

Scheduling and Resource Allocation

Scheduling and Resource Allocation

- Scheduling and resource allocation are two important tasks in hardware or software synthesis of DSP systems
- Scheduling when to do the process?
 - Assign every node of the DFG to a control time step, the fundamental sequencing units in synchronous systems and correspond to clock cycles
- Resource allocation who to execute the process?
 - Assign operations to hardware with the goal of minimizing the amount of hardware required to implement the desired behavior

DSP in VLSI Design

Scheduling

Static scheduling

- □ If all processes are known in advance
- Perform scheduling before run time
- Most DSP algorithms are amenable to static scheduling

Dynamic scheduling

- When the process characteristics are not completely known
- Decide dynamically at run time by scheduler that runs concurrently with the program

Criteria of Scheduling Optimization (1/2)

Sample period optimal

Optimal if sample period = iteration bound

- Delay optimal
 - Optimal if delay = delay bound, the shortest possible delay from input to output of the algorithm
- Resource optimal
 - □ Minimum amount of resource
 - Processor based system corresponds to a resource limited scheduling problem

Criteria of Scheduling Optimization (2/2)

Processor optimal

If it uses as minimum number of PEs of each type, processor bound

$$P_i = \left\lceil \frac{D_{op \ i}}{T_{\min}} \right\rceil$$

 P_i : Processor bound of the processing element of typei

 $D_{op i}$: Total execution time for all operations of typei

 T_{\min} : Minimal sample period

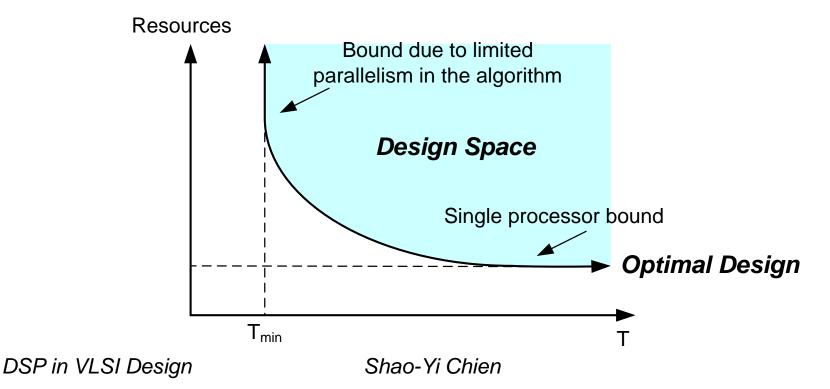
Memory optimal

□ Minimum amount of memory

DSP in VLSI Design

Scheduling Formulations (1/2)

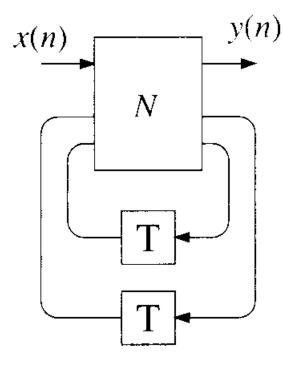
Resource v.s. sample rate for different schedules

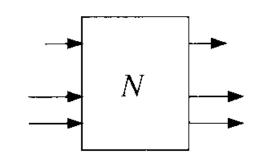


Scheduling Formulations (2/2)

- Single interval formulation
- Block formulation
- Loop-folding
- Periodic formulation

Single Interval Formulation (1/3)





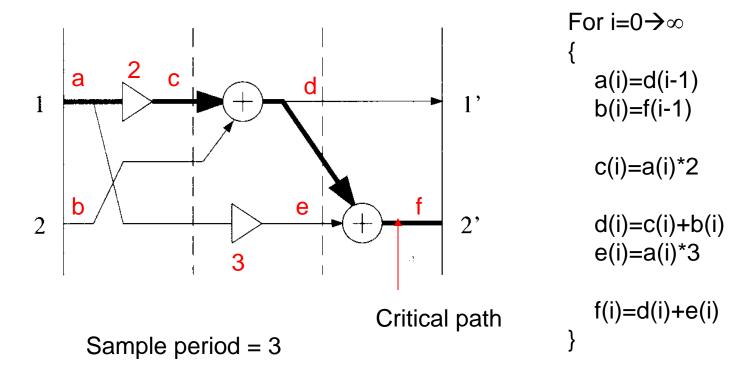
Computation graph, DAG (directed acyclic graph): Combinational circuits in a single interval

