

Processing Elements Design

Introduction

- Implementation of basic arithmetic operations
- Number systems
 - Conventional number systems
 - Redundant number systems
 - Residue number systems
- Arithmetic
 - □ Bit-parallel arithmetic
 - □ Bit-serial arithmetic
 - □ Serial-parallel arithmetic
 - Division
 - Distributed arithmetic

Conventional Number Systems

Conventional number systems are nonredundant, weighted, positional number systems

$$x = \sum_{i=0}^{W_{\rm d}-1} w_i x_i$$

Nonredundant: one number has only one representation W_d : word length w_i : weights \rightarrow weighted

 w_i depends only on the position of the digit \rightarrow **positional** For fix-radix systems, w_i =rⁱ

Fix-point: the position of binary point is fixed
 Floating point: signed mantissa and signed exponent

Signed-Magnitude Representation

- Range
 [-1+Q, 1-Q]
 Q=(0.00..01)
- Complex for addition and subtraction
- $\mathbf{x} = (1 2x_0) \sum_{i=1}^{\infty} x_i 2^{-i}$ (+0.828125)₁₀ = (0.110101)_{SM} (-0.828125)₁₀ = (1.110101)_{SM} (0)₁₀ = (0.000000)_{SM} or (1.000000)_{SM}
- Easy for multiplication and division

 $W_{d} - 1$

One's Complement

Range $\Box [-1+Q, 1-Q] \qquad x = -x_0(1-Q) + \sum_{i=1}^{W_d - 1} x_i 2^{-i}$ Change sign is

easy

 $(+0.828125)_{10} = (0.110101)_{10}$

i = 1

 Addition, subtraction, and multiplication are complex

$$(-0.828125)_{10} = (1.001010)_{1C}$$

 $(0)_{10} = (0.000000)_{1C} \text{ or } (1.111111)_{1C}$

Two's Complement

$$\boldsymbol{x} = -x_0 + \sum_{i=1}^{W_d - 1} x_i 2^{-i}$$

$$(+0.828125)_{10} = (0.110101)_{2C}$$

 $(-0.828125)_{10} = (1.001010)_{2C} + (0.000001)_{2C} = (1.001011)_{2C}$
 $(0)_{10} = (0.000000)_{2C}$

Range

- □ [-1, 1-Q]
- The most widely used representation

Binary Offset Representation

$$\boldsymbol{x} = (x_0 - 1) + \sum_{i=1}^{W_d - 1} x_i 2^{-i}$$

$$(+0.828125)_{10} = (1.110101)_{\text{BO}}$$

$$(-0.828125)_{10} = (0.001011)_{BO}$$

$$(0)_{10} = (1.00000)_{BO}$$

Range

□ [-1,1-Q]

The sequence of digits is equal to the two's complement representation, except for the sign bit

DSP in VLSI Design

Redundant Number Systems (1/2)

- Redundant: one number has more than one representation
- Advantages
 - □ Simply and speed up certain arithmetic operation
 - Addition and subtraction can be performed without carry (barrow) paths
- Disadvantages
 - Increase the complexity for other operations, such as zero detection, sign detection, and sign conversion

Redundant Number Systems (2/2)

- Signed-digit code
- Canonic signed digit code
- On-line arithmetic

Signed-Digit Code (1/4)

$$\mathbf{x} = \sum_{i=0}^{W_d - 1} x_i 2^{-i}$$
 where $x_i = -1, 0, \text{ or } +1$

- Range: [-2+Q, 2-Q]
- Redundant

 $\Box (15/32)_{10} = (0.01111)_{2C} = (0.1000-1)_{SDC} = (0.01111)_{SDC}$ $\Box (-15/32)_{10} = (1.10001)_{2C} = (0.-10001)_{SDC}$ $= (0.0-1-1-1)_{SDC}$

Signed-Digit Code (2/4)

- SDC number is not unique
- Has problems to
 - Quantize
 - □ Compare
 - □ Overflow check
 - Change to conventional number systems for these operations

Signed-Digit Code (3/4)

Example of addition
 (1-11-1)_{SDC}=(5)₁₀
 (0-111)_{SDC}=(-1)₁₀

 Rules for adding SDC numbers

x _i y _i or y _i x _i	00	0 1	0 1	0 -1	0 -1	1 -1	11	-1 -1
x _{i+1} y _{i+1}		Neither is -1	At least one is -1	Neither is -1	At least one is -1			
C _i	0	1	0	0	-1	0	1	-1
Zi	0	-1	1	-1	1	0	0	0

