from the list of startpoints or clocks

[-to] List of path endpoints or clocks

[-rise_to] Apply to paths with rise transition at the list of endpoints
or clocks

[-fall_to] Apply to paths with fall transition at the list of endpoints
or clocks

[-through] List of through pins, cells or nets

[-rise_through] Apply to paths rising through pins, cells or nets

[-fall_through] Apply to paths falling through pins, cells or nets

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 815

Tcl Commands Listed Alphabetically

Description
Sets false timing paths in the design that are ignored during timing analysis.

Note This command operates silently and does not return direct feedback of its operation

Arguments
-setup - (Optional) Eliminate setup timing analysis for specified timing paths.

-hold - (Optional) Eliminate hold timing analysis for specified timing paths.

-rise - (Optional) Eliminate rising delays for the specified timing paths.

-fall - (Optional) Eliminate falling delays for the specified timing paths.

-reset_path - (Optional) Reset the timing path before setting false path. This clears all
exception-based timing constraints from the defined timing path.

-from <element_name> - (Optional) List of path origins or clocks

-rise_from <element_name> - (Optional) Apply to paths rising from the list of origins or clocks

-fall_from <element_name> - (Optional) Apply to paths falling from the list of origins or clocks

-to <element_name> - (Optional) List of path endpoints or clocks

-rise_to <element_name> - (Optional) Apply to paths with rise transition at the list of endpoints
or clocks

-fall_to <element_name> - (Optional) Apply to paths with fall transition at the list of endpoints
or clocks

-through <element_name> - (Optional) List of through pins, cells or nets

-rise_through <element_name> - (Optional) Apply to paths rising through pins, cells or nets

-fall_through <element_name> - (Optional) Apply to paths falling through pins, cells or nets

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example eliminates the setup timing for paths from the bftClk:
set_false_path -setup -from bftClk

The following example excludes paths between the two clocks from timing analysis:
set_false_path -from [get_clocks GT0_RXUSRCLK2_OUT]-to [get_clocks DRPCLK_OUT]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 816

Tcl Commands Listed Alphabetically

See Also
• get_clocks
• get_pins
• get_ports
• report_timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 817

Tcl Commands Listed Alphabetically

set_hierarchy_separator
Set hierarchical separator character.

Syntax
set_hierarchy_separator [-quiet] [-verbose] [separator]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[separator] Hierarchy separator character Default: /

Categories
SDC, XDC

Description
Sets the character that will be used for separating levels of hierarchy in the design.

Note This command operates silently and does not return direct feedback of its operation

Arguments
separator - (Optional) The new character to use as a hierarchy separator. Valid characters to
use as the hierarchy separator are: '/', '@', '^', '#', '.', and '|'. The default character is '/', and is
used when no separator is specified.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 818

Tcl Commands Listed Alphabetically

Examples
This example changes the hierarchy separator to the '|' character:
set_hierarchy_separator |

The following example restores the default hierarchy separator, '/':
set_hierarchy_separator

See Also
get_hierarchy_separator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 819

Tcl Commands Listed Alphabetically

set_input_delay
Set input delay on ports.

Syntax
set_input_delay [-clock args] [-reference_pin args] [-clock_fall]
[-rise] [-fall] [-max] [-min] [-add_delay] [-network_latency_included]
[-source_latency_included] [-quiet] [-verbose] delay objects

Returns
Nothing

Usage
Name Description

[-clock] Relative clock

[-reference_pin] Relative pin or port

[-clock_fall] Delay is relative to falling edge of clock

[-rise] Specifies rising delay

[-fall] Specifies falling delay

[-max] Specifies maximum delay

[-min] Specifies minimum delay

[-add_delay] Don't remove existing input delay

[-network_latency_included] Specifies network latency of clock already included

[-source_latency_included] Specifies source latency of clock already included

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

delay Delay value

objects List of ports

Categories
SDC, XDC

Description
Sets the input delay on ports.

Note This command operates silently and does not return direct feedback of its operation.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 820

Tcl Commands Listed Alphabetically

Arguments
-clock arg - (Optional) Indicates that the input delay is relative to the specified clock. By
default the rising edge is used. However the -clock_fall argument can be used to indicate
that the falling edge should be used instead.

-reference_pin arg - (Optional) Specifies that the delay is relative to the active edge of a clock
appearing on the specified pin or port rather than a clock.

-clock_fall - (Optional) Specifies that the delay is relative to a falling edge of the clock rather
than rising edge.

-rise - (Optional) Specifies the input delay applies to rising transitions on the specified ports.
The default is to apply the delay for both rising and falling transitions.

-fall - (Optional) Specifies the input delay applied to falling transitions on the specified ports.
The default is to apply the delay for both rising and falling transitions.

-max - (Optional) Indicates the input delay specified is only used when calculating the
maximum (longest) path delays.

-min - (Optional) Indicates the input delay specified is only used when calculating the minimum
(shortest) path delays.

-add_delay - (Optional) Add the specified delay to any existing delay on the port. The default
behavior is to replace the existing delays.

-network_latency_included - (Optional) Indicates that the network latency of the reference
clock is included in the delay value.

-source_latency_included - (Optional) Indicates that the source latency of the relative clock
is included in the specified delay.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

delay - (Required) The input delay to apply to the specified ports.

objects - (Required) The list of ports to which the delay value will be assigned.

Examples
The following example specifies the input delay on port DIN. The input delay is 3 and is relative
to the rising edge of clock clk1:
set_input_delay -clock clk1 3 DIN

The following example specifies the input delay on port DIN. The input delay is 2 and is relative
to the falling edge of the clock clk1:
set_input_delay -clock_fall -clock clk1 2 DIN

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 821

Tcl Commands Listed Alphabetically

The following example specifies the input delay on port reset. The input delay is 2 and is
relative to the rising edge of the clock that appears on the pin wbClk_IBUF_BUFG_inst/O,
originating from the clock wbClk:
set_input_delay -clock wbClk 2 -reference_pin [get_pin wbClk_IBUF_BUFG_inst/O] reset

The following example specifies the input delay on all non clock input ports of the design.
Although all_inputs returns all ports of the design, including clock ports, set_input_delay will
skip setting input delays on the clock ports. The input delay is 1 relative to the rising edge
of the clock wbClk:
set_input_delay -clock wbClk 1 [all_inputs]

The following example sets an input delay of 4 relative to the rising edge of the clock wbClk on
the ports reset and wbDataForInput:
set_input_delay -clock wbClk 4 [list reset wbDataForInput]

See Also
• all_clocks
• all_inputs
• check_timing
• create_clock
• get_ports
• report_timing
• set_output_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 822

Tcl Commands Listed Alphabetically

set_input_jitter
Set input jitter for a clock object.

Syntax
set_input_jitter [-quiet] [-verbose] clock input_jitter

Returns
Clock

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

clock Clock

input_jitter Input jitter: Value >= 0

Categories
XDC

Description
Input jitter is the difference between successive clock edges due to variation from the ideal
arrival times. This command sets the input jitter for a specified primary clock, defined with
the create_clock command. Because the command accepts a single clock, the jitter for each
primary clock must be set individually.

You can only use the set_input_jitter command to specify input jitter on primary clocks. You
cannot use the command to set input jitter on generated or auto generated clocks. Input jitter
is propagated to generated and auto derived clocks from the master clock.

The set_input_jitter command is not supported for elaborated designs or for synthesis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 823

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

clock_name - (Required) The clock name of a primary clock, defined with the create_clock
command.

input_jitter - (Required) The input jitter for the specified clock object (value >= 0).

Examples
The following example sets an input jitter value of 0.3 on two clocks, sysClk and procClk.
Although the jitter values are the same, you must use two set_input_jitter commands since the
command only takes one clock as an argument:
set_input_jitter sysClk 0.3
set_input_jitter procClk 0.3

The following example defines a primary clock, sysClk, and a generated clock, sysClkDiv2, that
is a divide by two version of the primary clock. An input jitter of 0.15 is specified on the
primary clock. The input jitter is automatically propagated to the generated clock:
create_clock -period 10 -name sysClk [get_ports sysClk]
create_generated_clock -name sysClkDiv2 -source [get_ports sysClk] -divide_by 2 \ [get_pins clkgen/sysClkDiv/Q]
set_input_jitter sysClk 0.15

See Also
• all_clocks
• check_timing
• create_clock
• create_generated_clock
• report_clocks
• report_timing
• set_clock_latency
• set_system_jitter

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 824

Tcl Commands Listed Alphabetically

set_load
Set capacitance on ports and nets.

Syntax
set_load [-rise] [-fall] [-max] [-min] [-quiet]
[-verbose] capacitance objects

Returns
Nothing

Usage
Name Description

[-rise] Specify the rise capacitance value (for ports only)

[-fall] Specify the fall capacitance value (for ports only)

[-max] Specify the maximum capacitance value

[-min] Specify the minimum capacitance value

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

capacitance Capacitance value

objects List of ports or nets

Categories
SDC, XDC

Description
Sets the load capacitance on output ports to the specified value. The load capacitance is used
during power analysis when running the report_power command, but is not used during
timing analysis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-max - (Optional) Specify the maximum load capacitance value.

-min - (Optional) Specify the minimum load capacitance value.

-rise - (Optional) Defines the rising edge load capacitance on the specified ports.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 825

Tcl Commands Listed Alphabetically

-fall - (Optional) Defines the falling edge load capacitance on the specified ports.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

capacitance - (Required) The value of the load capacitance. The value is specified as a floating
point value >= 0. The default is 0.

Note The default unit of capacitance is picofarads (pF).

objects - (Required) A list of output port objects to assign the capacitance load to. All outputs
in the design may be obtained using the all_outputs command.

Examples
The following example sets the specified load capacitance value for all ports:
set_load 5.5 [all_outputs]

The following example sets the rising and falling edge load capacitance for the specified
output ports:
set_load -rise -fall 8 [get_ports wbOutput*]

See Also
• all_outputs
• get_ports
• report_power

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 826

Tcl Commands Listed Alphabetically

set_logic_dc
Sets logic dc for port/pins.

Syntax
set_logic_dc [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects List of ports or pins

Categories
SDC, XDC

Description
Sets the specified input ports or input pins to a logic value of 'X', as unknown or don't care.
This command is NOT supported in Synthesis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) A list of the input ports and pins to be affected.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 827

Tcl Commands Listed Alphabetically

Examples
The following example sets the specified port to 'X':
set_logic_dc [get_ports reset]

See Also
• all_inputs
• get_pins
• get_ports
• set_logic_one
• set_logic_unconnected
• set_logic_zero

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 828

Tcl Commands Listed Alphabetically

set_logic_one
Sets logic one for port/pins.

Syntax
set_logic_one [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects List of ports or pins

Categories
SDC, XDC

Description
Sets the specified input ports or input pins to a logic one. This command is NOT supported in
Synthesis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) A list of the input ports and pins to be affected.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 829

Tcl Commands Listed Alphabetically

Examples
The following example sets the specified input port to a logic one:
set_logic_one [get_ports reset]

The following example sets the input ports reset and wbDataForInput to a logic one:
set_logic_one [list [get_ports reset] [get_ports wbDataForInput]]

The following example sets the input pin I on instance reset_IBUF to a logic one:
set_logic_one [get_pins reset_IBUF_inst/I]

See Also
• all_inputs
• get_pins
• get_ports
• set_logic_dc
• set_logic_unconnected
• set_logic_zero

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 830

Tcl Commands Listed Alphabetically

set_logic_unconnected
Sets logic unconnected for port/pins.

Syntax
set_logic_unconnected [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects List of ports or pins

Categories
SDC, XDC

Description
Defines the specified output ports or pins as unconnected.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) A list of the output ports and pins to be affected.

Examples
The following example sets the specified port to unconnected:
set_logic_unconnected [get_ports OUT1]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 831

Tcl Commands Listed Alphabetically

See Also
• set_logic_dc
• set_logic_one
• set_logic_zero

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 832

Tcl Commands Listed Alphabetically

set_logic_zero
Sets logic zero for port/pins.

Syntax
set_logic_zero [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects List of ports or pins

Categories
SDC, XDC

Description
Sets the specified input ports and input pins to a logic zero. This command is NOT supported
in Synthesis.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) A list of the input ports and pins to be affected.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 833

Tcl Commands Listed Alphabetically

Examples
The following example sets the specified port to logic state 0:
set_logic_zero [get_ports reset]

See Also
• all_inputs
• get_pins
• get_ports
• set_logic_one
• set_logic_unconnected
• set_logic_zero

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 834

Tcl Commands Listed Alphabetically

set_max_delay
Specify maximum delay for timing paths.

Syntax
set_max_delay [-rise] [-fall] [-reset_path] [-from args]
[-rise_from args] [-fall_from args] [-to args] [-rise_to args]
[-fall_to args] [-through args] [-rise_through args]
[-fall_through args] [-datapath_only] [-quiet] [-verbose] delay

Returns
Nothing

Usage
Name Description

[-rise] Delay value applies to rising path delays

[-fall] Delay value applies to falling path delays

[-reset_path] Reset this path before setting max delay

[-from] List of path startpoints or clocks

[-rise_from] Apply to paths rising from the list of startpoints or clocks

[-fall_from] Apply to paths falling from the list of startpoints or clocks

[-to] List of path endpoints or clocks

[-rise_to] Apply to paths with rise transition at the list of endpoints
or clocks

[-fall_to] Apply to paths with fall transition at the list of endpoints
or clocks

[-through] List of through pins, cells or nets

[-rise_through] Apply to paths rising through pins, cells or nets

[-fall_through] Apply to paths falling through pins, cells or nets

[-datapath_only] Remove clock skew and jitter from calculation

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

delay Delay value

Categories
SDC, XDC

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 835

Tcl Commands Listed Alphabetically

Description
Sets the maximum delay allowed (in time units) on a timing path. The specified delay value
is assigned to both the rising and falling edges of the defined timing paths unless the -rise
or -fall arguments are specified.

Note This command operates silently and does not return direct feedback of its operation.

The maximum rising and falling delay cannot be less than the minimum rising and falling
delay on the same path. If this happens, the older assigned delay value is removed from the
timing path and reset to 0.

The delay value must be assigned to a timing path as defined by at least one -from, -through,
or -to argument. A general path delay such as -to endpoint will be over written by a more
specific path definition such as -from/-to, or -from/-through/-to path definition.

Arguments
-rise - (Optional) Apply the delay value to the rising edge of the timing path.

-fall - (Optional) Apply the delay value to the falling edge of the timing path.

Note If neither -rise nor -fall is specified, the delay is applied as both rising and falling edge
path delay.

-reset_path - (Optional) Indicates that existing rising or falling edge max delays should be
cleared before applying the new specified path delay. If only -to is specified all paths leading
to the specified endpoints are cleared. If only -from is specified, all paths leading from the
specified start points are cleared. When -from/-to or -from/-through/-to are specified,
the defined paths are reset.

-from value - (Optional) A list of path start points or clocks. A valid startpoint is a primary
input or inout port, or the clock pin of a sequential element. If a clock is specified then all the
primary input and inout ports related to that clock as well as all the clock pin of the registers
connected to that clock are used as starpoints.

-rise_from element_name - (Optional) The max delay applied to paths rising from the list
of origins or clocks.

-fall_from element_name - (Optional) The max delay applied to paths falling from the list
of origins or clocks.

-to element_name - (Optional) A list of path endpoints or clocks. A valid endpoint is a primary
output or inout port, or the data pin of a sequential element. If a clock is specified then all the
primary output and inout ports related to that clock as well as all the data pins of the registers
connected to that clock are used as endpoints.

-rise_to element_name - (Optional) The max delay applied to paths with rise transition at the
list of endpoints or clocks.

-fall_to element_name - (Optional) The max delay applied to paths with fall transition at the
list of endpoints or clocks.

-through element_name - (Optional) A list of through pins, cells, or nets.

-rise_through element_name - (Optional) The max delay applied to paths rising through pins,
cells or nets.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 836

Tcl Commands Listed Alphabetically

-fall_through element_name - (Optional) The max delay applied to paths falling through
pins, cells or nets.

-datapath_only - (Optional) Exclude clock skew and jitter from the delay calculation for the
specified path. This option is used to constrain the delay between sequential elements that
have different clocks, where you do not want to consider clock skew and jitter in the delay
calculation. Only the Clock-to-Q delay of the first flop, the wire delay between the flops, and
the setup time of the second flop should be considered.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

delay - (Required) Specifies the maximum delay value in time units. The delay can be specified
as a floating point number greater than or equal to 0, with a default value of > 0.

Examples
The following example defines a maximum delay of 60 ns between all the input and output
ports (feedthrough paths):
set_max_delay 60 -from [all_inputs] -to [all_outputs]

The following example clears the existing max delay and specifies a new > maximum delay for
paths to endpoints clocked by the specified clock:
set_max_delay -reset_path 50 -to [get_clocks spi_clk]

The set_max_delay command is often used to define timing constraints for crossing clock
domains when a simple synchronizer is used. In the following example, two flops (FF1 and FF2)
are clocked by different clocks, and FF1/Q connects directly to FF2/D through net1. To limit the
delay on this connection to 4.0 ns use one of the following constraints:
set_max_delay -from FF1 -to FF2 -datapath_only 4.0
set_max_delay -from FF1/Q -to FF2/D -datapath_only 4.0
set_max_delay -through net1 -datapath_only 4.0

See Also
• get_clocks
• get_nets
• get_ports
• report_timing
• set_min_delay
• set_units

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 837

Tcl Commands Listed Alphabetically

set_max_time_borrow
Limit time borrowing for latches.

Syntax
set_max_time_borrow [-quiet] [-verbose] delay objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

delay Delay value: Value >= 0

objects List of clocks, cells, data pins or clock pins

Categories
SDC, XDC

Description
Sets the maximum amount of time that can be borrowed between nets when analyzing the
timing on latches.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

delay - (Required) The delay (in time units) that should be applied to the specified objects. The
delay can be specified as a floating point number >= 0, with a default value of 0.

Note The units of time are defined by the set_units command. The default unit of time
is nanoseconds (ns).

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 838

Tcl Commands Listed Alphabetically

objects - (Required) A list of clocks, cells, data pins, or clock pins to which the limit should
be applied.

Examples
The following example specifies that the latches attached to "all clocks" will be allowed 0 time
units of borrowing. Effectively, this disables time borrowing throughout the entire design.
set_max_time_borrow 0.0 [all_clocks]

The following example specifies that nets in the top level of hierarchy are allowed 20 time units
of time borrowing:
set_max_time_borrow 20 {top/*}

See Also
• all_clocks
• get_clocks
• get_nets

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 839

Tcl Commands Listed Alphabetically

set_min_delay
Specify minimum delay for timing paths.