DFG

Single Interval Formulation (2/3)

Schedule with uniform boundaries

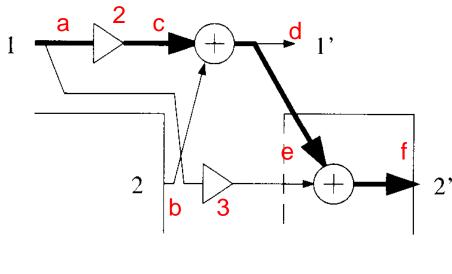
(assume the processor has one multiplier PE and one adder PE)



DSP in VLSI Design

Single Interval Formulation (3/3)

Schedule with nonuniform boundaries

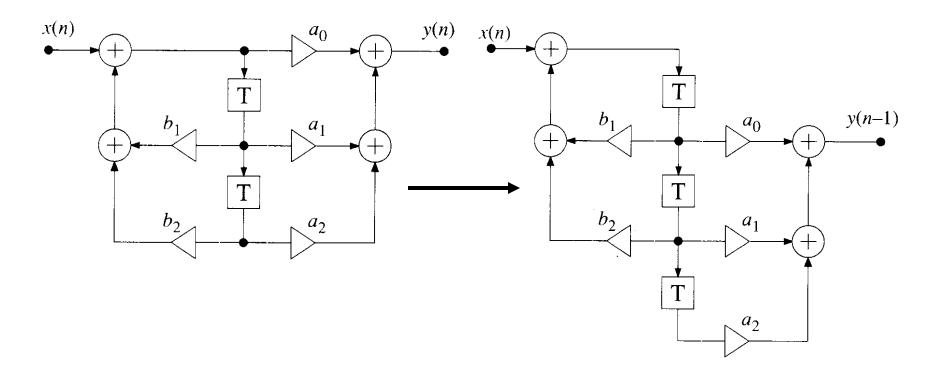


 $e(i)=a(i)^{*}3$

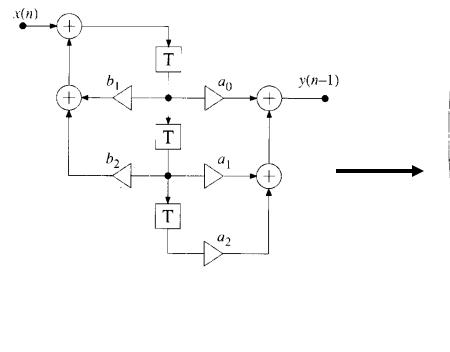
Sample period = 2

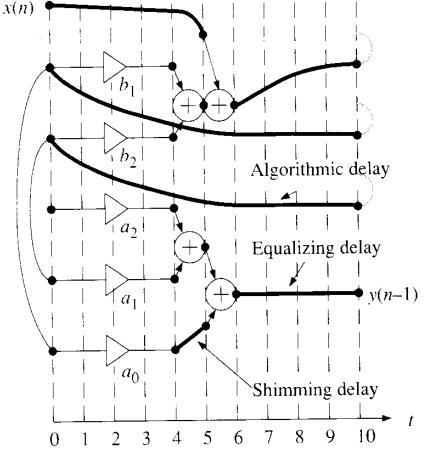
Example (1/5)

DFG



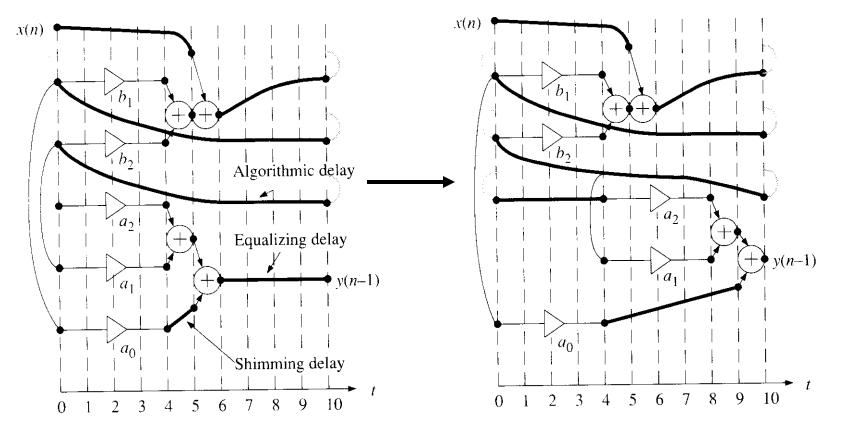
Example (2/5)





