## Processing <br> Elements Design

Shao-Yi Chien

## Introduction

- Implementation of basic arithmetic operations
- Number systems
$\square$ Conventional number systems
$\square$ Redundant number systems
$\square$ Residue number systems
- Arithmetic
$\square$ Bit-parallel arithmetic
$\square$ Bit-serial arithmetic
$\square$ Serial-parallel arithmetic
$\square$ Division
$\square$ Distributed arithmetic
$\square$ CORDIC


## Conventional Number Systems

- Conventional number systems are nonredundant, weighted, positional number systems

$$
x=\sum_{i=0}^{W_{\mathrm{d}}-1} w_{i} x_{i}
$$

Nonredundant: one number has only one representation $\mathrm{W}_{\mathrm{d}}$ : word length
$\mathrm{w}_{\mathrm{i}}$ : weights $\rightarrow$ weighted
$w_{i}$ depends only on the position of the digit $\rightarrow$ positional
For fix-radix systems, $\mathrm{w}_{\mathrm{i}}=\mathrm{r}^{\mathrm{i}}$

- Fix-point: the position of binary point is fixed
- Floating point: signed mantissa and signed exponent


## Signed-Magnitude <br> Representation

- Range
$\square[-1+\mathrm{Q}, 1-\mathrm{Q}]$
$\square \mathrm{Q}=(0.00 . .01)$

$$
\boldsymbol{x}=\left(1-2 x_{0}\right) \sum_{i=1}^{W_{d}-1} x_{i} 2^{-i}
$$

- Complex for addition and

$$
(+0.828125)_{10}=(0.110101)_{\mathrm{SM}}
$$

subtraction

$$
(-0.828125)_{10}=(1.110101)_{\mathrm{SM}}
$$

- Easy for

$$
(0)_{10}=(0.000000)_{\mathrm{SM}} \text { or }(1.000000)_{\mathrm{SM}}
$$

multiplication and division

## One's Complement

- Range

$$
\square[-1+Q, 1-Q]
$$

$$
\boldsymbol{x}=-x_{0}(1-Q)+\sum_{i=1}^{W_{d}-1} x_{i} 2^{-i}
$$

- Change sign is
easy
- Addition,

$$
(+0.828125)_{10}=(0.110101)_{1 \mathrm{C}}
$$

$$
(-0.828125)_{10}=(1.001010)_{1 \mathrm{C}}
$$

subtraction, and
multiplication are
subtraction, and
multiplication are

$$
(0)_{10}=(0.000000)_{1 \mathrm{C}} \text { or }(1.111111)_{1 \mathrm{C}}
$$ complex

## Two's Complement

$$
\begin{aligned}
& \boldsymbol{x}=-x_{0}+\sum_{i=1}^{W_{d}-1} x_{i} 2^{-i} \\
&(+0.828125)_{10}=(0.110101)_{2 \mathrm{C}} \\
&(-0.828125)_{10}=(1.001010)_{2 \mathrm{C}}+(0.000001)_{2 \mathrm{C}}=(1.001011)_{2 \mathrm{C}} \\
&(0)_{10}=(0.000000)_{2 \mathrm{C}}
\end{aligned}
$$

- Range
$\square[-1,1-\mathrm{Q}]$
- The most widely used representation


## Binary Offset Representation

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{0}-1\right)+\sum_{i=1}^{W_{d}-1} x_{i} 2^{-i} \\
&(+0.828125)_{10}=(1.110101)_{\mathrm{BO}} \\
&(-0.828125)_{10}=(0.001011)_{\mathrm{BO}} \\
&(0)_{10}=(1.000000)_{\mathrm{BO}}
\end{aligned}
$$

- Range
$\square[-1,1-\mathrm{Q}]$
- The sequence of digits is equal to the two's complement representation, except for the sign bit


## Redundant Number Systems

(1/2)
■ Redundant: one number has more than one representation

- Advantages
$\square$ Simply and speed up certain arithmetic operation
$\square$ Addition and subtraction can be performed without carry (barrow) paths
- Disadvantages
$\square$ Increase the complexity for other operations, such as zero detection, sign detection, and sign conversion


## Redundant Number Systems

 (2/2)- Signed-digit code
- Canonic signed digit code
- On-line arithmetic


## Signed-Digit Code (1/4)

$$
\boldsymbol{x}=\sum_{i=0}^{W_{d}-1} x_{i} 2^{-i} \text { where } x_{i}=-1,0, \text { or }+1
$$

- Range: [-2+Q, 2-Q]
- Redundant
$\square(15 / 32)_{10}=(0.01111)_{2 C}=(0.1000-1)_{S D C}=(0.01111)_{\text {SDC }}$
$\square(-15 / 32)_{10}=(1.10001)_{2 \mathrm{C}}=(0 .-10001)_{\text {SDC }}$
$=(0.0-1-1-1-1)_{\text {SDC }}$


## Signed-Digit Code (2/4)

- SDC number is not unique
- Has problems to
$\square$ Quantize
$\square$ Compare
$\square$ Overflow check
$\square$ Change to conventional number systems for these operations


## Signed-Digit Code (3/4)

- Example of addition
$\square(1-11-1)_{\mathrm{SDC}}=(5)_{10}$
$\square(0-111)_{\mathrm{sDC}}=(-1)_{10}$
- Rules for adding SDC numbers

| $\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$ or $\mathrm{y}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ | 00 | 01 | 01 | $0-1$ | $0-1$ | $1-1$ | 11 | $-1-1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{x}_{\mathrm{i}+1} \mathrm{y}_{\mathrm{i}+1}$ | -- | Neither is -1 | At least one <br> is -1 | Neither is -1 | At least one <br> is -1 | -- | -- | -- |
| $\mathrm{c}_{\mathrm{i}}$ | 0 | 1 | 0 | 0 | -1 | 0 | 1 | -1 |
| $\mathrm{z}_{\mathrm{i}}$ | 0 | -1 | 1 | -1 | 1 | 0 | 0 | 0 |

