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Introduction 
 Implementation of basic arithmetic operations 

 Number systems 

 Conventional number systems 

 Redundant number systems 

 Residue number systems 

 Arithmetic 

 Bit-parallel arithmetic 

 Bit-serial arithmetic 

 Serial-parallel arithmetic 

 Division 

 Distributed arithmetic 

 CORDIC 
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Conventional Number Systems 

 Conventional number systems are 
nonredundant, weighted, positional number 
systems 

 

 

 

 

 Fix-point: the position of binary point is fixed 

 Floating point: signed mantissa and signed 
exponent 

Nonredundant: one number has only one representation 

Wd: word length 

wi: weightsweighted 

wi depends only on the position of the digitpositional 

For fix-radix systems, wi=ri 

 



DSP in VLSI Design Shao-Yi Chien 4 

Signed-Magnitude 

Representation 
 Range 

 [-1+Q, 1-Q] 

Q=(0.00..01) 

 Complex for 
addition and 
subtraction 

 Easy for 
multiplication 
and division 
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One’s Complement 

 Range 

 [-1+Q, 1-Q] 

 Change sign is 

easy 

 Addition, 

subtraction, and 

multiplication are 

complex 
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Two’s Complement 

 Range 

 [-1, 1-Q] 

 The most widely used representation 
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Binary Offset Representation 

 Range 
 [-1,1-Q] 

 The sequence of digits is equal to the two’s 
complement representation, except for the 
sign bit 



DSP in VLSI Design Shao-Yi Chien 8 

Redundant Number Systems 

(1/2) 
 Redundant: one number has more than one 

representation 

 Advantages 
 Simply and speed up certain arithmetic operation 

 Addition and subtraction can be performed without 
carry (barrow) paths 

 Disadvantages 
 Increase the complexity for other operations, such as 

zero detection, sign detection, and sign conversion 
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Redundant Number Systems 

(2/2) 

 Signed-digit code 

 Canonic signed digit code 

 On-line arithmetic 
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Signed-Digit Code (1/4) 

 

 

 Range: [-2+Q, 2-Q] 

 Redundant 

 (15/32)10=(0.01111)2C=(0.1000-1)SDC=(0.01111)SDC 

 (-15/32)10=(1.10001)2C=(0.-10001)SDC 

    =(0.0-1-1-1-1)SDC 
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Signed-Digit Code (2/4) 

 SDC number is not unique 

 Has problems to 

Quantize 

Compare 

Overflow check 

Change to conventional number systems for 

these operations 
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Signed-Digit Code (3/4) 

 Example of addition 
 (1-11-1)SDC=(5)10 

 (0-111)SDC=(-1)10 

 Rules for adding SDC 
numbers 

 

 

 

 

 si=zi+ci+1 

xiyi or yixi 0 0 0 1 0 1 0 -1 0 -1 1 -1 1 1 -1 -1 

xi+1 yi+1 -- Neither is -1 At least one 

is -1 

Neither is -1 At least one 

is -1 

-- -- -- 

ci 0 1 0 0 -1 0 1 -1 

zi 0 -1 1 -1 1 0 0 0 
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Signed-Digit Code (4/4) 

 

 

 

 

 

 (0100)SDC=(4)10 
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Canonic Signed Digit Code (1/3) 

 

 

 

 Range: [-4/3+Q, 4/3-Q] 

 CSDC is a special case of SDC having a 

minimum number of nonzero digits 
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Canonic Signed Digit Code (2/3) 

 Conversion of two’s-complement to CSDC 
numbers 

   

(0.011111)2C=(0.10000-1)CSDC 

Convert in iterative manner 

Step1: 011…1100…-1 

Step2: (-1,1)(0,-1), (0,1,1)(1,0,-1) 

Ex: (0.110101101101)2C 

          =(1.00-10-100-10-101)CSDC 
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Canonic Signed Digit Code (3/3) 

 Conversion of SDC to two’s complement 

numbers 

Separate the SDC number into two parts 

 One parts holds the digit that are either 0 or 1 

 The other part has –1 digits 

Subtract these two numbers 
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On-Line Arithmetic 

 The number systems with the property that 
it is possible to compute the i-th digit of 
the results using only the first (i+d)-th 
digit, where d is a small positive constant 

