
Digital Video Technology
Homework #2 – 2D-DCT

2011/09/26

Write a 2D-DCT program and test it with the given 10 gray level
images (lena64, pepper64, baboon64, gra1, gra2, wildcard, triangle,
circle1, circle2, circle3)

Whole frame DCT

Use direct 2D and fast algorithm (two 1D DCT) to implement 2D
DCT/IDCT, and verify your results with data generated by these
two algorithms. Compare and explain their evaluation time.

1. List the DCT coefficients of all images. The results need to be
presented with images with pixel values as DCT coefficients added
by 128. After that, remember to saturate the results between 0
and 255.

Note: Although the range of DCT output (block size: 64x64) is
between -215 and 215, just saturate it between 0 and 255, do NOT
do scaling.
Try to explain the results. An example is shown below:

→

2. Apply IDCT to reconstruct the original images from the DCT
coefficients, which are presented with floating-point numbers. Are
they the same as the original images?

3. Use only 16 bits to present the DC value and use 8 bits to present
the AC values. Calculate the bits required to present the image,
and reconstruct the original images with the quantized coefficients.

Note:
 Just preserve to integer part. For example, if DC value is

184534.3421, you only need to preserve 184534.
 Next, 16-bits representation means you need to preserve this

value with top 15 bits (because 1 bit for sign). Decide how
many bits need to be truncated.

18453410 = 1011010000110101102.

 The number that underlined digits represent is the truncation
result, which is 2306610.

 When you need to reconstruct the original images with the
quantized coefficients, be sure to shift 101101000011010 back
to 1011010000110100002.

 The 8-bits representation of AC is similar to the case of DC. But
all AC should be truncated with the same bits. That means you
have to find the biggest one of AC coefficients, decide how
many bits need to be truncated, and apply to all other AC
coefficients.

 The number of truncated bits of DC and AC needn’t to be the
same.

 Remember the number of truncated bits of DC and AC by your
programe. No need to write out another file to record the
information.

4. When the AC values of (3) is in the range -7 ~ 7, set them as 0 and
use 0 bit to present those coefficients. Calculate the bits required
to present the image and reconstruct the original images with the
quantized coefficients.

Block-based DCT

5. (Bonus) Use fast algorithm to implement block-based (8x8)

DCT/IDCT. Use the requirement stated in (1) & (2) to show the
results.

Requirements:

1. Deadline: 2011/10/13 (Before class)

-10 points / day

2. All the files need to be compressed as a single ZIP or RAR file.
Send this file to TA via FTP:
Address: 140.112.48.126 Port: 4299
Account (password):
The same as the one used in the course website.
Examples of filename:
DVT_HW2_R00901001.zip
DVT_HW2_R00901001_Ver2.zip

3. Required files
a. Report, in PDF format

(With pictures, you can use downscaled images in report)
b. Source code (C/C++)

Do NOT send entire project or output files to TA!! (-10%)
All TA needs are related .cpp/.c

c. Executable file (*.exe)
d. Text document (*.txt), to describe how to execute your

program. Also indicate your output file names.
e. DCT coefficient images of 1. (named as dct1_lena64.raw,

dct1_pepper64.raw, dct1_baboon64.raw, …).
f. Reconstructed images of 2. (named as r2_lena64.raw,

r2_pepper64.raw, r2_baboon64.raw, …).
g. Reconstructed images of 3. (named as r3_lena64.raw,

r3_pepper64.raw, r3_baboon64.raw, …).
h. Reconstructed images of 4. (named as r4_lena64.raw,

r4_pepper64.raw, r4_baboon64.raw, …).
i. DCT coefficient & reconstructed images of 5. (named as

dct5_lena64.raw, r5_lena64.raw, dct5_pepper64.raw,
r5_pepper64.raw, …).

4. Any further question, please email to TA.
(吳柏辰, cool77329@gmail.com)

mailto:cool77329@gmail.com

𝐹(𝑢, 𝑣) =
2

𝑁
𝐶(𝑢)𝐶(𝑣) ∑ ∑ 𝑓(𝑥, 𝑦)𝑐𝑜𝑠

(2𝑥 + 1)𝑢𝜋

2𝑁
𝑐𝑜𝑠

(2𝑦 + 1)𝑣𝜋

2𝑁

𝑁−1

𝑦=0

𝑁−1

𝑥=0

𝑓(𝑥, 𝑦) =
2

𝑁
∑ ∑ 𝐶(𝑢)𝐶(𝑣)𝐹(𝑢, 𝑣)𝑐𝑜𝑠

(2𝑥 + 1)𝑢𝜋

2𝑁
𝑐𝑜𝑠

(2𝑦 + 1)𝑣𝜋

2𝑁

𝑁−1

𝑣=0

𝑁−1

𝑢=0

Where 𝐶(𝑢), 𝐶(𝑣) = {
1

√2
for 𝑢, 𝑣 = 0

1 otherwise

 0 ≤ 𝑥, 𝑦, 𝑢, 𝑣 ≤ 𝑁 − 1, 𝑁2: 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒

𝐹(𝑢) = √
2

𝑁
𝐶(𝑢) ∑ 𝑓(𝑥)𝑐𝑜𝑠

(2𝑥 + 1)𝑢𝜋

2𝑁

𝑁−1

𝑥=0

𝑓(𝑥) = √
2

𝑁
∑ 𝐶(𝑢)𝐹(𝑢)𝑐𝑜𝑠

(2𝑥 + 1)𝑢𝜋

2𝑁

𝑁−1

𝑢=0

Where 𝐶(𝑢) = {
1

√2
for 𝑢 = 0

1 otherwise

0 ≤ 𝑥, 𝑢 ≤ 𝑁 − 1, 𝑁2: 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒