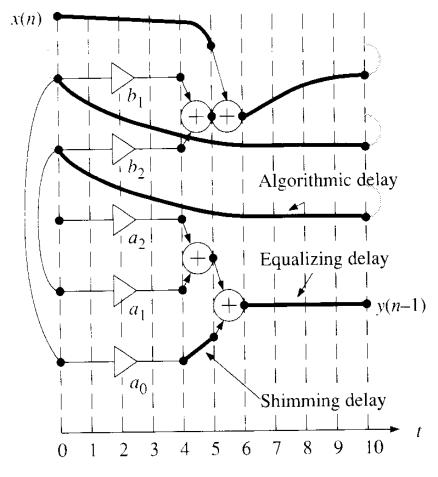
Example (3/5)

Rescheduling



DSP in VLSI Design

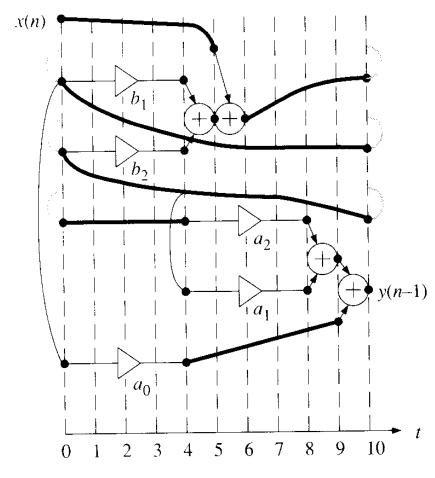
Example (4/5)



Need 5 multipliers and 2 adders simultaneously34 time units of storage are required

DSP in VLSI Design

Example (5/5)



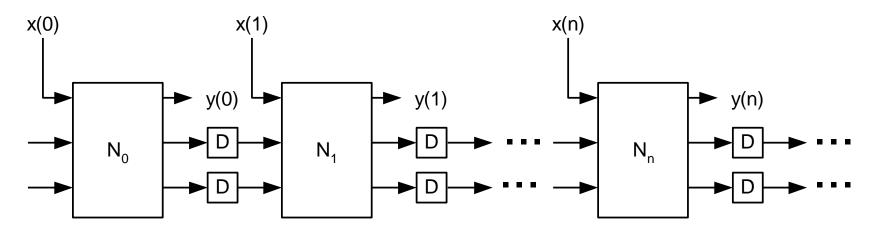
Need 3 multipliers and 1 adder simultaneously
38 time units of storage are required

Trade-off between **computational resources** and the **amount of memory** can be made by proper scheduling

DSP in VLSI Design

Block Formulation (1/2)

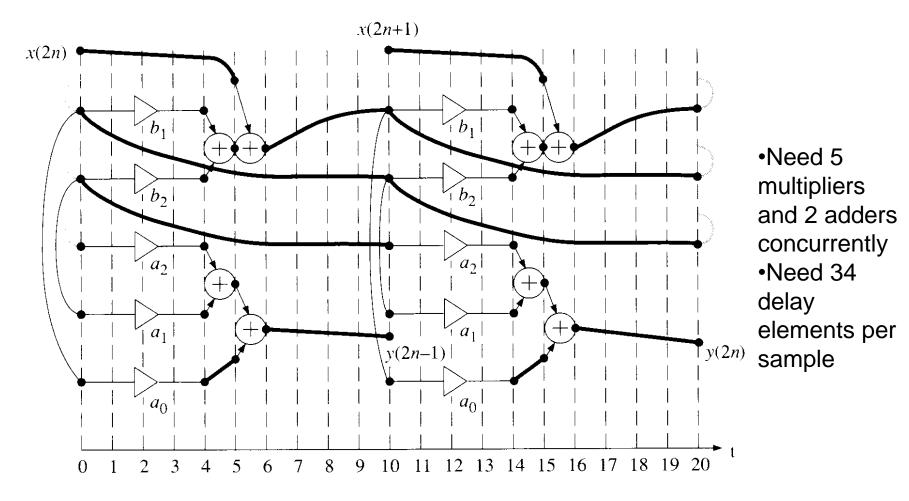
The repeated execution of the algorithm can be represented by an infinite sequence of computation graphs