Syntax
set_min_delay [-rise] [-fall] [-reset_path] [-from args]
[-rise_from args] [-fall_from args] [-to args] [-rise_to args]
[-fall_to args] [-through args] [-rise_through args]
[-fall_through args] [-quiet] [-verbose] delay

Returns
Nothing

Usage
Name Description

[-rise] Delay value applies to rising path delays

[-fall] Delay value applies to falling path delays

[-reset_path] Reset this path before setting min delay

[-from] List of path startpoints or clocks

[-rise_from] Apply to paths rising from the list of startpoints or clocks

[-fall_from] Apply to paths falling from the list of startpoints or clocks

[-to] List of path endpoints or clocks

[-rise_to] Apply to paths with rise transition at the list of endpoints
or clocks

[-fall_to] Apply to paths with fall transition at the list of endpoints
or clocks

[-through] List of through pins, cells or nets

[-rise_through] Apply to paths rising through pins, cells or nets

[-fall_through] Apply to paths falling through pins, cells or nets

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

delay Delay value

Categories
SDC, XDC

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 840

Tcl Commands Listed Alphabetically

Description
Sets the minimum delay allowed (in time units) on a timing path. The specified delay value
is assigned to both the rising and falling edges of the defined timing paths unless the -rise
or -fall arguments are specified.

Note This command operates silently and does not return direct feedback of its operation.

The minimum rising and falling delay cannot be greater than the maximum rising and falling
delay on the same path. If this happens, the older assigned delay value is removed from the
timing path and reset to 0.

The delay value must be assigned to a timing path as defined by at least one -from, -through,
or -to argument. A general path delay such as -to endpoint will be over written by a more
specific path definition such as -from/-to, or -from/-through/-to path definition.

Arguments
-rise - (Optional) Apply the delay value to the rising edge of the timing path.

-fall - (Optional) Apply the delay value to the falling edge of the timing path.

-reset_path - (Optional) Clear existing rising or falling edge min delays before applying the
new specified path delay. If only -to is specified all paths leading to the specified endpoints
are cleared. If only -from is specified, all paths leading from the specified starting points are
cleared. When -from/-to or -from/-through/-to are specified, the defined paths are reset.

-from objects - (Optional) The starting points of the timing paths that will be assigned the
specified delay. A valid startpoint is a primary input or inout port, or the clock pin of a sequential
element. If a clock is specified then all the primary input and inout ports related to that clock,
as well as all the clock pins of the registers connected to that clock are used as startpoints.

-rise_from objects - (Optional) The starting points of the timing path that will have the specified
delay assigned to its rising edge.

-fall_from objects - (Optional) The starting points of the timing path that will have the specified
delay assigned to its falling edge.

-to objects - (Optional) The destination objects for the path that will be affected by the minimum
delay. A valid endpoint is a primary output or inout port, or the data pin of a sequential
element. If a clock is specified then all the primary output and inout ports related to that clock,
as well as all the data pins of the registers connected to that clock are used as endpoints.

-rise_to objects - (Optional) The destination objects for the rising-edge path that will be
affected by the minimum delay.

-fall_to objects - (Optional) The destination objects for the falling-edge path that will be
affected by the minimum delay.

-through objects - (Optional) A list of pins, cell, or nets through which the path affected by
the minimum delay travels.

-rise_through objects - (Optional) A list of pins, cell, or nets through which the rising-edge
path affected by the minimum delay travels.

-fall_through objects - (Optional) A list of pins, cell, or nets though which the falling-edge
path affected by the minimum delay travels.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 841

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

delay - (Required) Specifies the minimum delay value in units of time. The delay can be
specified as a floating point number >= 0, with a default value of 0.

Note The units of time are defined by the set_units command. The default unit of time
is nanoseconds (ns).

Examples
The following example specifies a minimum delay of 20ns between the primary input and
output ports (combinational/feedthrough paths):
set_min_delay 20 -from [all_inputs] -to [all_outputs]

The following example defines a minimum delay of 20ns for timing paths with endpoints at
all primary output ports:
set_min_delay 20 -to [get_ports -filter {DIRECTION == out}]

See Also
• get_clocks
• get_nets
• get_ports
• report_timing
• set_max_delay
• set_units

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 842

Tcl Commands Listed Alphabetically

set_msg_config
Configure how the Vivado tool will display and manage specific messages, based on message
ID, string, or severity.

Syntax
set_msg_config [-id arg] [-string args] [-severity arg] [-limit arg]
[-new_severity arg] [-suppress] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-id] A qualifier, apply the selected operation only to messages
that match given message id. Example: '-id {Common
17-35}'. Default: match any id

[-string] A qualifier, apply the selected operation only to messages
that contain the given list of strings. Default: none

[-severity] A qualifier, apply the selected operation only to messages
at the given severity level. Example: '-severity INFO'
Default: match any severity

[-limit] for the messages that match the qualifiers, limit the
number of messages displayed to the given integer value
for the current project

[-new_severity] for the messages that match the qualifiers, change the
severity to the given value for the current project

[-suppress] for the messages that match the qualifiers, suppress (do
not display) any messages for the current project

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 843

Tcl Commands Listed Alphabetically

Description
This command lets you configure the messages returned by the Vivado tool in the current
project. Use this command to change the severity of messages, to limit the number of times a
message is reported, or to suppress the message altogether. However, you can only perform
one of these actions at one time with set_msg_config:
• Customize the severity of messages returned by the tool to specific levels appropriate to

your usage. For instance, set the severity of a specified message ID from one type, such as
WARNING, to another type, such as ERROR.

• Define the number of messages that will be returned by the tool during a design session,
or single invocation. You can specify the limit of a specific message ID, or the limit for
a specific severity of messages.

• Suppress a specific message ID from being reported by the tool at all. You can enable
messages that were previously suppressed using the reset_msg_config command.

• An error is returned if more than one action is attempted in a single set_msg_config
command.

Message qualifiers of string, ID, and severity are used to determine which messages are
configured by the set_msg_config command. You must supply at least one message qualifier to
identify a message or group of messages to apply the command to. Multiple qualifiers have an
AND relationship; the configuration rule will be applied only to messages matching all qualifiers.

Note set_msg_config does not support the use of wildcards in message qualifiers

Message configuration rules are project specific, and are persistent with the project when the
project is closed and reopened. Use the get_msg_config command to report the current
configuration of a specific message, or the configuration rules defined in the current project.

Restore messages to their default configurations using the reset_msg_config command.

Note The default message limit for all message IDs is set to 100, and is defined by the
parameter messaging.defaultLimit. This is the limit applied to each separate message returned
by the tool. You can report the current value of this parameter with the get_param command,
and change it as needed using the set_param command.

Arguments
-id arg - (Optional) Specify the message ID to configure. Every message delivered by the tool
has a unique global message ID that consists of an application sub-system code and a message
identifier. This results in a message ID that looks like the following:
"Common 17-54"
"Netlist 29-28"
"Synth 8-3295"

-string args - (Optional) Apply the selected operation only to messages that contain the
given list of strings. Strings must be enclosed in braces, and multiple strings can be specified
separated by spaces:
{{Vivado} {All Programmable}}

Note Strings are case sensitive.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 844

Tcl Commands Listed Alphabetically

severity - (Required) The severity of the message. There are five message severities:

• ERROR - An ERROR condition implies an issue has been encountered which will render
design results unusable and cannot be resolved without user intervention.

• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain
input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {} or "".

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

Note Because STATUS messages do not have message IDs, you cannot change the severity
level of a STATUS message.

-limit arg - (Optional) The message limit specified as an integer value >= 1. You can restore
the message limit to the messaging.defaultLimit by specifying a count of -1.

-new_severity arg - (Optional) For the messages that match the qualifier, specify a new
message severity. Valid values are defined above under the -severity option.

-suppress - (Optional) Suppress the specified messages from further reporting.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example elevates a common INFO message to a Critical Warning:
set_msg_config -id "Common 17-81" -new_severity "CRITICAL WARNING"

The following example suppresses messages with the specified message ID:
set_msg_config -suppress -id {HDL 9-1654}

The following example results in warning messages with message ID "17-35", and containing
"clk" in the message, being redefined as Error messages:
set_msg_config -severity warning -string "clk" -id "17-35" -new_severity error

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 845

Tcl Commands Listed Alphabetically

The following example gets the current default message limit, specifies a new default value,
then defines a different message limit for the specified message id:
get_param messaging.defaultLimit

100
set_param messaging.defaultLimit 1000
set_msg_config -id "common 17-81" -limit 1500

See Also
• get_msg_config
• get_param
• reset_msg_config
• set_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 846

Tcl Commands Listed Alphabetically

set_msg_limit
Set message limit.

Syntax
set_msg_limit [-severity arg] [-id arg] [-quiet] [-verbose] count

Returns
New message limit

Usage
Name Description

[-severity] Message severity to be set (not valid with -id,) e.g. "ERROR"
or "CRITICAL WARNING" Default: ALL

[-id] Unique message id to be set (not valid with -severity,) e.g.
"Common 17-99"

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

count New message limit

Categories
Report

Description
Defines the number of messages that will be returned by the tool during a design session, or
single invocation. You can specify the limit for a specific message ID, such as "Common 17-54",
or specify a limit for all messages of a specific severity, such as "CRITICAL WARNING".

Every message delivered by the tool has a unique global message ID that consists of an
application sub-system code and a message identifier. This results in a message ID that looks
like the following:
"Common 17-54"
"Netlist 29-28"
"Synth 8-3295"

You can report the current message limit of a message severity or ID with the get_msg_limit
command. You can restore the default message limit using the reset_msg_limit command.

If you do not specify either a message ID or a message severity as a qualifier for the
set_msg_limit command, an error is returned.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 847

Tcl Commands Listed Alphabetically

The default message limit for each message ID is defined by the parameter
messaging.defaultLimit. This is the limit applied to each separate message returned by the
tool. You can report the current value of this parameter with the get_param command, and
change it as needed using the set_param command.

You can change the severity of messages, limit the count of messages, and suppress messages
altogether using the set_msg_config command.

Arguments
-id value - (Optional) The message ID, which is included in all returned messages. For
example,"Common 17-54" and "Netlist 29-28".

-severity value - (Optional) The severity of the message. There are five message severities:
• ERROR - An ERROR condition implies an issue has been encountered which will render

design results unusable and cannot be resolved without user intervention.

• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain
input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {}.

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

count - (Required) The message limit specified as a value >= 1. You can restore the message
limit to the messaging.defaultLimit by specifying a count of -1.

Examples
The following example sets the message limit of the specified message ID:
set_msg_limit -id "Netlist 29-28" 10000

The following example sets the limit of the specified message severity:
set_msg_limit -severity WARNING50000

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 848

Tcl Commands Listed Alphabetically

The following example gets the current default message limit, specifies a new default value,
then overrides the default for the specified message id:
get_param messaging.defaultLimit

100
set_param messaging.defaultLimit 1000
set_msg_limit -id "common 17-81" 1500

See Also
• get_msg_config
• get_param
• reset_msg_limit
• set_msg_config
• set_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 849

Tcl Commands Listed Alphabetically

set_msg_severity
Set Message Severity by ID.

Syntax
set_msg_severity [-quiet] [-verbose] id severity

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

id Unique message id to be set, e.g. "Common 17-54"

severity Message severity to be changed to, e.g. "ERROR" or
"CRITICAL WARNING"

Categories
Report

Description
While the set_msg_config command allows you to define message severity, message limits,
and suppress messages. This command only sets the severity of a specified message ID from
one type, such as WARNING, to another type, such as ERROR.

Every message delivered by the tool has a unique global message ID that consists of an
application sub-system code and a message identifier. This results in a message ID that looks
like the following:
"Common 17-54"
"Netlist 29-28"
"Synth 8-3295"

Use this command to customize the message severity returned by the tool to specific levels
appropriate to your usage.

Note You can restore the message severity of a specific message ID to its original setting with
the reset_msg_severity command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 850

Tcl Commands Listed Alphabetically

Arguments
id - (Required) The message ID, which is included in all returned messages. For example,
"Common 17-54" or "Netlist 29-28".

severity - (Required) The severity of the message. There are five message severities:

• ERROR - An ERROR condition implies an issue has been encountered which will render
design results unusable and cannot be resolved without user intervention.

• {CRITICAL WARNING} - A CRITICAL WARNING message indicates that certain
input/constraints will either not be applied or are outside the best practices for a FPGA
family. User action is strongly recommended.

Note Since this is a two word value, it must be enclosed in {} or "".

• WARNING - A WARNING message indicates that design results may be sub-optimal
because constraints or specifications may not be applied as intended. User action may be
taken or may be reserved.

• INFO - An INFO message is the same as a STATUS message, but includes a severity and
message ID tag. An INFO message includes a message ID to allow further investigation
through answer records if needed.

• STATUS - A STATUS message communicates general status of the process and feedback to
the user regarding design processing. A STATUS message does not include a message ID.

Note Because STATUS messages do not have message IDs, you cannot change the severity
level of a STATUS message.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example reduces the significance of message ID Common 17-54 from a CRITICAL
WARNING to a WARNING so that it causes less concern when encountered:
set_msg_severity "Common 17-54" WARNING

The following example elevates a common INFO message to a Critical Warning:
set_msg_severity "Common 17-81" "CRITICAL WARNING"

See Also
• get_msg_config
• reset_msg_severity
• set_msg_config

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 851

Tcl Commands Listed Alphabetically

set_multicycle_path
Define multicycle path.

Syntax
set_multicycle_path [-setup] [-hold] [-rise] [-fall]
[-start] [-end] [-reset_path] [-from args] [-rise_from args]
[-fall_from args] [-to args] [-rise_to args] [-fall_to args]
[-through args] [-rise_through args] [-fall_through args] [-quiet]
[-verbose] path_multiplier

Returns
Nothing

Usage
Name Description

[-setup] Only setup multiplier is set

[-hold] Only hold multiplier is set

[-rise] Multiplier valid for rising delays on path endpoint

[-fall] Multiplier valid for falling delays on path endpoint

[-start] Multiplier measured against path startpoint

[-end] Multiplier measured against path endpoint

[-reset_path] Reset this path before setting multicycle

[-from] List of path startpoints or clocks

[-rise_from] Apply to paths rising from the list of startpoints or clocks

[-fall_from] Apply to paths falling from the list of startpoints or clocks

[-to] List of path endpoints or clocks

[-rise_to] Apply to paths with rise transition at the list of endpoints
or clocks

[-fall_to] Apply to paths with fall transition at the list of endpoints
or clocks

[-through] List of through pins, cells or nets

[-rise_through] Apply to paths rising through pins, cells or nets

[-fall_through] Apply to paths falling through pins, cells or nets

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

path_multiplier Number of cycles

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 852

Tcl Commands Listed Alphabetically

Categories
SDC, XDC

Description
By default, the Vivado timing engine performs a single-cycle analysis, in which the setup check
is performed at the destination on the capture edge, one clock cycle after the edge of the start
clock. This may not be appropriate for certain timing paths. The most common example is a
logic path that requires more than one clock cycle for the data to stabilize at the endpoint.

This command lets you choose a path multiplier, N, to establish a timing path that takes N clock
cycles from the start clock edge to the capture clock edge. The path multiplier defines the total
number of clock cycles required for propagation of a signal from its origin to destination when
that propagation is longer than a single clock cycle. For more information on the use of this
command, refer to the Vivado Design Suite User Guide: Using Constraints (UG903).

The set_multicycle_path command is used to specify path multipliers for setup and/or hold
analysis, for rising and/or falling edges, with respect to the source clock or the destination
clock. This command includes three elements:
• The specification of the timing analysis affected by the multicycle path.
• The definition of the timing paths to which the multicycle path applies.
• The path multiplier defining the number of clock cycles to apply to the timing analysis.

The path multiplier applies to both the setup and hold analysis. The hold analysis is derived
from the setup analysis, so it is moved along with the setup analysis. This often results in hold
timing failures. You can use a second set_multicycle_path command with the -hold option to
restore the hold analysis to its original location.

By default, the setup path multiplier is applied with respect to the destination clock, and the
hold path multiplier is applied with respect to the source clock. Use the -start or -end options
to change the default setup or hold analysis with respect to the source or destination clocks.

This command operates silently when successful, or returns an error if the command fails.

Arguments
-setup - (Optional) Apply the path multiplier only to the setup check.

-hold - (Optional) Apply the path multiplier only to the hold check.

Note When neither -setup or -hold is used, the path multiplier applies to both setup and
hold checks

-rise - (Optional) Apply the multiplier specifically to rising edge delays on the path endpoint.

-fall - (Optional) Apply the multiplier specifically to falling edge delays on the path endpoint.

Note If neither -rise or -fall is specified, the multiplier is applied to both the rising and
falling edge delays.

-start - (Optional) By default, the setup path multiplier is defined with respect to the destination
clock (-end). To modify the setup requirement with respect to the source clock, the -start
option must be used.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 853

Tcl Commands Listed Alphabetically

-end - (Optional) By default, the hold path multiplier is defined with respect to the source
clock. To modify the hold requirement with respect to the destination clock, the -end option
must be used.

Note The -start/-end options have no effect when applying a multicycle path constraint on
paths clocked by the same clock, or clocked by two clocks having the same waveform, or
with no phase shift.

-reset_path - (Optional) Reset the specified path before applying the multicycle path multiplier.

-from args - (Optional) A list of start points on the path that will be affected by the path
multiplier.

-rise_from args - (Optional) A list of the start points on the rising-edge path that will be
affected by the multicycle path multiplier.

-fall_from args - (Optional) A list of the start points on the falling-edge path that will be
affected by the multicycle path multiplier.

-to args - (Optional) A list of the end points on the path that will be affected by the multicycle
path multiplier.

-rise_to args - (Optional) A list of the end points on the rising-edge path that will be affected
by the multicycle path multiplier.

-fall_to args - (Optional) A list of the end points on the falling-edge path that will be affected
by the multicycle path multiplier.

-through args - (Optional) A list of pins, cell, or nets through which the path affected by the
multicycle path multiplier travels.

-rise_through args - (Optional) A list of pins, cell, or nets through which the rising-edge path
affected by the multicycle path multiplier travels.

-fall_through args - (Optional) Specifies the list of pins, cell, or nets through which the
falling-edge path affected by the multicycle path multiplier travels.

Important! Although -to, -through, and -from (in their various forms) are all optional
arguments, at least one -from, -to, or -through argument must be specified to define a timing
path for the set_multicycle_path constraint, or an error will be returned.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

path_multiplier - (Required) The number of clock cycles to move the timing analysis.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 854

Tcl Commands Listed Alphabetically

Examples
The following example establishes a path multiplier of 3 clock cycles for the setup check of the
timing path defined by the -from/-to options. A path multiplier of N-1, or 2 in this example, is
used for the hold check on the same timing path:
set_multicycle_path 3 -setup -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]
set_multicycle_path 2 -hold -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]

Note For more information on the relationship between the setup and hold analysis refer to the
Vivado Design Suite User Guide: Using Constraints (UG903)

See Also
• report_timing
• report_timing_summary
• set_input_delay
• set_output_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 855

Tcl Commands Listed Alphabetically

set_operating_conditions
Set operating conditions for power estimation.

Syntax
set_operating_conditions [-voltage args] [-grade arg] [-process arg]
[-junction_temp arg] [-ambient_temp arg] [-thetaja arg] [-thetasa arg]
[-airflow arg] [-heatsink arg] [-thetajb arg] [-board arg]
[-board_temp arg] [-board_layers arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-voltage] List of voltage pairs, e.g., {name value}. Supported voltage
supplies vary by family.