- $\mathrm{S}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}+1}$

DSP in VLSI Design

## Signed－Digit Code（4／4）

| $\boldsymbol{i}$ |  | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $x_{i}$ |  | 1 | -1 | 1 | -1 |
| $y_{i}$ |  | 0 | -1 | 1 | 1 |
| $c_{i+1}$ | 0 | -1 | 1 | 0 | - |
| $z_{i}$ |  | 1 | 0 | 0 | 0 |
| $s_{i}$ |  | 0 | 1 | 0 | 0 |

－（0100）$)_{S D C}=(4)_{10}$

## Canonic Signed Digit Code (1/3)

$$
\begin{aligned}
& \boldsymbol{x}=\sum_{i=0}^{W_{d}-1} x_{i} 2^{-i} \text { where } x_{i}=-1.0 . \text { or }+1 \\
& x_{i} \cdot x_{i+1}=0, \quad 0 \leq i \leq W_{d}-2
\end{aligned}
$$

- Range: [-4/3+Q, 4/3-Q]
- CSDC is a special case of SDC having a minimum number of nonzero digits


## Canonic Signed Digit Code (2/3)

- Conversion of two's-complement to CSDC numbers
$\square 2^{k+n+1}-2^{k}=2^{k+n}+2^{k+n-1}+2^{k+n-2}+\ldots+2^{k}$
$\square(0.011111)_{2 C}=(0.10000-1)_{\text {CSDC }}$
$\square$ Convert in iterative manner
$\square$ Step1: 011...1 $\rightarrow$ 100...-1
$\square$ Step2: $(-1,1) \rightarrow(0,-1),(0,1,1) \rightarrow(1,0,-1)$
$\square E x:(0.110101101101)_{2 C}$

$$
=(1.00-10-100-10-101)_{\mathrm{CSDC}}
$$

## Canonic Signed Digit Code (3/3)

- Conversion of SDC to two's complement numbers
$\square$ Separate the SDC number into two parts
- One parts holds the digit that are either 0 or 1
- The other part has -1 digits
$\square$ Subtract these two numbers


## On-Line Arithmetic

- The number systems with the property that it is possible to compute the i-th digit of the results using only the first (i+d)-th digit, where $d$ is a small positive constant
- Favorable in recursive algorithm using numbers with very long word lengths
- SDC can be used for on-line addition and subtraction, $\mathrm{d}=1$


## Residue Number Systems (1/2)

- For a given number $x$ and moduli set $\left\{m_{i}\right\}, i=1$, $2, \ldots, p$
$\square x=q_{i} m_{i}+r_{i}$
$\square$ RNS representation: $x=\left(r_{1}, r_{2}, \ldots, r_{p}\right)$
- Advantages
$\square$ The arithmetic operations (+, -, *) can be performed for each residue independently
- Disadvantages
$\square$ Hard for comparison, overflow detection, and quantization
$\square$ Not easy to convert to other number systems


## Residue Number Systems (2/2)

- Example
$\square$ Moduli set=\{5,3,2\}
$\square$ Number range $=5^{*} 3^{*} 2=30$
$\square 9+19=(4,0,1)_{\text {RNS }}+(4,1,1)_{\text {RNS }}$
$=\left((4+4)_{5},(0+1)_{3},(1+1)_{2}\right)_{\text {RNS }}=(3,1,0)_{\text {RNS }}=28$
$\square 8^{*} 3=(3,2,0)_{\text {RNS }}{ }^{*}(3,0,1)_{\text {RNS }}$

$$
=\left(\left(3^{*} 3\right)_{5},\left(2^{*} 0\right)_{3},\left(0^{*} 1\right)_{2}\right)_{\mathrm{RNS}}=(4,0,0)_{\mathrm{RNS}}=24
$$

## Bit-Parallel Arithmetic (1/2)

- Addition and subtraction
$\square$ Ripple carry adder (RCA) (carry propagation adder, CPA)
$\square$ Carry-look-ahead adder (CLA)
$\square$ Carry-save adder
$\square$ Carry-select adder (CSA)
$\square$ Carry-skip adder
$\square$ Conditional-sum adder


## Bit-Parallel Arithmetic (2/2)

## - Multiplication

$\square$ Shift-and-add multiplication
$\square$ Booth's algorithm
$\square$ Tree-based multipliers
$\square$ Array multipliers
$\square$ Look-up table techniques

## Ripple Carry Adder (RCA) (1/2)

- Also called carry propagation adder (CPA)
$\square$ Full adder



## Ripple Carry Adder (RCA) (2/2)

- The speed of the RCA is determined by the carry propagation time


Ripple-carry adder
Ripple-carry adder/subtractor

## Carry-Look-Ahead Adder (CLA)

- Generate the carry with separate circuits
- $\mathrm{C}_{\mathrm{i}}=\mathrm{G}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}-1}$
- $G_{i}=A_{i} \cdot B_{i}$
- $\mathrm{P}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}$

*Different digit notation in this slide
DSP in VLSI Design
Shao-Yi Chien


## Carry-Save Adder

- Used when adding three or more operands
- Reduce the number of operands by one for each stage

*Different digit notation in this slide


## Carry-Select Adder (CSA)


*Different digit notation in this slide

## Carry-Skip Adder


*Different digit notation in this slide

## Conditional-Sum Adder

$$
\begin{aligned}
& S_{0}=A \oplus B \\
& S_{1}=-(A \oplus B) \\
& C_{0}=A \cdot B \\
& C_{1}=A+B
\end{aligned}
$$

*Different digit notation in this slide DSP in VLSI Design


Shao-Yi Chien

## Multiplication

## - Bit-parallel multiplication

## Shift-and-Add Multiplication (1/2)

$$
\begin{aligned}
& \boldsymbol{y}=\boldsymbol{a}\left(-x_{0}+\sum_{i=1}^{W_{d}-1} x_{i} 2^{-i}\right)=-\boldsymbol{a} x_{0}+\sum_{i=1}^{W_{d}-1} \boldsymbol{a} x_{i} 2^{-i} \\
& \begin{array}{cccccc} 
& \begin{array}{cc}
-a_{0} & a_{1} \\
-a_{0} & a_{1} \\
a_{2} & a_{2}
\end{array} & \cdots & \left.a_{W_{c^{-1}}}\right) \cdot x_{W_{d^{-1}}}
\end{array}
\end{aligned}
$$

## Shift-and-Add Multiplication (2/2)

- The operation can be reduced with CSDC
- Can be used to design fix-operand multiplier



## Booth's Algorithm (1/3)

- Used in modern general-purpose processors, such as MIPS R4000

$$
\begin{aligned}
x & =\sum_{i=1}^{15} x_{i} 2^{-i}-x_{0} 2^{0}=\sum_{i=1}^{8} x_{2 i-1} 2^{-2 i+1}+\sum_{i=1}^{7} x_{2 i} 2^{-2 i}-x_{0} 2^{0} \\
& =\sum_{i=1}^{8} x_{2 i-1} 2^{-2 i+1}+\sum_{i=1}^{7} x_{2 i} 2^{-2 i+1}-2 \sum_{i=1}^{7} x_{2 i} 2^{-2 i-1}-x_{0} 2^{0} \\
& =\sum_{i=1}^{8} x_{2 i-1} 2^{-2 i+1}+\sum_{i=1}^{8} x_{2 i} 2^{-2 i+1}-2 \sum_{i=2}^{8} x_{2(i-1)} 2^{-2 i+1}-x_{0} 2^{0} \\
& =\sum_{i=1}^{8}\left[x_{2 i-1}+x_{2 i}-2 x_{2(i-1)}\right] 2^{-2 i+1}
\end{aligned}
$$

$$
x \cdot y=\sum_{i=1}^{8}\left[x_{2 i-1}+x_{2 i}-2 x_{2(i-1)}\right] y 2^{-2 i+1}
$$

## Booth's Algorithm (2/3)

| $\mathrm{x}_{2 \mathrm{i}-2}$ | $\mathrm{x}_{2 \mathrm{i}-1}$ | $\mathrm{x}_{2 \mathrm{i}}$ | $\mathrm{x}_{2 \mathrm{i}-1}$ | Operation | Comments |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | +0 | String of zeros |
| 0 | 0 | 1 | 1 | +y | Beginning of 1s |
| 0 | 1 | 0 | 1 | +y | A single 1 |
| 0 | 1 | 1 | 2 | +2 y | Beginning of 1s |
| 1 | 0 | 0 | -2 | -2 y | End of 1's |
| 1 | 0 | 1 | -1 | -y | A single 0 |
|  |  |  |  | (beginning/end of 1's) |  |
| 1 | 1 | 0 | -1 | -y | End of 1's |
| 1 | 1 | 1 | 0 | -0 | String of 1's |
| DSP in VLSI Design | Shao-Yi Chien |  |  |  |  |

## Booth's Algorithm (3/3)



| $\mathrm{X}_{\mathrm{i}+1}$ | Xi | $\mathrm{X}_{\mathrm{i}-1}$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | +Y | (beginning of string) |
| 0 | 1 | 0 | +Y | (isolated) |
| 0 | 1 | 1 | +2 Y | (beginning of string) |
| 1 | 0 | 0 | -2 Y | (end of string) |
| 1 | 0 | 1 | -Y | (beginning/end of string) |
| 1 | 1 | 0 | -Y | (end of string) |
| 1 | 1 | 1 | 0 |  |

## Tree-Based Multipliers (Wallace Tree Multipliers)



Inputs to the second stage

Result of the second stage

Inputs to the third stage

Result of the third stage


## Array Multipliers (1/3)

- BaughWooley's multiplier

$$
\begin{aligned}
\boldsymbol{P} & =\boldsymbol{x} \cdot \boldsymbol{y}=\left(-x_{0}+\sum_{i=1}^{W_{d}-1} x_{i} 2^{-i}\right)\left(-y_{0}+\sum_{i=1}^{W_{d}-1} y_{i} 2^{-i}\right) \\
& =x_{0} \cdot y_{0}+\sum_{i=1}^{W_{d}-1} \sum_{j=1}^{W_{d}-1} x_{i} \cdot y_{j} 2^{-i-j}-x_{0} \sum_{i=1}^{W_{d}-1} y_{i} 2^{-i}-y_{0} \sum_{i=1}^{W_{d}-1} x_{i} 2^{-i}
\end{aligned}
$$

Each of the two negative terms may be rewritten

$$
-\sum_{i=1}^{W_{d}-1} x_{0} \cdot y_{i} 2^{-i}=-1+2^{-W_{d}+1}+\sum_{i=1}^{W_{d}-1}\left(1-x_{0} \cdot y_{i}\right) 2^{-i}
$$

and by using the overflow property of two's-complement representation we get

$$
-\sum_{i=1}^{W_{d}-1} x_{0} \cdot y_{i} 2^{-i}=1+2^{-W_{d}+1}+\sum_{i=1}^{W_{d}-1} \overline{x_{0} \cdot y_{i}} 2^{-i}
$$

We get

$$
\begin{aligned}
\boldsymbol{P}= & 2+2^{-W_{d}+2}+x_{0} \cdot y_{0}+\sum_{i=1}^{W_{d}-1} \sum_{j=1}^{W_{d}-1} x_{i} \cdot y_{j} 2^{-i-j} \\
& +\sum_{i=1}^{W_{d}-1} \overline{x_{0} \cdot y_{i}} 2^{-i}+\sum_{i=1}^{W_{d}-1} \overline{y_{0} \cdot x_{i}} 2^{-i}
\end{aligned}
$$

## Array Multipliers (2/3)

- Partial products

|  |  | $x_{0}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $y_{0}$ | $y_{1}$ | $y_{2}$ | $y_{3}$ |
|  |  |  |  |  |  |  |
|  |  | $\overline{x_{0} \cdot y_{3}}$ | $x_{1} \cdot y_{3}$ | $x_{2} \cdot y_{3}$ | $x_{3} \cdot y_{3}$ |  |
|  |  | $\overline{x_{0} \cdot y_{2}}$ | $x_{1} \cdot y_{2}$ | $x_{2} \cdot y_{2}$ | $x_{3} \cdot y_{2}$ |  |
| 1 | $x_{0} \cdot y_{0}$ | $\overline{x_{1} \cdot y_{1}}$ | $x_{2} \cdot y_{1}$ | $x_{3} \cdot y_{1}$ |  |  |
| $p_{-1}$ | $p_{0} \bullet$ | $p_{1}$ | $p_{2}$ | $p_{3}$ | $p_{4}$ | $p_{5}$ |

## Array Multipliers (3/3)



## Look-Up Table Techniques

- A multiplier AxB can be done with a large table with $2^{W A+W B}$ words
- Simplified method

$$
x \cdot y=\frac{(x+y)^{2}}{4}-\frac{(x-y)^{2}}{4}
$$

$\square$ Can be implemented with one addition, two subtraction, and two table look-up operations

## Bit-Serial Arithmetic

- Advantages
$\square$ Significantly reduce chip area
- Eliminate wide bus
- Small processing elements
$\square$ Higher clock frequency
$\square$ Often superior than bit-parallel
- Disadvantages
$\square$ S/P P/S interface
$\square$ Complicated clocking scheme


## Bit-Serial Addition and Subtraction



Addition


Subtraction

## Serial/Parallel Multiplier

- Use carry-save adders
- Need $\mathrm{W}_{\mathrm{d}}+\mathrm{W}_{\mathrm{c}}-1$ cycles to compute the result



## Modified Serial/Parallel Multiplier



## Transpose Serial/Parallel Multiplier



## S/P Multiplier-Accumulator

- $y=a^{*} x+z$



## S/P Multiplier with Fixed Coefficients (1/3)

- Remove all AND gates
- Remove all FAs and corresponding D flipflops, starting with the MSB in the coefficient, up to the first 1 in the coefficient
- Replace each FA that corresponds to a zero-bit in the coefficient with a feedthrough


## S/P Multiplier with Fixed Coefficients (2/3)



## S/P Multiplier with Fixed Coefficients (3/3)



- The number of FA = (the number of 1's)-1
- The number of $D$ flip-flops = the number of 1 -bit positions between the first and last bit positions


## S/P Multiplier with CSDC Coefficients

- $\mathrm{a}=(0.00111)_{2 \mathrm{C}}=(0.0100-1)_{C S D C}$



## Minimum Number of Basic Operations



## Division

## Major reference:

B. Parham, Computer Arithmetic: Algorithms and Hardware Designs, Oxford, 2000.

■ How to do binary division?


- In the following slides, we define
$\square$ Dividend $\mathbf{z}=z_{2 k-1} z_{2 k-2} \ldots z_{1} z_{0}$
$\square$ Divisor $\mathbf{d}=d_{k-1} d_{k-2} \ldots d_{1} d_{0}$
$\square$ Quotient $\mathbf{q}=q_{k-1} q_{k-2} \ldots q_{1} q_{0}$
$\square$ Remainder $\mathbf{s}=[\mathbf{z - ( d x q})]=s_{k-1} s_{k-2} \ldots s_{1} s_{0}$


## What's Different?

- Added complication of requiring quotient digit selection or estimation
$\square$ The terms to be subtracted from the dividend $z$ are not known a priori but become known as the quotient digits are computed
$\square$ The terms to be subtracted from the initial partial remainder must be produced from top to bottom
$\square$ More difficult and slower than multiplication
$\square$ Long critical path


## Division

- Bit-serial division (sequential division algorithm)
- Programmed division
- Restoring bit-serial hardware divider
- Nonrestoring bit-serial hardware divider
- Division by constants
- Array divider


## Bit-Serial division (Sequential Division) Algorithm

 $\square s^{(j)}=2 s^{(j-1)}-q_{k-j}\left(2^{k} d\right)$ with $s^{(0)}=z$ and $s^{(k)}=2^{k} s$
For $\mathrm{j}=1$ to k \{
$\operatorname{lf}\left(2 s^{(j-1)}>=\left(2^{k} d\right)\right)$
$\operatorname{lf}\left(2 s^{(j-1)}>=\left(2^{k} d\right)\right)$
$\mathrm{q}_{\mathrm{k}-\mathrm{j}}=1$;
$\mathrm{q}_{\mathrm{k}-\mathrm{j}}=1$;
$s^{(i)}=2 s^{(j-1)}-\left(2^{\mathrm{k}} \mathrm{d}\right)$;
$s^{(i)}=2 s^{(j-1)}-\left(2^{\mathrm{k}} \mathrm{d}\right)$;
\}
\}
Else
Else
$\mathrm{q}_{\mathrm{k} . \mathrm{j}}=0$;
$\mathrm{q}_{\mathrm{k} . \mathrm{j}}=0$;
$\mathrm{s}^{(\mathrm{j}}=2 \mathrm{~s}^{(\mathrm{j}-1)}$;
$\mathrm{s}^{(\mathrm{j}}=2 \mathrm{~s}^{(\mathrm{j}-1)}$;
\}
\}
\}
\}

| ${ }_{2}{ }^{4} d$ | $\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0\end{array}$ | 0101 |
| :---: | :---: | :---: |
| $s(0)$ | 0111 | 0101 |
| $2 s(0)$ | 01110 | 101 |
| $-q_{3} 2^{4} d$ | 1010 | $\left\{q_{3}=1\right\}$ |
| $s(1)$ | 0100 | 101 |
| $2 s(1)$ | 01001 | 01 |
| $-q_{2} 2^{4} d$ | 0000 | $\left\{q_{2}=0\right\}$ |
| $s(2)$ | 1001 | 01 |
| $2 s^{(2)}$ | 10010 | 1 |
| $-q_{1} 2^{4} d$ | 1010 | $\left\{q_{1}=1\right\}$ |
| $s(3)$ | 1000 | 1 |
| $2 s(3)$ | 10001 |  |
| $-q_{0}{ }^{4} d$ | 1010 | $\left\{q_{0}=1\right\}$ |
| $s(4)$ | 0111 |  |
| $s$ |  | 01111 |
| $q$ |  | 1011 |

## Programmed Division



Need more than 200 instructions for a 32-bit division!!
\{Using left shifts, divide unsigned $2 k$-bit dividend,


$$
\begin{array}{ll}
\text { branch } & d \_ \text {by_0 if } R d=R 0 \\
\text { branch } & d \_o v f l ~ i f ~ \\
\text { d } \gg R d
\end{array}
$$

\{Initialize counter\}
load $\quad k$ into Rc
\{Begin division loop\}

| d_loop: | shift | Rq left 1 | \{zero to LSB, MSB to carry\} |
| :---: | :---: | :---: | :---: |
|  | rotate | Rs left 1 | \{carry to LSB, MSB to carry\} |
|  | skip | if carry = 1 |  |
|  | branch | no_sub if Rs | < Rd |
|  | sub | Rd from Rs |  |
| no_sub: | incr | Rq | \{set quotient digit to 1\} |
|  | decr | Rc | \{decrement counter by 1\} |
|  | branch | d_loop if Rc | 0 |

\{Store the quotient and remainder\}

|  | store <br> store | Rq into quotient <br> Rs into remainder |
| :--- | :--- | :--- |
| d_done: | $\cdots$ |  |
| d_by_0: | $\cdots$ |  |
| d_ovf:: | $\cdots$ |  |

## Restoring Bit-Serial Hardware

 Divider (1/3)- "Restoring division"
$\square$ Assume $\mathrm{q}=1$ first, do the trial difference
$\square$ The remainder is restored to its correct value if the trial subtraction indicates that 1 was not the right choice for $q$


## Restoring Bit-Serial Hardware Divider (2/3)



| $\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 1\end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $24 d$ | $\begin{array}{lllll} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{array}$ |  |  |
| $-24 d$ |  |  |  |
| $s(0)$ | 0 | 0111 | 0101 |
| $2 s(0)$ | 0 | 1110 | 101 |
| $+(-24 d)$ | 1 | 0110 |  |
| $s(1)$ | 0 | 0100 | 101 |
| $2 s(1)$ | 0 | 1001 | 01 |
| $+\left(-2^{4} d\right)$ | 1 | 0110 |  |
| $s(2)$ | 1 | 1111 | 01 |
| $s^{(2)}=2 s^{(1)}$ | 0 | 1001 | 01 |
| $2 s(2)$ | 1 | 0010 | 1 |
| $+\left(-2^{4} d\right)$ | 1 | 0110 |  |
| $s(3)$ | 0 | 1000 | 1 |
| $2 s^{(3)}$ | 1 | 0001 |  |
| $+\left(-2^{4} d\right)$ | 1 | 0110 |  |
| $s(4)$ | 0 | 0111 |  |
| $s$ |  |  | $\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$ |
| $q$ |  |  | 1011 |

No overflow, since: $(0111)_{\text {two }}<(1010)_{\text {two }}$

Positive, so set $q_{3}=1$

Negative, so set $q_{2}=0$ and restore

Positive, so set $q_{1}=1$

Positive, so set $q_{0}=1$

# Restoring Bit-Serial Hardware Divider (3/3) 



## Nonrestoring Bit-Serial Hardware Divider (1/4)

- Always store $u-2^{k} d$ back to the register

■ If the value q in this stage is $1 \rightarrow$ correct!
$\square$ Next stage: $2\left(u-2^{k} d\right)-2^{k} d=2 u-3 x 2^{k} d$

- If the value $q$ in this stage is $0 \rightarrow$ incorrect!
$\square$ Next stage should be: $2 u-2^{k} d$
$\square$ Is equal to $2\left(u-2^{k} d\right)+2^{k} d$
- Always store the result of trail difference
$\square$ If $\mathrm{q}=1 \rightarrow$ use subtraction; if $\mathrm{q}=0 \rightarrow$ use addition
- Can reduce critical path


## Nonrestoring Bit-Serial Hardware Divider (2/4)




No overflow, since: $(0111)_{\mathrm{two}}<(1010)_{\mathrm{two}}$

Positive, so subtract

Positive, so set $q_{3}=1$ and subtract

Negative, so set $q_{2}=0$ and add

Positive, so set $q_{1}=1$ and subtract

Positive, so set $q_{0}=1$

## Nonrestoring Bit-Serial Hardware Divider (3/4)




No overflow, since: $(0111)_{\mathrm{two}}<(1010)_{\mathrm{two}}$

Positive, so subtract

Positive, so set $q_{3}=1$ and subtract

Negative, so set $q_{2}=0$ and add

Positive, so set $q_{1}=1$ and subtract

Positive, so set $q_{0}=1$

## Nonrestoring BitSerial Hardware Divider (4/4)

(a) Restoring.

(b) Nonrestoring.

## Division by Constants (1/2)

- Use lookup table + constant multiplier
- Exploit the following equations
$\square$ Consider odd divisor only since even divisor can be performed by first dividing by an odd integer and then shifting the result
$\square$ For an odd integer d, there exists an odd integer m such that $\mathrm{dx} \mathrm{m}=2^{\mathrm{n}}-1$


## Division by Constants (2/2)

$\square \frac{1}{d}=\frac{m}{2^{n}-1}=\frac{m}{2^{n}\left(1-2^{-n}\right)}=\frac{m}{2^{n}}\left(1+2^{-n}\right)\left(1+2^{-2 n}\right)\left(1+2^{-4 n}\right) \cdots$
$\square$ For example, for 24-bit precision:

$$
\begin{aligned}
& d=5, \Rightarrow m=3, n=4 \quad \text { Easy for hardware implementation } \\
& \frac{z}{5}=\frac{3 z}{2^{4}-1}=\frac{3 z}{16\left(1-2^{-4}\right)}=\frac{3 z}{16}\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right)
\end{aligned}
$$

Next term ( $1+2^{-32}$ ) does not contribute anything to 24 -bit precision

## Array Divider (1/2)

- Restoring array divider

FS: full subtractor


DSP in VLSI Design

The critical path passes through all $\mathrm{k}^{2}$ cells

Dividend $\quad z=. z_{1} z_{2} z_{-3} z_{-4} z_{-5} z_{-6}$
Diviso
Quotient
Remainder $s=.0 \quad 0 \quad 0 \quad s_{-4} s_{-5} s_{-6}$
Shao-Yi Chien

## Array Divider (2/2)

- Nonrestoring array divider



## Distributed Arithmetic (1/7)

- Most DSP algorithms involve sum-ofproducts (inner products)

$$
\underset{\text { ceeficient }}{\boldsymbol{y}=\mathbb{\pi} \cdot x}=\sum_{i=1}^{N} \boldsymbol{a}_{i} \boldsymbol{x}_{i}
$$

- Distributed arithmetic (DA) is an efficient procedure for computing inner products between a fixed and a variable data vector


## Distributed Arithmetic (2/7)

$$
\begin{aligned}
& y=\sum_{i=1}^{N} a_{i}\left[-x_{i 0}+\sum_{k=1}^{W_{d}-1} x_{i k} 2^{-k}\right] \\
& y=-\sum_{i=1}^{N} a_{i} x_{i 0}+\sum_{k=1}^{W_{d}-1}\left[\sum_{i=1}^{N} a_{i} x_{i k}\right] 2^{-k} \\
& y=-F_{0}\left(x_{10}, x_{20}, \ldots, x_{\mathrm{N} 0}\right)+\sum_{k=1}^{W_{d}-1} F_{k}\left(x_{1 k}, x_{2 k}, \ldots, x_{N k}\right) 2^{-k}
\end{aligned}
$$

$$
\text { where } F_{k}\left(x_{1 k}, x_{2 k}, \ldots, x_{N k}\right)=\sum_{i=1}^{N} a_{i} x_{i k}
$$

## Distributed Arithmetic (3/7)

$$
\boldsymbol{y}=\left(\left(\ldots\left(\left(0+F_{\left.W_{d-1}\right)}\right) 2^{-1}+F_{W_{d-2}}\right) 2^{-1}+\ldots+F_{2}\right) 2^{-1}+F_{1}\right) 2^{-1}-F_{0}
$$



- DA can be implemented with a ROM and a shiftaccumulator
- The computation time: Wd cycles
- Word length of ROM: $W_{\text {ROM }} \leq W_{C}+\log _{2}(N)$


## Distributed Arithmetic (4/7)

- Example
$\square \mathrm{y}=\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{a}_{2} \mathrm{x}_{2}+\mathrm{a}_{3} \mathrm{x}_{3}$
$\square a_{1}=(0.0100001)_{2 c}$
$\square a_{2}=(0.1010101)_{2 C}$
$\square a_{3}=(1.1110101)_{2 c}$
- (a) The table? (b) The word length of the shift-accumulator?


## Distributed Arithmetic (5/7)

- Ans:
$\square(\mathrm{a})$

| $\boldsymbol{x}_{\mathbf{1}} \boldsymbol{x}_{\mathbf{2}} \boldsymbol{x}_{\mathbf{3}}$ | $\boldsymbol{F}_{\boldsymbol{k}}$ | $\boldsymbol{F}_{\boldsymbol{k}}$ | $\boldsymbol{F}_{\boldsymbol{k}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 |
| 0 | 0 | 1 | $\boldsymbol{a}_{3}$ | 1.1110101 | 0.0859375 |
| 0 | 1 | 0 | $\boldsymbol{a}_{2}$ | 0.1010101 | 0.6640625 |
| 0 | 1 | 1 | $\boldsymbol{a}_{2}+\boldsymbol{a}_{3}$ | 0.1001010 | 0.5781250 |
| 1 | 0 | 0 | $\boldsymbol{a}_{\mathbf{1}}$ | 0.0100001 | 0.2578125 |
| 1 | 0 | 1 | $\boldsymbol{a}_{1}+\boldsymbol{a}_{3}$ | 0.0010110 | 0.1718750 |
| 1 | 1 | 0 | $\boldsymbol{a}_{1}+\boldsymbol{a}_{2}$ | 0.1110110 | 0.9218750 |
| 1 | 1 | 1 | $\boldsymbol{a}_{1}+\boldsymbol{a}_{2}+\boldsymbol{a}_{3}$ | 0.1101011 | 0.8359375 |

$\square$ (b) Word length $=7$ bits +1 bit (sign bit) +1 bit (guard bit) $=9$ bits

$$
|\boldsymbol{y}|=\left(\left(\ldots\left(\left(0+F_{\max }\right) 2^{-1}+F_{\max }\right) 2^{-1}+\ldots+F_{\max }\right) 2^{-1}+F_{\max }\right) 2^{-1} \leq F_{\max }
$$

## Distributed Arithmetic (6/7)

- Example: linear-phase FIR filter



## Distributed Arithmetic (7/7)

- Parallel implementation of distributed arithmetic



## Shift-Accumulator (1/4)



- The number of cycles for one inner product is $\mathrm{W}_{\mathrm{d}}+\mathrm{W}_{\text {ROM }}$
$\square$ First $W_{d}$ cycles: input data
$\square$ Last $\mathrm{W}_{\mathrm{ROM}}$ cycles: shift out the results


## Shift-Accumulator (2/4)

- Shift-accumulator augmented with two shift registers



## Shift-Accumulator (3/4)

- Scheduling

- Clock cycle
$\square \mathrm{N}_{\mathrm{CL}}=\max \left\{\mathrm{W}_{\mathrm{ROM}}, \mathrm{W}_{\mathrm{d}}\right\}$


## Shift-Accumulator (4/4)

- Detailed architecture



## Reducing the Memory Size (1/4)

- Method 1 : memory partition
$\square 2^{*} 2^{N / 2}<2^{N}$
$\square E x: 2^{*} 2^{5}=64$
$<2^{10}=1024$