Block Formulation (2/2)

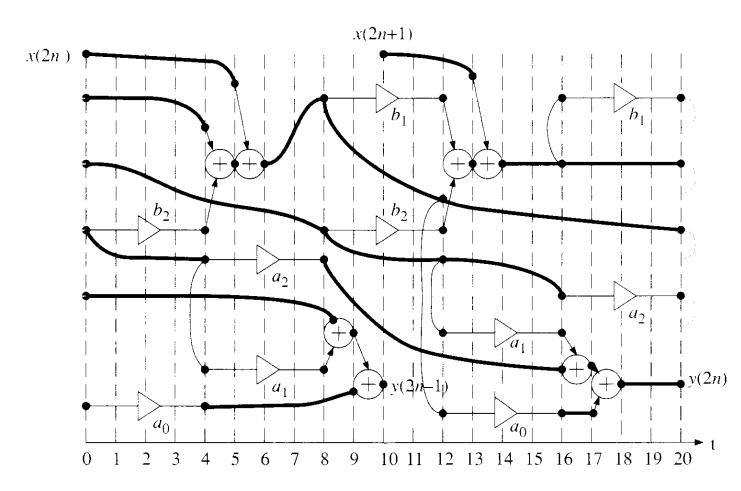
- Allows the operations to be freely scheduled across the sample interval boundaries
- Inefficiency in resource utilization due to the artificial requirement of uniform scheduling boundaries can be reduced
- The price is longer schedules that require longer control sequence

Example (1/2)



DSP in VLSI Design

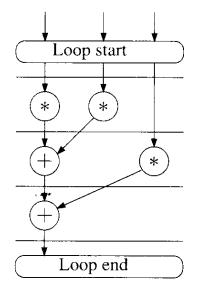
Example (2/2)

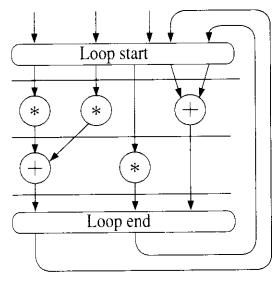


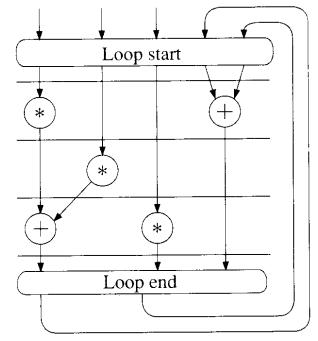
Need 2 multipliers
and 1 adders
concurrently
Need
92/2=46
delay
elements per
sample

DSP in VLSI Design

Loop-Folding





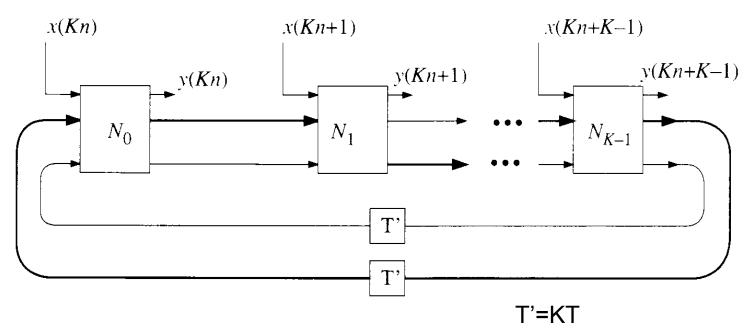


Original loop

Loop-folding that minimizes the loop time Loop-folding that minimizes the number of PEs

Periodic Formulation

Connect K computation graphs as a new computation graph



Scheduling Algorithm

- ASAP (as soon as possible) and ALAP (as late as possible) scheduling
- Earliest deadline and slack time scheduling
- Linear programming methods
- Critical path list scheduling
- Force-directed scheduling
- Cyclo-static scheduling
- Simulated annealing
- Genetic algorithms

ASAP and ALAP Scheduling (1/2)

ASAP

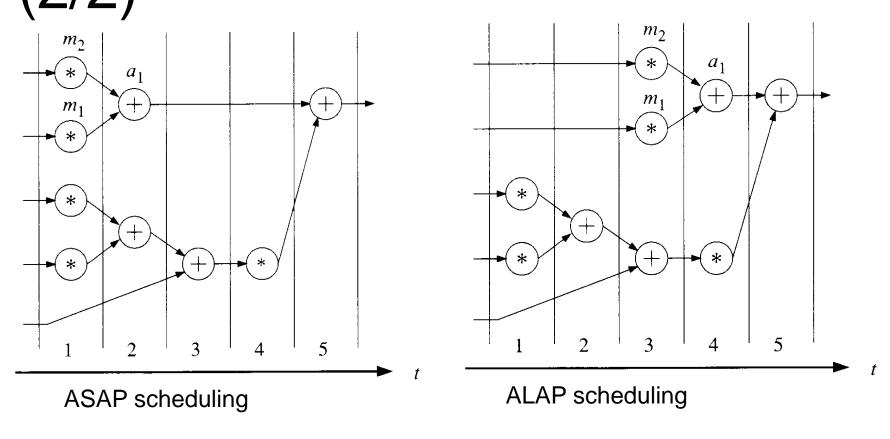
- A computation can be performed as soon as all of its inputs are available
- The aim is to obtain the shortest possible execution time without considering resource requirements

ALAP

- Similar to ASAP, the operations are scheduled as late as possible
- Can be used to determine the time range in which the operations can be scheduled
 - 🗆 Life-span

DSP in VLSI Design

ASAP and ALAP Scheduling (2/2)



Life-span: m₁:[1,3], m₂:[1,3], a₁:[2,4]

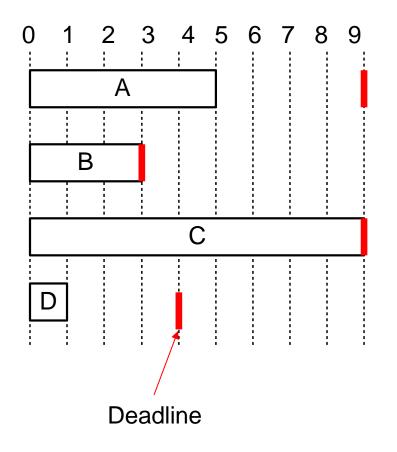
Earliest Deadline and Slack Time Scheduling (1/3)

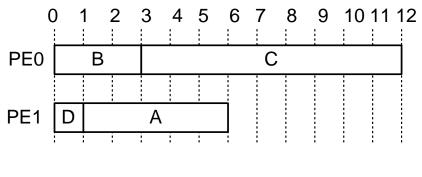
- Can be used to schedule periodically or randomly occurring processes
- Earliest deadline scheduling
 - In each time step, the processes whose deadline is closest will be done
 - Proven to be execution-time-optimal for single processor

Earliest Deadline and Slack Time Scheduling (2/3)

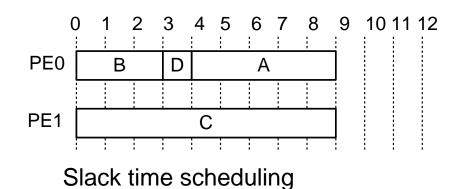
- Slack time algorithm
 - Schedule the process whose slack time is least
 - Slack time: the time from present to the deadline minus the remaining processing time of a process
 - Better than earliest deadline scheduling when more than one processor is used

Earliest Deadline and Slack Time Scheduling (3/3)





Earliest deadline scheduling



Linear Programming

Find the optimal value of a linear cost function while satisfying a large set of constraints