[-grade] Temperature grade. Supported values vary by family.
Default: commercial

[-process] Process data: typical or maximum Default: typical

[-junction_temp] Junction Temperature (C): auto|degC Default: auto

[-ambient_temp] Ambient Temperature (C): default|degC Default: default

[-thetaja] ThetaJA (C/W): auto|degC/W Default: auto

[-thetasa] ThetaSA (C/W): auto|degC/W Default: auto

[-airflow] Airflow (LFM): 0 to 750 Default: varies by family

[-heatsink] Dimensions of heatsink: none, low, medium, high, custom
Default: medium

[-thetajb] ThetaJB (C/W): auto|degC/W Default: auto

[-board] Board type: jedec, small, medium, large, custom Default:
medium

[-board_temp] Board Temperature degC

[-board_layers] Board layers: 4to7, 8to11, 12to15, 16+ Default: 8to11

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC, Power

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 856

Tcl Commands Listed Alphabetically

Description
Sets the real-world operating conditions that are used when performing analysis of the design.
The environmental operating conditions of the device are used for power analysis when running
the report_power command, but are not used during timing analysis.

Note This command operates silently and does not return direct feedback of its operation.

Operating conditions can be restored to their default values with the use of the
reset_operating_conditions command.

Current operating conditions can be reported with the report_operating_conditions command.

Arguments
-voltage arg - (Optional) List of voltage supply names and their values specified in pairs.
Supported voltage supply names and their values vary by family. For example if a family
supports a voltage supply named Vccint, you can set the supply voltage to 0.8 with the
following argument and value : -voltage {Vccint 0.8}

-grade arg - (Optional) The temperature grade of the target device. Supported values vary
by family. The default value is "commercial".

-process arg - (Optional) The manufacturing process characteristics to assume. Valid values are
"typical" or "maximum". The default value is "typical".

-junction_temp arg - (Optional) The device junction temperature used for modeling. Valid
values are "auto" or an actual temperature specified in degrees C. The default value is "auto".

-ambient_temp arg - (Optional) The environment ambient temperature in degrees C. The
default setting is "default".

-thetaja arg - (Optional) The Theta-JA thermal resistance used for modeling in degrees C/W.
The default setting is "auto".

-thetasa arg - (Optional) The Theta-SA thermal resistance used during modeling in degrees
C/W. The default setting is "auto".

-airflow [0:750] - (Optional) Linear Feet Per Minute (LFM) airflow to be used for modeling.
The default setting varies by device family.

-heatsink arg - (Optional) The heatsink profile to be used during modeling. Valid values are:
none, low, medium, high, custom. The default setting is "medium".

-thetajb arg - (Optional) The Theta-JB thermal resistance used for modeling in degrees C/W.
The default setting is "auto".

-board arg - (Optional) The board size to be used for modeling. The valid values are: jedec,
small, medium, large, custom. The default value is "medium".

-board_temp arg - (Optional) The board temperature in degrees Centigrade to be used for
modeling.

-board_layers arg - (Optional) The number of board layers to be used for modeling. Valid
values are: "4to7" for boards with 4 to 7 layers, "8to11" for boards with 8 to 11 layers, "12to15"
for boards with 12 to 15 layers, and "16+" for boards with 16 or more layers. The default
setting is "12to15".

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 857

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example specifies an industrial grade device with an ambient operating
temperature of 75 degrees C:
set_operating_conditions -grade industrial -ambient_temp 75

The following example sets the supply voltage Vccaux to a value of 1.9 :
set_operating_conditions -voltage {Vccaux 1.89}

The following example sets the manufacturing process corner to maximum:
set_operating_conditions -process maximum

The following example sets the manufacturing process corner to typical and the voltage supply
Vccint to 0.98:
set_operating_conditions -process maximum -voltage {Vccint 0.98}

See Also
• report_operating_conditions
• report_power
• reset_operating_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 858

Tcl Commands Listed Alphabetically

set_output_delay
Set output delay on ports.

Syntax
set_output_delay [-clock args] [-reference_pin args] [-clock_fall]
[-rise] [-fall] [-max] [-min] [-add_delay] [-network_latency_included]
[-source_latency_included] [-quiet] [-verbose] delay objects

Returns
Nothing

Usage
Name Description

[-clock] Relative clock

[-reference_pin] Relative pin or port

[-clock_fall] Delay is relative to falling edge of clock

[-rise] Specifies rising delay

[-fall] Specifies falling delay

[-max] Specifies maximum delay

[-min] Specifies minimum delay

[-add_delay] Don't remove existing input delay

[-network_latency_included] Specifies network latency of clock already included

[-source_latency_included] Specifies source latency of clock already included

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

delay Delay value

objects List of ports

Categories
SDC, XDC

Description
Sets the output delays on specified ports.

Note This command operates silently and does not return direct feedback of its operation.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 859

Tcl Commands Listed Alphabetically

Arguments
-clock arg - (Optional) Indicates that the delay is relative to the rising edge of the specified
clock.

-reference_pin arg - (Optional) Specifies that the delay is relative to the specified pin rather
than a clock.

-clock_fall - (Optional) Specifies that the delay is relative to a falling edge of the clock rather
than rising edge.

-rise - (Optional) Specifies that the delay is for a rising edge.

-fall - (Optional) Specifies that the delay is for a falling edge

-max - (Optional) Specifies that the delay specified should be treated as a maximum threshold.

-min - (Optional) Specifies that the delay specified should be treated as a minimum threshold.

-add_delay - (Optional) Specifies that the delay specified should be added to any existing delay
on the path rather than replacing the existing delay.

-network_latency_included - (Optional) Specifies that the network latency of the reference
clock is included in the specified delay value.

-source_latency_included - (Optional) Specifies that the source latency of the reference clock is
included in the specified delay value.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

delay - (Optional) The delay to apply to the specified ports. Valid values are floating point
numbers >= 0, with a default value of 1.0.

objects - (Required) A list of ports to which the delay applies.

Examples
The following example sets an output delay on ports relative to the specified clock:
set_output_delay 5.0 -clock [get_clocks cpuClk] [get_ports]

The next example is the same as the prior example except that network latency is now included:
set_output_delay 5.0 -clock [get_clocks cpuClk] -network_latency_included [get_ports]

See Also
• get_ports
• set_input_delay

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 860

Tcl Commands Listed Alphabetically

set_package_pin_val
Set user columns on one or more package pins.

Syntax
set_package_pin_val [-quiet] [-verbose] column value package_pins ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

column User column name

value Value to set

package_pins Package pin names

Categories
XDC, PinPlanning

Description
Create user-defined package pin attributes and assign values to specific pins on the package.

User-defined pin attributes can be defined in a CSV file and imported into an I/O Pin Planning
project using read_csv, or can be edited in the project using this command.

Note Use the set_property command to set tool-defined properties of a package pin.

Arguments
column - (Required) Specify the user-defined column name. The column name is case-sensitive.
If the column does not already exist, a new attribute is created for package pins. If the
user-defined column name already exists, the specified value is assigned to the specified pins.

Note Column refers to the display of the attribute in the Package Pins view in the tool GUI.
The result of the command is an attribute on the specified package pins that can be exported
with write_csv for instance.

value - (Required) Specify the value to assign to the specified column. You can repeat the
set_package_pin_val command to assign different values to different pins in the same column.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 861

Tcl Commands Listed Alphabetically

package_pins - (Required) Specify the package pins to assign the value to. You can use the
get_package_pins command to specify the package pins to set.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example creates a new user-defined column in the Package Pins view, and assigns
the value true to the specified pin:
set_package_pin_val -column track1 -value true -package_pins AK27

The following example creates a user-defined column called Test, then assigns the value RED to
all "AK" package pins, then changes the value to GREEN for the three specified pins:
set_package_pin_val -column Test -value RED -package_pins [get_package_pins AK*]
set_package_pin_val -column Test -value GREEN-package_pins {AK1 AK2 AK3}

See Also
• get_package_pins
• set_property
• write_csv

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 862

Tcl Commands Listed Alphabetically

set_param
Set a parameter value.

Syntax
set_param [-quiet] [-verbose] name value

Returns
Newly set parameter value

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Parameter name

value Parameter value

Categories
PropertyAndParameter

Description
Sets the value of a user-definable configuration parameter. These parameters configure and
control various behaviors of the tool. Refer to report_param for a description of currently
defined parameters.

You can use the reset_param command to restore any parameter that has been modified
back to its default setting.

Note Setting a specified parameter value to -1 will disable the feature.

Arguments
name - (Required) The name of the parameter to set the value of. You can only set the value of
one parameter at a time.

value - (Required) The value to set the specified parameter to.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 863

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example sets the parameter defining how many threads to run for multi-threaded
processes, including Placement, Routing, and Timing Analysis:
set_param general.maxThreads 4

Note The Vivado tool supports between 1 to 4 threads. Use get_param to determine the
current setting.

The following example sets a new default value for message limit:
set_param messaging.defaultLimit 1000

See Also
• get_param
• list_param
• report_param
• reset_param

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 864

Tcl Commands Listed Alphabetically

set_power_opt
Set constraints for power optimization.

Syntax
set_power_opt [-include_cells args] [-exclude_cells args]
[-clocks args] [-cell_types args] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-include_cells] Include only these instances for clock gating. Default: all

[-exclude_cells] Exclude these instances from clock gating. Default: none

[-clocks] Clock gate instances clocked by these clocks only. Default:
all clocks

[-cell_types] Clock gate these types only. One of [all|bram|reg|srl|none].
Default: all. Default: all

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Power, XDC

Description
Specify cell instances to include in power optimization. The specified cells are optimized using
the power_opt_design command.

The effect of multiple set_power_opt commands is cumulative, so that you can specify a broad
class of cell types to optimize, include specific hierarchical cells, and then exclude cells within
the included hierarchy to refine the power optimization.

The power optimizations that have been performed can be reported using the
report_power_opt command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 865

Tcl Commands Listed Alphabetically

Arguments
-include_cells args - (Optional) Include only these instances for clock gating. Use this option
to list specific cells or blocks to be optimized using power_opt_design. The default is to
include all cells in power optimization.

-exclude_cells args - (Optional) Exclude these instances from clock gating. The default is to not
exclude cells from power optimization. The -exclude_cells option excludes from the currently
included cells. By default all cells are included, however, if -include_cells has been specified,
then -exclude_cells applies only to the currently included cells.

-clocks args - (Optional) Perform power optimizations on instances clocked by the specified
clocks only. The default is to include all clocks in the design.

Note It is possible to use both -clocks and -include_cells to produce a list of cells that are not
clocked by the specified clocks, resulting in no power optimization

-cell_types [all | bram | reg | slr | none] - (Optional) Perform power optimization on the
specified cell types only. The default is to perform power optimization on all types of cells. You
can use all or none to reset, or clear, any prior set_power_opt commands.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example sets power optimization for BRAM cells only, and then runs power
optimization:
set_power_opt -cell_types bram
power_opt_design

The following example sets power optimization for BRAM and REG type cells, then adds SRLs,
and runs power optimization. Then all cells are cleared, and only SRLs are included, and power
optimization is run again:
set_power_opt -cell_types { bram reg}
set_power_opt -cell_types { srl}
power_opt_design
set_power_opt -cell_types { none}
set_power_opt -cell_types { srl}
power_opt_design

The following example sets power optimization for BRAM cells only, excludes the cpuEngine
block from optimization, but then includes the cpuEngine/cpu_dbg_dat_i block, then performs
power optimization:
set_power_opt -cell_types bram
set_power_opt -exclude_cells cpuEngine
set_power_opt -include_cells cpuEngine/cpu_dbg_dat_i
power_opt_design

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 866

Tcl Commands Listed Alphabetically

See Also
• power_opt_design
• report_power_opt

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 867

Tcl Commands Listed Alphabetically

set_propagated_clock
Specify propagated clock latency.

Syntax
set_propagated_clock [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects List of clocks, ports, or pins

Categories
SDC, XDC

Description
Propagates clock latency throughout a clock network, resulting in more accurate skew and
timing results throughout the clock network.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) A list of the clock objects to force propagation on.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 868

Tcl Commands Listed Alphabetically

Examples
This example specifies that the primary system clock from the top-level should be propagated:
set_propagated_clock [get_clocks top/clk]

This example specifies that all clocks from "sublevel1" should be propagated:
set_propagated_clock [get_clocks sublevel1/*]

See Also
• get_clocks
• create_clock

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 869

Tcl Commands Listed Alphabetically

set_property
Set property on object(s).

Syntax
set_property [-dict args] [-quiet] [-verbose] name value objects ...

Returns
The value that was set if success, "" if failure

Usage
Name Description

[-dict] list of name/value pairs of properties to set

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name of property to set. Not valid with -dict option

value Value of property to set. Not valid with -dict option

objects Objects to set properties on

Categories
Object, PropertyAndParameter, XDC

Description
Assigns the defined property name and value to the specified objects.

This command can be used to define any property on an object in the design. Each object has
a set of predefined properties that have expected values, or a range of values. The set_property
command can be used to define the values for these properties. To determine the defined set
of properties on an object, use report_property, list_property, or list_property_values.

You can also define custom properties for an object, by specifying a unique name and value
pair for the object. If an object has custom properties, these will also be reported by the
report_property and list_property commands.

Arguments
-dict - (Optional) Use this option to specify multiple properties (name value pairs) on an
object with a single set_property command. Multiple name value pairs must be enclosed
in braces, {}, or quotes, "".
-dict "name1 value1 name2 value2 ... nameN valueN"

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 870

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

name - (Required) Specifies the name of the property to be assigned to the object or objects.
The name argument is case sensitive and should be specified appropriately.

value - (Required) Specifies the value to assign to the name on the specified object or objects.
The value is checked against the property type to ensure that the value is valid. If the value
is not appropriate for the property an error will be returned.

Important! In some cases the value of a property may include special characters, such as the
dash character ('-'), which can cause the tool to interpret the value as a new argument to the
command. In this case, you must use the explicit arguments (-name, -value, -objects) instead
of the implied positional arguments (name, value, objects) as described here. This is shown in
the Examples section below

objects - (Required) One or more objects to assign the property to.

Examples
Create a user-defined boolean property, TRUTH, for cell objects, and set the property on a cell:
create_property -type bool truth cell
set_property truth false [lindex [get_cells] 1]

Use the -dict option to specify multiple properties at one time on the current design:
set_property -dict "POST_CRC enable POST_CRC_ACTIONcorrect_and_continue" \
[current_design]

The following example sets the TOP property of the current fileset to define the top module
of the project:
set_property top fftTop [current_fileset]
set_property top_file {C:/Data/sources/fftTop.v} [current_fileset]

Note Defining the top module requires the TOP property to be set to the desired hierarchical
block in the source fileset of the current project. In the preceding example TOP is the property
name, fftTop is the value, and current_fileset is the object. In addition, the TOP_FILE property
should be defined to point to the data source for the top module

This example shows how to set a property value that includes the dash character, '-'. The dash
can cause the tool to interpret the value as a new command argument, rather than part of the
value being specified, and will cause an error as shown. In this case, you must use the explicit
form of the positional arguments in the set_property command:
set_property {XELAB.MORE_OPTIONS} {-pulse_e_style ondetect} [get_filesets sim_1]
ERROR: [Common 17-170] Unknown option '-pulse_e_style ondetect',

please type 'set_property -help' for usage info.
set_property -name {XELAB.MORE_OPTIONS} -value {-pulse_e_style ondetect}\
-objects [get_filesets sim_1]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 871

Tcl Commands Listed Alphabetically

The following example sets the internal VREF property value for the specified IO Bank:
set_property internal_vref {0.75} [get_iobanks 0]

The following example defines a DCI Cascade by setting the SLAVE_BANKS property for the
specified IO Bank:
set_property slave_banks {14} [get_iobanks 0]

The following example configures the synth_1 run, setting options for Vivado Synthesis 2013,
and then launches the synthesis run:
set_property flow {Vivado Synthesis 2013} [get_runs synth_1]
set_property STEPS.SYNTH_DESIGN.ARGS.FANOUT_LIMIT 500 [get_runs synth_1]
set_property STEPS.SYNTH_DESIGN.ARGS.GATED_CLOCK_CONVERSIONon [get_runs synth_1]
set_property STEPS.SYNTH_DESIGN.ARGS.FSM_EXTRACTIONone_hot [get_runs synth_1]
launch_runs synth_1

See Also
• current_fileset
• create_property
• create_run
• get_cells
• get_property
• get_runs
• launch_runs
• list_property
• list_property_value
• report_property
• reset_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 872

Tcl Commands Listed Alphabetically

set_speed_grade
Timing Speed Grade.

Syntax
set_speed_grade [-quiet] [-verbose] value

Returns
String result

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

value Speed grade used for timing analysis

Categories
Project

Description
Sets the speed grade for the target device in the current design. This command is used to
change the speed grade of the target device for timing analysis. It must be run on an opened
Synthesized or Implemented Design. It is usually run prior to the report_timing command or
other timing commands to change the speed grade for analysis.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

value - (Required) The speed grade for the target device. Valid values are -1, -2, or -3.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 873

Tcl Commands Listed Alphabetically

Examples
The following example sets the speed grade for the device in the current design to -1:
set_speed_grade -1

See Also
set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 874

Tcl Commands Listed Alphabetically

set_switching_activity
Set switching activity on specified objects or default types.

Syntax
set_switching_activity [-type args] [-static_probability arg]
[-signal_rate arg] [-hier] [-quiet] [-verbose] [objects ...]

Returns
Nothing

Usage
Name Description

[-type] Use with RTL power estimation. List of valid type values:
registers, inputs, outputs, inouts, ports, outputEnable,
three_states, dsps, brams, bramWrite, bramEnable,
clockEnable

[-static_probability] Static probability value: 0 <= Value <= 1 Default: 0.0

[-signal_rate] The number of times an element changed state
(high-to-low and low-to-high) per second. Xilinx tools
express this as millions of transitions per second (Mtr/s).
Default: 0.0

[-hier] Hierarchically sets the switching activity on a hierarchical
instance provided via option. This option should be used
only with option

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] Objects to set switching activity on

Categories
XDC, Power

Description
Sets the signal rate and the switching probability to be used when performing power
estimation. These include simple signal rate and simple static probability on nets, ports, and
pins; and state dependent static probabilities on cells.

Note This command operates silently and does not return direct feedback of its operation.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 875

Tcl Commands Listed Alphabetically

The switching activity of a design affects both the static and dynamic power consumption. The
static power is often dependent on logic state transitions, and the dynamic power is directly
proportional to the toggle rate.

This command is used to specify a default activity rate for a broad class of signals when
performing power estimation. It is used to define the activity of one or more signals, rather
than the whole class.

The current switching activity attributes can be found by using the report_switching_activity
command. The values can be set to their default values by using the reset_switching_activity
command.

Arguments
-toggle_rate rate - (Optional) The toggle rate, which describes how often the output switches
relative to the controlling clock. Valid values are between 0 and 200%. An output that switches
once per clock cycle toggles at 100%. The default value is 0.

-type value - (Optional) The type of logic entity for the defined switching activity. Valid types
are: registers, inputs, outputs, inouts, ports, outputEnable, three_states, dsps, brams, bramWrite,
bramEnable, clockEnable.

-static_probability value - (Optional) The switching probability to be used in analysis. Valid
values are 0 < value < 1. The default value is 0.

-signal_rate value - (Optional) The signal frequency to be used for analysis. The default
value is 0.

Note One or both of -static_probability or -signal_rate must be specified with the
set_switching_activity command.

-hier - (Optional) Apply the switching activity to signals at all levels of a hierarchical instance.
Without -hier, the switching activity is applied to the specified objects at the current level
of the hierarchy.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) A list of port, pin, net, and clock objects to which the switching activity
configuration should be applied.