 Favorable in recursive algorithm using 
numbers with very long word lengths 

 SDC can be used for on-line addition and 
subtraction, d=1 
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Residue Number Systems (1/2) 

 For a given number x and moduli set {mi}, i=1, 
2, …, p 
 x=qimi+ri 
 RNS representation: x=(r1, r2, …, rp) 

 Advantages 
 The arithmetic operations (+, -, *) can be performed 

for each residue independently  

 Disadvantages 
 Hard for comparison, overflow detection, and 

quantization 

 Not easy to convert to other number systems 
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Residue Number Systems (2/2) 

 Example 

Moduli set={5,3,2} 

Number range=5*3*2=30 

9+19=(4,0,1)RNS+(4,1,1)RNS 

           =((4+4)5,(0+1)3, (1+1)2)RNS=(3,1,0)RNS=28 

8*3=(3,2,0)RNS+(3,0,1)RNS 

        =((3*3)5,(2*0)3,(0*1)2)RNS=(4,0,0)RNS=24 
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Bit-Parallel Arithmetic (1/2) 

 Addition and subtraction 

Ripple carry adder (RCA) (carry propagation 
adder, CPA) 

Carry-look-ahead adder (CLA) 

Carry-save adder 

Carry-select adder (CSA) 

Carry-skip adder 

Conditional-sum adder 
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Bit-Parallel Arithmetic (2/2) 

 Multiplication 

Shift-and-add multiplication 

Booth’s algorithm 

Tree-based multipliers 

Array multipliers 

Look-up table techniques 
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Ripple Carry Adder (RCA) (1/2) 

  Also called carry propagation adder (CPA) 

Full adder 
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Ripple Carry Adder (RCA) (2/2) 

 The speed of the RCA is determined by 

the carry propagation time 

Ripple-carry adder Ripple-carry adder/subtractor 
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Carry-Look-Ahead Adder (CLA) 

 Generate the carry with separate circuits 

 Ci=Gi+Pi.Ci-1 

 Gi=Ai.Bi 

 Pi=Ai+Bi 

*Different digit notation in this slide 
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Carry-Save Adder 

 Used when adding three or more operands 

 Reduce the number of operands by one for each 

stage 

FA

x
3 cin

3
y

3

s
3

c
3

FA

x
2

cin
2 y

2

s
2c

2

FA

x
1

cin
1 y

1

s
1c

1

FA

x
0

cin
0 y

0

s
0

c
0

*Different digit notation in this slide 
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Carry-Select Adder (CSA) 

*Different digit notation in this slide 
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Carry-Skip Adder 

*Different digit notation in this slide 
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Conditional-Sum  

Adder 

*Different digit notation in this slide 

BAC

BAC

BAS

BAS









1

0

1

0

)(
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Multiplication 

 Bit-parallel multiplication 
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Shift-and-Add Multiplication (1/2) 
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Shift-and-Add Multiplication (2/2) 

 The operation can 

be reduced with 

CSDC 

 Can be used to 

design fix-operand 

multiplier 
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Booth’s Algorithm (1/3) 
 Used in modern general-purpose processors, 

such as MIPS R4000 
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Booth’s Algorithm (2/3) 

x2i-2 x2i-1 x2i x2i-1’ Operation Comments 

0 0 0 0 +0 String of zeros 

0 0 1 1 +y Beginning of 1s 

0 1 0 1 +y A single 1 

0 1 1 2 +2y Beginning of 1s 

1 0 0 -2 -2y End of 1’s 

1 0 1 -1 -y A single 0 

(beginning/end of 1’s) 

1 1 0 -1 -y End of 1’s 

1 1 1 0 -0 String of 1’s 
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Booth’s Algorithm (3/3) 

Z=X Y 

Encoder 

X’ 

Xi+1 Xi Xi-1   

0 0 0 0  

0 0 1 +Y (beginning of string) 

0 1 0 +Y (isolated) 

0 1 1 +2Y (beginning of string) 

1 0 0 -2Y (end of string) 

1 0 1 -Y (beginning / end of string) 

1 1 0 -Y (end of string) 

1 1 1 0  
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Tree-Based Multipliers (Wallace 