Critical Path List Scheduling

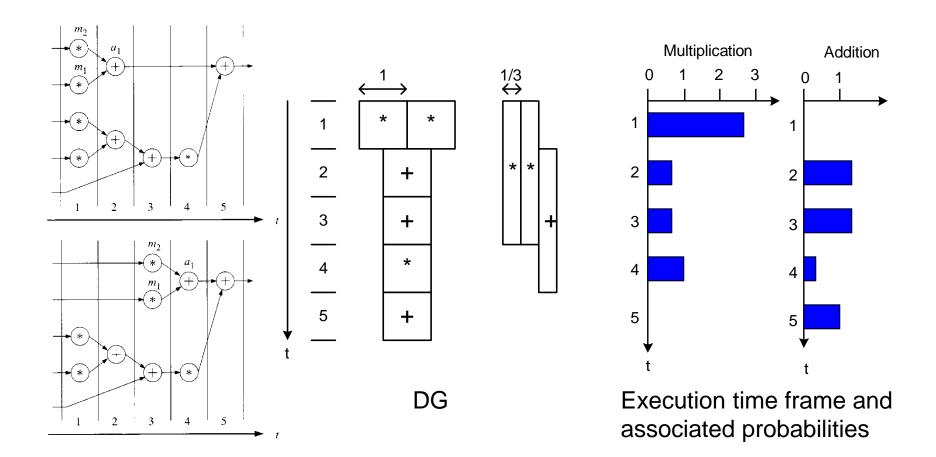
- One of the list scheduling method
- Form an ordered list of operations to be performed according to critical paths
- The operations are picked one by one from this list and assigned to a free resource (PE)

Force-Directed Scheduling (1/6)

- Target: to distribute the computation on time axis
 While (Unscheduled nodes exist)
 - □ Compute the time frames (life-span) for each node
 - Build the distribution graph
 - □ Compute the total force = (self force) + (indirect force)
 - Schedule the node into the time step that minimizes the total force

ł

Force-Directed Scheduling (2/6)



Force-Directed Scheduling (3/6)

Compute total force
 Self-force

If life span of a node
$$n_j = [S_j, L_j]$$

Self Force $(j) = \sum_{i=S_j}^{L_j} [DG(i) \times x(i)]$

DG(i): distribution value at time step i

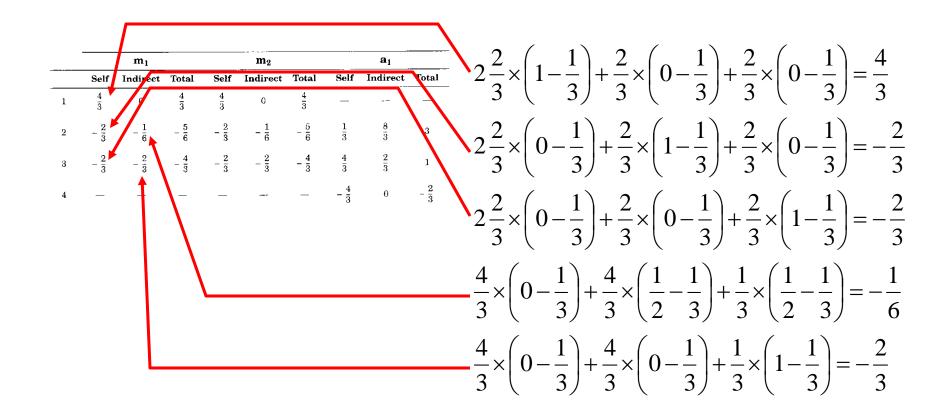
x(i): the change in the probability associated with time step i

□ Indirect force

For the influenced nodes other than j, use the same equation

 \Box Total force = (self force) + (indirect force)

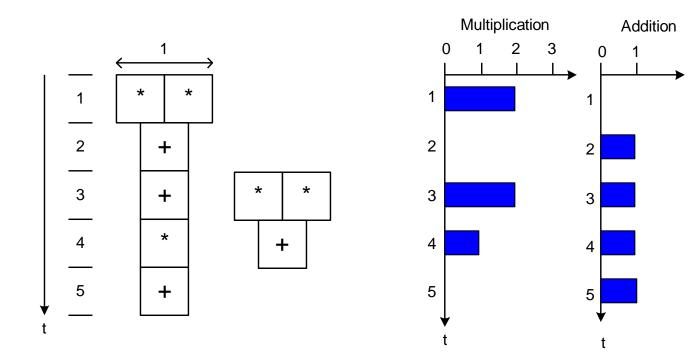
Force-Directed Scheduling (4/6)



Force-Directed Scheduling (5/6)