## Reducing the Memory Size (2/4)

- Method 2: memory coding

$$
\begin{aligned}
x & =\frac{1}{2}[x-(-x)] \\
& =\frac{1}{2}\left[-x_{0}+\sum_{k=1}^{W_{d}-1} x_{k} 2^{-k}-\left(-\overline{x_{0}}+\sum_{k=1}^{W_{d}-1} \overline{x_{k}} 2^{-k}+2^{-\left(\mathrm{W}_{d}-1\right)}\right)\right] \\
& =-\left(x_{0}-\overline{x_{0}}\right) 2^{-1}+\sum_{k=1}^{W_{d}-1}\left(x_{k}-\overline{x_{k}}\right) 2^{-k-1}-2^{-W_{d}}
\end{aligned}
$$

$$
\boldsymbol{y}=\sum_{k=1}^{W_{d}-1} F_{k}\left(x_{1 k}, \ldots, x_{N k}\right) 2^{-k-1}-F_{0}\left(x_{10}, \ldots, x_{N 0}\right) 2^{-1}+F(0, \ldots, 0) 2^{-W_{d}}
$$

$$
\text { where } F_{k}\left(x_{1 k}, x_{2 k}, \ldots, x_{N k}\right)=\sum_{i=1}^{N} \boldsymbol{a}_{i}\left(x_{k}-\overline{x_{k}}\right)
$$

## Reducing the Memory Size (3/4)

$$
\begin{aligned}
& u_{1}=x_{1} \otimes x_{2} \\
& u_{2}=x_{1} \otimes x_{3}
\end{aligned}
$$



## Reducing the Memory Size (4/4)



## CORDIC

Major reference:
[1] A.-Y. Wu, "CORDIC," Slides of Advanced VLSI
[2] Y. H. Hu, "CORDIC-based VLSI architectures for digital signal processing," IEEE Signal Processing Magazine, pp. 16-35, July 1992. [3] J. E. Volder, "The Birth of CORDIC," J. VLSI Signal Processing, vol.25, pp. 101-105, 2000.

- CORDIC (COordinate Rotation DIgital Computer)
$\square$ An iterative arithmetic algorithm introduced by Volder in 1956
$\square$ Can handle many elementary functions, such as trigonometric, exponential, and logarithm with only shift-and-add arithmetic
$\square$ For these functions CORDIC based architecture is much efficient than multiplier and accumulator (MAC) based architecture
$\square$ Suitable for transformations and matrix based filters


## The Birth of CORDIC



B-58 Supersonic Bomber


## Simple Concepts of CORDIC

 (1/2)- Originally, CORDIC is invented to deal with rotation problem with shift-and-add arithmetic

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$



## Simple Concepts of CORDIC

 (2/2)- How to make it with shift-and-add?
- Decompose the desired rotation angle into small rotation angles (micro-rotation)
- Rotate finite times (by "elementary angles" $\left\{a_{i} \mid 0 \leq i \leq n-1\right\}$ ) to achieve the desired rotation $\theta$



## Conventional CORDIC

 Algorithm (1/2)$$
\begin{aligned}
& {\left[\begin{array}{l}
x(i+1) \\
y(i+1)
\end{array}\right]=\left[\begin{array}{cc}
\cos a_{i} & -\sin a_{i} \\
\sin a_{i} & \cos a_{i}
\end{array}\right]\left[\begin{array}{c}
x(i) \\
y(i)
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{l}
x(i+1) \\
y(i+1)
\end{array}\right]=\cos a_{i}\left[\begin{array}{cc}
1 & -\tan a_{i} \\
\tan a_{i} & 1
\end{array}\right]\left[\begin{array}{l}
x(i) \\
y(i)
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x(i+1) \\
y(i+1)
\end{array}\right]=\cos a_{i}\left[\begin{array}{cc}
1 & -2^{-i} \\
2^{-i} & 1
\end{array}\right]\left[\begin{array}{l}
x(i) \\
y(i)
\end{array}\right] \\
& a_{i}=\tan ^{-1} 2^{-i}, \cos a_{i}=\frac{1}{\sqrt{1+2^{-2 i}}}
\end{aligned}
$$

## Conventional CORDIC Algorithm (2/2)

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& =S \times\left[\begin{array}{cc}
1 & -\mu_{0} 2^{-0} \\
\mu_{0} 2^{-0} & 1
\end{array}\right] \times \ldots
\end{aligned}
$$


$\times\left[\begin{array}{cc}1 & -\mu_{i} 2^{-i} \\ \mu_{i} 2^{-i} & 1\end{array}\right] \times \ldots \times\left[\begin{array}{c}1 \\ \mu_{n-1} 2^{-(n-1)}\end{array}\right.$
Scaling factor: $S=\frac{1}{\prod_{i=0}^{n-1} \sqrt{1+\mu_{i}^{2} 2^{-2 i}}}$
Mode of rotation: $\mu_{i} \in\{-1,1\}$

## Generalized CORDIC (1/2)

- Target: $\theta=\sum_{i=0}^{n-1} \mu_{i} a_{m}(i)$
- i-th elementary rotation angle is defined by
$a_{m}(i)=\frac{1}{\sqrt{m}} \tan ^{-1}\left[\sqrt{m} 2^{-s(m, i)}\right]=\left\{\begin{array}{ccl}-2^{s(0, i)} & m \rightarrow 0 & \text { Linear coordinate } \\ \tan ^{-1} 2^{-s(1 . i)} & m=1 & \text { Circular coordinate } \\ \tanh ^{-1} 2^{-s(-1, i)} & m=-1 & \text { Hyperbolic coordinate }\end{array}\right.$
norm of a vector $[\mathrm{xy}]^{T}$ is $\sqrt{\mathrm{x}^{2}+m y^{2}}$
$\mu_{i} \in\{-1,1\}$ : mode of rotation
$s(m, i)$ : non - descreasing integer shift sequence

Generalized CORDIC (2/2)