Tree Multipliers) 
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Array Multipliers (1/3) 

 Baugh-

Wooley’s 

multiplier 
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Array Multipliers (2/3) 

 Partial products 
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Array Multipliers (3/3) 
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Look-Up Table Techniques 

 A multiplier AxB can be done with a large 

table with 2WA+WB words 

 Simplified method 

 

 

Can be implemented with one addition, two 

subtraction, and two table look-up operations 

4

)(

4

)( 22 yxyx
yx
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Bit-Serial Arithmetic 

 Advantages 

 Significantly reduce chip area 

 Eliminate wide bus 

 Small processing elements 

 Higher clock frequency 

Often superior than bit-parallel 

 Disadvantages 

 S/P P/S interface 

 Complicated clocking scheme 
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Bit-Serial Addition and 

Subtraction 

Addition Subtraction 
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Serial/Parallel Multiplier 

 Use carry-save adders 

 Need Wd+Wc-1 cycles to compute the 

result 
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Modified Serial/Parallel 

Multiplier 

Can be 

implemented 

with a half adder 
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Transpose Serial/Parallel 

Multiplier  
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S/P Multiplier-Accumulator 

 y=a*x+z 
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S/P Multiplier with Fixed 

Coefficients (1/3) 

 Remove all AND gates 

 Remove all FAs and corresponding D flip-
flops, starting with the MSB in the 
coefficient, up to the first 1 in the 
coefficient 

 Replace each FA that corresponds to a 
zero-bit in the coefficient with a 
feedthrough 
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S/P Multiplier with Fixed 

Coefficients (2/3) 
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S/P Multiplier with Fixed 

Coefficients (3/3) 
 

 

 

 

 

 The number of FA = (the number of 1’s)-1 

 The number of D flip-flops = the number of 1-bit 
positions between the first and last bit positions 
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S/P Multiplier with CSDC 

Coefficients 

 a=(0.00111)2C=(0.0100-1)CSDC 
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Minimum Number of Basic 

Operations 
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Division 

 How to do binary division? 

 

 

 

 

 In the following slides, we define 
 Dividend z = z2k-1z2k-2…z1z0 

 Divisor d = dk-1dk-2…d1d0 

Quotient q = qk-1qk-2…q1q0 

 Remainder s = [z-(dxq)]=sk-1sk-2…s1s0 

Major reference: 

B. Parham, Computer Arithmetic: Algorithms and Hardware Designs, 

Oxford, 2000. 
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What’s Different? 

 Added complication of requiring quotient 
digit selection or estimation 

The terms to be subtracted from the dividend 
z are not known a priori but become known as 
the quotient digits are computed 

The terms to be subtracted from the initial 
partial remainder must be produced from top 
to bottom 

More difficult and slower than multiplication 

Long critical path 
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Division 

 Bit-serial division (sequential division 
algorithm) 

 Programmed division 

 Restoring bit-serial hardware divider 

 Nonrestoring bit-serial hardware divider 

 Division by constants 

 Array divider 
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 s(j)=2s(j-1)-qk-j(2
kd) with s(0)=z and s(k)=2ks 

 Or 
For j=1 to k 

{ 

If(2s(j-1)>=(2kd)) 

{ 

 qk-j=1;   

 s(j)=2s(j-1)-(2kd); 

} 

Else 

{ 

 qk-j=0;   

 s(j)=2s(j-1); 

} 

} 

 

Subtract 

Bit-Serial division 

(Sequential Division) Algorithm 

Shift 
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Programmed Division 

Need more than 200 instructions 

for a 32-bit division!! 
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Restoring Bit-Serial Hardware 

Divider (1/3) 

 “Restoring division” 

Assume q=1 first, do the trial difference 

The remainder is restored to its correct value 

if the trial subtraction indicates that 1 was not 

the right choice for q 



DSP in VLSI Design Shao-Yi Chien 57 

Restoring Bit-Serial Hardware 

Divider (2/3) 



DSP in VLSI Design Shao-Yi Chien 58 

Restoring Bit-Serial Hardware 

Divider (3/3) 
Can be shared together 

Critical path 
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Nonrestoring Bit-Serial 

Hardware Divider (1/4) 

 Always store u-2kd back to the register 

 If the value q in this stage is 1  correct! 

