

Processing Elements Design

Shao-Yi Chien

Introduction

- Implementation of basic arithmetic operations
- Number systems
 - Conventional number systems
 - Redundant number systems
 - Residue number systems
- Arithmetic
 - □ Bit-parallel arithmetic
 - □ Bit-serial arithmetic
 - Serial-parallel arithmetic
 - Division
 - Distributed arithmetic
 - □ CORDIC

Conventional Number Systems

 Conventional number systems are nonredundant, weighted, positional number systems

$$x = \sum_{i=0}^{W_{\rm d}-1} w_i x_i$$

Nonredundant: one number has only one representation W_d : word length w_i : weights \rightarrow weighted w_i depends only on the position of the digit \rightarrow positional For fix-radix systems, $w_i = r^i$

- Fix-point: the position of binary point is fixed
- Floating point: signed mantissa and signed exponent

Signed-Magnitude Representation

- Range
 - □ [-1+Q, 1-Q]
 - \square Q=(0.00..01)
- $\mathbf{x} = (1 2x_0) \sum_{i=1}^{W_d 1} x_i 2^{-i}$
- Complex for addition and subtraction
- Easy for multiplication and division

$$(+0.828125)_{10} = (0.110101)_{SM}$$

 $(-0.828125)_{10} = (1.110101)_{SM}$
 $(0)_{10} = (0.000000)_{SM} \text{ or } (1.000000)_{SM}$

One's Complement

- Range
- Change sign is easy
- Addition, subtraction, and multiplication are complex

$$\Box [-1+Q, 1-Q] \qquad x = -x_0(1-Q) + \sum_{i=1}^{W_d-1} x_i 2^{-i}$$

$$\begin{array}{l} (+0.828125)_{10} = (0.110101)_{1\mathrm{C}} \\ (-0.828125)_{10} = (1.001010)_{1\mathrm{C}} \\ (0)_{10} = (0.000000)_{1\mathrm{C}} \text{ or } (1.111111)_{1\mathrm{C}} \end{array}$$

Two's Complement

$$\begin{aligned} \boldsymbol{x} &= -x_0 + \sum_{i=1}^{W_d - 1} x_i 2^{-i} \\ &(+0.828125)_{10} = (0.110101)_{2C} \\ &(-0.828125)_{10} = (1.001010)_{2C} + (0.000001)_{2C} = (1.001011)_{2C} \\ &(0)_{10} = (0.000000)_{2C} \end{aligned}$$

- Range
 - □ [-1, 1-Q]
- The most widely used representation

Binary Offset Representation

$$x = (x_0 - 1) + \sum_{i=1}^{W_d - 1} x_i 2^{-i}$$

$$(+0.828125)_{10} = (1.110101)_{BO}$$

$$(-0.828125)_{10} = (0.001011)_{BO}$$

$$(0)_{10} = (1.000000)_{BO}$$

- Range
 - □ [-1,1-Q]
- The sequence of digits is equal to the two's complement representation, except for the sign bit

Redundant Number Systems (1/2)

- Redundant: one number has more than one representation
- Advantages
 - Simply and speed up certain arithmetic operation
 - Addition and subtraction can be performed without carry (barrow) paths
- Disadvantages
 - □ Increase the complexity for other operations, such as zero detection, sign detection, and sign conversion

Redundant Number Systems (2/2)

- Signed-digit code
- Canonic signed digit code
- On-line arithmetic

Signed-Digit Code (1/4)

$$x = \sum_{i=0}^{W_d-1} x_i 2^{-i}$$
 where $x_i = -1, 0, \text{ or } +1$

- Range: [-2+Q, 2-Q]
- Redundant
 - $\Box (15/32)_{10} = (0.01111)_{2C} = (0.1000-1)_{SDC} = (0.01111)_{SDC}$
 - $(-15/32)_{10} = (1.10001)_{2C} = (0.-10001)_{SDC}$ $= (0.0-1-1-1)_{SDC}$

Signed-Digit Code (2/4)

- SDC number is not unique
- Has problems to
 - Quantize
 - □ Compare
 - Overflow check
 - Change to conventional number systems for these operations

Signed-Digit Code (3/4)

- Example of addition
 - \Box (1-11-1)_{SDC}=(5)₁₀
 - $\Box (0-111)_{SDC} = (-1)_{10}$
- Rules for adding SDC numbers

x _i y _i or y _i x _i	0 0	0 1	0 1	0 -1	0 -1	1 -1	11	-1 -1
x _{i+1} y _{i+1}		Neither is -1	At least one is -1	Neither is -1	At least one is -1			1
C _i	0	1	0	0	-1	0	1	-1
Z _i	0	-1	1	-1	1	0	0	0

$$\blacksquare$$
 $S_i = Z_i + C_{i+1}$

Signed-Digit Code (4/4)

i		0	1	2	3
$\overline{x_i}$	······································	1	-1	1	-1
$y_{\hat{l}}$		0	-1	1	1
c_{i+1}	0	-1	1	0	_
z_i		1	0	0	0
$s_{\dot{l}}$		0	1	0	0

$$\bullet$$
 (0100)_{SDC}=(4)₁₀

Canonic Signed Digit Code (1/3)

$$x = \sum_{i=0}^{W_d - 1} x_i 2^{-i}$$
 where $x_i = -1, 0, \text{ or } +1$
 $x_i \cdot x_{i+1} = 0, 0 \le i \le W_d - 2$