DSP in VLSI Design

Signed-Digit Code (4/4)

i		0	1	2	3
$\overline{x_i}$		1	-1	1	-1
<i>y</i> _i		0	-1	1	1
c_{l+1}	0	-1	1	0	
zi		1	0	0	0
si		0	1	0	0

■ (0100)_{SDC}=(4)₁₀

Canonic Signed Digit Code (1/3)

$$\mathbf{x} = \sum_{i=0}^{W_d - 1} x_i 2^{-i} \text{ where } x_i = -1, 0, \text{ or } +1$$
$$x_i \cdot x_{i+1} = 0, \quad 0 \le i \le W_d - 2$$

Range: [-4/3+Q, 4/3-Q]
 CSDC is a special case of SDC having a minimum number of nonzero digits

Canonic Signed Digit Code (2/3)

Conversion of two's-complement to CSDC numbers

$$2^{k+n+1} - 2^k = 2^{k+n} + 2^{k+n-1} + 2^{k+n-2} + \dots + 2^k$$

$$(0.011111) - (0.10000-1)$$

- $(0.01111)_{2C} = (0.10000-1)_{CSDC}$
- Convert in iterative manner
- □ Step1: 011...1→100...-1
- □ Step2: $(-1,1) \rightarrow (0,-1), (0,1,1) \rightarrow (1,0,-1)$
- □ Ex: (0.110101101101)_{2C}
 - =(1.00-10-100-10-101)_{CSDC}

Canonic Signed Digit Code (3/3)

- Conversion of SDC to two's complement numbers
 - □ Separate the SDC number into two parts
 - One parts holds the digit that are either 0 or 1
 - The other part has -1 digits
 - Subtract these two numbers

On-Line Arithmetic

- The number systems with the property that it is possible to compute the i-th digit of the results using only the first (i+d)-th digit, where d is a small positive constant
- Favorable in recursive algorithm using numbers with very long word lengths
- SDC can be used for on-line addition and subtraction, d=1

Residue Number Systems (1/2)

- For a given number x and moduli set {m_i}, i=1, 2, ..., p
 - $\Box x = q_i m_i + r_i$
 - \square RNS representation: x=(r₁, r₂, ..., r_p)
- Advantages
 - The arithmetic operations (+, -, *) can be performed for each residue independently
- Disadvantages
 - Hard for comparison, overflow detection, and quantization
 - □ Not easy to convert to other number systems

Residue Number Systems (2/2)

Example \square Moduli set={5,3,2} \Box Number range=5*3*2=30 $\Box 9+19=(4,0,1)_{RNS}+(4,1,1)_{RNS}$ $=((4+4)_5, (0+1)_3, (1+1)_2)_{RNS} = (3,1,0)_{RNS} = 28$ $\Box 8^*3 = (3,2,0)_{RNS} + (3,0,1)_{RNS}$ $=((3^{*}3)_{5},(2^{*}0)_{3},(0^{*}1)_{2})_{RNS}=(4,0,0)_{RNS}=24$

Bit-Parallel Arithmetic (1/2)

Addition and subtraction

- Ripple carry adder (RCA) (carry propagation adder, CPA)
- Carry-look-ahead adder (CLA)
- □ Carry-save adder
- □ Carry-select adder (CSA)
- Carry-skip adder
- Conditional-sum adder

Bit-Parallel Arithmetic (2/2)

Multiplication

- Shift-and-add multiplication
- Booth's algorithm
- □ Tree-based multipliers
- □ Array multipliers
- Look-up table techniques

Ripple Carry Adder (RCA) (1/2)

Also called carry propagation adder (CPA)
 Full adder

 $S = A \oplus B \oplus D = \{\text{Parity}\}$ = $A \cdot B \cdot D + A \cdot \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot D + \overline{A} \cdot B \cdot \overline{D}$ $C = A \cdot B + A \cdot D + B \cdot D = A \cdot B + D \cdot (A + B)$

Ripple Carry Adder (RCA) (2/2)

The speed of the RCA is determined by the carry propagation time

Ripple-carry adder

Ripple-carry adder/subtractor

DSP in VLSI Design

Carry-Look-Ahead Adder (CLA)

- Generate the carry with separate circuits
- $C_i = G_i + P_i \cdot C_{i-1}$ • $G_i = A_i \cdot B_i$ • $P_i = A_i + B_i$