 Next stage: 2(u-2kd)-2kd=2u-3x2kd 

 If the value q in this stage is 0  incorrect! 

 Next stage should be: 2u-2kd 

 Is equal to 2(u-2kd)+2kd 

 Always store the result of trail difference 

 If q=1  use subtraction; if q=0  use addition 

 Can reduce critical path 
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Nonrestoring Bit-Serial 

Hardware Divider (2/4) 
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Nonrestoring Bit-Serial 

Hardware Divider (3/4) 

Critical path 
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Nonrestoring Bit-

Serial Hardware 

Divider (4/4) 
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Division by Constants (1/2) 

 Use lookup table + constant multiplier 

 Exploit the following equations 

Consider odd divisor only since even divisor 

can be performed by first dividing by an odd 

integer and then shifting the result 

For an odd integer d, there exists an odd 

integer m such that d x m=2n-1 
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Division by Constants (2/2) 

   

 

For example, for 24-bit precision: 
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Next term (1+2-32) does not contribute anything to 24-bit precision 

Easy for hardware implementation 
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Array Divider (1/2) 

 Restoring array divider 

FS: full subtractor 

The critical path 

passes through all k2 

cells 
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Array Divider (2/2) 

 Nonrestoring array divider 

FA: full adder 

The critical path 

passes through all k2 

cells 
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Distributed Arithmetic (1/7) 

 Most DSP algorithms involve sum-of-

products (inner products) 

 

 

 Distributed arithmetic (DA) is an efficient 

procedure for computing inner products 

between a fixed and a variable data vector 

Fixed coefficient 
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Distributed Arithmetic (2/7) 

Put Fk in ROM 
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Distributed Arithmetic (3/7) 

 DA can be 

implemented with a 

ROM and a shift-

accumulator 

 The computation 

time: Wd cycles 

 Word length of 

ROM:  )(log2 NWW CROM 
Data input from 

LSB to MSB in 

bit-serial 
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Distributed Arithmetic (4/7) 

 Example 

y=a1x1+a2x2+a3x3 

a1=(0.0100001)2C 

a2=(0.1010101)2C 

a3=(1.1110101)2C 

 (a) The table? (b) The word length of the 

shift-accumulator? 
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Distributed Arithmetic (5/7) 

 Ans: 

(a) 

 

 

 

 

(b) Word length=7 bits + 1 bit (sign bit) +1 bit 
(guard bit) = 9 bits 
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Distributed Arithmetic (6/7) 

 Example: linear-phase FIR filter 
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Distributed Arithmetic (7/7) 

 Parallel implementation of distributed 

arithmetic 
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Shift-Accumulator (1/4) 

 The number of cycles for one inner product is Wd+WROM 

 First Wd cycles: input data 

 Last WROM cycles: shift out the results 
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Shift-Accumulator (2/4) 

 Shift-accumulator augmented with two 

shift registers 
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Shift-Accumulator (3/4) 

 Scheduling 

 

 

 

 

 

 Clock cycle 
 NCL=max{WROM, Wd} 

LSP(0)

MSP(0)

LSP(1)

MSP(1)

LSP(2)

MSP(2)
......

W
d

W
ROM
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Shift-Accumulator (4/4) 

 Detailed architecture 
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Reducing the Memory Size (1/4) 

 Method 1: 

memory 

partition 

2*2N/2 < 2N 

Ex: 2*25 = 64 

< 210 = 1024 
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Reducing the Memory Size (2/4) 

 Method 2: memory coding 
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Reducing the Memory Size (3/4) 

Complement 
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Reducing the Memory Size (4/4) 
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CORDIC 

 CORDIC (COordinate Rotation DIgital Computer) 

 An iterative arithmetic algorithm introduced by 

Volder in 1956 

 Can handle many elementary functions, such as 

trigonometric, exponential, and logarithm with only 

shift-and-add arithmetic 

 For these functions CORDIC based architecture is 

much efficient than multiplier and accumulator (MAC) 

based architecture 

 Suitable for transformations and matrix based filters 

Major reference: 

[1] A.-Y. Wu, “CORDIC,” Slides of Advanced VLSI 

[2] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal 

processing,” IEEE Signal Processing Magazine, pp. 16—35, July 1992. 