- Range: [-4/3+Q, 4/3-Q]
- CSDC is a special case of SDC having a minimum number of nonzero digits

Canonic Signed Digit Code (2/3)

Conversion of two's-complement to CSDC numbers

- $\Box (0.011111)_{2C} = (0.10000-1)_{CSDC}$
- □ Convert in iterative manner
- □ Step1: 011...1 → 100...-1
- □ Step2: $(-1,1) \rightarrow (0,-1)$, $(0,1,1) \rightarrow (1,0,-1)$
- \square Ex: $(0.110101101101)_{2C}$ = $(1.00-10-100-10-101)_{CSDC}$

Canonic Signed Digit Code (3/3)

- Conversion of SDC to two's complement numbers
 - □ Separate the SDC number into two parts
 - One parts holds the digit that are either 0 or 1
 - The other part has –1 digits
 - Subtract these two numbers

On-Line Arithmetic

- The number systems with the property that it is possible to compute the i-th digit of the results using only the first (i+d)-th digit, where d is a small positive constant
- Favorable in recursive algorithm using numbers with very long word lengths
- SDC can be used for on-line addition and subtraction, d=1

Residue Number Systems (1/2)

- For a given number x and moduli set {m_i}, i=1, 2, ..., p
 - $\square x=q_im_i+r_i$
 - \square RNS representation: $x=(r_1, r_2, ..., r_p)$
- Advantages
 - □ The arithmetic operations (+, -, *) can be performed for each residue independently
- Disadvantages
 - Hard for comparison, overflow detection, and quantization
 - □ Not easy to convert to other number systems

Residue Number Systems (2/2)

- Example
 - Moduli set={5,3,2}
 - Number range=5*3*2=30
 - $= 9+19=(4,0,1)_{RNS}+(4,1,1)_{RNS}$ $=((4+4)_5,(0+1)_3, (1+1)_2)_{RNS}=(3,1,0)_{RNS}=28$
 - $\square 8*3=(3,2,0)_{RNS}*(3,0,1)_{RNS}$ $=((3*3)_5,(2*0)_3,(0*1)_2)_{RNS}=(4,0,0)_{RNS}=24$

Bit-Parallel Arithmetic (1/2)

- Addition and subtraction
 - □ Ripple carry adder (RCA) (carry propagation adder, CPA)
 - □ Carry-look-ahead adder (CLA)
 - □ Carry-save adder
 - □ Carry-select adder (CSA)
 - □ Carry-skip adder
 - Conditional-sum adder

Bit-Parallel Arithmetic (2/2)

- Multiplication
 - Shift-and-add multiplication
 - Booth's algorithm
 - □ Tree-based multipliers
 - □ Array multipliers
 - Look-up table techniques

Ripple Carry Adder (RCA) (1/2)

- Also called carry propagation adder (CPA)
 - □ Full adder

$$S = A \oplus B \oplus D = \{Parity\}$$

$$= A \cdot B \cdot D + A \cdot \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot D + \overline{A} \cdot B \cdot \overline{D}$$

$$C = A \cdot B + A \cdot D + B \cdot D = A \cdot B + D \cdot (A + B)$$

Ripple Carry Adder (RCA) (2/2)

The speed of the RCA is determined by the carry propagation time

Ripple-carry adder

Ripple-carry adder/subtractor

Carry-Look-Ahead Adder (CLA)

- Generate the carry with separate circuits
- \blacksquare $C_i = G_i + P_i \cdot C_{i-1}$
- \blacksquare $G_i = A_i . B_i$
- \blacksquare $P_i = A_i + B_i$

^{*}Different digit notation in this slide

Carry-Save Adder

- Used when adding three or more operands
- Reduce the number of operands by one for each stage

^{*}Different digit notation in this slide

Carry-Select Adder (CSA)

^{*}Different digit notation in this slide

Carry-Skip Adder

Conditional-Sum Adder

^{*}Different digit notation in this slide

Multiplication

Bit-parallel multiplication

$$-a_{0} \cdot x_{W_{d}-1} \bullet \bullet \bullet \bullet \quad a_{W_{c}-2} \cdot x_{W_{d}-1} \quad a_{W_{c}-1} \cdot x_{W_{d}-1}$$

$$-a_{0} \cdot x_{W_{d}-2} \quad a_{1} \cdot x_{W_{d}-2} \quad a_{W_{c}-1} \cdot x_{W_{d}-2}$$

$$\bullet \quad a_{W_{c}-1} \cdot x_{W_{d}-2}$$

Shift-and-Add Multiplication (1/2)

$$\mathbf{y} = \mathbf{a} \left(-x_0 + \sum_{i=1}^{W_d - 1} x_i 2^{-i} \right) = -\mathbf{a} x_0 + \sum_{i=1}^{W_d - 1} \mathbf{a} x_i 2^{-i}$$

 y_{-1} y_0 • y_1

 $y_{W_d+W_c-3} y_{W_d+W_c-2}$

Shift-and-Add Multiplication (2/2)

- The operation can be reduced with CSDC
- Can be used to design fix-operand multiplier

Booth's Algorithm (1/3)