Examples
The following example specifies a signal rate and switching probability for all ports, then
reports the switching attributes for the ports:
set_switching_activity -signal_rate 55 -static_probability .27 [get_ports]
report_switching_activity [get_ports]

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 876

Tcl Commands Listed Alphabetically

See Also
• power_opt_design
• report_default_switching_activity
• report_power
• report_switching_activity
• reset_default_switching_activity
• reset_switching_activity
• set_default_switching_activity

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 877

Tcl Commands Listed Alphabetically

set_system_jitter
Set system jitter.

Syntax
set_system_jitter [-quiet] [-verbose] system_jitter

Returns
System_jitter

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

system_jitter System jitter: Value >= 0

Categories
XDC

Description
Sets the system jitter (in time units) for all clocks in the design, including primary and generated
clocks. System jitter is used to account for noise that affects all the clocks within the FPGA, like
power supply noise and board noise.

The set_system_jitter command applies to all the clocks in the design. Use the set_input_jitter
command to specify additional jitter for a specific primary clock.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 878

Tcl Commands Listed Alphabetically

jitter - (Required) Specifies the system jitter (in time units) to be applied system-wide. The
default system jitter is defined in the speed files for specific Xilinx FPGAs. The jitter specified by
the set_system_jitter command overwrites the default value.

Examples
The following example models a system-wide jitter of 0.2 time units on all the clocks in the
design:
set_system_jitter 0.2

The following example defines a primary clock sysClk and specifies a system wide jitter of
0.1 time units:
create_clock -period 10 -name sysClk [get_ports sysClk]
set system_jitter 0.1

The following example defines a primary clock, sysClk, and a generated clock, sysClkDiv2, that
is a divide by two version of the primary clock. A system jitter of 0.2 time units is specified that
applies to all the clocks in the design. An additional input jitter of 0.09 is specified on only
the primary clock :
create_clock -period 10 -name sysClk [get_ports sysClk]
create_generated_clock -name sysClkDiv2 -source [get_ports sysClk] -divide_by 2 \
[get_pins clkgen/sysClkDiv/Q]
set_system_jitter 0.2
set_input_jitter sysClk 0.09

The follow example defines two primary clocks, sysClk and procClk. A system jitter of 0.2 is
defined for all the clocks in the system. An additional input jitter of 0.05 is specified for the
clock procClk :
create_clock -period 10 -name sysClk [get_ports sysClk]
create_clock -period 25 -name procClk [get_ports procClk]
set_system jitter 0.2
set_input_jitter procClk 0.05

See Also
• report_timing
• set_input_jitter
• set_input_delay
• set_clock_uncertainty

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 879

Tcl Commands Listed Alphabetically

set_units
Set units for checking.

Syntax
set_units [-capacitance arg] [-time arg] [-current arg] [-voltage arg]
[-power arg] [-resistance arg] [-suffix arg] [-digits arg] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

[-capacitance] Capacitance unit in farad. Valid values are from kF-fF.
Default: pF

[-time] Time unit in seconds. Valid values are from ks-fs. Default:
ns

[-current] Current unit in ampere. Valid values are from kA-fA.
Default: mA

[-voltage] Voltage unit in volt. Valid values are from kV-fV. Default: V

[-power] Wattage unit in watts. Valid values are from kW-fW.
Default: mW

[-resistance] Resistance unit in ohm. Valid values are from kOhm-fOhm.
Default: ohm

[-suffix] Suffix for units

[-digits] Number of digits Default: 1

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
SDC, XDC

Description
This command specifies the default units to be assumed when the design is analyzed.
Specifically, the -current, -voltage, -power, and -resistance options impact the values returned
by the report_power command.

Note This command operates silently and does not return direct feedback of its operation.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 880

Tcl Commands Listed Alphabetically

Arguments
-capacitance value - (Optional) Specify the unit of capacitance in Farads. Valid values range
from kilofarads (kF) to femtofarads (fF). The default unit of capacitance is picofarads (pF).

-current value - (Optional) Specify the default unit of current in amperes. Valid values range
from kiloAmps (kA) to femtoAmps (fA). The default unit of amperes is milliAmps (mA).

-voltage value - (Optional) Specify the default unit of voltage in Volts. Valid values range from
kilovolts (kV) to femotovolts (fV). The default unit of voltage is Volts (V).

-power value - (Optional) Specify the default unit of power in watts. Valid values range from
kilowatts (kW) to femtowatts (fW). The default unit of power is milliwatts (mW).

-resistance value - (Optional) Specify the default unit of resistance in ohms. Valid values range
from kilo-ohm (kOhm) to femto-ohm (fOhm). The default unit of resistance is ohms (Ohm).

-suffix value - (Optional) Specify the suffix to be used for the specified units.

-digits value - (Optional, Default Value of 1) Specify the number of digits to be used when
printing units.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
Specify that voltage should be in millivolts and all values should use three digits
set_units -voltage mV -digits 3

The following example changes the default unit for current to Amperes:
set_units -current A

The second time that set_units is issued above does not over-ride or change the values set
in the first instance.

See Also
• report_power
• set_operating_conditions

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 881

Tcl Commands Listed Alphabetically

set_value
Set the current value of an HDL object (variable, signal, wire, or reg) to a specified value.

Syntax
set_value [-radix arg] [-quiet] [-verbose] hdl_object value

Returns
Nothing

Usage
Name Description

[-radix] radix specifies the radix to use for interpreting value.
Allowed values are: default, dec, bin, oct, hex, unsigned,
ascii

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hdl_object Set the value to the given hdl_object

value

Categories
Simulation

Description
Specify the value of a single HDL object at the current simulation run time.

HDL objects include HDL signals, variables, or constants as defined in the Verilog or VHDL
testbench and source files. An HDL signal includes Verilog wire or reg entities, and VHDL
signals. Examples of HDL variables include Verilog real, realtime, time, and event.

HDL constants include Verilog parameters and localparams, and VHDL generic and constants.
The HDL scope, or scope, is defined by a declarative region in the HDL code such as a module,
function, task, process, or begin-end blocks in Verilog. VHDL scopes include entity/architecture
definitions, block, function, procedure, and process blocks.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 882

Tcl Commands Listed Alphabetically

Arguments
-radix arg - (Optional) Specifies the radix to use when returning the value of the specified
object. Allowed values are: default, dec, bin, oct, hex, unsigned, and ascii.

Note The radix dec indicates a signed decimal. Specify the radix unsigned when dealing
with unsigned data

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

hdl_object - (Required) Specifies a single HDL object to get the value of. The object can be
specified by name, or can be returned as an object from the get_objects command.

value - (Required) The value to set the specified object to. The specified value depends on the
type of the hdl_object. HDL object types include: "logic", floating point, VHDL enumerated, and
VHDL integral. For all but "logic" the -radix option is ignored.

• "Logic" does not refer to an actual HDL object type, but means any object whose values are
similar to those of VHDL std_logic, such as:

– the Verilog implicit 4-state bit type,

– the VHDL bit and std_logic predefined types,

– any VHDL enumeration type which is a subset of std_logic, including the character
literals 0 and 1.

• For logic types the value depends on the radix:

– If the specified value has fewer bits than the logic type expects, the value is zero
extended, but not sign extended, to match the expected length.

– If the specified value has more bits than the logic type expects, the extra bits on the
MSB side should all be zeros, or the Vivado simulator will return a "size mismatch" error.

• Accepted values for floating point objects are floating point values.

• The accepted value for non-logic VHDL enumerated types is a scalar value from the
enumerated set of values, without single quotes in the case of characters.

• Accepted values for VHDL integral types is a signed decimal integer in the range accepted
by the type.

Examples
The following example sets the value of the sysClk signal:
set_value sysClk Z

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 883

Tcl Commands Listed Alphabetically

This example uses the bin, dec, and unsigned radix to specify the same value on the given bus:
set_value -radix bin /test/bench_VStatus_pad_0_i[7:0] 10100101
set_value -radix unsigned /test/bench_VStatus_pad_0_i[7:0] 165
set_value -radix dec /test/bench_VStatus_pad_0_i[7:0] -91

The following example shows the bit extension performed when the provided value has fewer
bits than the logic type expects :
set_value -radix bin /test/bench_VStatus_pad_0_i[7:0] 101
get_value -radix bin /test/bench_VStatus_pad_0_i[7:0]

00000101

The following example shows the bit truncation performed when the provided value has more
bits than the logic type expects :
set_value -radix bin /test/bench_VStatus_pad_0_i[7:0] 0010100101
get_value -radix bin /test/bench_VStatus_pad_0_i[7:0]

10100101
set_value -radix bin /test/bench_VStatus_pad_0_i[7:0] 1110100101
ERROR: [#UNDEF] Object size 8 does not match size of given value 1110100101

Note In the second set_value command, the extra bits are not zero, and so an error is returned

See Also
• current_time
• get_objects
• get_value
• report_values

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 884

Tcl Commands Listed Alphabetically

show_objects
Show objects in Find Results view.

Syntax
show_objects [-name arg] [-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-name] Tab title

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects Objects to show Find Results view

Categories
GUIControl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 885

Tcl Commands Listed Alphabetically

show_schematic
Show netlist items in schematic view.

Syntax
show_schematic [-add] [-remove] [-regenerate] [-pin_pairs] [-name arg]
[-quiet] [-verbose] objects

Returns
Nothing

Usage
Name Description

[-add] Add to existing schematic view

[-remove] Remove from existing schematic view

[-regenerate] Regenerate layout of schematic view

[-pin_pairs] objects are treated as pair of connected pins. This can be
useful to display paths

[-name] Schematic window title

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

objects Netlist items to show in schematic view

Categories
GUIControl

Description
Create a schematic view containing the specified design objects when the tool is invoked in
GUI mode.

The scope of the schematic that is displayed depends on the objects specified. A schematic
created with cells, shows the specified cells and any connections between the cells. A schematic
created with pins, shows the pin objects, or shows them connected as appropriate if -pin_pairs
is specified. A schematic created with nets shows the nets, as well as the cells and ports
connected to the nets.

To display a schematic with multiple levels of hierarchy, use the current_instance command to
set the top-level of the hierarchy, or the level of interest, and use the -hierarchical option when
specifying design objects with a get_* command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 886

Tcl Commands Listed Alphabetically

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-add - (Optional) Add the specified objects to the schematic window.

-remove - (Optional) Remove the specified objects from the schematic window.

-regenerate - (Optional) Regenerate the schematic window.

-pin_pairs - (Optional) When specified with a pair of connected pin objects, the schematic
shows the pins and the wire between the pins. When the -pin_pairs option is not specified,
or is specified with disconnected pins, the wire is not shown.

-name arg - (Optional) Defines a name for the schematic window opened in the GUI. Use this
name to add to, remove from, or regenerate the schematic.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Required) The netlist objects to display in the schematic window.

Examples
The following example creates a schematic for the top-level of the design, displaying the nets
as well as the ports and cells they connect to:
show_schematic [get_nets]

The following example sets the level of hierarchy of interest, and creates a hierarchical
schematic from the current level down:
current_instance A
show_schematic [get_nets -hier]

The following example creates a schematic window showing the specified pins, and the wire
connection between them:
show_schematic -pin_pairs [get_pins {data0_i/O data_reg/D}]

See Also
• current_instance
• get_cells
• get_nets
• get_pins
• get_ports

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 887

Tcl Commands Listed Alphabetically

split_diff_pair_ports
Remove differential pair relationship between 2 ports.

Syntax
split_diff_pair_ports [-quiet] [-verbose] ports ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

ports Ports to split

Categories
PinPlanning

Description
Splits an existing differential pair of ports into two single-ended ports.

Note This command operates silently and does not return direct feedback of its operation.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ports - (Required) The names of two ports of a differential pair to split into single-ended ports.

Examples
The following example splits the specified diff pair ports to form two single ended ports:
split_diff_pair_ports PORT_NPORT_P

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 888

Tcl Commands Listed Alphabetically

See Also
• make_diff_pair_ports
• create_port
• create_interface

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 889

Tcl Commands Listed Alphabetically

start_gui
Start GUI.

Syntax
start_gui [-verbose]

Returns
Nothing

Usage
Name Description

[-verbose] Suspend message limits during command execution

Categories
GUIControl

Description
Launches the GUI when the tool is running in the Vivado Design Suite Tcl shell. The GUI is
invoked with the current project, design, and run information.

Arguments
-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example is executed from the command prompt when the tool is running in
Tcl mode:
Vivado% start_gui

See Also
stop_gui

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 890

Tcl Commands Listed Alphabetically

start_vcd
Start capturing VCD output (equivalent of $dumpon verilog system task). This can be used after
a stop_vcd TCL command has stopped VCD generation started by open_vcd.

Syntax
start_vcd [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Description
The start_vcd command specifies that the tool start writing Value Change Dump (VCD)
information into the specified VCD object. This Tcl command models the behavior of the
Verilog $dumpon system task.

Note: You must execute the open_vcd command before using the start_vcd command.

Nothing is returned by this command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 891

Tcl Commands Listed Alphabetically

Examples
The following example starts the writing of HDL signals into the current VCD file:
start_vcd

See Also
• close_vcd
• open_vcd
• stop_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 892

Tcl Commands Listed Alphabetically

startgroup
Start a set of commands that can be undone/redone as a group.

Syntax
startgroup [-try] [-quiet] [-verbose]

Returns
Int

Usage
Name Description

[-try] Don't start a group if one has already been started

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
GUIControl

Description
Starts a sequence of commands that can be undone or redone as a series. Use endgroup to
end the sequence of commands.

Note You can have multiple command groups to undo or redo, but you cannot nest command
groups. You must use endgroup to end a command sequence before using startgroup to
create a new command sequence

The startgroup command returns an integer value of 0 if a group is already started, and returns
an integer value of 1 if the startgroup command has started a new group.

Arguments
-try - (Optional) Returns 1 if a new group is started. Returns 0 if a group has already been
started, and therefore a new group cannot be started.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 893

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example defines a startgroup, executes a sequence of related commands, and
then executes the endgroup. This sequence of commands can be undone or redone as a group:
startgroup
create_pblock pblock_wbArbEngine
create_pblock pblock_usbEngnSRM
add_cells_to_pblock pblock_wbArbEngine [get_cells [list wbArbEngine]] -clear_locs
add_cells_to_pblock pblock_usbEngnSRM [get_cells [list usbEngine1/usbEngineSRAM]] \
-clear_locs
endgroup

See Also
• endgroup
• redo
• undo

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 894

Tcl Commands Listed Alphabetically

step
Step simulation to the next statement.

Syntax
step [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 895

Tcl Commands Listed Alphabetically

stop
Use within a condition to tell simulation to stop when a condition is true.

Syntax
stop [-quiet] [-verbose]

Returns
A "stop" in simulation is a pause and not a quit

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 896

Tcl Commands Listed Alphabetically

stop_gui
Close GUI.

Syntax
stop_gui [-verbose]

Returns
Nothing

Usage
Name Description

[-verbose] Suspend message limits during command execution

Categories
GUIControl

Description
Stops GUI mode and places the tool into Tcl mode, running in the Vivado Design Suite Tcl shell.
In Tcl mode, all commands must be entered as Tcl commands or through Tcl scripts.

Arguments
-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example stops and closes the GUI and places the tool into Tcl mode:
stop_gui

See Also
start_gui

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 897

Tcl Commands Listed Alphabetically

stop_hw_sio_scan
Stop hardware SIO scans.

Syntax
stop_hw_sio_scan [-quiet] [-verbose] hw_sio_scans

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_scans hardware SIO scans

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 898

Tcl Commands Listed Alphabetically

stop_vcd
Stop capturing VCD output (equivalent of $dumpoff verilog system task). The start_vcd TCL
command can be used to resume capturing VCD.

Syntax
stop_vcd [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Simulation

Description
Stop writing the simulation values to the current Value Change Dump (VCD) file. This suspends
the output of simulation information to the file until the process is resumed using the
start_vcdcommand.

This Tcl command models the behavior of the Verilog $dumpoff system task.

Note: You must execute the open_vcd command before using the stop_vcd command.

Nothing is returned by the command.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 899

Tcl Commands Listed Alphabetically

Examples
The following example stops writing simulation values to the current VCD file:
stop_vcd

See Also
• close_vcd
• open_vcd
• start_vcd

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 900

Tcl Commands Listed Alphabetically

swap_locs
Swap two locations.

Syntax
swap_locs [-quiet] [-verbose] aloc bloc

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

aloc First location (port/cell/site - should be of same type as
'bloc')

bloc Second location (port/cell/site - should be of same type
as 'aloc')

Categories
Floorplan

Description
Swaps the LOC constraints assigned to two similar logic elements. A logic element is an
element that can be placed onto a device resource on the FPGA.

Some DRC checking is performed when the swap_locs command is executed to ensure that the
two selected elements can in fact be assigned to their new locations. If the location of either
element is invalid for any reason, the swap_locs command will fail and an error will be returned.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 901

Tcl Commands Listed Alphabetically

aloc - (Required) The location of the first logic element to swap. This can be specified as a
port, a cell, or a device site.

bloc - (Required) The location of the second logic element to swap. This can be specified as a
port, a cell, or a device site. This must match the type specified by the aloc variable.

Examples
The following example swaps the instances assigned to the two specified device sites:
swap_locs [get_sites {OLOGIC_X2Y1}] [get_sites {OLOGIC_X2Y0}]

See Also
• get_cells
• get_ports
• get_sites

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 902

Tcl Commands Listed Alphabetically

synth_design
Synthesize a design using Vivado Synthesis and open that design.

Syntax
synth_design [-name arg] [-part arg] [-constrset arg] [-top arg]
[-include_dirs args] [-generic args] [-verilog_define args]
[-flatten_hierarchy arg] [-gated_clock_conversion arg]
[-directive arg] [-rtl] [-bufg arg] [-no_lc] [-fanout_limit arg]
[-mode arg] [-fsm_extraction arg] [-keep_equivalent_registers]
[-resource_sharing arg] [-control_set_opt_threshold arg] [-quiet]
[-verbose]

Returns
Design object

Usage
Name Description

[-name] Design name

[-part] Target part

[-constrset] Constraint fileset to use

[-top] Specify the top module name

[-include_dirs] Specify verilog search directories

[-generic] Specify generic parameters. Syntax: -generic = -generic
= ...

[-verilog_define] Specify verilog defines. Syntax: -verilog_define [=]
-verilog_define [=] ...

[-flatten_hierarchy] Flatten hierarchy during LUT mapping. Values: full, none,
rebuilt Default: rebuilt

[-gated_clock_conversion] Convert clock gating logic to flop enable. Values: off, on,
auto Default: off

[-directive] Synthesis directive. Values: default, runtimeoptimized
Default: default

[-rtl] Elaborate and open an rtl design

[-bufg] Max number of global clock buffers used by synthesis
Default: 12

[-no_lc] Disable LUT combining. Do not allow combining LUT pairs
into single dual output LUTs.