[3] J. E. Volder, “The Birth of CORDIC,” J. VLSI Signal Processing, 

vol.25, pp. 101—105, 2000. 
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The Birth of CORDIC 

B-58 Supersonic Bomber 

CORDIC I  

CORDIC II  
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Simple Concepts of CORDIC 

(1/2) 

 Originally, CORDIC is invented to deal 

with rotation problem with shift-and-add 

arithmetic 
















 










y

x

y

x





cossin

sincos

'

'

(x, y)

(x', y')





DSP in VLSI Design Shao-Yi Chien 85 

Simple Concepts of CORDIC 

(2/2) 

 How to make it with shift-and-add? 

 Decompose the desired rotation angle into 

small rotation angles (micro-rotation) 

 Rotate finite times (by “elementary angles” 

                    ) to achieve the desired 

rotation 1 

2 
3 

4 

}10|{  niai
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Conventional CORDIC 

Algorithm (1/2) 
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Conventional CORDIC 

Algorithm (2/2) 

}1,1{ :rotation of Mode
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1
 :factor Scaling
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Can be implemented 

with shift-and-add 

arithmetic 
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Generalized CORDIC (1/2) 

 Target: 

 i-th elementary rotation angle is defined by 
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Generalized CORDIC (2/2) 

x2+y2=1

v(0)

v(1)

v(2)

v(3)

v(4)

v(i)=[x(i) y(i)]T

Circular Rotation

(m=1)

x=1

v(0)

v(1)

v(2)

v(3)

v(i)=[x(0) y(i)]T

Linear Rotation

(m->0)

y=-x

v(0)

v(1)

v(2)

v(3)

v(i)=[x(i) y(i)]T

Hyperbolic Rotation

(m=-1)
y=x

x2-y2=1
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CORDIC Algorithm 
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Mode of Operation (1/2) 

 Vector rotation mode (θ is given) 

 

 

 

 

 

 For many DSP problems, θ is know in advance, and 

sequence        can be stored instead 
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Mode of Operation (2/2) 

 Angle accumulation mode (θ is not given) 

The objective is to rotate the given initial 

vector [x(0) y(0)]T back to the x-axis 

 

 

 Summary 

)()( ofsign 

0)0(set 

iyix

z

i 












)()( ofsign 

)( ofsign 

iyix

iz
i

Vector rotation mode 

Angle accumulation mode 
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Shift Sequence 

 Usually defined in advance 

 Walther has proposed a set of shift 

sequence for each of the three coordinate 

systems 

For m=0 or 1, s(m,i)=i 

For m=-1, s(-1, i)=1, 2, 3, 4, 4, 5, …, 12, 13, 

13, 14, …  
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Scaling Operation 

 Significant computation overhead of 
CORDIC 

 Fortunately, since         , and assume       
is given,         can be computed in advance 

 Two approaches to compute scaling 

CSD representation 
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Basic CORDIC Processor (1/3) 
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Basic CORDIC Processor (2/3) 

 CORDIC Iteration 
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Basic CORDIC Processor (3/3) 

 Scaling 
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Parallel and Pipelined Arrays 

 n stages for CORDIC, and s stages for scaling 

 Parallel 
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Discrete Fourier Transform 

(DFT) with CORDIC (1/2) 
 DFT 

 

 DFT with CORDIC 

N

Nkj

N

kj

N

kj

eNXeXeXKY
)1(21202

)1()1()0()(









loop-k End

)(

),(
)(

/*operation  Scaling */

loop-m End

),(

),(

)(

)(

2
cos

2
sin

2
sin

2
cos

)(
),1(

),1(

Do 1,-N  to0mFor 

Do 1,-N  to0kFor 

10for  0),0( :Initiation

1

1

nK

kNY
kY

kmY

kmY

mx

mx

N

mk

N

mk
N

mk

N

mk

nK
kmY

kmY

NkkY

i

r

i

r

i

r





































































DSP in VLSI Design Shao-Yi Chien 100 

Discrete Fourier Transform 

(DFT) with CORDIC (2/2) 
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