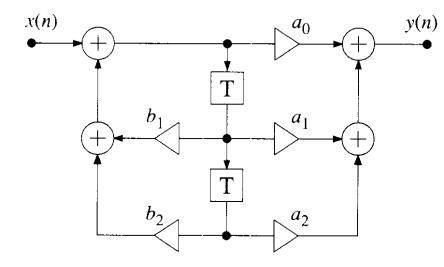
	m1			\mathbf{m}_2			\mathbf{a}_1		
	Self	Indirect	Total	Self	Indirect	Total	Self	Indirect	Total
1	$\frac{4}{3}$	0	$\frac{4}{3}$	$\frac{4}{3}$	0	$\frac{4}{3}$			
2	$-\frac{2}{3}$	$-\frac{1}{6}$	$-\frac{5}{6}$	$-\frac{2}{3}$	$-\frac{1}{6}$	$-\frac{5}{6}$	$\frac{1}{3}$	$\frac{8}{3}$	3
3	$-\frac{2}{3}$	$-\frac{2}{3}$	$\left(-\frac{4}{3}\right)$	$-\frac{2}{3}$	$-\frac{2}{3}$	$\left(-\frac{4}{3}\right)$	$\frac{1}{3}$	$\frac{2}{3}$	1
4	_	_	_	_		_	$-\frac{2}{3}$	0	$-\frac{2}{3}$

Force-Directed Scheduling (6/6)



Cyclo-Static Scheduling (1/3)

Considering a pattern in the processortime space, PxT find the lattice vector L



Iteration bound :
$$T_{\infty} = \max\left\{\frac{4}{1}, \frac{4}{2}\right\} = 4$$

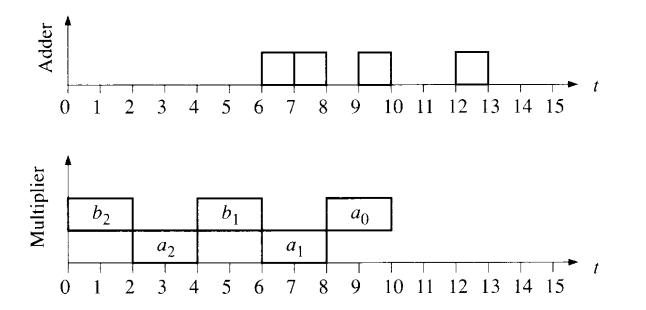
Processor bound : adder : $\left\lceil\frac{1 \times 4}{4}\right\rceil = 1$,
multiplier : $\left\lceil\frac{2 \times 5}{4}\right\rceil = 3$

DSP in VLSI Design

Assume $T_A=1$, $T_M=2$

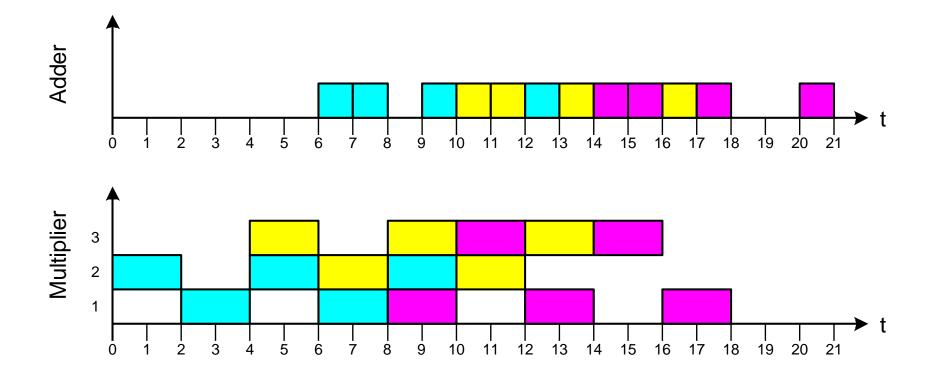
Cyclo-Static Scheduling (2/3)

L=(displace for adder, displacement for multiplier, displacement for time)=(0,1,4)



DSP in VLSI Design

Cyclo-Static Scheduling (3/3)