 Used in modern general-purpose processors, such as MIPS R4000

such as MIPS R4000
$$x = \sum_{i=1}^{15} x_i 2^{-i} - x_0 2^0 = \sum_{i=1}^{8} x_{2i-1} 2^{-2i+1} + \sum_{i=1}^{7} x_{2i} 2^{-2i} - x_0 2^0$$

$$= \sum_{i=1}^{8} x_{2i-1} 2^{-2i+1} + \sum_{i=1}^{7} x_{2i} 2^{-2i+1} - 2 \sum_{i=1}^{7} x_{2i} 2^{-2i-1} - x_0 2^0$$

$$= \sum_{i=1}^{8} x_{2i-1} 2^{-2i+1} + \sum_{i=1}^{8} x_{2i} 2^{-2i+1} - 2 \sum_{i=2}^{8} x_{2(i-1)} 2^{-2i+1} - x_0 2^0$$

$$= \sum_{i=1}^{8} \left[x_{2i-1} + x_{2i} - 2x_{2(i-1)} \right] 2^{-2i+1}$$

$$x \cdot y = \sum_{i=1}^{8} \left[x_{2i-1} + x_{2i} - 2x_{2(i-1)} \right] y 2^{-2i+1}$$

Booth's Algorithm (2/3)

X _{2i-2}	X _{2i-1}	X_{2i}	x _{2i-1} '	Operation	Comments
0	0	0	0	+0	String of zeros
0	0	1	1	+ y	Beginning of 1s
0	1	0	1	+ y	A single 1
0	1	1	2	+2y	Beginning of 1s
1	0	0	-2	-2y	End of 1's
1	0	1	-1	-y	A single 0 (beginning/end of 1's)
1	1	0	-1	-у	End of 1's
1	1	1	0	-0	String of 1's

DSP in VLSI Design

Shao-Yi Chien

Booth's Algorithm (3/3)

Tree-Based Multipliers (Wallace Tree Multipliers)

Inputs to the second stage

Result of the second stage

Inputs to the third stage

Result of the third stage

Array Multipliers (1/3)

Baugh-Wooley's multiplier

$$P = x \cdot y = \begin{pmatrix} x_0 + \sum_{i=1}^{W_d - 1} x_i 2^{-i} \end{pmatrix} \begin{pmatrix} y_0 + \sum_{i=1}^{W_d - 1} y_i 2^{-i} \end{pmatrix}$$

$$= x_0 \cdot y_0 + \sum_{i=1}^{W_d - 1} \sum_{j=1}^{W_d - 1} x_i \cdot y_j 2^{-i-j} - x_0 \sum_{i=1}^{W_d - 1} y_i 2^{-i} - y_0 \sum_{i=1}^{W_d - 1} x_i 2^{-i}$$

Each of the two negative terms may be rewritten

$$-\sum_{i=1}^{W_d-1} x_0 \cdot y_i 2^{-i} = -1 + 2^{-W_d+1} + \sum_{i=1}^{W_d-1} (1 - x_0 \cdot y_i) 2^{-i}$$

and by using the overflow property of two's-complement representation we get

$$-\sum_{i=1}^{W_d-1} x_0 \cdot y_i 2^{-i} = 1 + 2^{-W_d+1} + \sum_{i=1}^{W_d-1} \overline{x_0 \cdot y_i} 2^{-i}$$

We get

$$\begin{aligned} \boldsymbol{P} &= 2 + 2^{-W_d + 2} + x_0 \cdot y_0 + \sum_{i=1}^{W_d - 1} \sum_{j=1}^{W_d - 1} x_i \cdot y_j 2^{-i - j} \\ &+ \sum_{i=1}^{W_d - 1} \overline{x_0 \cdot y_i} 2^{-i} + \sum_{i=1}^{W_d - 1} \overline{y_0 \cdot x_i} 2^{-i} \end{aligned}$$

Array Multipliers (2/3)

Partial products

				x_0	x_1	x_2	x_3
				<i>y</i> ₀	y_1	y ₂	y ₃
			1	$\overline{x_0 \cdot y_3}$	$x_1 \cdot y_3$	$x_2 \cdot y_3$	$x_3 \cdot y_3$
			$\overline{x_0 \cdot y_2}$	$x_1 \cdot y_2$	$x_2 \cdot y_2$	$x_3 \cdot y_2$	
		$\overline{x_0 \cdot y_1}$	$x_1 \cdot y_1$	$x_2 \cdot y_1$	$x_3 \cdot y_1$		
1	$x_0 \cdot y_0$	$\overline{x_1 \cdot y_0}$	$\overline{x_2 \cdot y_0}$	$\overline{x_3 \cdot y_0}$			
p_{-1}	p_{0ullet}	p_1	p_2	p_3	p_4	<i>p</i> ₅	p_6

Array Multipliers (3/3)

Look-Up Table Techniques

- A multiplier AxB can be done with a large table with 2^{WA+WB} words
- Simplified method

$$x \cdot y = \frac{(x+y)^2}{4} - \frac{(x-y)^2}{4}$$

□ Can be implemented with one addition, two subtraction, and two table look-up operations

Bit-Serial Arithmetic

- Advantages
 - □ Significantly reduce chip area
 - Eliminate wide bus
 - Small processing elements
 - ☐ Higher clock frequency
 - Often superior than bit-parallel
- Disadvantages
 - □ S/P P/S interface
 - □ Complicated clocking scheme

