

Systolic Architecture Design

Shao-Yi Chien

Some materials are referred to S. Y. Kung, VLSI Array Processors, Prentice-Hall, 1988.

Introduction (1/3)

- Systolic architecture (systolic array)
 - A network of processing elements (PEs) that rhythmically compute and pass data through the system
 - Modularity and regularity
 - All the PEs in the systolic array are uniform and fully pipelined
 - □ Contains only local interconnection

Introduction (2/3)

Typical systolic array

Introduction (3/3)

- Some relaxations
 - Not only local but also neighbor interconnections
 - □ Use of data broadcast operations
 - Use of different PEs in the system, especially at the boundaries
 - □ Also called as "semi-systolic array"

Systematic Design Methodology

Step 1
DG design

Step 2
 Mapping to DFG

Step 3
 VLSI array design

DSP in VLSI Design

Generalized Mapping

Canonic Mapping Methodology

- Applying linear mapping on regular dependence graph (DG)
- The DG corresponds to a space representation where no time instance is assigned to any computation
- Maps N-dimensional DG to a lower level dimensional systolic architecture
- We first introduce N-dimension to (N-1)dimension mapping

Step 1: DG Design

- Purpose: use graph to represent an algorithm with parallel expression
 - Avoid unnecessary ordering information introduced by sequential code
 - The important first step of systolic array design

DG Design

- Write recursive form of an algorithm
- Transform it as Single Assignment Code
- Draw DG
- Localized DG

Example: Matrix-Vector Multiplication (1/7)

$$c = Ab$$
$$c_i = \sum_{j=1}^m A_{ij}b_j$$

A 1_

Write recursive form of an algorithm

Example: Matrix-Vector Multiplication (2/7)

 Transform it as Single Assignment Code
 A Single Assignment Code is a form where every variable is assigned one value only during the execution of the algorithm
 for(i=1;i<=4;i++)
 {
 c(i,1)=0;
 }
 }


```
c(i,1)=0; \\for(j=1;j<=4;j++) \\ \{ \\ c(i,j+1)=c(i,j)+A(i,j)*b(j); \\ \} \\ \}
```


Example: Matrix-Vector Multiplication (3/7)

A recursive algorithm is inherently given in a single assignment code

$$c = Ab$$

$$c_i^{(j+1)} = c_i^{(j)} + a_i^{(j)} b_i^{(j)}$$

$$c_i^{(1)} = 0$$

$$a_i^{(j)} = A(i, j)$$

$$b_i^{(j)} = b(j)$$
Broadcast Signal

DSP in VLSI Design

Example: Matrix-Vector Multiplication (4/7)

Draw DG

- A DG can be considered as the graphical representation of a single assignment algorithm
- DG specifies all the dependencies between all variables in the index space
- An algorithm is computable if and only if its complete DG contains no loops or cycles

Example: Matrix-Vector Multiplication (5/7)

DSP in VLSI Design

Example: Matrix-Vector Multiplication (6/7)

Localized DG

- Use transmittent data to replace broadcast data
- A locally recursive algorithm is an algorithm whose corresponding DG has only local dependencies
 - The length of each dependency arc is independent of the problem size

Example: Matrix-Vector Multiplication (7/7)

b(1,1)=B(1);b(1,2)=B(2);b(1,3)=B(3);C(1) C(2) C(3) C(4) b(1,4)=B(4);-B(4)for(i=1;i<=4;i++)|B(3)|3 c(i,1)=0; for(j=1;j<=4;j++)-B(2)2 b(i+1, j)=b(i,j);c(i,j+1)=c(i,j)+A(i,j)*b(i,j);-B(1)2 3 1 4 i

DSP in VLSI Design

Example: Sorting

```
for(i=1;i<=N;i++)
for(j=1;j<=i;j++)
{
m(i+1, j)=max(x(i,j), m(i,j));
x(i, j+1)=min(x(i,j), m(i,j));
}
```

Initialization

x(i,1)=x(i), the original sequence $m(i,i)=-\infty$ Output of the sorter m(j)=m(N,j)

Example: Convolution

$$y_j = \sum_{k=0}^3 u_k w_{j-k}$$
$$y_j^k = y_j^{k-1} + u_k \cdot w_{j-k}$$

DSP in VLSI Design

Example: Autoregressive Filter (AR Filter)

Example: Autoregressive Filter (AR Filter)

Example: FIR Filter

■ $y(n) = w_0 x(n) + w_1 x(n-1) + w_2 x(n-2)$

DSP in VLSI Design

Shao-Yi Chien

21

Step 2: Mapping to DFG (1/4)

