

Write a AHB Slave Module
for PA Using SystemC

d01943032 Yu Sheng Lin

Preface

● You have learned how to add a SystemC module
to PA few weeks ago

● But how to write a custom SystemC AHB slave
module?

● If you are so free earnest that you have read the
example thoroughly, then you can leave now XD

Write a AHB Slave
#include "systemc.h"
#include "AMBA/AMBA.h"

SC_MODULE(MyFirstAMBASlave) {
public:

AMBA::AHBLiteTarget_inoutslave_port<1, 32> p_AHB;
SC_HAS_PROCESS(MyFirstAMBASlave);
MyFirstAMBASlave(const sc_module_name name);

};

#include "MyFirstAMBASlave.h"

MyFirstAMBASlave::MyFirstAMBASlave(
const sc_module_name name

): sc_module(name)
{
}MyFirstAMBASlave.cpp

MyFirstAMBASlave.h

New, but trivial

This module has an AHB slave port,
1-bit addressing space and 32-bit
data width

The Result

● Repeating previous steps, you can drag the cell
in to the diagram
– The project name does not matter

Today's Target

● A module that just invert the data written to it
– Write 0x0f0f0f0f
– Read 0xf0f0f0f0

● Quite easy, huh?

Programming the Bus

● The AMBA model of PA doesn't require PCA
knowledge of AHB
– TLM, Event based design

AMBA::AHBLiteTarget_inoutslave_port<1, 32> p_AHB;

<button onclick="foo()">
Click me

</button>

PCA protocol Event based design
(analog to javascript)

The Most Important Events
SC_METHOD(receiveWriteData);
sensitive << p_AHB.getReceiveWriteDataTrfEventFinder();
dont_initialize();

SC_METHOD(sendReadData);
sensitive << p_AHB.getSendReadDataTrfEventFinder();
dont_initialize();

SC_METHOD(sendEoT);
sensitive << p_AHB.getSendEotTrfEventFinder();
dont_initialize();

TODO: Add these lines to constructor, define
the functions in .h and implement it in .cpp

Master want to write data

Master want to read data

EoT = End of transfer

EoT Event

● Just write it and don't ask me why

void MyFirstAMBASlave::sendEoT()
{

p_AHB.sendEotTrf();
}

Write Event

● Our Slave have 1-bit address
void MyFirstAMBASlave::receiveWriteData()
{

p_AHB.getWriteDataTrf();
unsigned addr = p_AHB.WriteDataTrf->getAddrTrf()->getAddress();
unsigned data = p_AHB.WriteDataTrf->getWriteData();

loaclBuffer[(addr>>2)&1] = ~data;
}

TODO: Add these lines to .cpp and declare
variables if necessary

getAddress returns the raw address from CPU
and it is aligned to double word, so we must
mask and shift it

Read Event

void MyFirstAMBASlave::sendReadData()
{

p_AHB.getReadDataTrf();
unsigned addr = p_AHB.ReadDataTrf->getAddrTrf()->getAddress();
unsigned data;
// TODO: what should the data be?
p_AHB.ReadDataTrf->setReadData(data);
p_AHB.sendReadDataTrf();

}

TODO: Add these lines to .cpp and assign
appropriate value to data

The C++ Code

● Please look into alu_test.c and defines.h
– Assign an appropriate address for MyFirstSlave
– Explain the ALU_test() function to the TA

Caveats and Hints

● Importing SystemC
– Project → Reload SystemC Modules
– Right click on the module and click reload

● VPA SOP
– Disconnect (in VPA) → Stop (in PA) → Connect (in VPA) → Load

Image (in VPA)
– These steps ensure load the newest image

● axf file
– DS-5-Workspace/startup_Cortex-M4/startup_Cortex-M4.axf
– Do not use the wrong files!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