Bit-Serial Addition and Subtraction

DSP in VLSI Design

Shao-Yi Chien

Serial/Parallel Multiplier

- Use carry-save adders
- Need W_d+W_c-1 cycles to compute the result

Modified Serial/Parallel Multiplier

Can be implemented with a half adder

Transpose Serial/Parallel Multiplier

S/P Multiplier-Accumulator

y=a*x+z

S/P Multiplier with Fixed Coefficients (1/3)

- Remove all AND gates
- Remove all FAs and corresponding D flipflops, starting with the MSB in the coefficient, up to the first 1 in the coefficient
- Replace each FA that corresponds to a zero-bit in the coefficient with a feedthrough

S/P Multiplier with Fixed Coefficients (2/3)

DSP in VLSI Design

Shao-Yi Chien

S/P Multiplier with Fixed Coefficients (3/3)

- The number of FA = (the number of 1's)-1
- The number of D flip-flops = the number of 1-bit positions between the first and last bit positions

S/P Multiplier with CSDC Coefficients

 $a = (0.00111)_{2C} = (0.0100-1)_{CSDC}$

DSP in VLSI Design

Shao-Yi Chien

Minimum Number of Basic Operations

Division

Major reference:

B. Parham, Computer Arithmetic: Algorithms and Hardware Designs, Oxford, 2000.

How to do binary division?

■ In the following slides, we define

- □ Dividend $\mathbf{z} = z_{2k-1}z_{2k-2}...z_1z_0$
- \square Quotient $\mathbf{q} = q_{k-1}q_{k-2}...q_1q_0$
- \square Remainder $\mathbf{s} = [z-(dxq)]=s_{k-1}s_{k-2}...s_1s_0$

What's Different?

- Added complication of requiring quotient digit selection or estimation
 - The terms to be subtracted from the dividend z are not known a priori but become known as the quotient digits are computed
 - □ The terms to be subtracted from the initial partial remainder must be produced from top to bottom
 - More difficult and slower than multiplication
 - Long critical path

Division

- Bit-serial division (sequential division algorithm)
- Programmed division
- Restoring bit-serial hardware divider
- Nonrestoring bit-serial hardware divider
- Division by constants
- Array divider

Bit-Serial division (Sequential Division) Algorithm

 $s^{(j)}=2s^{(j-1)}-q_{k-i}(2^kd)$ with $s^{(0)}=z$ and $s^{(k)}=2^ks$

Integer	Integer division									
z 2 ⁴ d		0	1	1	1	0 1 0 1				
s(0) 2s(0) -q ₃ 2 ⁴ d	0	0 1 1	1 1 0		1 0 0	0 1 0 1 1 0 1 {q ₃ = 1}				
s(1) 2s(1) -q ₂ 2 ⁴ d	0	0 1 0	1 0 0	0 0 0	0 1 0	$ \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 \\ \{q_2 = 0\} \end{array} $				
s(2) 2s(2) -q ₁ 2 ⁴ d	1	1 0 1	0 0 0	0 1 1	1 0 0	$0 \ 1 \ 1 \ \{q_1 = 1\}$				
$s^{(3)}$ $2s^{(3)}$ $-q_0 2^4 d$	1	1 0 1	0 0 0	0 0 1	0 1 0	1 $\{q_0 = 1\}$				
s(4) s q		0	1	1	1	0 1 1 1 1 1 0 1 1				

Programmed Division

Need more than 200 instructions for a 32-bit division!!

```
{Using left shifts, divide unsigned 2k-bit dividend,
z_highlz_low, storing the k-bit quotient and remainder.
Registers:
               R0 holds 0
                                      Rc for counter
               Rd for divisor
                                      Rs for z_high & remainder
               Rg for z low & quotient}
{Load operands into registers Rd, Rs, and Rq}
      div:
               load
                          Rd with divisor
               load
                          Rs with z high
               load
                          Rg with z low
{Check for exceptions}
                          d by 0 if Rd = R0
               branch
                          d ovfl if Rs > Rd
               branch
{Initialize counter}
               load
                          k into Rc
{Begin division loop}
                                         {zero to LSB. MSB to carry}
 d loop:
               shift
                          Ra left 1
                          Rs left 1
                                         {carry to LSB, MSB to carry}
               rotate
               skip
                          if carrv = 1
               branch
                          no sub if Rs < Rd
                          Rd from Rs
               sub
                           Ra
                                         {set quotient digit to 1}
               incr
                                          {decrement counter by 1}
 no_sub:
               decr
                           Rc
                          d loop if Rc ≠0
               branch
{Store the quotient and remainder}
               store
                           Ra into auotient
               store
                           Rs into remainder
 d done:
 d_by_0:
               . . .
 d_ovfl:
               . . .
```


Restoring Bit-Serial Hardware Divider (1/3)

- "Restoring division"
 - ☐ Assume q=1 first, do the trial difference
 - □ The remainder is restored to its correct value if the trial subtraction indicates that 1 was not the right choice for q

Restoring Bit-Serial Hardware Divider (2/3)

z 24d –24d	0	0 1 0	1 0 1	1 1 1	1 0 0	0	1	0	1
======= s(0) 2s(0) +(-24d)	0 0 1	0 1 0	1 1 1	1 1 1	1 0 0	0	1	0	1
s(1) 2s(1) +(-24d)	0 0 1	0 1 0			0 1 0	1	0	1	
$ \begin{array}{c} s(2) \\ s(2) = 2s(1) \\ 2s(2) \\ +(-24d) \end{array} $	1 0 1 1	0	1 0 0 1	1	1 1 0 0	0 0 1	1		
s(3) 2s(3) +(-24d)	0 1 1		0 0 1		0 1 0	1			
s(4) s q	0	0	1	1	1	0	1	1	1