- Projection vector (iteration vector) $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$
 - Two nodes that are displaced by d or multiples of d are executed by the same processor
- Processor space vector p^T = (p₁ p₂)
 Any node with index I^T=(i,j) would be executed by processor

$$\mathbf{p}^T I = \left(\begin{array}{cc} p_1 & p_2 \end{array} \right) \left(\begin{array}{c} i \\ j \end{array} \right)$$

Spatial domain mapping vector

DSP in VLSI Design

Step 2: Mapping to DFG (2/4)

- Scheduling vector $\mathbf{s}^T = (\begin{array}{cc} s_1 & s_2 \end{array})$ Temporal domain mapping vector
 - Any node with index I would be executed at time s^TI
- Hardware utilization efficiency $HUE = 1/|\mathbf{s}^T \mathbf{d}|$
 - □ Two tasks executed by the same processor are spaced |s^Td| time units apart
- Edge mapping
- □ For an edge **e** in the DG, an edge **p**^T**e** is introduced in the systolic array with **s**^T**e** delays DSP in VLSI Design Shao-Yi Chien 23

Step 2: Mapping to DFG (3/4)

Constraints

□ Processor space vector p and the project vector d must be orthogonal to each other $\mathbf{p}^T (I_A - I_B) = 0 \Rightarrow \mathbf{p}^T \mathbf{d} = 0$

□ If A and B are mapped to the same processor, then they cannot be executed at the same time $\mathbf{s}^T I_A \neq \mathbf{s}^T I_B$, *i.e.*, $\mathbf{s}^T \mathbf{d} \neq 0$.

$$\mathbf{s}^{\mathsf{T}}\mathbf{I}_{\mathsf{B}} > \mathbf{s}^{\mathsf{T}}\mathbf{I}_{\mathsf{A}} \rightarrow \mathbf{s}^{\mathsf{T}}\mathbf{d} > 0$$

DSP in VLSI Design

Step 2: Mapping to DFG (4/4)

Space-time transformation $\begin{pmatrix} i' \\ j' \\ t' \end{pmatrix} = T \begin{pmatrix} i \\ j \\ t \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ \mathbf{p}^T & 0 \\ \mathbf{s}^T & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ t \end{pmatrix}$ =0Hyperplane Projection Direction 2 d 3 S (Normal Vector)

DSP in VLSI Design

FIR Systolic Arrays – B1 (1/5)

 Design B1 (broadcast input, move result, weight stay)

DSP in VLSI Design

FIR Systolic Arrays – B1 (2/5)

Node I'(i,j) is mapped to processor $\mathbf{p}^T I = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix} = j$ • Node $I^{T}(I,j)$ is executed at time $\mathbf{s}^T I = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ i \end{pmatrix} = i$ HUE $\mathbf{s}^T \mathbf{d} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$ $HUE = \frac{1}{|\mathbf{s}^T \mathbf{d}|} = 1$

FIR Systolic Arrays – B1 (3/5)

DSP in VLSI Design

FIR Systolic Arrays – B1 (4/5)

DSP in VLSI Design

FIR Systolic Arrays – B1 (5/5)

Constraints

$$p^{T}d = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \qquad \qquad \boxed{\begin{array}{c} p \\ d \end{array}}$$
$$s^{T}d = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \neq 0 \qquad \qquad \boxed{\begin{array}{c} s \end{array}}$$

FIR Systolic Arrays – B2 (1/4)

 Design B2 (broadcast input, move weight, result stay)

DSP in VLSI Design

FIR Systolic Arrays – B2 (2/4)

Space-time mapping

$$j' = \mathbf{p}^T \begin{pmatrix} i \\ j \end{pmatrix} = i + j$$
$$t' = \mathbf{s}^T \begin{pmatrix} i \\ j \end{pmatrix} = i.$$
$$\mathbf{s}^T \mathbf{d} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1$$

e	$\mathbf{p}^T \mathbf{e}$	$\mathbf{s}^T \mathbf{e}$	
wt(1, 0)	1	1	
i/p(0, 1)	1	0	
$\overline{\mathrm{result}(1, -1)}$	0	1	

FIR Systolic Arrays – B2 (3/4)

FIR Systolic Arrays – B2 (4/4)

DSP in VLSI Design

FIR Systolic Arrays – F (1/3)

 Design F (fan-in results, move inputs, weight stay)

FIR Systolic Arrays – F (2/3)

Space-time mapping

$$j' = \mathbf{p}^T \begin{pmatrix} i \\ j \end{pmatrix} = j, \quad t' = \mathbf{s}^T \begin{pmatrix} i \\ j \end{pmatrix} = i + j$$