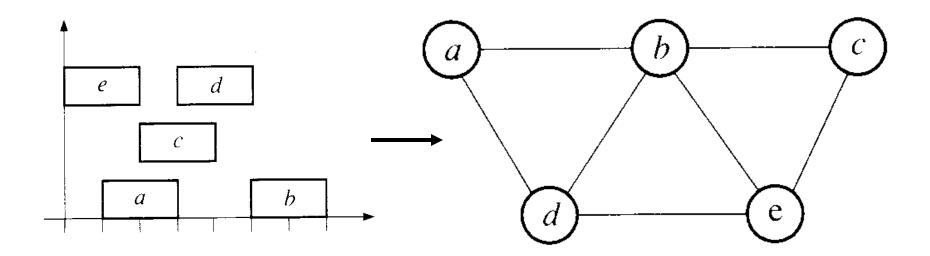
Resource Allocation and Assignment

- Usually, the largest number of concurrent processes determines the number of resources required; however, more resource are often required
- Clique partitioning
- Left-edge algorithm

Clique Partition (1/3)

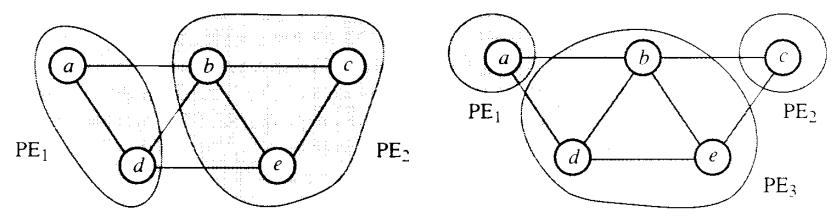
- Draw connectivity graph (or compatibility graph)
 Connecting two vertices with an edge if the lifetimes of the corresponding processes do not overlap
- Partition the connectivity graph into a number of cliques, which are fully connected sub-graphs that have an edge between all pairs of vertices

Clique Partition (2/3)



Clique Partition (3/3)

Two possible clique partitions

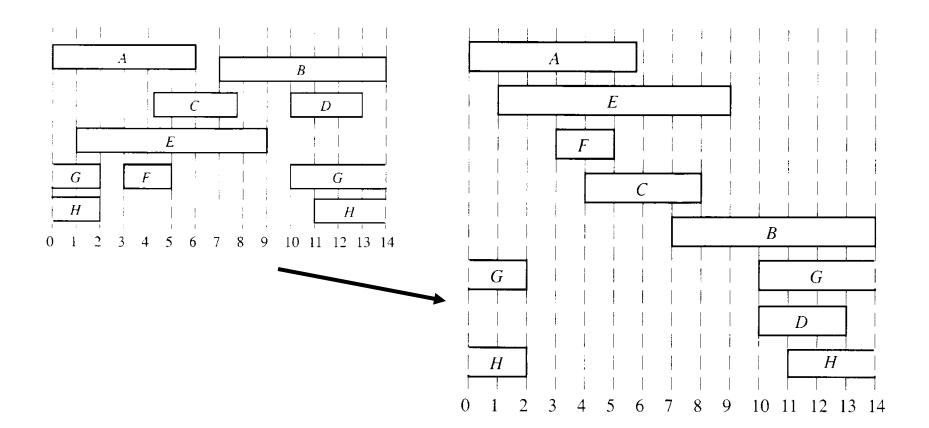


Exclusion graphs are also often used

Left-Edge Algorithm (1/3)

1.	Sort the processes into a list according to their starting times. Begin					
	the list with the process having the longest lifetime if the schedule is					
	cyclic. Processes with the same starting time are sorted with the					
	longest lifetime first. Let $i = 1$.					
2.	Assign the first process in the list to a free resource i , determine its					
	finishing time, and remove it from the list.					
3.	Search the list for the first process that has					
	(a) a starting time equal to, or later than, the finishing time for the					
	previously assigned process; and					
	(b) a finishing time that is no later than the starting time for the first					
	process selected in step 2.					
4.	If the search in step 3 fails then					
if there are processes left in the list then						
	let $i \leftarrow i + 1$ and repeat from step 2					
else						
	Stop					
	end if;					
	else					
	assign the process to resource i , determine its finishing time,					
	remove it from the list, and repeat from step 3.					
	end if;					

Left-Edge Algorithm (2/3)



Left-Edge Algorithm (3/3)