No overflow, since: $(0111)_{two} < (1010)_{two}$

Positive, so set $q_3 = 1$

· And the And

Negative, so set $q_2 = 0$ and restore

Positive, so set $q_1 = 1$

Positive, so set $q_0 = 1$

Restoring Bit-Serial Hardware Divider (3/3)

z 2 ⁴ d –2 ⁴ d	0	1		1 1 1	1 0 0	0	1	0	1
======= s(0) 2s(0) +(-24d)	0 0 1	1	1 1 1	1 1 1		0	1	0	1
s(1) 2s(1) +(-24d)		0 1 0			0 1 0	1 0	0	1	
$ \frac{s^{(2)}}{s^{(2)} = 2s^{(1)}} \\ 2s^{(2)} + (-2^4d) $	1 0 1 1	0	1 0 0 1	1 0 1	1 1 0 0	0 0 1	1		
s(3) 2s(3) +(-24d)	0 1 1		0 0 1	0 0 1	0 1 0	1			
s(4) s q	0	0	1	1	1	0	1	1	1

No overflow, since: $(0111)_{two} < (1010)_{two}$

Positive, so set $q_3 = 1$

A CONTRACTOR OF THE SECOND

Negative, so set $q_2 = 0$ and restore

Positive, so set $q_1 = 1$

Positive, so set $q_0 = 1$

Nonrestoring Bit-Serial Hardware Divider (1/4)

- Always store u-2^kd back to the register
- If the value q in this stage is 1 → correct!
 - \square Next stage: $2(u-2^kd)-2^kd=2u-3x2^kd$
- If the value q in this stage is 0 → incorrect!
 - □ Next stage should be: 2u-2^kd
 - \square Is equal to $2(u-2^kd)+2^kd$
- Always store the result of trail difference
 - □ If $q=1 \rightarrow$ use subtraction; if $q=0 \rightarrow$ use addition
- Can reduce critical path

Nonrestoring Bit-Serial Hardware Divider (2/4)

z 24d -24d	0	1010	1 0 1 0 1 0 0
s(0)	0	1111	1 0 1 0 1
2 $s(0)$	0		0 1 0 1
+ (-2^4d)	1		0
s(1)	0	1 0 0	0 1 0 1
2s(1)	0		1 0 1
+(-24d)	1		0
s(2)	1	111	1 0 1
2s(2)	1		0 1
+2 ⁴ d	0		0
S(3)	0	0 0 0	0 1
2S(3)	1		1
+(-24d)	1		0
s(4) s q	0	0 1 1	1 0 1 1 1 1 0 1 1

No overflow, since: $(0111)_{two}$ < $(1010)_{two}$

Positive, so subtract

Positive, so set $q_3 = 1$ and subtract

Negative, so set $q_2 = 0$ and add

Positive, so set $q_1 = 1$ and subtract

Positive, so set $q_0 = 1$

Nonrestoring Bit-Serial Hardware Divider (3/4)

0	0 1 0	1 0 1	1 1 1	1 0 0	0	1	0	1
0 0 1	0 1 0	1 1 1	1 1 1	1 0 0	0	1	0	1
0 0 1	0 1 0	1 0 1	0 0 1	0 1 0	1	_	1	
1 1 0	1 1 1	1 1 0	1 1 1	1 0 0	0	1		
0 1 1	1 0 0	0 0 1	0 0 1	0 1 0	1			
0	0	1	1	1	0 1	1	1	1 1
	1 0 0 0 1 0 0 1 1 1 0 0	0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1	0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1	0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 1	0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1	0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0	0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0

No overflow, since: $(0111)_{two}$ < $(1010)_{two}$

Positive, so subtract

Positive, so set $q_3 = 1$ and subtract

Negative, so set $q_2 = 0$ and add

Positive, so set $q_1 = 1$ and subtract

Positive, so set $q_0 = 1$

Nonrestoring Bit-Serial Hardware Divider (4/4)

Division by Constants (1/2)

- Use lookup table + constant multiplier
- Exploit the following equations
 - Consider odd divisor only since even divisor can be performed by first dividing by an odd integer and then shifting the result
 - □ For an odd integer d, there exists an odd integer m such that d x m=2ⁿ-1

Division by Constants (2/2)

$$\frac{1}{d} = \frac{m}{2^n - 1} = \frac{m}{2^n (1 - 2^{-n})} = \frac{m}{2^n} (1 + 2^{-n}) (1 + 2^{-2n}) (1 + 2^{-4n}) \cdots$$

□ For example, for 24-bit precision:

$$d = 5, \Rightarrow m = 3, n = 4$$
 Easy for hardware implementation
$$\frac{z}{5} = \frac{3z}{2^4 - 1} = \frac{3z}{16(1 - 2^{-4})} = \frac{3z}{16} (1 + 2^{-4})(1 + 2^{-8})(1 + 2^{-16})$$

Next term (1+2⁻³²) does not contribute anything to 24-bit precision

Array Divider (1/2)

Restoring array divider

DSP in VLSI Design

Shao-Yi Chien

Array Divider (2/2)

Nonrestoring array divider

The critical path passes through all k² cells

Distributed Arithmetic (1/7)