е	$\mathbf{p}^T \mathbf{e}$	$\mathbf{s}^T \mathbf{e}$
$\operatorname{wt}(1, 0)$	0	1
i/p(0, 1)	1	1
result(1, -1)	-1	0

FIR Systolic Arrays – F (3/3)

Relationship to Other Transformations (1/2)

- Systolic array architectures with same project vector and processor space vector, but different scheduling vectors can be derived from other transformations
 - Edge reversal, associativity, slow-down, retiming, and pipelining

Relationship to Other Transformations (2/2)

Example: Matrix-Vector Multiplication

■ d^T=[1 0]^T, p^T=[0 1]^T, s^T=[1 1]^T j D D D D C(1) C(2) C(3) C(4) D D D B(2) B(4) B(3) B(1) 4 -B(4)A ₁₁ 3 B(3) A _____21 A 12 A 13 A 31 A 22 2 B(2) A 14 A 41 A 32

DSP in VLSI Design

1

2

3

B(1)

1

Shao-Yi Chien

i

4

A 24

A 34

A 44

A 33

A 43

A 42

40

Matrix-Matrix Multiplication (1/3)

- How about more-than-two dimensional DG?
- See this example: matrix-matrix multiplication
- C=AB, C, A, B are nxn matrices
- **For n=2** $\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

 $c_{11} = a_{11}b_{11} + a_{12}b_{21}$ $c_{12} = a_{11}b_{12} + a_{12}b_{22}$ $c_{21} = a_{21}b_{11} + a_{22}b_{21}$ $c_{22} = a_{21}b_{12} + a_{22}b_{22}.$ Shee Vi Chien

DSP in VLSI Design

Matrix-Matrix Multiplication (2/3)

Solution 1:

$$s^{T} = (1,1,1), d = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, p^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Solution 2:
 $s^{T} = (1,1,1), d = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, p^{T} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
Edge mapping:

	Sol. 1		Sol. 2	
e	$\mathbf{P}^T \mathbf{e}$	$\mathbf{s}^T \mathbf{e}$	$\mathbf{P}^T \mathbf{e}$	$\mathbf{s}^T \mathbf{e}$
$\overline{a(0, 1, 0)}$	(0, 1)	1	(0, 1)	1
$\overline{b(1, 0, 0)}$	(1, 0)	1	(1, 0)	1
$\overline{\mathrm{C}(0,0,1)}$	(0, 0)	1	(1, 1)	1

Matrix-Matrix Multiplication (3/3)

DSP in VLSI Design

Shao-Yi Chien

44

Selection of Schedule Vector

Choose the schedule vector s first, then d and p can be selected according to

 $p^T d = 0, s^T d \neq 0$

Procedure to get s^T

Capture all the fundamental edges in reduced dependence graph (RDG) constructed by regular iteration algorithm (RIA) description

Construct the scheduling inequalities

□ Solve feasible s^T (s^Td=1 or s^Td=iteration bound is optimal)

DSP in VLSI Design

Scheduling Inequalities (1/2)

■ For the edge X→Y $X: I_x = \begin{pmatrix} i_x \\ j_x \end{pmatrix} \longrightarrow Y: I_y = \begin{pmatrix} i_y \\ j_y \end{pmatrix}$ ■ The scheduling inequality is $S_y \ge S_x + T_x$

- $\Box S_x$: scheduling time for note X
- $\Box S_y$: scheduling time for node Y
- $\Box T_x$: computation time of node X

Scheduling Inequalities (2/2)

Linear scheduling
$$S_{x} = s^{T}I_{x} = (s_{1} \ s_{2}) \begin{pmatrix} i_{x} \\ j_{x} \end{pmatrix}$$

$$S_{y} = s^{T}I_{y} = (s_{1} \ s_{2}) \begin{pmatrix} i_{y} \\ j_{y} \end{pmatrix}$$

$$S_{x} = s^{T}I_{x} + \gamma_{x} = (s_{1} \ s_{2}) \begin{pmatrix} i_{x} \\ j_{x} \end{pmatrix} + \gamma_{x}$$

$$S_{y} = s^{T}I_{y} + \gamma_{y} = (s_{1} \ s_{2}) \begin{pmatrix} i_{y} \\ j_{y} \end{pmatrix} + \gamma_{y}$$

So the scheduling inequalities: $\mathbf{s}^T I_y + \gamma_y \ge \mathbf{s}^T I_x + \gamma_x + T_x \longrightarrow \mathbf{s}^T \mathbf{e}_{x-y} + \gamma_y - \gamma_x \ge T_x$

DSP in VLSI Design

RDG from RIA (1/2)

For the FIR filter

W(i+1,j) = W(i,j) X(i,j+1) = X(i,j)Y(i+1,j-1) = Y(i,j) + W(i+1,j-1)X(i+1,j-1).

