
Multimedia SoC Design

Homework of Lab 3

April 11, 2014

In the previous two homework, you have practiced:

1. Refine a FIR filter example from blocking process to non-blocking process

2. Refine the non-blocking FIR filter to pipelined FIR filter structure.

3. Follow the predefined interface to design a hierarchical channel and use the

access functions through ports for Transaction-Level Modeling (TLM). The

communications between hardware blocks are modeled at Untimed (UT) level or

Approximated-timed (AT) level.

4. Refine the communication from UT or AT level function calls to Pin-Cycle

Accurate (PCA).

1 and 2 are focused on the usage of SystemC inside a hardware block. 3 and 4 are

focused on the TLM interface and communication refinement.

For a multimedia SoC, there are usually tens of hardware component within the

system. These IPs are connected to a shared bus, and they follow the bus protocol to

communicate with each other. However, in the early stage of system modeling, usually

we don’t want to model the communication as some specific bus protocol. We define

higher level interfaces for simplicity, flexibility, and better simulation speed. The

flexibility of communication refinement allows us to choose a target bus protocol after

we complete the functional and architecture modeling and verification. The developed

hardware models based on the interfaces are generic virtual components which can be

adapted to other system modeling with a little wrapping work.

The goal of homework 3 is to introduce the bus-interface wrapping and to let you

practice how to deal with different TLM-bus library. For code reuse, the hardware

components we choose are from homework 2: the interchange unit and the 2D memory.

For simplicity, the TLM-bus we use in homework 3 is the SimpleBus example, which

was introduced in Lab. 3.

0.

Review the SimpleBus example first. Start from Simple_Bus.pdf and

code/simple_bus/README. Here we briefly describe the SimpleBus project

hierarchy for you. SimpleBus defines two types of interface for master:

simple_bus_master_blocking_if,

simple_bus_master_nonblocking_if.

One for slave: simple_bus_slave_if.

One for arbiter: simple_bus_arbiter_if.

And one for direct access to memory-mapped slave: simple_bus_direct_if.

A hierarchical channel: simple_bus is constructed and implements the master

interfaces and the direct interface. The slave interface is implemented in the memory.

The arbiter interface is implemented in the arbiter. The whole project applies indirect

implementation style – i.e. separate module/channel declaration and implementation.

1.

Assume you get a Untimed (UT) or Approximated-timed (AT) interchange unit

model and a 2D memory model (Actually you use homework 2 models). You are asked

to port the model to SimpleBus. You shall not modify your original source code of the

interchange unit and the memory except adding wait(). Wrappers are required to

convert high-level interface transaction to/from specific bus protocol, which is

SimpleBus here.

Interchange

Unit

2D

Memory

Mem_if

Interchange Memory

Fig.1 Original UT/AT model

Interchange

Unit

Master

Wrapper
Mem_if

Interchange

Slave

Wrapper

2D

Memory
Mem_if

Memory

Simple

Bus

simple_bus_master_blocking_if

simple_bus_master_nonblocking_if

simple_bus_direct_if

simple_bus_slave_if

Master_wrapper Slave_wrapper

Fig.2 Port UT/AT IP model to SimpleBus

Since the 2D memory use two address to access data, a 2D-to-1D address

conversion has to be done in Master Wrapper and 1D-to-2D address conversion has to

be done in Slave Wrapper. The simple bus uses a unified 32-bit byte-address linear

space. A slave has to be defined its start address and end address in the space, and so

does the slave wrapper.

Requirement : simple_bus_ blocking_if

2.

Assume you get a Pin-Cycle-Accurate level interchange unit model and a 2D

memory model (Actually you use homework 2 models). You are asked to port the model

to SimpleBus. You shall not modify your original source code of the interchange unit

and the memory except adding wait(). A pin cycle accurate master wrapper is used to

connect sc_signal and sc_signal_rv typed channels and convert them to a specific bus

protocol. A pin cycle accurate slave wrapper is used to convert SimpleBus protocol to

ports which connect sc_signal and sc_signal_rv typed channels.

Requirement : simple_bus_non_blocking_if.h

Interchange

Unit

2D

Memory

Interchange Memory

LD

RW

X

Y

D

clk.neg()clk.pos()
Fig.3 Original PCA model

Interchange

Unit

LD

RW

X

Y

D

clk.pos() clk.neg()

2D

Memory

Memory

LD

RW

X

Y

D

clk.pos() clk.neg()

Simple

Bus

simple_bus_master_blocking_if

simple_bus_master_nonblocking_if

simple_bus_direct_if

simple_bus_slave_if

Master Wrapper Slave Wrapper

Interchange Master_wrapper Slave_wrapper

Fig.4 Port PCA IP model to SimpleBus

 All the files need to be compressed as a single ZIP or RAR file.

Send this file to TA via FTP:

Address: 140.112.48.126 Port: 17299

Account (password):

The same as the one used in the course website.

 Examples of filename:

 MSOC_HW3_R02901001.zip

 MSOC_HW3_R02901001_Ver2.zip

 Due date: 2014/04/25 Before Class (2 weeks)

繳交規定

source code (包括 lab 和作業)、report in PDF

請將這些檔案放入一個資料夾內如下排放

/HW3/ 放report

/HW3/Lab3/ 為Lab3的專案資料夾

/HW3/problem_1/ 為1的專案資料夾

/HW3/problem_2/ 為2的專案資料夾

請注意, 專案資料夾內必須包含 .vcxproj檔和 .sln檔, 將SystemC必須預先設定

以下四項專案參數先設定好

1. VC++目錄的 Include目錄路徑 & 程式庫目錄路徑

2. systemc.lib

3. Multi-threaded Debug (/Mtd)

4. /vmg

 為避免整份檔案過大，請在專案完成後, 選擇 建置清除方案 , 並且刪除所

有的Debug資料夾(在方案資料夾下 & 專案資料夾下)，以及在方案資料夾下

的ipch資料夾、.sdf檔...等等。

 最後只要留下以下檔案即可:

 *.sln (方案檔)

 *.vcxproj[.*] (專案檔)

 *.h, *.cpp (程式碼)