[-fanout_limit] Fanout limit Default: 10000

[-mode] The design mode. Values: default, out_of_context Default:
default

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 903

Tcl Commands Listed Alphabetically

Name Description

[-fsm_extraction] FSM Extraction Encoding. Values: off, one_hot, sequential,
johnson, gray, auto Default: auto

[-keep_equivalent_registers] Prevents registers sourced by the same logic from being
merged. (Note that the merging can otherwise be
prevented using the synthesis KEEP attribute)

[-resource_sharing] Sharing arithmetic operators. Value: auto, on, off Default:
auto

[-control_set_opt_threshold] Threshold for synchronous control set optimization to
lower number of control sets. Default: 1

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Tools

Description
Directly launches the Vivado synthesis engine to compile and synthesize a design in either
Project Mode or Non-Project Mode in the Vivado Design Suite. Refer to the Vivado Design
Suite User Guide: Design Flows Overview (UG892) for a complete description of Project Mode
and Non-Project Mode.

Vivado synthesis can be launched directly with the synth_design command in the Non-Project
Mode of the Vivado Design Suite.

In Project Mode, synthesis should be launched from an existing synthesis run created with the
create_run command. The run is launched using the launch_runs command, and this in
turn calls synth_design for Vivado synthesis.

Arguments
-name arg - (Optional) The name of the design to open when the synth_design command is
complete.

-part arg - (Optional) The target Xilinx device to use for the design. If the part is not specified
the default part assigned to the project will be used.

-constrset arg - (Optional) The name of the XDC constraints to use when synthesizing the
design. Vivado synthesis requires the use of XDC, and does not support UCF. The -constrset
argument must refer to a constraint fileset that exists. It cannot be used to create a new fileset.
Use the create_fileset command for that purpose.

-top arg - (Optional) The top module of the design hierarchy.

Note If you use the find_top command to define the -top option, be sure to specify only one
top if find_top returns multiple prospects. See the examples below.

-include_dirs args - (Optional) The directories to search for Verilog `include files.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 904

Tcl Commands Listed Alphabetically

-generic name=value - (Optional) The value of a VHDL generic entity, or of a Verilog parameter.
The syntax for the -generic argument is name=value, specifying the name of the generic or
parameter, and the value to be assigned. Repeat the -generic argument multiple times in the
synth_design command for each generic or parameter value to be defined:

synth_design -generic width=32 -generic depth=512 ...

Important! When specifying binary values for boolean or std_logic VHDL generic types, you
must specify the value using the Verilog bit format, rather than standard VHDL format:
0 = 1'b0
01010000 = 8'b01010000

-verilog_define name=text - (Optional) Set values for Verilog `define, and `ifdef, statements.
The syntax for the -verilog_define argument is name=text, specifying the name of the define
directive, and the value to be assigned. The argument can be reused multiple times in a single
synth_design command.

synth_design -verilog_define name=value -verilog_define name=value ...

-flatten_hierarchy arg - (Optional) Flatten the hierarchy of the design during LUT mapping.
The valid values are:

• rebuilt - This will attempt to rebuild the original hierarchy of the RTL design after synthesis
has completed. This is the default setting.

• full - Flatten the hierarchy of the design.
• none - Do not flatten the hierarchy of the design. This will preserve the hierarchy of the

design, but will also limit the design optimization that can be performed by the synthesis
tool.

-gated_clock_conversion arg - (Optional) Convert clock gating logic to utilize the flop enables
where available. This optimization can eliminate logic and simplify the netlist. Valid values are
off, on, auto. The default setting is off. This optimization can also be performed on the
synthesized netlist through the use of the opt_design command.

-directive [default | runtimeoptimized] - (Optional) Direct synthesis to achieve specific
design objectives. Only one directive can be specified for a single synth_design command,
and values are case-sensitive. Valid values are default and runtimeoptimized. The latter
indicates that fewer timing optimizations will be performed, and some RTL optimizations
will not be performed.

-rtl - (Optional) Elaborate the HDL source files and open the RTL design.

-bufg arg - (Optional) Specify the maximum number of global clock buffers to be used during
synthesis. Specify a value >= 1, which should not exceed the BUFG count on the target device.
The default value is 12.

-no_lc - (Optional) Disable the default LUT combining feature of Vivado synthesis.

-fanout_limit arg - (Optional) Limit the maximum net fanout applied during synthesis. Specify
a value >= 1. The default value is 10,000.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 905

Tcl Commands Listed Alphabetically

-mode [default | out_of_context] - (Optional) Out of Context mode specifies the synthesis of
a module for use in hierarchical design. This mode turns off I/O buffer insertion for the module,
and marks it as OOC, to facilitate its use in the HD flow. Refer to the Vivado Design Suite User
Guide: Hierarchical Design (UG905) for more information.

-fsm_extraction arg - (Optional) Finite state machine (FSM) encoding is disabled (off) in
Vivado synthesis by default. This option enables state machine identification and specifies the
type of encoding that should be applied. Valid values are: off, one_hot, sequential, johnson,
gray, auto. Automatic encoding (auto) allows the tool to choose the best encoding for each
state machine identified. In this case, the tool may use different encoding styles for different
FSMs in the same design.

-keep_equivalent_registers - (Optional) Works like the synthesis KEEP attribute to prevent
the merging of registers during optimization.

-resource_sharing arg - (Optional) Share arithmetic operators like adders or subtractors
between different signals, rather than creating new operators. This can result in better area
utilization when it is turned on. Valid values are: auto, on, off. The default is auto.

-control_set_opt_threshold arg - (Optional) Threshold for synchronous control set optimization
to decrease the number of control sets. Specifies how large the fanout of a control set should
be before it starts using it as a control set. For example, if -control_set_opt_threshold is set to
10, a synchronous reset that only fans out to 3 registers would be moved to the D input logic,
rather than using the reset line of a register. However, if set to 1, then the reset line is used.
This option is specified as an integer greater than or equal to 1; the default is 1.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example uses the set_property command to define the target part for the active
project, then elaborates the source files and opens an RTL design:
set_property part xc7vx485tffg1158-1 [current_project]
synth_design -rtl -name rtl_1

Note The default source set, constraint set, and part will be used in this example.

The following example uses the find_top command to define the top of the current design for
synthesis:
synth_design -top [lindex [find_top] 0]

Note Since find_top returns multiple possible candidates, choosing index 0 chooses the best
top candidate for synthesis.

The following example runs synthesis on the current design, defining the top module and the
target part, and specifying no flattening of the hierarchy. The results of the synthesis run
are then opened in a netlist design:
synth_design -top top -part xc7k70tfbg676-2 -flatten_hierarchy none
open_run synth_1 -name netlist_1

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 906

Tcl Commands Listed Alphabetically

See Also
• create_run
• current_design
• current_project
• find_top
• open_run
• opt_design
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 907

Tcl Commands Listed Alphabetically

tie_unused_pins
Tie off unused cell pins.

Syntax
tie_unused_pins [-of_objects args] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-of_objects] tie unused pins of specified cell(s)

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Netlist

Description
Tie up or down the unconnected pins of cells in the open synthesized or implemented design.
The command uses an internal process to identify whether a pin should be tied up or down.

This command is intended to tie up or down the unconnected pins of cells added to the
netlist with the create_cell command.

Arguments
-of_objects args - (Optional) Currently ignored.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 908

Tcl Commands Listed Alphabetically

Example
The following example ties the unused pins of cells up or down, depending on their usage:
tie_unused_pins

See Also
• create_cell
• create_pin
• get_cells
• get_pins

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 909

Tcl Commands Listed Alphabetically

undo
Un-do previous command.

Syntax
undo [-list] [-quiet] [-verbose]

Returns
With -list, the list of undoable tasks

Usage
Name Description

[-list] Show a list of undoable tasks

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
GUIControl

Description
Undo a prior command. This command can be used repeatedly to undo a series of commands.

If a group of commands has been created using the startgroup and endgroup commands, this
command will undo that group as a sequence. The undo command will start at the endgroup
command and continue to undo until it hits the startgroup command.

If you undo a command, and then change your mind, you can redo the command.

Arguments
-list - (Optional) Reports the list of commands that can be undone. As you execute the undo
command, the tool will step backward through this list of commands.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 910

Tcl Commands Listed Alphabetically

Examples
The following example returns a list of commands that you can undo:
undo -list

See Also
• redo
• startgroup
• endgroup

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 911

Tcl Commands Listed Alphabetically

ungroup_bd_cells
Move the group of cells inside a hierarchy cell to its parent cell, and then remove the
hierarchical cell. The connections between these cells are maintained; the connections between
these cells and other cells are maintained through crossing hierarchy cell.

Syntax
ungroup_bd_cells [-prefix arg] [-quiet] [-verbose] [cells ...]

Returns
0 if success

Usage
Name Description

[-prefix] Prefix name to add to cells

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[cells] Match engine names against cell names Default: *

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 912

Tcl Commands Listed Alphabetically

unhighlight_objects
Unhighlight objects that are currently highlighted.

Syntax
unhighlight_objects [-color_index arg] [-rgb args] [-color arg]
[-quiet] [-verbose] [objects]

Returns
Nothing

Usage
Name Description

[-color_index] Color index

[-rgb] RGB color index list

[-color] Valid values are red green blue magenta yellow cyan and
orange

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] Objects to unhighlight

Categories
GUIControl

Description
This command is for use in GUI mode. This command unhighlights the specified object or
objects that were previously highlighted by the highlight_objects command.

This command supports the color options as specified below. These options can be used to
unhighlight all objects currently highlighted in the specified color. See the example below.

Arguments
-color_index arg - (Optional) Specify the color index to unhighlight. The color index is defined
by the Highlight category of the Tools > Options > Themes command. Refer to the Vivado
Design Suite User Guide: Using the IDE (UG893) for more information on setting themes.

-rgb args - (Optional) Specify the color to unhighlight in the form of an RGB code specified as
{R G B}. For instance, {255 255 0} specifies the color yellow.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 913

Tcl Commands Listed Alphabetically

-color arg - (Optional) Specify the color to unhighlight. Supported highlight colors are red,
green, blue, magenta, yellow, cyan, and orange.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) Specifies one or more objects to be unhighlighted. If no objects are
specified, all highlighted objects of the specified color will be unhighlighted. If no color is
specified, all highlighted objects will be unhighlighted.

Examples
The following example unhighlights the selected objects:
unhighlight_objects [get_selected_objects]

The following example unhighlights all objects currently highlighted in the color yellow:
unhighlight_objects -color yellow

See Also
• get_selected_objects
• highlight_objects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 914

Tcl Commands Listed Alphabetically

unmark_objects
Unmark items that are currently marked.

Syntax
unmark_objects [-rgb args] [-color arg] [-quiet] [-verbose] [objects]

Returns
Nothing

Usage
Name Description

[-rgb] RGB color index list

[-color] Valid values are red green blue magenta yellow cyan and
orange

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] Objects to unmark

Categories
GUIControl

Description
Unmarks the specified object or objects that were previously marked by the mark_objects
command. This command is for use in GUI mode.

This command supports the color options as specified below. However, these options are not
necessary to unmark a specific object, but can be used to unmark all objects currently marked
in the specified color. See the example below.

Arguments
-rgb args - (Optional) The color to unmark in the form of an RGB code specified as {R G B}. For
instance, {255 255 0} specifies the color yellow.

-color arg - (Optional) The color to unmark. Supported highlight colors are red, green, blue,
magenta, yellow, cyan, and orange.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 915

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) One or more objects to be unmarked. If no objects are specified, all marked
objects of the specified color will be unmarked. If no color is specified, all marked objects will
be unmarked.

Examples
The following example unmarks the selected objects:
unmark_objects [get_selected_objects]

The following example unmarks all objects currently marked in the color yellow:
unmark_objects -color yellow

See Also
• get_selected_objects
• mark_objects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 916

Tcl Commands Listed Alphabetically

unplace_cell
Unplace one or more instances.

Syntax
unplace_cell [-quiet] [-verbose] cell_list ...

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

cell_list a list of cells to be unplaced

Categories
Floorplan

Description
Unplace the specified cells from their current placement site.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

cell_list - (Required) Specifies a list of one or more cells to be unplaced from the device.

Examples
The following example unplaces the specified cell:
unplace_cell {fftEngine/fftInst/ingressLoop[6].ingressFifo/buffer_fifo/i_4773_12897}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 917

Tcl Commands Listed Alphabetically

The following example unplaces multiple cells:
unplace_cell {div_cntr_reg_inferredi_4810_15889 div_cntr_reg[0] div_cntr_reg[1]}

See Also
• create_cell
• place_cell
• remove_cell

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 918

Tcl Commands Listed Alphabetically

unselect_objects
Unselect items that are currently selected.

Syntax
unselect_objects [-quiet] [-verbose] [objects]

Returns
Nothing

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] Objects to unselect

Categories
GUIControl

Description
Unselects the specified object or objects that were previously selected by the select_objects
command.

This command will unselect both primary and secondary selected objects. The selection of
secondary objects is controlled through the use of Selection Rules defined in the Tools >
Options command. Refer to the Vivado Design Suite User Guide: Using the IDE (UG893) for
more information on Setting Selection Rules.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) One or more objects to be unselected. If no objects are specified, all
selected objects will be unselected.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 919

Tcl Commands Listed Alphabetically

Examples
The following example unselects the specified site on the device:
unselect_objects [get_sites SLICE_X56Y214]

The following example unselects all currently selected objects:
unselect_objects

See Also
• get_selected_objects
• select_objects

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 920

Tcl Commands Listed Alphabetically

update_compile_order
Updates a fileset compile order and possibly top based on a design graph.

Syntax
update_compile_order [-fileset arg] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-fileset] Fileset to update based on a design graph

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
Update the compile order of the design sources in the current project, or in the specified fileset.

Arguments
-fileset arg - Update the compile order of the specified fileset.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example updates the compile order of the source files in the simulation fileset:
update_compile_order -fileset sim_1

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 921

Tcl Commands Listed Alphabetically

See Also
• add_files
• import_files

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 922

Tcl Commands Listed Alphabetically

update_design
Update the netlist of the current design.

Syntax
update_design -cells args [-strict] [-from_file arg]
[-from_design arg] [-from_cell arg] [-black_box] [-quiet]
[-verbose]

Returns
Nothing

Usage
Name Description

-cells List of cells to update with a new sub-netlist.

[-strict] Require exact ports match for replacing cell (otherwise
extra ports are allowed).

[-from_file] Name of the file containing the new sub-netlist.

[-from_design] Name of the an open netlist design containing the new
sub-netlist.

[-from_cell] Name of cell in the from_design which defines the new
sub-netlist.

[-black_box] Update the cell to a black_box.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Description
This command updates the in-memory design, replacing the current netlist in the specified
cells with a netlist from a specified file, from another open design, from a specified cell of a
design, or convert the cells to a black box cell. The command can update a single instance, or a
list of instances, or can update all instances of a master cell.

Only the in-memory view of the design is changed by the new netlist. You must save the
design using the write_checkpoint command, or any updates will be lost when you close
the project or exit the tool.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 923

Tcl Commands Listed Alphabetically

Arguments
-cells args - (Required) Defines a list of hierarchical instance names, or cell objects, to update
with the specified netlist. To update all instances of a cell, use the get_cells command with the
-filter argument to specify the master cell:
get_cells -hier -filter {ref_name==aMasterCellName} <cell_name>

-strict - (Optional) Require the new netlist to have exactly the same ports as cells it is imported
into. The tool will perform some checking on the new netlist to insure that the specified netlist
has all the ports required for the specified cells. However, additional ports are also permitted,
unless the -strict option is used.

-from_file - (Optional) Name of a file containing the new netlist. The netlist can be in the form
of a structured Verilog netlist (.v) or an EDIF netlist (.edf) file.

Note -from_file and -from_design are mutually exclusive

-from_design - (Optional) Allows you to import the netlist from another open design in the
current project. The design must be opened in the current tool invocation, and not a separate
process.

-from_cell - (Optional) Name of a cell in the design specified with -from_design. The netlist
from the specified cell will be used to update the cells in the current design. By default the tool
will use the top-level cell of the design specified in -from_design.

Note This option can only be used with -from_design.

-black_box - (Optional) Update the specified cells to a black box cell.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example updates the netlist in the arnd4 cell with the specified Verilog netlist:
update_design -cells arnd4 -from_file C:/Data/round_4.v

The following example updates the arnd4 cell in the current design with the netlist from the
same cell in the specified design:
update_design -cells arnd4 -from_design netlist_2 -from_cell arnd4

See Also
• get_cells
• write_checkpoint

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 924

Tcl Commands Listed Alphabetically

update_files
Update files in the project with same named files from the files or directories specified.

Syntax
update_files [-from_files args] [-norecurse] [-to_files args]
[-filesets args] [-force] [-report_only] [-quiet] [-verbose]

Returns
List of the files updated

Usage
Name Description

[-from_files] New files and directories to use for updating

[-norecurse] Recursively search in specified directories

[-to_files] Existing project files and directories to limit updates to

[-filesets] Fileset name

[-force] Overwrite imported files in the project, even if read-only,
if possible

[-report_only] Do no actual file updates, but report on updates that
otherwise would have been made

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 925

Tcl Commands Listed Alphabetically

update_ip_catalog
Update the IP Catalog. Before executing this command optionally use the following to set
repository paths:'set_property ip_repo_paths [current_fileset]'.

Syntax
update_ip_catalog [-rebuild] [-add_ip arg] [-delete_ip arg]
-delete_mult_ip args [-repo_path arg] [-quiet] [-verbose]

Returns
True for success

Usage
Name Description

[-rebuild] Trigger a rebuild of the specified repository's index file or
rebuild all repositories if none specified

[-add_ip] Add the specified IP into the specified repository Values:
Either a path to the IP's component.xml or to a zip file
containing the IP

[-delete_ip] Remove the specified IP from the specified repository
Values: Either a path to the IP's component.xml or its VLNV

-delete_mult_ip Remove the specified IPs from the specified repository
Values: A list of IPs; either paths to the component.xml
files or their VLNVs

[-repo_path] Used in conjunction with rebuild, add_ip, delete_ip or
delete_mult_ip to specify the path of the repository on
which to operate

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
IPFlow

Description
Update the IP Catalog associated with the current design.

The default IP catalog is found in the installation hierarchy of the tool. However, you can also
add new IP repository paths to the IP catalog using the set_property command to define the
IP_REPO_PATHS property of the current Source fileset.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 926

Tcl Commands Listed Alphabetically

The Xilinx IP catalog, or repository, is located in the installation hierarchy of the software
release being used. You can also add custom IP to the repository by using the set_property
command to set the IP_REPO_PATHS property on the source fileset to point to the locations of
custom IP, as shown in the example below.

Arguments
-rebuild - (Optional) Rebuild the complete IP Catalog index, or just rebuild the index for the
IP repository specified by the -repo_path.

-add_ip arg - (Optional) Add an individual IP core to the specified IP repository. This argument
requires the -repo_path argument to also be specified. The IP is specified as a path to the
component.xml of the IP, or the path to a zip file containing the IP.

-delete_ip arg - (Optional) Remove an IP core from the specified IP repository. This argument
requires the -repo_path argument to also be specified. The IP is specified as a path to the
component.xml of the IP, or as the VLNV property of the IP. The VLNV property refers to the
Vendor:Library:Name:Version string which identifies the IP in the catalog.

-repo_path arg - (Optional) Specify the directory name of an IP repository to add to or delete
from, or to rebuild the index for.