Most DSP algorithms involve sum-ofproducts (inner products)

$$\mathbf{y} = \mathbf{x} \cdot \mathbf{x} = \sum_{i=1}^{N} \mathbf{a}_{i} \mathbf{x}_{i}$$
Fixed coefficient

■ **Distributed arithmetic (DA)** is an efficient procedure for computing inner products between a fixed and a variable data vector

Distributed Arithmetic (2/7)

$$\begin{aligned} \mathbf{y} &= \sum_{i=1}^{N} \mathbf{a}_{i} \left[-x_{i0} + \sum_{k=1}^{W_{d}-1} x_{ik} 2^{-k} \right] \\ \mathbf{y} &= -\sum_{i=1}^{N} \mathbf{a}_{i} x_{i0} + \sum_{k=1}^{W_{d}-1} \left[\sum_{i=1}^{N} \mathbf{a}_{i} x_{ik} \right] 2^{-k} \\ \mathbf{y} &= -F_{0}(x_{10}, x_{20}, ..., x_{N0}) + \sum_{k=1}^{W_{d}-1} F_{k} \left(x_{1k}, x_{2k}, ..., x_{Nk} \right) 2^{-k} \\ \text{where } F_{k}(x_{1k}, x_{2k}, ..., x_{Nk}) &= \sum_{i=1}^{N} \mathbf{a}_{i} x_{ik} \end{aligned}$$

Distributed Arithmetic (3/7)

$$y = ((...(0 + F_{W_d - 1})2^{-1} + F_{W_d - 2})2^{-1} + ... + F_2)2^{-1} + F_1)2^{-1} - F_0$$

- DA can be implemented with a ROM and a shiftaccumulator
- The computation time: Wd cycles
- Word length of ROM: $W_{ROM} \le W_C + \log_2(N)$

Distributed Arithmetic (4/7)

Example

- \Box y=a₁x₁+a₂x₂+a₃x₃
- $\Box a_1 = (0.0100001)_{2C}$
- $\Box a_2 = (0.1010101)_{2C}$
- $\Box a_3 = (1.1110101)_{2C}$
- (a) The table? (b) The word length of the shift-accumulator?

Distributed Arithmetic (5/7)

Ans:

□ (a)	$x_1 x_2 x_3$	F_{k}	F_{k}	$F_{m{k}}$
-	0 0 0	0	0.0000000	0.0000000
	0 0 1	a_3	1.1110101	0.0859375
	0 1 0	$oldsymbol{a}_2$	0.1010101	0.6640625
	0 1 1	$\mathbf{a}_2 + \mathbf{a}_3$	0.1001010	0.5781250
	1 0 0	\mathbf{a}_1	0.0100001	0.2578125
	1 0 1	$a_1 + a_3$	0.0010110	0.1718750
	1 1 0	$a_1 + a_2$	0.1110110	0.9218750
	1 1 1	$a_1 + a_2 + a_3$	0.1101011	0.8359375

□(b) Word length=7 bits + 1 bit (sign bit) +1 bit (guard bit) = 9 bits

$$|\mathbf{y}| = ((...((0 + F_{max})2^{-1} + F_{max})2^{-1} + ... + F_{max})2^{-1} + F_{max})2^{-1} \le F_{max}$$

Distributed Arithmetic (6/7)

Example: linear-phase FIR filter

Distributed Arithmetic (7/7)

Parallel implementation of distributed

arithmetic

Shift-Accumulator (1/4)

- The number of cycles for one inner product is W_d+W_{ROM}
 - □ First W_d cycles: input data
 - □ Last W_{ROM} cycles: shift out the results

Shift-Accumulator (2/4)

Shift-accumulator augmented with two shift registers

Shift-Accumulator (3/4)

Scheduling

- Clock cycle
 - \square $N_{CL}=max\{W_{ROM}, W_d\}$

Shift-Accumulator (4/4)

Detailed architecture

Reducing the Memory Size (1/4)

- Method 1: memory partition
 - $\square 2^* 2^{N/2} < 2^N$
 - \Box Ex: $2*2^5 = 64$ < $2^{10} = 1024$

Reducing the Memory Size (2/4)

Method 2: memory coding

$$\begin{split} & \boldsymbol{x} = \frac{1}{2}[\boldsymbol{x} - (-\boldsymbol{x})] \\ & = \frac{1}{2} \Bigg[-x_0 + \sum_{k=1}^{W_d - 1} x_k 2^{-k} - \Bigg(-\overline{x_0} + \sum_{k=1}^{W_d - 1} \overline{x_k} 2^{-k} + 2^{-(W_d - 1)} \Bigg) \Bigg] \\ & = -(x_0 - \overline{x_0}) 2^{-1} + \sum_{k=1}^{W_d - 1} (x_k - \overline{x_k}) 2^{-k-1} - 2^{-W_d} \\ & \boldsymbol{y} = \sum_{k=1}^{W_d - 1} F_k(x_{1k}, ..., x_{Nk}) 2^{-k-1} - F_0(x_{10}, ..., x_{N0}) 2^{-1} + F(0, ..., 0) 2^{-W_d} \\ & \text{where } F_k(x_{1k}, x_{2k}, ..., x_{Nk}) = \sum_{i=1}^{N} \boldsymbol{a}_i(x_k - \overline{x_k}) \end{split}$$