Standard output RIA form

DSP in VLSI Design

RDG from RIA (2/2)

Scheduling Vector Selection

• Assume $T_{mult} = 5$, $T_{add} = 2$, $T_{com} = 1$, $\mathbf{s} = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$ $W \to Y: \mathbf{e} = \begin{pmatrix} 0\\ 0 \end{pmatrix}, \quad \gamma_y - \gamma_w \ge 0$ $X \to X: \quad \mathbf{e} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad s_2 + \gamma_x - \gamma_x \ge 1$ $W \to W: \mathbf{e} = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad s_1 + \gamma_w - \gamma_w \ge 1$ $s_1 \ge 1, \quad s_2 \ge 1, \quad s_1 - s_2 \ge 8.$ $X \to Y: \quad \mathbf{e} = \begin{pmatrix} 0\\ 0 \end{pmatrix}, \quad \gamma_y - \gamma_x \ge 0$ One solution: $\mathbf{s}^T = (9, 1)$ $Y \to Y: \mathbf{e} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, s_1 - s_2 + \gamma_y - \gamma_y \ge 5 + 2 + 1.$ Set $\gamma_x = \gamma_y = \gamma_w = 0$

DSP in VLSI Design

Shao-Yi Chien

50

Systolic Architecture Mapping

Then also choose $\mathbf{d} = (1, -1), \mathbf{p}^{\mathsf{T}} = (1, 1)$

Stage 3: VLSI Array Design (1/2)

- Lots of choices
 - Single Instruction Multiple Data (SIMD) stream array
 - □ Systolic array
 - □ Wavefront array
 - □ SFG array

Stage 3: VLSI Array Design (2/2)

DSP in VLSI Design

Multiprojection

- Systolic Design for Space Representations with Delays
 - □ Can be used for multilevel systolic mapping
 - Define N': number of nodes mapped to a processor
 - □ Iteration period: N'|s^Td|

I-th iteration

wD

y.

(I+w)-th iteration

Scheduling Inequality and Systolic Transformation

- Scheduling inequality $\mathbf{s}^T I_y + (l+w)N'|\mathbf{s}^T \mathbf{d}| \ge \mathbf{s}^T I_x + lN'|\mathbf{s}^T \mathbf{d}| + T_x$ $\mathbf{s}^T \mathbf{e} + wN'|\mathbf{s}^T \mathbf{d}| \ge T_x$
- All the mapping equations are the same except for the edge delay mapping

$$s^{T}e \Rightarrow s^{T}e + wN' | s^{T}d |$$

Example of DG with Delays (1/3)

Example of DG with Delays (2/3)

$$\mathbf{e}_{\mathbf{a}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad (s_{1} \quad s_{2}) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 0 \cdot N' \left| S^{T} \mathbf{d} \right| \ge 1 \Rightarrow s_{2} \ge 1$$

$$\mathbf{e}_{\mathbf{b}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad s_{1} \ge 1$$

$$\mathbf{e}_{\mathbf{c}} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \qquad -s_{1} - s_{2} + 4N'(s_{1}d_{1} + s_{2}d_{2}) \ge 1.$$
Assume $\mathbf{d} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \longrightarrow \mathsf{N}'=4$

$$\mathbf{s}^{\mathsf{T}} = (1 \ 1), \, \mathsf{p}^{\mathsf{T}} = (1 \ 0) \qquad \qquad \boxed{\frac{\mathbf{e} \quad \mathbf{p}^{T} \mathbf{e} \quad \mathbf{s}^{T} \mathbf{e} + wN' \mid \mathbf{s}^{T} \mathbf{d}}{\mathbf{a}(0, 1) \quad 0 \quad 1}}$$

$$\frac{\mathbf{e} \quad \mathbf{p}^{T} \mathbf{e} \quad \mathbf{s}^{T} \mathbf{e} + wN' \mid \mathbf{s}^{T} \mathbf{d}}{\mathbf{b}(1, 0) \quad 1 \quad 1}$$

DSP in VLSI Design

Example of DG with Delays (3/3)

1-D systolic array

Remark

The performance of the resulting array is affected by

The choice of a particular DG for an algorithm
 The direction of the projection and the schedule vectors