## Linear Rotation




## CORDIC Algorithm

Initiation : Given $x(0), y(0), z(0)$
For $\mathrm{i}=0$ ton -1 , Do
/*CORDICiteration equation */
$\left[\begin{array}{l}x(i+1) \\ y(i+1)\end{array}\right]=\left[\begin{array}{cc}1 & -\mu_{i} 2^{-s(m, i)} \\ \mu_{i} 2^{-s(m, i)} & 1\end{array}\right]\left[\begin{array}{l}x(i) \\ y(i)\end{array}\right]$
/* Angle updating equation */

$$
z(i+1)=z(i)-\mu_{i} a_{m}(i)
$$

End i-loop
$/ *$ Scaling operation (required for $m= \pm 1$ only)*/

$$
\left[\begin{array}{l}
x_{f} \\
y_{f}
\end{array}\right]=\frac{1}{K_{m}(n)} \cdot\left[\begin{array}{l}
x(n) \\
y(n)
\end{array}\right]=\frac{1}{\prod_{i=0}^{n-1} \sqrt{1+m \mu_{i}^{2} 2^{-2 s(m, i)}} \cdot\left[\begin{array}{l}
x(n) \\
y(n)
\end{array}\right], ~ \text {. }}
$$

## Mode of Operation (1/2)

- Vector rotation mode ( $\theta$ is given)

$$
z(0)=\theta
$$

After n iterations, the total angle rotated is:

$$
z(0)-z(n)=\theta-z(n)=\sum_{i=0}^{n-1} \mu_{i} a_{m}(i)
$$

we want tomake $|z(n)| \rightarrow 0$


$$
\mu_{i}=\operatorname{sign} \text { of } z(i)
$$

$\square$ For many DSP problems, $\theta$ is know in advance, and sequence $\left\{\mu_{i}\right\}$ can be stored instead

## Mode of Operation (2/2)

- Angle accumulation mode ( $\theta$ is not given)
$\square$ The objective is to rotate the given initial vector $[x(0) y(0)]^{\top}$ back to the $x$-axis

$$
\begin{aligned}
& \text { set } z(0)=0 \\
& \mu_{i}=-\operatorname{sign} \text { of } x(i) \cdot y(i)
\end{aligned}
$$

- Summary

$$
\mu_{i}=\left\{\begin{array}{cl}
\text { sign of } z(i) & \text { Vector rotation mode } \\
-\operatorname{sign} \text { of } x(i) \cdot y(i) & \text { Angle accumulation mode }
\end{array}\right.
$$

## Shift Sequence

- Usually defined in advance
- Walther has proposed a set of shift sequence for each of the three coordinate systems
$\square$ For $\mathrm{m}=0$ or $1, \mathrm{~s}(\mathrm{~m}, \mathrm{i})=\mathrm{i}$
$\square$ For $\mathrm{m}=-1, \mathrm{~s}(-1, \mathrm{i})=1,2,3,4,4,5, \ldots, 12,13$, 13, 14, ...


## Scaling Operation $\frac{1}{K_{m}(n)}$

- Significant computation overhead of CORDIC
- Fortunately, since $\left|\mu_{i}\right|=1$, and assume $\{s(m, i)\}$ is given, $K_{m}(n)$ can be computed in advance
- Two approaches to compute scaling
$\square$ CSD representation $\frac{1}{K_{m}(n)}=\sum_{p=1}^{p} \kappa_{p} z^{-Z_{p}}$

$$
\kappa_{q}= \pm 1
$$

$\square$ Project of factors

$$
\frac{1}{K_{m}(n)}=\prod_{q=1}^{Q}\left(1+\kappa_{q} 2^{-i_{q}}\right)+\varepsilon_{q}
$$

## Basic CORDIC Processor (1/3)



For CORDIC Iteration and Scaling


For Angle Update

## Basic CORDIC Processor (2/3) <br> - CORDIC Iteration



## Basic CORDIC Processor (3/3)

- Scaling


$$
\begin{aligned}
& \mathrm{I}: \frac{1}{K_{m}(n)}=\sum_{p=1}^{p} \kappa_{p} 2^{-i_{p}} \\
& \text { II: } \frac{1}{K_{m}(n)}=\prod_{q=1}^{Q}\left(1+\kappa_{q} 2^{-q_{q}}\right)
\end{aligned}
$$

Given $x^{\prime}(0)=x(n), y^{\prime}(0)=y(n)$ Typel:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{\prime}(p+1)=x^{\prime}(p)+\kappa_{p} 2^{-i_{p}} x(n) \\
y^{\prime}(p+1)=y^{\prime}(p)+\kappa_{p} 2^{-i_{p}} x(n)
\end{array}\right. \\
& \text { TypeII: }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x^{\prime}(q+1)=x^{\prime}(q)+\kappa_{q} 2^{-i_{q}} x^{\prime}(q) \\
y^{\prime}(q+1)=y^{\prime}(q)+\kappa_{q} 2^{-i_{q}} x^{\prime}(q)
\end{array}\right.
$$

## Parallel and Pipelined Arrays

- n stages for CORDIC, and s stages for scaling
- Parallel

- Pipelined



## Discrete Fourier Transform (DFT) with CORDIC (1/2)

- DFT
$Y(K)=X(0) e^{\frac{-j 22 k 0}{N}}+X(1) e^{\frac{-j 2 \pi k c 1}{N}}+\cdots X(N-1) e^{\frac{-j 22 k t(N-1)}{N}}$
- DFT with CORDIC

Initiation : $Y(0, k)=0$ for $0 \leq k \leq N-1$
For $\mathrm{k}=0$ to $\mathrm{N}-1$, Do
For $\mathrm{m}=0$ to $\mathrm{N}-1$, Do
$\left[\begin{array}{l}Y_{r}(m+1, k) \\ Y_{i}(m+1, k)\end{array}\right]=K_{1}(n) \cdot\left[\begin{array}{cc}\cos \frac{-2 \pi m k}{N} & -\sin \frac{-2 \pi m k}{N} \\ \sin \frac{-2 \pi m k}{N} & \cos \frac{-2 \pi m k}{N}\end{array}\right]\left[\begin{array}{c}x_{r}(m) \\ x_{i}(m)\end{array}\right]+\left[\begin{array}{c}Y_{r}(m, k) \\ Y_{i}(m, k)\end{array}\right]$
End m-loop
/*Scaling operation*/
$Y(k)=\frac{Y(N, k)}{K_{1}(n)}$
End k-loop
DSP in VLSI Design

## Discrete Fourier Transform (DFT) with CORDIC (2/2)