Note The IP repository must have been previously added to the current Source fileset using the
set_property command. See the example below

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example sets the IP_REPO_PATHS property of the current Source fileset, to add an
IP repository, then rebuilds the IP catalog index for the whole IP catalog:
set_property ip_repo_paths C:/Data/IP_LIB [current_fileset]
update_ip_catalog -rebuild

See Also
• create_ip
• import_ip
• generate_target
• validate_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 927

Tcl Commands Listed Alphabetically

update_macro
Update a macro.

Syntax
update_macro [-absolute_grid] [-quiet] [-verbose] macro rlocs

Returns
Nothing

Usage
Name Description

[-absolute_grid] Use absolute grid for relative locations

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
macro Macro to update

rlocs a list interleaved instances and site names

Categories
XDC

Description
Populate a previously created macro with leaf cells and relative placements.

A macro is made up of primitive, or leaf-level logic cells, and their associated connections,
positioned in a placement grid. The specified relative locations, or rlocs, can be based on a
relative grid, or on an absolute grid, called an RPM_GRID. Refer to the Vivado Design Suite User
Guide: Implementation (UG904) for more information on absolute and relative placement grids

A cell can only belong to a one macro. If you attempt to assign a leaf-level cell to multiple
macros, the Vivado tool will return an error. If you attempt to assign a non-primitive cell to a
macro, the tool will return an error.

To change the contents of an existing macro, you must delete the macro with delete_macro,
recreate it with create_macro, and update it with new contents. You cannot simply overwrite or
modify an existing macro.

Arguments
-absolute_grid - (Optional) Use -absolute_grid to indicate that the rlocs are specified in the
absolute RPM_GRID.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 928

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

macro - (Required) Specify the name of the macro to update.

rlocs - (Required) Specify the leaf-cells to include in the macro, and their relative locations
(RLOCs). When -absolute_grid is specified, the location is based on actual device coordinates
instead of relative locations. The cells and RLOCs are specified as name-value pairs, with
multiple leaf-cells and RLOCs assigned to a single macro as follows:
{cell0 XmYn cell1 XmYn ... cellN XmYn}

Where:

• m = An integer representing the relative or absolute X coordinate of the preceding cell.

• n = An integer representing the relative or absolute Y coordinate of the preceding cell.

• Cell coordinates are relative to each other, unless the -absolute_grid option has been
specified.

• The relative coordinates are based on a theoretical array of Slices, located relative to each
other.

• The absolute coordinates are determined by the RPM_X and RPM_Y properties from actual
Slices of the target device. These can be determined by the report_property command for
selected sites.

Examples
The following example creates a macro named usbMacro0, sets the current instance to the
usbEngine0/u0 module, assigns three cells to the macro, with a relative placement for each
cell to have two of them placed inside the same Slice, and the third placed in a vertically
adjacent Slice:
create_macro usbMacro0
current_instance usbEngine0/u0
update_macro usbMacro0 {rx_active_reg X0Y0 rx_err_reg X0Y0 rx_valid_reg X0Y1}

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 929

Tcl Commands Listed Alphabetically

The following example creates a macro named usbMacro1, assigns three cells to the macro
using the hierarchical path to the leaf-cell, with absolute coordinates specified for the cells in
the macro:
create_macro usbMacro1
set Site1 [get_sites SLICE_X8Y77]
set Site2 [get_sites SLICE_X9Y77]
set Site3 [get_sites SLICE_X8Y78]
set RPM1 X[get_property RPM_X$Site1]Y[get_property RPM_Y$Site1]
set RPM2 X[get_property RPM_X$Site2]Y[get_property RPM_Y$Site2]
set RPM3 X[get_property RPM_X$Site3]Y[get_property RPM_Y$Site3]
update_macro usbMacro1 -absolute_grid "usbEngine1/u0/rx_active_reg $RPM1 \
usbEngine1/u0/rx_err_reg $RPM2 usbEngine1/u0/rx_valid_reg $RPM3"

Note In the prior example, notice the use of Tcl variables to capture the Sites of interest, and
extract the RPM_X and RPM_Y properties of those sites for use in the update_macro command.
Also notice the use of quotes ("") instead of curly braces ({}) in the update_macro command.
This is to allow the Tcl shell to perform variable substitution of the command. Refer to the
Vivado Design Suite User Guide: Using Tcl Scripting (UG894) for more information on variables
and variable substitution

This command reports the properties on the usbMacro1 macro to see the absolute grid
coordinates assigned to the cells in the macro:
report_property -all [get_macros usbMacro1]

See Also
• create_macro
• delete_macros
• get_macros
• get_property
• get_sites
• place_design
• report_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 930

Tcl Commands Listed Alphabetically

update_timing
Update timing.

Syntax
update_timing [-full] [-quiet] [-verbose]

Returns
Nothing

Usage
Name Description

[-full] Perform a full timing update instead of an incremental one

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Timing

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 931

Tcl Commands Listed Alphabetically

upgrade_ip
Upgrade a configurable IP to a later version.

Syntax
upgrade_ip [-srcset arg] [-latest arg] [-vlnv arg] [-quiet] [-verbose]
[objects ...]

Returns
List of files that were upgraded

Usage
Name Description

[-srcset] Source set name

[-latest] Upgrade the IP to the latest version

[-vlnv] VLNV string for the Catalog IP to which the IP will be
upgraded

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[objects] IP to be upgraded

Categories
IPFlow

Description
This command upgrades the specified IP cores from an older version to the latest version in
the IP catalog.

You can only upgrade legacy IP that explicitly supports upgrading. The UPGRADE_VERSIONS
property on the ipdef object indicates if there are upgrade version for an IP core.

Note Not all legacy IP support upgrading, and native IP cannot be upgraded

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 932

Tcl Commands Listed Alphabetically

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

objects - (Optional) Specifies which legacy IP cores should be upgraded.

Examples
The following example upgrades all IP cores in the current project to the latest version:
upgrade_ip

See Also
• create_ip
• import_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 933

Tcl Commands Listed Alphabetically

upload_hw_ila_data
Stop capturing. Upload any captured hardware ILA data.

Syntax
upload_hw_ila_data [-quiet] [-verbose] [hw_ilas ...]

Returns
Hardware ILA data objects

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_ilas] List of hardware ILA objects. Default: Current hardware ILA

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 934

Tcl Commands Listed Alphabetically

validate_bd_design
Run Parameter Propagation for specified design or for a specific cell.

Syntax
validate_bd_design [-design arg] [-cell arg] [-quiet] [-verbose]

Returns
TCL_OK, TCL_ERROR if failed

Usage
Name Description

[-design] Design name. If not specified, run parameter propagation
on current design

[-cell] Cell name. If not specified, run parameter propagation on
whole design

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 935

Tcl Commands Listed Alphabetically

validate_ip
This command applies any pending set_property commands and returns parameter validation
messages, if any exist.

Syntax
validate_ip [-save_ip] [-quiet] [-verbose] [ips]

Returns
Nothing

Usage
Name Description

[-save_ip] Write IP files on the disk

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[ips] IPs to be validated

Categories
IPFlow

Description
Perform DRC check on IP to ensure that it is properly constructed. This command returns 1
when all IPs have been validated, or 0 when there is a problem.

Arguments
-save_ip - (Optional) Updates the existing IP files after validation. No new files are created but
the XCI and BOM files for the core are updated.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

ips - (Optional) Specifies the set of IP cores to be validated.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 936

Tcl Commands Listed Alphabetically

Examples
The following example validates the IPs in the current project, and updates the persistent
representation of the IP.
validate_ip -save_ip [get_ips]

See Also
• create_ip
• generate_target
• upgrade_ip
• update_ip_catalog
• import_ip

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 937

Tcl Commands Listed Alphabetically

version
Returns the build for Vivado and the build date.

Syntax
version [-short] [-quiet] [-verbose]

Returns
Vivado version

Usage
Name Description

[-short] Return only the numeric version number

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories
Report

Description
Returns the version number of the Xilinx® tool. This includes the software version number,
build number and date, and copyright information.

Arguments
-short - (Optional) Returns the version number of the software only.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example returns only the version number for the software:
version -short

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 938

Tcl Commands Listed Alphabetically

wait_on_hw_ila
Wait until all hardware ILA data has been captured.

Syntax
wait_on_hw_ila [-timeout arg] [-quiet] [-verbose] [hw_ilas ...]

Returns
Nothing

Usage
Name Description

[-timeout] Timeout in minutes. Decimal value allowed Default: No
timeout

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[hw_ilas] hardware ILA objects. Default: Current hardware ILA

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 939

Tcl Commands Listed Alphabetically

wait_on_hw_sio_scan
Wait until hardware VIO scan has completed.

Syntax
wait_on_hw_sio_scan [-timeout arg] [-quiet] [-verbose] hw_sio_scans ...

Returns
Nothing

Usage
Name Description

[-timeout] Timeout in minutes. Decimal value allowed Default: No
timeout

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

hw_sio_scans List of hardware SIO scan objects.

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 940

Tcl Commands Listed Alphabetically

wait_on_run
Block execution of further Tcl commands until the specified run completes.

Syntax
wait_on_run [-timeout arg] [-quiet] [-verbose] run

Returns
Nothing

Usage
Name Description

[-timeout] Maximum time to wait for the run to complete (in minutes)
Default: -1

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
run Run to wait on

Categories
Project

Description
Blocks the execution of Tcl commands until the specified run completes, or until the specified
amount of time has elapsed.

The wait_on_run command can be used for runs that have been launched. If the specified run
has not been launched when the wait_on_run command is used, you will get an error. Runs
that have already completed do not return an error.

Note This command is used for running the tool in batch mode or from Tcl scripts. It is ignored
when running interactively from the GUI.

Arguments
-timeout arg - (Optional) The time in minutes that the wait_on_run command should wait
until the run finishes. This allows you to define a period of time beyond which the tool
should resume executing Tcl commands even if the specified run has not finished execution.
The default value of -1 is used if timeout is not specified, meaning that there is no limit to
the amount of time the tool will wait for the run to complete.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 941

Tcl Commands Listed Alphabetically

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

run - (Required) The name of the run to wait on.

Examples
The following example launches the impl_1 run, and then waits for the specified run to
complete, or to wait for one hour, whichever occurs first:
launch_runs impl_1
wait_on_run -timeout 60 impl_1

See Also
launch_runs

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 942

Tcl Commands Listed Alphabetically

write_bd_tcl
Export the current design to a Tcl file on disk.

Syntax
write_bd_tcl [-quiet] [-verbose] name

Returns
TCL_OK, TCL_ERROR if failed

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution
name Name exported Tcl file

Categories
IPIntegrator

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 943

Tcl Commands Listed Alphabetically

write_bitstream
Write a bitstream for the current design.

Syntax
write_bitstream [-force] [-raw_bitfile] [-no_binary_bitfile]
[-mask_file] [-logic_location_file] [-bin_file]
[-reference_bitfile arg] [-quiet] [-verbose] file

Returns
Nothing

Usage
Name Description

[-force] Overwrite existing file

[-raw_bitfile] Write raw bit file (.rbt)

[-no_binary_bitfile] Do not write binary bit file (.bit)

[-mask_file] Write mask file (.msk)

[-logic_location_file] Write logic location file (.ll)

[-bin_file] Write binary bit file without header (.bin)

[-reference_bitfile] Reference bitfile to be used for generating partial bitstream

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file The name of the .bit file to generate

Categories
FileIO

Description
Writes a bitstream file for the current project. This command must be run on an Implemented
Design. The bitstream written will be based on the open Implemented Design.

write_bitstream [-force] [-raw_bitfile] [-no_binary_bitfile] [-mask_file] [-logic_location_file]
[-bin_file] [-reference_bitfile <arg>] [-quiet] [-verbose] <file>

Arguments
-force - (Optional) Force the overwrite of an existing bitstream file of the same name.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 944

Tcl Commands Listed Alphabetically

-raw_bitfile - (Optional) Write a raw bit file (.rbt) which contains the same information as the
binary bitstream file, but is in ASCII format. The output file will be named <file>.rbt .

-no_binary_bitfile - (Optional) Do not write the binary bitstream file (.bit). Use this command
when you want to generate the ASCII bitstream or mask file, or to generate a bitstream report,
without also generating the binary bitstream file.

-mask_file - (Optional) Write a mask file (.msk), which has mask data where the configuration
data is in the bitstream file. This file determines which bits in the bitstream should be compared
to readback data for verification purposes. If a mask bit is 0, that bit should be verified against
the bitstream data. If a mask bit is 1, that bit should not be verified. The output file will be
named <file>.msk .

-logic_location_file - (Optional) Creates an ASCII logic location file (.ll) that shows the bitstream
position of latches, flip-flops, LUTs, Block RAMs, and I/O block inputs and outputs. Bits are
referenced by frame and bit number in the location file to help you observe the contents of
FPGA registers.

-bin_file - (Optional) Creates a binary file (.bin) containing only device programming data,
without the header information found in the standard bitstream file (.bit).

-reference_bitfile <arg> - (Optional) Read a reference bitstream file, and output an incremental
bitstream file containing only the differences from the specified reference file. This partial
bitstream file can be used for incrementally programming an existing device with an updated
design.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The name of the bitstream file (.bit) to write. If you do not specify a file
extension, the .bit extension will be added by the tool, but you cannot specify an extension
other than .bit .

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example writes a bitstream file of the specified name:
write_bitstream design1.bit

The following example writes both the binary and ASCII forms of the bitstream:
write_bitstream -raw_bitfile C:/Data/design

Note The appropriate file extension will be added by the tool

See Also
launch_runs

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 945

Tcl Commands Listed Alphabetically

write_bmm
Write a bmm file.

Syntax
write_bmm [-force] [-quiet] [-verbose] file

Returns
The name of the bmm file

Usage
Name Description

[-force] Overwrite existing checkpoint file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Design bmm file Values: A filename with alphanumeric
characters and .bmm extension.

Categories
FileIO

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 946

Tcl Commands Listed Alphabetically

write_checkpoint
Write a checkpoint of the current design.

Syntax
write_checkpoint [-force] [-quiet] [-verbose] file

Returns
The name of the checkpoint file

Usage
Name Description

[-force] Overwrite existing checkpoint file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Design checkpoint file Values: A filename with alphanumeric
characters and .dcp extension.

Categories
FileIO

Description
Saves the design at any point in the design process so that you can quickly import it back into
the tool as needed. A design checkpoint (DCP) can contain the netlist, the constraints, and any
placement and routing information from the implemented design.

Use the read_checkpoint command to import a checkpoint file.

Arguments
-force - (Optional) Overwrite an existing checkpoint file of the same name if it already exists.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 947

Tcl Commands Listed Alphabetically

file - (Required) The name of the checkpoint file to be created. A .dcp extension will be added
if no extension is specified.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example creates the specified checkpoint file, overwriting a file of the same
name if one already exists:
write_checkpoint C:/Data/checkpoint1 -force

Note The tool will add the .dcp extension to the specified file name, and will overwrite an
existing checkpoint1.dcp file

See Also
read_checkpoint

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 948

Tcl Commands Listed Alphabetically

write_chipscope_cdc
Export nets that are connected to debug ports.

Syntax
write_chipscope_cdc [-quiet] [-verbose] file

Returns
Name of the output file

Usage
Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file ChipScope CDC file name

Categories
FileIO, ChipScope

Description
Writes a ChipScope Definition and Connection (CDC) file containing the debug cores, ports,
and signals defined in the current project.

ChipScope debug cores are added to a project through the use of the create_debug_core
command. The CDC file stores information about source files, destination files, core parameters,
and core settings for the ChipScope Pro Analyzer.

You can import this CDC file into the ChipScope Analyzer to automatically set up the net
names on the ILA core data and trigger ports.

Arguments
-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 949

Tcl Commands Listed Alphabetically

file - (Required) The CDC file name to be written.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example writes a CDC file called bft.cdc:
write_chipscope_cdc bft.cdc

The written CDC file will include signals to be debugged by ChipScope as well as the clock
domain for the signals, and other settings appropriate for use in ChipScope.

See Also
create_debug_core

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 950

Tcl Commands Listed Alphabetically

write_csv
Export package pin and port placement information.

Syntax
write_csv [-force] [-quiet] [-verbose] file

Returns
Name of the output file

Usage
Name Description

[-force] Overwrite existing file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Pin Planning CSV file

Categories
FileIO

Description
Writes package pin and port placement information into a comma separated value (CSV) file.

The specific format and requirements of the CSV file are described in the Vivado Design Suite
User Guide: I/O and Clock Planning (UG899).

Arguments
-force - (Optional) Overwrite the CSV file if it already exists.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 951

Tcl Commands Listed Alphabetically

file - (Required) The filename of the CSV file to write.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example exports a CSV file from the current project:
write_csv C:/Data/pinList.csv

See Also
read_csv

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 952

Tcl Commands Listed Alphabetically

write_debug_probes
Write debug probes to a file.

Syntax
write_debug_probes [-force] [-quiet] [-verbose] file

Returns
Name of the output file

Usage
Name Description

[-force] Overwrite existing file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Debug probes file name (default extension is .ltx)

Categories
FileIO

Description
Writes an ILA probes file that contains information about the nets that you probed in the current
design using the ILA v2.0 core. The debug probes data file typically has a .ltx file extension.

ILA cores are added to the design using the create_debug_core command, and connected to
nets in your design using the connect_debug_core command.

The specific information and use of the debug probes file is described in the Vivado Design
Suite User Guide: Programming and Debugging (UG908).

Arguments
-force - (Optional) Overwrite the specified file if it already exists.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 953

Tcl Commands Listed Alphabetically

file - (Required) The file name of the debug probes file to write.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example write a debug probe file from the current design:
write_debug_probes C:/Data/designProbes.ltx

See Also
• create_debug_core
• implement_debug_core

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 954

Tcl Commands Listed Alphabetically

write_edif
Export the current netlist as an EDIF file.

Syntax
write_edif [-pblocks args] [-cell arg] [-force] [-security_mode arg]
[-quiet] [-verbose] file

Returns
The name of the output file or directory

Usage
Name Description

[-pblocks] Export netlist for these pblocks (not valid with -cell)

[-cell] Export netlist for this cell (not valid with -pblocks)

[-force] Overwrite existing file

[-security_mode] If set to 'all', and some of design needs encryption then
whole of design will be written to a single encrypted file
Default: multifile

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Output file (directory with -pblocks or -cell)

Categories
FileIO

Description
Writes the current netlist as an EDIF file, or outputs the contents of specific Pblocks or
hierarchical cells as EDIF netlist files.

In the case of either the -pblock or -cell argument being used, this argument specifies a
directory name where the EDIF netlist files for each Pblock or cell will be written. The EDIF
netlist file will be named after the Pblock or cell. If the directory specified does not exist,
the tool will return an error.

Arguments
-pblocks arg - (Optional) Instructs the tool to output the contents of the specified Pblocks as
EDIF netlist files. The contents of each Pblock will be written to a separate EDIF file.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 955

Tcl Commands Listed Alphabetically

-cell arg - (Optional) Instructs the tool to output the contents of the specified hierarchical cell
as EDIF netlist files. Only one cell can be specified for output.

Note The -pblock and -cell arguments are mutually exclusive. Although they are optional
arguments, only one may be specified at one time.

-force - (Optional) Overwrite the EDIF file if it already exists.

-security_mode [multifile | all] - (Optional) Write a multiple EDIF files when encyrpted IP
is found in the design, or write a single file.