Reducing the Memory Size (3/4)

$$u_1 = x_1 \otimes x_2$$

$$u_2 = x_1 \otimes x_3$$

$$A/S = x_1 \otimes x_{sign-bit}$$

	$x_1 x_2 x_3$	$oldsymbol{F_k}$	$u_1 u_2 A/S$
Compleme	0 0 0	$-a_1 - a_2 - a_3$	0 0 A
	0 0 1	$-a_1 - a_2 + a_3$	0 1 A
	0 1 0	$-a_1 + a_2 - a_3$	1 0 A
	nt <u>0 1 1</u>	$-a_1 + a_2 + a_3$	1 1 A
	1 0 0	$+a_1 - a_2 - a_3$	1 1 S
	1 0 1	$+a_1 - a_2 + a_3$	1 0 S
	1 1 0	$+a_1 + a_2 - a_3$	0 1 S
	1 1 1	$+a_1 + a_2 + a_3$	0 0 S

Reducing the Memory Size (4/4)

CORDIC

Major reference:

[1] A.-Y. Wu, "CORDIC," Slides of *Advanced VLSI*[2] Y. H. Hu, "CORDIC-based VLSI architectures for digital signal processing," *IEEE Signal Processing Magazine*, pp. 16—35, July 1992.
[3] J. E. Volder, "The Birth of CORDIC," J. VLSI Signal Processing, vol.25, pp. 101—105, 2000.

- CORDIC (COordinate Rotation Digital Computer)
 - □ An **iterative arithmetic algorithm** introduced by Volder in 1956
 - Can handle many elementary functions, such as trigonometric, exponential, and logarithm with only shift-and-add arithmetic
 - □ For these functions CORDIC based architecture is much efficient than multiplier and accumulator (MAC) based architecture
 - Suitable for transformations and matrix based filters

The Birth of CORDIC

B-58 Supersonic Bomber

 Originally, CORDIC is invented to deal with rotation problem with shift-and-add arithmetic

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- How to make it with shift-and-add?
- Decompose the desired rotation angle into small rotation angles (micro-rotation)
- Rotate finite times (by "elementary angles" $\{a_i \mid 0 \le i \le n-1\}$) to achieve the desired rotation θ

Conventional CORDIC Algorithm (1/2)

$$\begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \begin{bmatrix} \cos a_i & -\sin a_i \\ \sin a_i & \cos a_i \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \cos a_i \begin{bmatrix} 1 & -\tan a_i \\ \tan a_i & 1 \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \cos a_i \begin{bmatrix} 1 & -2^{-i} \\ 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$

$$a_i = \tan^{-1} 2^{-i}, \cos a_i = \frac{1}{\sqrt{1+2^{-2i}}}$$

Conventional CORDIC Algorithm (2/2)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= S \times \begin{bmatrix} 1 & -\mu_0 2^{-0} \\ \mu_0 2^{-0} & 1 \end{bmatrix} \times \dots$$

$$\theta_{0}$$

$$\theta_{0}$$

$$\theta_{0}$$

$$(x', y')$$
Scaling
$$(x, y)$$

$$\theta_0 = 1 \cdot \tan^{-1} 2^{-0} = \mu_0 a_0$$

$$\theta_1 = -1 \cdot \tan^{-1} 2^{-1} = \mu_1 a_1$$

$$\theta_2 = 1 \cdot \tan^{-1} 2^{-2} = \mu_2 a_2$$

$$\times \begin{bmatrix} 1 & -\mu_i 2^{-i} \\ \mu_i 2^{-i} & 1 \end{bmatrix} \times \dots \times \begin{bmatrix} 1 & -\mu_{n-1} 2^{-(n-1)} \\ \mu_{n-1} 2^{-(n-1)} & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix}$$

Scaling factor:
$$S = \frac{1}{\prod_{i=0}^{n-1} \sqrt{1 + \mu_i^2 2^{-2i}}}$$

Mode of rotation: $\mu_i \in \{-1,1\}$

Can be implemented with shift-and-add arithmetic

Generalized CORDIC (1/2)

- Target: $\theta = \sum_{i=0}^{n-1} \mu_i a_m(i)$ i-th elementary rotation angle is defined by

$$a_m(i) = \frac{1}{\sqrt{m}} \tan^{-1} \left[\sqrt{m} 2^{-s(m,i)} \right] = \begin{cases} -2^{s(0,i)} & m \to 0 \text{ Linear coordinate} \\ \tan^{-1} 2^{-s(1.i)} & m = 1 \text{ Circular coordinate} \\ \tanh^{-1} 2^{-s(-1,i)} & m = -1 \text{ Hyperbolic coordinate} \end{cases}$$

norm of a vector $\begin{bmatrix} x \ y \end{bmatrix}^T$ is $\sqrt{x^2 + my^2}$

 $\mu_i \in \{-1,1\}$: mode of rotation

s(m,i): non - descreasing integer shift sequence

Generalized CORDIC (2/2)

DSP in VLSI Design

Shao-Yi Chien

CORDIC Algorithm

Initiation: Given x(0), y(0), z(0)

For
$$i = 0$$
 to $n - 1$, Do

/*CORDICiteration equation */

$$\begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \begin{bmatrix} 1 & -\mu_i 2^{-s(m,i)} \\ \mu_i 2^{-s(m,i)} & 1 \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$