*Different digit notation in this slide

DSP in VLSI Design

Carry-Save Adder

- Used when adding three or more operands
- Reduce the number of operands by one for each stage

*Different digit notation in this slide

DSP in VLSI Design

Carry-Select Adder (CSA)

*Different digit notation in this slide

DSP in VLSI Design

Carry-Skip Adder

*Different digit notation in this slide

DSP in VLSI Design

Conditional-Sum Adder

 $S_0 = A \oplus B$ $S_1 = -(A \oplus B)$ $C_0 = A \cdot B$ $C_1 = A + B$

*Different digit notation in this slide DSP in VLSI Design

Multiplication

Bit-parallel multiplication

DSP in VLSI Design

Shift-and-Add Multiplication (1/2)

$$\mathbf{y} = \mathbf{a} \left(-x_0 + \sum_{i=1}^{W_d - 1} x_i 2^{-i} \right) = -\mathbf{a} x_0 + \sum_{i=1}^{W_d - 1} \mathbf{a} x_i 2^{-i}$$

DSP in VLSI Design

Shift-and-Add Multiplication (2/2)

- The operation can be reduced with CSDC
- Can be used to design fix-operand multiplier

Booth's Algorithm (1/3)

Used in modern general-purpose processors, such as MIPS R4000

$$\boldsymbol{x} = \sum_{i=1}^{15} x_i 2^{-i} - x_0 2^0 = \sum_{i=1}^{8} x_{2i-1} 2^{-2i+1} + \sum_{i=1}^{7} x_{2i} 2^{-2i} - x_0 2^0$$
$$= \sum_{i=1}^{8} x_{2i-1} 2^{-2i+1} + \sum_{i=1}^{7} x_{2i} 2^{-2i+1} - 2 \sum_{i=1}^{7} x_{2i} 2^{-2i-1} - x_0 2^0$$

$$=\sum_{\substack{i=1\\8}}^{8} x_{2i-1} 2^{-2i+1} + \sum_{\substack{i=1\\8}}^{8} x_{2i} 2^{-2i+1} - 2\sum_{\substack{i=2\\i=2}}^{8} x_{2(i-1)} 2^{-2i+1} - x_0 2^0$$

$$= \sum_{i=1}^{9} \left[x_{2i-1} + x_{2i} - 2x_{2(i-1)} \right] 2^{-2i+1}$$

$$\boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^{8} \left[x_{2i-1} + x_{2i} - 2x_{2(i-1)} \right] \boldsymbol{y} 2^{-2i+1}$$

DSP in VLSI Design

Booth's Algorithm (2/3)

X _{2i-2}	Х _{2і-1}	x _{2i}	x _{2i-1} '	Operation	Comments
0	0	0	0	+0	String of zeros
0	0	1	1	+y	Beginning of 1s
0	1	0	1	+y	A single 1
0	1	1	2	+2y	Beginning of 1s
1	0	0	-2	-2y	End of 1's
1	0	1	-1	-у	A single 0 (beginning/end of 1's)
1	1	0	-1	-у	End of 1's
1	1	1	0	-0	String of 1's

DSP in VLSI Design

Booth's Algorithm (3/3)

- X_{i+1} X_i X_{i-1}
- - 1 + Y (beginning of string)
 - $1 \quad 0 \quad +Y \quad (isolated)$
 - $1 \quad 1 \quad +2Y$ (beginning of string)
 - 0 -2Y (end of string)
 - -Y (beginning / end of string)
 - -Y (end of string)
- 1 1 1 0

1

0

0

0

1

0

0

1

1

1

Tree-Based Multipliers (Wallace Tree Multipliers)

Array Multipliers (1/3)

Baugh-Wooley's multiplier

$$\begin{aligned} & \text{ers (1/3)} \\ P = x \cdot y = \left(-x_0 + \sum_{i=1}^{W_d - 1} x_i 2^{-i} \right) \left(-y_0 + \sum_{i=1}^{W_d - 1} y_i 2^{-i} \right) \\ & = x_0 \cdot y_0 + \sum_{i=1}^{W_d - 1} \sum_{j=1}^{W_d - 1} x_i \cdot y_j 2^{-i-j} - x_0 \sum_{i=1}^{W_d - 1} y_i 2^{-i} - y_0 \sum_{i=1}^{W_d - 1} x_i 2^{-i} \end{aligned}$$