• multifile - This is the default setting. By default the command writes out the full design
netlist to the specified file. However, if the design contains secured IP, it creates an
encrypted file containing the contents of the secured module. This will result in the output
of multiple EDIF files, containing secured and unsecured elements of the design.

• all - Write both encrypted and unencrypted cells to a single specified file.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The filename of the EDIF file to write. The default file extension for an EDIF
netlist is .edn. If the -pblocks or -cell options are used, the name specified here refers to a
directory rather than a single file.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example writes an EDIF netlist file for the whole design to the specified file name:
write_edif C:/Data/edifOut.edn

The following example outputs an EDIF netlist for all Pblocks in the design. The files will be
written to the specified directory.
write_edif -pblocks [get_pblocks] C:/Data/FPGA_Design/

See Also
read_edif

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 956

Tcl Commands Listed Alphabetically

write_hw_ila_data
Write hardware ILA data to a file.

Syntax
write_hw_ila_data [-force] [-quiet] [-verbose] file [hw_ila_data]
[hw_ila_data]

Returns
Name of the output file

Usage
Name Description

[-force] Overwrite existing file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file hardware ILA data file name

[hw_ila_data] hardware ILA data object Default: Current hardware ILA
data

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 957

Tcl Commands Listed Alphabetically

write_hw_sio_scan
Write scan data to a file.

Syntax
write_hw_sio_scan [-force] [-quiet] [-verbose] file hw_sio_scan

Returns
Name of the output file

Usage
Name Description

[-force] Overwrite existing file

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file hardware SIO_scan file name

hw_sio_scan hardware SIO scan data object

Categories
Hardware

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 958

Tcl Commands Listed Alphabetically

write_ibis
Write IBIS models for current floorplan.

Syntax
write_ibis [-force] [-allmodels] [-nopin] [-truncate arg] [-ibs arg]
[-pkg arg] [-quiet] [-verbose] file

Returns
Name of the output file

Usage
Name Description

[-force] Overwrite existing .ibs file

[-allmodels] Include all available buffer models for this architecture.
By default, only buffer models used by the floorplan are
included.

Categories
FileIO

Description
Writes the IBIS models for the target device in the current design. The netlist and
implementation details from the design are combined with the per-pin parasitic package
information to create a custom IBIS model for the design.

Because the write_ibis command incorporates design information into the IBIS Model, you must
have an RTL, Netlist, or Implemented Design open when running this command.

Arguments
-allmodels - (Optional) Export all buffer models for the target device. By default the tool will
only write buffer models used by the design.

-nopin - (Optional) Disable per-pin modeling of the path from the die pad to the package pin.
The IBIS model will include a single RLC transmission line model representation for all pins in
the [Package] section. By default the file will include per-pin modeling of the package as RLC
matrices in the [Define Package Model] section if this data is available.

-truncate arg - (Optional) The maximum length for a signal name in the output file. Names
longer than this will be truncated. Valid values are 20, 40, or 0 (unlimited). By default the signal
names are truncated to 40 characters in accordance with the IBIS version 4.2 specification.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 959

Tcl Commands Listed Alphabetically

-ibs arg - (Optional) Specify an updated generic IBIS models file. This is used to override the
IBIS models found in the tool installation under the parts directory. This argument is required
for any parts that do not have generic models in the installation directory.

-pkg arg - (Optional) Specify an updated per pin parasitic package data file. This is used
to override the parasitic package file found in the the tool installation hierarchy under the
parts directory. This argument is required for any parts that do not have generic models in
the installation directory.

file - (Required) The filename of the IBIS file to write.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Examples
The following example exports all buffer models for the target device, eliminates truncation of
signal names, and specifies the file name and path to write:
write_ibis -allmodels -truncate 0 C:/Data/FPGA_Design/ibisOut.txt

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 960

Tcl Commands Listed Alphabetically

write_project_tcl
(User-written application).

Syntax
::write_project_tcl [-force arg] [-all_properties arg]
[-no_copy_sources arg] [-dump_project_info arg] [-quiet]
[-verbose] file

Returns
True

Usage
Name Description

[-force] Overwrite existing tcl script file Default: 0

[-all_properties] write all properties (default & non-default) for the project
object(s) Default: 0

[-no_copy_sources] Do not import sources even if they were local in the
original project Default: 1

[-dump_project_info] Write object values Default: 0

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Name of the tcl script file to generate

Description
Creates a Tcl script to recreate the current project.

The generated script will contain the Tcl commands for creating the project, setting the project
type, creating filesets, adding/importing source files, defining runs and run properties.

This Tcl project script and the various design sources can be stored in a version control system
for source file management and project archival.

Arguments
-force - (Optional) Overwrite an existing project script file of the same name. If the script file
already exists, the tool returns an error unless the -force argument is specified.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 961

Tcl Commands Listed Alphabetically

-all_properties - (Optional) Write all properties (default and non-default) for the project. The
tool will write set_property commands for all the objects like project, filesets, files, runs etc.

Note By default, if the -all_properties switch is not specified, only non-default properties
will be written to the script.

-no_copy_sources - (Optional) Do not import sources even if they are local to the original
project. The tool will not import the files that were local in the original project into the new
project.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The name of the script file to be created by the write_project_tcl command.
The tool will apply an extension of .tcl if a file extension is not supplied.

Examples
The following example exports Tcl script named "recreate.tcl" for the current project:
write_project_tcl recreate.tcl

The following command exports Tcl script for the current project and writes all the properties,
both default or non-default values:
write_project_tcl -all_properties recreate.tcl

The following command exports Tcl script for the current project and adds files that are local in
this project. The recreated project will reference these files:
write_project_tcl -no_copy_sources recreate.tcl

The following command exports "recreate.tcl" script for the current project in the current
working directory, creates a new project in ./my_test directory, prints the list of files in the
new project, prints the current project settings and then closes the newly created project:
open_project ./test/test.xpr
write_project_tcl -force recreate.tcl
close_project
file mkdir my_test
cd my_test
source ../recreate.tcl
get_files -of_objects [get_filesets sources_1]
report_property [current_project]
close_project

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 962

Tcl Commands Listed Alphabetically

The following command creates a new project named bft_test, adds files to the project, sets the
fileset property, exports a tcl script named "bft.tcl" in the current working directory, creates
a new project in "./my_bft" directory, prints the list of files in the new project (test_1.v and
test_2.v), prints the "verilog_define" property value and then closes the newly created project:
create_project bft_test ./bft_test
add_files test_1.v
add_files test_2.v
set_property verilog_define {a=10} [get_filesets sources_1]
write_project_tcl -force bft.tcl
close_project
file mkdir my_bft
cd my_bft
source ../bft.tcl
get_files -of_objects [get_filesets sources_1]
get_property verilog_define [get_filesets sources_1]
close_project

See Also
• add_files
• archive_project
• close_project
• create_project
• current_project
• get_files
• get_property
• open_project
• report_property
• set_property

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 963

Tcl Commands Listed Alphabetically

write_sdf
Write_sdf command generates flat sdf delay files for event simulation.

Syntax
write_sdf [-process_corner arg] [-cell arg] [-rename_top arg] [-force]
[-mode arg] [-quiet] [-verbose] file

Returns
Nothing

Usage
Name Description

[-process_corner] Specify process corner for which SDF delays are required;
Values: slow, fast Default: slow

[-cell] Root of the design to write, e.g. des.subblk.cpu Default:
whole design

[-rename_top] Replace name of top module with custom name e.g. netlist
Default: new top module name

[-force] Overwrite existing SDF file

[-mode] Specify sta (Static Timing Analysis) or timesim (Timing
Simulation) mode for SDF Default: timesim

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file File name

Categories
FileIO, Simulation

Description
Writes the timing delays for cells in the design to a Standard Delay Format (SDF) file.

The output SDF file can be used by the write_verilog command to create Verilog netlists for
static timing analysis and timing simulation.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 964

Tcl Commands Listed Alphabetically

Arguments
-process_corner [fast | slow] - (Optional) Write delays for a specified process corner. Delays
are greater in the slow process corner than in the fast process corner. Valid values are 'slow' or
'fast'. By default, the SDF file is written for the slow process corner.

-cell arg - (Optional) Write the SDF file from a specific cell of the design hierarchy. The default
is to create an SDF file for the whole design.

-rename_top arg - (Optional) Rename the top module in the output SDF file as specified.

-force - (Optional) Forces the overwrite of an existing SDF file of the same name.

-mode [timesim | sta]- (Optional) Specifies the mode to use when writing the SDF file. Valid
values are:

• timesim - Output an SDF file to be used for timing simulation. This is the default setting.

• sta - Output an SDF file to be used for static timing analysis (STA).

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The file name of the SDF file to write. The SDF file is referenced in the Verilog
netlist by the use of the -sdf_anno and -sdf_file arguments of the write_verilog command.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example writes an SDF file to the specified directory:
write_sdf C:/Data/FPGA_Design/designOut.sdf

See Also
write_verilog

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 965

Tcl Commands Listed Alphabetically

write_verilog
Export the current netlist in Verilog format.

Syntax
write_verilog [-cell arg] [-mode arg] [-lib] [-port_diff_buffers]
[-write_all_overrides] [-rename_top arg] [-sdf_anno arg]
[-sdf_file arg] [-force] [-include_xilinx_libs] [-quiet]
[-verbose] file

Returns
The name of the output file or directory

Usage
Name Description

[-cell] Root of the design to write, e.g. des.subblk.cpu Default:
whole design

[-mode] Values: design, port, sta, funcsim, timesim Default: design

[-lib] Write each library into a separate file

[-port_diff_buffers] Output differential buffers when writing in -port mode

[-write_all_overrides] Write parameter overrides on Xilinx primitives even if the
override value is the same as the default value

[-rename_top] Replace top module name with custom name e.g. netlist
Default: new top module name

[-sdf_anno] Specify if sdf_annotate system task statement is generated

[-sdf_file] Full path to sdf file location Default: .sdf

[-force] Overwrite existing file

[-include_xilinx_libs] Include simulation models directly in netlist instead of
linking to library

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Which file to write

Categories
FileIO, Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 966

Tcl Commands Listed Alphabetically

Description
Write a Verilog netlist of the current design or from a specific cell of the design to the specified
file or directory. The output is a IEEE 1364-2001 compliant Verilog HDL file that contains netlist
information obtained from the input design files.

You can output a complete netlist of the design or specific cell, or output a port list for the
design, or a Verilog netlist for simulation or static timing analysis.

Arguments
-cell arg - (Optional) Write the Verilog netlist from a specified cell or block level of the design
hierarchy. The output Verilog file or files will only include information contained within the
specified cell or module.

-mode arg - (Optional) The mode to use when writing the Verilog file. By default, the Verilog
netlist is written for the whole design. Valid mode values are:

• design - Output a Verilog netlist for the whole design. This acts as a snapshot of the
design, including all post placement, implementation, and routing information in the netlist.

• port - Outputs only the I/O ports for the top-level of the design.

• sta - Output a Verilog netlist to be used for static timing analysis (STA).

• funcsim - Output a Verilog netlist to be used for functional simulation. The output netlist is
not suitable for synthesis.

• timesim - Output a Verilog netlist to be used for timing simulation. The output netlist is
not suitable for synthesis.

-lib - (Optional) Create a separate Verilog file for each library used by the design.

Note This option is the opposite of, and replaces the -nolib option from prior releases.
Previously the default behavior of write_verilog was to output a separate Verilog file for each
library used in the design, unless -nolib was specified. Now you must specify the -lib option to
output separate Verilog files for each library

-port_diff_buffers - (Optional) Add the differential pair buffers and internal wires associated
with those buffers into the output ports list. This argument is only valid when -mode port is
specified.

-write_all_overrides [true | false] - (Optional) Write parameter overrides, in the design to
the Verilog output even if the value of the parameter is the same as the defined primitive
default value. If the option is false then parameter values which are equivalent to the primitive
defaults are not output to the Verilog file. Setting this option to true will not change the result
but makes the output Verilog more verbose.

-rename_top arg - (Optional) Rename the top module in the output as specified. This option
only works with -mode funcsim or -mode timesim to allow the Verilog netlist to plug into
top-level simulation test benches.

-sdf_anno [true | false] - (Optional) Add the $sdf_annotate statement to the Verilog netlist.
Valid values are true (or 1) and false (or 0). This option only works with -mode timesim, and
is set to false by default.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 967

Tcl Commands Listed Alphabetically

-sdf_file arg - (Optional) The path and filename of the SDF file to use when writing the
$sdf_annotate statement into the output Verilog file. When not specified, the SDF file is
assumed to have the same name and path as the Verilog output specified by <file>, with a
file extension of .sdf . The SDF file must be separately written to the specified file path and
name using the write_sdf command.

-force - (Optional) Overwrite the Verilog files if they already exists.

-include_xilinx_libs - (Optional) Write the simulation models directly in the output netlist file
rather than pointing to the libraries by reference.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The path and filename of the Verilog file to write. The path is optional, but
if one is not provided the Verilog file will be written to the current working directory, or the
directory from which the Vivado tool was launched.

Examples
The following example writes a Verilog simulation netlist file for the whole design to the
specified file and path:
write_verilog C:/Data/my_verilog.v

In the following example, because the -mode timesim and -sdf_anno options are specified,
the $sdf_annotate statement will be added to the Verilog netlist. However, since the -sdf_file
option is not specified, the SDF file is assumed to have the same name as the Verilog output
file, with an .sdf file extension:
write_verilog C:/Data/my_verilog.net -mode timesim -sdf_anno true

Note The SDF filename written to the $sdf_annotate statement will be my_verilog.sdf

See Also
• write_sdf
• write_vhdl

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 968

Tcl Commands Listed Alphabetically

write_vhdl
Export the current netlist in VHDL format.

Syntax
write_vhdl [-cell arg] [-mode arg] [-lib] [-port_diff_buffers]
[-write_all_overrides] [-rename_top arg] [-arch_only] [-force]
[-include_xilinx_libs] [-quiet] [-verbose] file

Returns
The name of the output file or directory

Usage
Name Description

[-cell] Root of the design to write, e.g. des.subblk.cpu Default:
whole design

[-mode] Output mode. Valid values: funcsim, port Default: funcsim

[-lib] Write each library into a separate file

[-port_diff_buffers] Output differential buffers when writing in -port mode

[-write_all_overrides] Write parameter overrides on Xilinx primitives even if the
same as the default value

[-rename_top] Replace top module name with custom name e.g. netlist
Default: new top module name

[-arch_only] Write only the architecture, not the entity declaration for
the top cell

[-force] Overwrite existing file

[-include_xilinx_libs] Include simulation models directly in netlist instead of
linking to library

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

file Which file to write

Categories
FileIO, Simulation

Description
Write a VHDL netlist of the current design or from a specific cell of the design to the specified
file or directory.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 969

Tcl Commands Listed Alphabetically

The output of this command is a VHDL IEEE 1076.4 VITAL-2000 compliant VHDL file that
contains netlist information obtained from the input design files. You can output a complete
netlist of the design or specific cell, or output a port list for the design.

Arguments
-cell arg - (Optional) Write the VHDL netlist from a specified cell or block level of the design
hierarchy. The output VHDL file or files will only include information contained within the
specified cell or module.

-mode arg - (Optional) The mode to use when writing the VHDL file. By default, the simulation
netlist is written for the whole design. Valid mode values are:

• funcsim - Output the VHDL netlist to be used as a functional simulation model. The output
netlist is not suitable for synthesis. This is the default setting.

• port - Outputs only the I/O ports in the entity declaration for the top module.

-lib - (Optional) Create a separate VHDL file for each library used by the design.

Note This option is the opposite of, and replaces the -nolib option from prior releases.
Previously the default behavior of write_vhdl was to output a separate VHDL file for each
library used in the design, unless -nolib was specified. Now you must specify the -lib option to
output separate files for each library

-port_diff_buffers - (Optional) Add the differential pair buffers and internal wires associated
with those buffers into the output ports list. This argument is only valid when -mode port is
specified.

-write_all_overrides [true | false] - (Optional) Write parameter overrides in the design to the
VHDL output even if the value of the parameter is the same as the defined primitive default
value. If the option is false then parameter values which are equivalent to the primitive defaults
are not output to the VHDL file. Setting this option to true will not change the result but makes
the output netlist more verbose.

-rename_top arg - (Optional) Rename the top module in the output as specified. This option
only works with -mode funcsim to allow the VHDL netlist to plug into top-level simulation
test benches.

-arch_only - (Optional) Suppress the entity definition of the top module, and outputs the
architecture only. This simplifies the use of the output VHDL netlist with a separate test bench.

-include_xilinx_libs - (Optional) Write the simulation models directly in the output netlist file
rather than pointing to the libraries by reference.

-force - (Optional) Overwrite the VHDL files if they already exists.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 970

Tcl Commands Listed Alphabetically

file - (Required) The filename of the VHDL file to write. If the file name does not have either a
.vhd or .vhdl file extension then the name is assumed to be a directory, and the VHDL file is
named after the top module, and is output to the specified directory.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example writes a VHDL simulation netlist file for the whole design to the
specified file and path:
write_vhdl C:/Data/bft_top.vhd

In the following example the entity definition of the top-level module is not output to the
VHDL netlist:
write_vhdl C:/Data/vhdl_arch_only.vhd -arch_only

See Also
write_verilog

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 971

Tcl Commands Listed Alphabetically

write_xdc
Writes constraints to a Xilinx Design Constraints (XDC) file. The default file extension for a
XDC file is .xdc.

Syntax
write_xdc [-no_fixed_only] [-constraints arg] [-cell arg] [-sdc]
[-no_tool_comments] [-force] [-exclude_timing] [-quiet] [-verbose]
[file]

Returns
Nothing

Usage
Name Description

[-no_fixed_only] Export fixed and non-fixed placement (by default only fixed
placement will be exported)

[-constraints] Include constraints that are flagged invalid Values: valid,
invalid, all Default: valid

[-cell] Export placement for this cell.

[-sdc] Export all timing constraints.

[-no_tool_comments] Don't write verbose tool generated comments to the xdc
when translating from ucf.

[-force] Overwrite existing file.

[-exclude_timing] Don't export timing constraints.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[file] Output constraints to the specified XDC file.

Categories
FileIO

Description
Writes constraints to a Xilinx Design Constraints file (XDC). The XDC can be exported from the
top-level, which is the default, or from a specific hierarchical cell.

This command can be used to create an XDC file from a design with UCF files. All constraints
from the active constraint fileset will be exported to the XDC, even if they come from multiple
files.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 972

Tcl Commands Listed Alphabetically

Arguments
-no_fixed_only - (Optional) Export both fixed and unfixed placement LOCs to the constraint
file being written. By default only the fixed LOCs will be written to the XDC file. Fixed LOCs
are associated with user-assigned placements, while unfixed LOCs are associated with tool
assigned placements.

-constraints arg - (Optional) Export constraints that are flagged valid, invalid, or all constraints
(both valid and invalid). The default behavior is to export only valid constraints to the XDC
file. Valid values are VALID, INVALID, or ALL.

-cell arg - (Optional) The name of a hierarchical cell in the current design to export the
constraints from. The constraints will be written to the specified XDC file relative to the
specified cell.

Note A design must be open when using this option.

-sdc - (Optional) Export only the timing constraints in an SDC format from the current design.
Does not export any other defined constraints.