/* Angle updating equation */

$$z(i+1) = z(i) - \mu_i a_m(i)$$

End i - loop

/*Scaling operation (required for $m = \pm 1$ only)*/

$$\begin{bmatrix} x_f \\ y_f \end{bmatrix} = \frac{1}{K_m(n)} \cdot \begin{bmatrix} x(n) \\ y(n) \end{bmatrix} = \frac{1}{\prod_{i=0}^{n-1} \sqrt{1 + m\mu_i^2 2^{-2s(m,i)}}} \cdot \begin{bmatrix} x(n) \\ y(n) \end{bmatrix}$$

Remained problems:

 μ_i s(m,i)Scaling

Mode of Operation (1/2)

Vector rotation mode (θ is given)

$$z(0) = \theta$$

After n iterations, the total angle rotated is:

$$z(0) - z(n) = \theta - z(n) = \sum_{i=0}^{n-1} \mu_i a_m(i)$$

we want to make $|z(n)| \rightarrow 0$

$$\mu_i = \text{sign of } z(i)$$

 \square For many DSP problems, θ is know in advance, and sequence $\{\mu_i\}$ can be stored instead

Mode of Operation (2/2)

- Angle accumulation mode (θ is not given)
 - □ The objective is to rotate the given initial vector [x(0) y(0)]^T back to the x-axis

set
$$z(0) = 0$$

 $\mu_i = -\text{sign of } x(i) \cdot y(i)$

Summary

$$\mu_i = \begin{cases} \text{sign of } z(i) & \text{Vector rotation mode} \\ -\text{sign of } x(i) \cdot y(i) & \text{Angle accumulation mode} \end{cases}$$

Shift Sequence

- Usually defined in advance
- Walther has proposed a set of shift sequence for each of the three coordinate systems
 - \square For m=0 or 1, s(m,i)=i
 - □ For m=-1, s(-1, i)=1, 2, 3, 4, 4, 5, ..., 12, 13, 13, 14, ...

Scaling Operation

- Significant computation overhead of CORDIC
- Fortunately, since $|\mu_i|=1$, and assume $\{s(m,i)\}$ is given, $K_m(n)$ can be computed in advance
- Two approaches to compute scaling
 - $\square CSD representation \frac{1}{K_m(n)} = \sum_{p=1}^{P} \kappa_p 2^{-i_p}$

$$\frac{1}{K_m(n)} = \sum_{p=1}^P \kappa_p 2^{-i_p}$$

□ Project of factors

$$\kappa_q = \pm 1$$

$$\frac{1}{K_m(n)} = \prod_{q=1}^{Q} (1 + \kappa_q 2^{-i_q}) + \varepsilon_q$$

Basic CORDIC Processor (1/3)

For CORDIC Iteration and Scaling

For Angle Update

Basic CORDIC Processor (2/3)

CORDIC Iteration

$$\begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \begin{bmatrix} 1 & -\mu_i 2^{-s(m,i)} \\ \mu_i 2^{-s(m,i)} & 1 \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$

DSP in VLSI Design

Shao-Yi Chien

Basic CORDIC Processor (3/3)

I:
$$\frac{1}{K_m(n)} = \sum_{p=1}^{P} \kappa_p 2^{-i_p}$$

$$11: \frac{1}{K_m(n)} = \prod_{q=1}^{Q} (1 + \kappa_q 2^{-i_q})$$

Given
$$x'(0) = x(n)$$
, $y'(0) = y(n)$

$$\begin{cases} x'(p+1) = x'(p) + \kappa_p 2^{-i_p} x(n) \\ y'(p+1) = y'(p) + \kappa_p 2^{-i_p} x(n) \end{cases}$$

TypeII:

$$\begin{cases} x'(q+1) = x'(q) + \kappa_q 2^{-i_q} x'(q) \\ y'(q+1) = y'(q) + \kappa_q 2^{-i_q} x'(q) \end{cases}$$

Parallel and Pipelined Arrays

- n stages for CORDIC, and s stages for scaling
- Parallel

Pipelined

DSP in VLSI Design

Shao-Yi Chien

Discrete Fourier Transform (DFT) with CORDIC (1/2)

DFT

$$Y(K) = X(0)e^{\frac{-j2\pi k \cdot 0}{N}} + X(1)e^{\frac{-j2\pi k \cdot 1}{N}} + \cdots + X(N-1)e^{\frac{-j2\pi k \cdot (N-1)}{N}}$$

DFT with CORDIC

Initiation : Y(0, k) = 0 for $0 \le k \le N - 1$

For k = 0 to N-1, Do

For m = 0 to N-1, Do

$$\begin{bmatrix} Y_r(m+1,k) \\ Y_i(m+1,k) \end{bmatrix} = K_1(n) \cdot \begin{bmatrix} \cos \frac{-2\pi mk}{N} & -\sin \frac{-2\pi mk}{N} \\ \sin \frac{-2\pi mk}{N} & \cos \frac{-2\pi mk}{N} \end{bmatrix} \begin{bmatrix} x_r(m) \\ x_i(m) \end{bmatrix} + \begin{bmatrix} Y_r(m,k) \\ Y_i(m,k) \end{bmatrix}$$

End m - loop

/*Scaling operation*/

$$Y(k) = \frac{Y(N,k)}{K_1(n)}$$

End k - loop

Discrete Fourier Transform (DFT) with CORDIC (2/2)

DSP in VLSI Design

Shao-Yi Chien