-force - (Optional) Overwrite the XDC file if it already exists.

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors encountered
during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages from
this command.

Note Message limits can be defined with the set_msg_config command.

file - (Required) The filename of the XDC file to write.

Note If the path is not specified as part of the file name, the file will be written into the current
working directory, or the directory from which the tool was launched.

Examples
The following example writes the valid and invalid constraints, including both fixed and unfixed
cells, to the specified file:
write_xdc -no_fixed_only -constraints all C:/Data/design.xdc

See Also
read_xdc

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 973

Tcl Commands Listed Alphabetically

xsim
Load a simulation snapshot for simulation and return a simulation object.

Syntax
xsim [-maxdeltaid arg] [-nolog] [-onfinish arg] [-onerror arg]
[-tclbatch arg] [-t arg] [-runall] [-R] [-testplusarg args]
[-vcdfile arg] [-vcdunit arg] [-view arg] [-wdb arg] [-tp] [-tl]
[-quiet] [-verbose] snapshot

Returns
Current simulation object

Usage
Name Description

[-maxdeltaid] Specify the maximum delta number. Will report error if
it exceeds maximum simulation loops at the same time
Default: 10000

[-nolog] Ignored (for compatibility with xsim command-line tool)

[-onfinish] Specify behavior at end of simulation: quit|stop Default:
stop

[-onerror] Specify behavior upon simulation run-time error: quit|stop
Default: stop

[-tclbatch] Specify the TCL file for batch mode execution

[-t] Specify the TCL file for batch mode execution

[-runall] Run simulation until completion, then quit (does 'run -all;
exit')

[-R] Run simulation until completion, then quit (does 'run -all;
exit')

[-testplusarg] Specify plusargs to be used by $test$plusargs and
$value$plusargs system functions

[-vcdfile] Specify the vcd output file

[-vcdunit] Specify the vcd output unit. Default is the same as the
engine precision unit

[-view] Open a wave configuration file. This switch should be used
together with -gui switch

[-wdb] Specify the waveform database output file

[-tp] Enable printing of hierarchical names of process being
executed

[-tl] Enable printing of file name and line number of statements
being executed.

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 974

Tcl Commands Listed Alphabetically

Name Description

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

snapshot The name of design snapshot

Categories
Simulation

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 975

Appendix

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/company/terms.htm

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
Vivado Design Suite 2012.2 Documentation:

www.xilinx.com/support/documentation/dt_vivado2013-1.htm

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 976

http://www.xilinx.com/support/
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/documentation/dt_vivado2013-1.htm

Additional Resources

Tcl Developer Xchange
Tcl reference material is available on the Internet. Xilinx recommends the Tcl Developer Xchange,
which maintains the open source code base for Tcl, and is located at:

http://www.tcl.tk

An introductory tutorial is available at:

http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

About SDC
Synopsys Design Constraints (SDC) is an accepted industry standard for communicating design
intent to tools, particularly for timing analysis. A reference copy of the SDC specification is
available from Synopsys by registering for the TAP-in program at:

http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx

Vivado Design Suite Tcl Command Reference Guide

UG835 (v 2013.1) March 20, 2013 www.xilinx.com 977

http://www.tcl.tk
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx

	Vivado Design Suite Tcl Command Reference Guide
	Introduction
	Overview of Tcl Capabilities in Vivado
	Launching the Vivado Design Suite
	Tcl Help
	Tcl Initialization Scripts
	Sourcing a Tcl Script
	Using Tcl.pre and Tcl.post Hook Scripts

	General Tcl Syntax Guidelines
	Using Tcl Eval
	Using Special Characters
	General Syntax Structure
	Example Syntax
	Unknown Commands
	Return Codes

	First Class Tcl Objects and Relationships
	Object Types and Definitions
	Querying Objects
	Object Properties
	Filtering Based on Properties
	Large Lists of Objects
	Object Relationships

	Errors, Warnings, Critical Warnings, and Info Messages

	Tcl Commands Listed by Category
	Categories
	Board:
	ChipScope:
	DRC:
	FileIO:
	Floorplan:
	GUIControl:
	Hardware:
	IPFlow:
	IPIntegrator:
	Netlist:
	Object:
	PinPlanning:
	Power:
	Project:
	PropertyAndParameter:
	Report:
	SDC:
	Simulation:
	SysGen:
	Timing:
	ToolLaunch:
	Tools:
	Waveform:
	XDC:
	XPS:

	Tcl Commands Listed Alphabetically
	add_bp
	Syntax
	Returns
	Usage
	Categories

	add_cells_to_pblock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_condition
	Syntax
	Returns
	Usage
	Categories

	add_drc_checks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_files
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_force
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_wave
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_wave_divider
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_wave_group
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_wave_marker
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	add_wave_virtual_bus
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_clocks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_cpus
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_dsps
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_fanin
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_fanout
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_ffs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_hsios
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_inputs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_latches
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_outputs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_rams
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	all_registers
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	apply_bd_automation
	Syntax
	Returns
	Usage
	Categories

	archive_project
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	assign_bd_address
	Syntax
	Returns
	Usage
	Categories

	check_timing
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	checkpoint_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	close_bd_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	close_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	close_hw
	Syntax
	Returns
	Usage
	Categories

	close_hw_target
	Syntax
	Returns
	Usage
	Categories

	close_project
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	close_saif
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	close_sim
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	close_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	close_wave_config
	Syntax
	Returns
	Usage
	Categories

	commit_hw_sio
	Syntax
	Returns
	Usage
	Categories

	commit_hw_vio
	Syntax
	Returns
	Usage
	Categories

	compile_simlib
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	config_timing_analysis
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	config_timing_corners
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	config_webtalk
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	connect_bd_intf_net
	Syntax
	Returns
	Usage
	Categories

	connect_bd_net
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	connect_debug_port
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	connect_hw_server
	Syntax
	Returns
	Usage
	Categories

	connect_net
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	copy_bd_objs
	Syntax
	Returns
	Usage
	Categories

	copy_ip
	Syntax
	Returns
	Usage
	Categories

	create_bd_addr_seg
	Syntax
	Returns
	Usage
	Categories

	create_bd_cell
	Syntax
	Returns
	Usage
	Categories

	create_bd_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	create_bd_intf_net
	Syntax
	Returns
	Usage
	Categories

	create_bd_intf_pin
	Syntax
	Returns
	Usage
	Categories

	create_bd_intf_port
	Syntax
	Returns
	Usage
	Categories

	create_bd_net
	Syntax
	Returns
	Usage
	Categories

	create_bd_pin
	Syntax
	Returns
	Usage
	Categories

	create_bd_port
	Syntax
	Returns
	Usage
	Categories

	create_cell
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_clock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_debug_core
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_debug_port
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_drc_check
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_drc_ruledeck
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_drc_violation
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_fileset
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_generated_clock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_hw_sio_link
	Syntax
	Returns
	Usage
	Categories

	create_hw_sio_linkgroup
	Syntax
	Returns
	Usage
	Categories

	create_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	create_interface
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_ip
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_macro
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_net
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	create_pblock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_pin
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_port
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_project
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_property
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_run
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_slack_histogram
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_sysgen
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	create_wave_config
	Syntax
	Returns
	Usage
	Categories

	create_xps
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_bd_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_bd_instance
	Syntax
	Returns
	Usage
	Categories

	current_board
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	current_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_fileset
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_hw_device
	Syntax
	Returns
	Usage
	Categories

	current_hw_ila
	Syntax
	Returns
	Usage
	Categories

	current_hw_ila_data
	Syntax
	Returns
	Usage
	Categories

	current_hw_server
	Syntax
	Returns
	Usage
	Categories

	current_hw_target
	Syntax
	Returns
	Usage
	Categories

	current_instance
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_project
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_run
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_scope
	Syntax
	Returns
	Usage
	Categories

	current_sim
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	current_time
	Syntax
	Returns
	Usage
	Categories

	current_wave_config
	Syntax
	Returns
	Usage
	Categories

	data2mem
	Syntax
	Returns
	Usage
	Categories

	delete_bd_objs
	Syntax
	Returns
	Usage
	Categories

	delete_clock_networks_results
	Syntax
	Returns
	Usage
	Categories

	delete_debug_core
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_debug_port
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_drc_check
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_drc_ruledeck
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_fileset
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_interface
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_macros
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_pblock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_power_results
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_rpm
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	delete_run
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_timing_results
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	delete_utilization_results
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	describe
	Syntax
	Returns
	Usage
	Categories

	disconnect_bd_intf_net
	Syntax
	Returns
	Usage
	Categories

	disconnect_bd_net
	Syntax
	Returns
	Usage
	Categories

	disconnect_debug_port
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	disconnect_hw_server
	Syntax
	Returns
	Usage
	Categories

	disconnect_net
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	display_hw_ila_data
	Syntax
	Returns
	Usage
	Categories

	display_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	endgroup
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	export_hardware
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	filter
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	find_bd_objs
	Syntax
	Returns
	Usage
	Categories

	find_top
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	flush_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	generate_target
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_bd_addr_segs
	Syntax
	Returns
	Usage
	Categories

	get_bd_addr_spaces
	Syntax
	Returns
	Usage
	Categories

	get_bd_cells
	Syntax
	Returns
	Usage
	Categories

	get_bd_designs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_bd_intf_nets
	Syntax
	Returns
	Usage
	Categories

	get_bd_intf_pins
	Syntax
	Returns
	Usage
	Categories

	get_bd_intf_ports
	Syntax
	Returns
	Usage
	Categories

	get_bd_nets
	Syntax
	Returns
	Usage
	Categories

	get_bd_pins
	Syntax
	Returns
	Usage
	Categories

	get_bd_ports
	Syntax
	Returns
	Usage
	Categories

	get_bel_pins
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_bels
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_board_interfaces
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_board_pins
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_boards
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_cells
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_clock_regions
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_clocks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_debug_cores
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_debug_ports
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_delays
	Syntax
	Returns
	Usage
	Categories

	get_designs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_drc_checks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_drc_ruledecks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_drc_vios
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_files
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_filesets
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_generated_clocks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_hierarchy_separator
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_hw_devices
	Syntax
	Returns
	Usage
	Categories

	get_hw_ila_datas
	Syntax
	Returns
	Usage
	Categories

	get_hw_ilas
	Syntax
	Returns
	Usage
	Categories

	get_hw_probes
	Syntax
	Returns
	Usage
	Categories

	get_hw_servers
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_commons
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_gtgroups
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_gts
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_iberts
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_linkgroups
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_links
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_plls
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_rxs
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_scans
	Syntax
	Returns
	Usage
	Categories

	get_hw_sio_txs
	Syntax
	Returns
	Usage
	Categories

	get_hw_targets
	Syntax
	Returns
	Usage
	Categories

	get_hw_vios
	Syntax
	Returns
	Usage
	Categories

	get_interfaces
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_io_standards
	Syntax
	Returns
	Usage
	Categories

	get_iobanks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_ipdefs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_ips
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_lib_cells
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_lib_pins
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_libs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_macros
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_msg_config
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_msg_count
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_msg_limit
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_net_delays
	Syntax
	Returns
	Usage
	Categories

	get_nets
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_nodes
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_package_pins
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_param
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_parts
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_path_groups
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_pblocks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_pins
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_pips
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_ports
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_projects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_property
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_runs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_scopes
	Syntax
	Returns
	Usage
	Categories

	get_selected_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_site_pins
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_site_pips
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_sites
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_slrs
	Syntax
	Returns
	Usage
	Categories

	get_tiles
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_timing_arcs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_timing_paths
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_value
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	get_wave_configs
	Syntax
	Returns
	Usage
	Categories

	get_wires
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	group_bd_cells
	Syntax
	Returns
	Usage
	Categories

	group_path
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	help
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	highlight_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	implement_debug_core
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	import_files
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	import_ip
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	import_synplify
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	import_xise
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	import_xst
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	infer_diff_pairs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	launch_chipscope_analyzer
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	launch_impact
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	launch_modelsim
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	launch_runs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	launch_sdk
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	launch_xsim
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	limit_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	link_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	list_features
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	list_param
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	list_property
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	list_property_value
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	list_targets
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	load_features
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	lock_design
	Syntax
	Returns
	Usage
	Categories

	log_saif
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	log_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	log_wave
	Syntax
	Returns
	Usage
	Categories

	ltrace
	Syntax
	Returns
	Usage
	Categories

	make_diff_pair_ports
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	make_wrapper
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	mark_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	move_bd_cells
	Syntax
	Returns
	Usage
	Categories

	move_files
	Syntax
	Returns
	Usage
	Categories

	open_bd_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	open_example_project
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	open_hw
	Syntax
	Returns
	Usage
	Categories

	open_hw_target
	Syntax
	Returns
	Usage
	Categories

	open_io_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	open_project
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	open_run
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	open_saif
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	open_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	open_wave_config
	Syntax
	Returns
	Usage
	Categories

	open_wave_database
	Syntax
	Returns
	Usage
	Categories

	opt_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	phys_opt_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	place_cell
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	place_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	place_pblocks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	place_ports
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	power_opt_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	pr_verify
	Syntax
	Returns
	Usage
	Categories

	program_hw_devices
	Syntax
	Returns
	Usage
	Categories

	ptrace
	Syntax
	Returns
	Usage
	Categories

	read_checkpoint
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_csv
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_edif
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_hw_ila_data
	Syntax
	Returns
	Usage
	Categories

	read_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	read_ip
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_saif
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_twx
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_verilog
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_vhdl
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	read_xdc
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	redo
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	refresh_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	refresh_hw_device
	Syntax
	Returns
	Usage
	Categories

	refresh_hw_server
	Syntax
	Returns
	Usage
	Categories

	refresh_hw_sio
	Syntax
	Returns
	Usage
	Categories

	refresh_hw_target
	Syntax
	Returns
	Usage
	Categories

	refresh_hw_vio
	Syntax
	Returns
	Usage
	Categories

	regenerate_bd_layout
	Syntax
	Returns
	Usage
	Categories

	reimport_files
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	remove_bps
	Syntax
	Returns
	Usage
	Categories

	remove_cell
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	remove_cells_from_pblock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	remove_conditions
	Syntax
	Returns
	Usage
	Categories

	remove_drc_checks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	remove_files
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	remove_forces
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	remove_hw_sio_link
	Syntax
	Returns
	Usage
	Categories

	remove_hw_sio_linkgroup
	Syntax
	Returns
	Usage
	Categories

	remove_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	remove_net
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	remove_pin
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	remove_port
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	rename_ref
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reorder_files
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	report_bps
	Syntax
	Returns
	Usage
	Categories

	report_carry_chains
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	report_clock_interaction
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_clock_networks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	report_clock_utilization
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_clocks
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_compile_order
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_conditions
	Syntax
	Returns
	Usage
	Categories

	report_config_timing
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_control_sets
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	report_datasheet
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_debug_core
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_default_switching_activity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_disable_timing
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_drc
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_drivers
	Syntax
	Returns
	Usage
	Categories

	report_environment
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	report_exceptions
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_high_fanout_nets
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	report_incremental_reuse
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_io
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_ip_status
	Syntax
	Returns
	Usage
	Categories

	report_objects
	Syntax
	Returns
	Usage
	Categories

	report_operating_conditions
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_param
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_phys_opt
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_power
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_power_opt
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_property
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_pulse_width
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_route_status
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	report_scopes
	Syntax
	Returns
	Usage
	Categories

	report_simlib_info
	Syntax
	Returns
	Usage
	Categories

	report_ssn
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_switching_activity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_timing
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_timing_summary
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_transformed_primitives
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	report_utilization
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	report_values
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_default_switching_activity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_drc
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_drc_check
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_hw_ila
	Syntax
	Returns
	Usage
	Categories

	reset_hw_vio_activity
	Syntax
	Returns
	Usage
	Categories

	reset_hw_vio_outputs
	Syntax
	Returns
	Usage
	Categories

	reset_msg_config
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_msg_count
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_msg_limit
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_msg_severity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_operating_conditions
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_param
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_project
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	reset_property
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_run
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	reset_simulation
	Syntax
	Returns
	Usage
	Categories

	reset_ssn
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_switching_activity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_target
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_timing
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	reset_ucf
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	resize_net_bus
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	resize_pblock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	resize_pin_bus
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	resize_port_bus
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	restart
	Syntax
	Returns
	Usage
	Categories

	route_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	run
	Syntax
	Returns
	Usage
	Categories

	run_hw_ila
	Syntax
	Returns
	Usage
	Categories

	run_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	save_bd_design
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	save_constraints
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	save_constraints_as
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	save_project_as
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	save_wave_config
	Syntax
	Returns
	Usage
	Categories

	select_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_case_analysis
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_clock_groups
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_clock_latency
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_clock_sense
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_clock_uncertainty
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_data_check
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_default_switching_activity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_delay_model
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_disable_timing
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_external_delay
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_false_path
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_hierarchy_separator
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_input_delay
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_input_jitter
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_load
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_logic_dc
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_logic_one
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_logic_unconnected
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_logic_zero
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_max_delay
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_max_time_borrow
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_min_delay
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_msg_config
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_msg_limit
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_msg_severity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_multicycle_path
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_operating_conditions
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_output_delay
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_package_pin_val
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_param
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_power_opt
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_propagated_clock
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_property
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_speed_grade
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	set_switching_activity
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_system_jitter
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_units
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	set_value
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	show_objects
	Syntax
	Returns
	Usage
	Categories

	show_schematic
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	split_diff_pair_ports
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	start_gui
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	start_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	startgroup
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	step
	Syntax
	Returns
	Usage
	Categories

	stop
	Syntax
	Returns
	Usage
	Categories

	stop_gui
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	stop_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	stop_vcd
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	swap_locs
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	synth_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	tie_unused_pins
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Example
	See Also

	undo
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	ungroup_bd_cells
	Syntax
	Returns
	Usage
	Categories

	unhighlight_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	unmark_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	unplace_cell
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	unselect_objects
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	update_compile_order
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	update_design
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	update_files
	Syntax
	Returns
	Usage
	Categories

	update_ip_catalog
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	update_macro
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	update_timing
	Syntax
	Returns
	Usage
	Categories

	upgrade_ip
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	upload_hw_ila_data
	Syntax
	Returns
	Usage
	Categories

	validate_bd_design
	Syntax
	Returns
	Usage
	Categories

	validate_ip
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	version
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	wait_on_hw_ila
	Syntax
	Returns
	Usage
	Categories

	wait_on_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	wait_on_run
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_bd_tcl
	Syntax
	Returns
	Usage
	Categories

	write_bitstream
	Syntax
	Returns
	Usage
	Categories
	Arguments
	Examples
	See Also

	write_bmm
	Syntax
	Returns
	Usage
	Categories

	write_checkpoint
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_chipscope_cdc
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_csv
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_debug_probes
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_edif
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_hw_ila_data
	Syntax
	Returns
	Usage
	Categories

	write_hw_sio_scan
	Syntax
	Returns
	Usage
	Categories

	write_ibis
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples

	write_project_tcl
	Syntax
	Returns
	Usage
	Description
	Arguments
	Examples
	See Also

	write_sdf
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_verilog
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_vhdl
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	write_xdc
	Syntax
	Returns
	Usage
	Categories
	Description
	Arguments
	Examples
	See Also

	xsim
	Syntax
	Returns
	Usage
	Categories

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Tcl Developer Xchange
	About SDC