Each of the two negative terms may be rewritten

$$-\sum_{i=1}^{W_d-1} x_0 \cdot y_i 2^{-i} = -1 + 2^{-W_d+1} + \sum_{i=1}^{W_d-1} (1 - x_0 \cdot y_i) 2^{-i}$$

and by using the overflow property of two's-complement representation we get

$$-\sum_{i=1}^{W_d-1} x_0 \cdot y_i 2^{-i} = 1 + 2^{-W_d+1} + \sum_{i=1}^{W_d-1} \overline{x_0 \cdot y_i} 2^{-i}$$

We get

$$P = 2 + 2^{-W_d + 2} + x_0 \cdot y_0 + \sum_{i=1}^{W_d - 1} \sum_{j=1}^{W_d - 1} x_i \cdot y_j 2^{-i-j} + \sum_{i=1}^{W_d - 1} \overline{x_0 \cdot y_i} 2^{-i} + \sum_{i=1}^{W_d - 1} \overline{y_0 \cdot x_i} 2^{-i}$$

DSP in VLSI Design

Array Multipliers (2/3)

Partial products

					<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃
					<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
				1	$\overline{x_0 \cdot y_3}$	$x_1 \cdot y_3$	$x_2 \cdot y_3$	$x_3 \cdot y_3$
				$\overline{x_0 \cdot y_2}$	$x_1 \cdot y_2$	$x_2 \cdot y_2$	$x_3 \cdot y_2$	
			$\overline{x_0 \cdot y_1}$	$x_1 \cdot y_1$	$x_2 \cdot y_1$	$x_3 \cdot y_1$		
1		$x_0 \cdot y_0$	$\overline{x_1 \cdot y_0}$	$\overline{x_2 \cdot y_0}$	$\overline{x_3 \cdot y_0}$			
ļ	7 _1	$p_{0\bullet}$	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆

Array Multipliers (3/3)

DSP in VLSI Design

Look-Up Table Techniques

- A multiplier AxB can be done with a large table with 2^{WA+WB} words
- Simplified method

$$x \cdot y = \frac{(x+y)^2}{4} - \frac{(x-y)^2}{4}$$

□ Can be implemented with one addition, two subtraction, and two table look-up operations

Bit-Serial Arithmetic

Advantages

Significantly reduce chip area

- Eliminate wide bus
- Small processing elements
- Higher clock frequency
- □ Often superior than bit-parallel
- Disadvantages
 - □ S/P P/S interface
 - Complicated clocking scheme

Bit-Serial Addition and Subtraction

Serial/Parallel Multiplier

- Use carry-save adders
- Need W_d+W_c-1 cycles to compute the result

DSP in VLSI Design

Modified Serial/Parallel Multiplier

Transpose Serial/Parallel Multiplier

S/P Multiplier-Accumulator

S/P Multiplier with Fixed Coefficients (1/3)

- Remove all AND gates
- Remove all FAs and corresponding D flipflops, starting with the MSB in the coefficient, up to the first 1 in the coefficient
- Replace each FA that corresponds to a zero-bit in the coefficient with a feedthrough

S/P Multiplier with Fixed Coefficients (2/3)

S/P Multiplier with Fixed Coefficients (3/3)

The number of FA = (the number of 1's)-1
 The number of D flip-flops = the number of 1-bit positions between the first and last bit positions

S/P Multiplier with CSDC Coefficients

■ a=(0.00111)_{2C}=(0.0100-1)_{CSDC}

Minimum Number of Basic Operations

Division

Major reference: B. Parham, *Computer Arithmetic: Algorithms and Hardware Designs*, Oxford, 2000.

How to do binary division?

- In the following slides, we define
 - \Box Dividend **z** = $z_{2k-1}z_{2k-2}...z_1z_0$
 - $\Box \text{ Divisor } \mathbf{d} = d_{k-1}d_{k-2}\dots d_1d_0$
 - $\Box \text{ Quotient } \mathbf{q} = q_{k-1}q_{k-2}\dots q_1q_0$
 - $\Box \text{ Remainder } \mathbf{s} = [z \cdot (dxq)] = s_{k-1}s_{k-2} \dots s_1s_0$

What's Different?

- Added complication of requiring quotient digit selection or estimation
 - The terms to be subtracted from the dividend z are not known a priori but become known as the quotient digits are computed
 - The terms to be subtracted from the initial partial remainder must be produced from top to bottom
 - More difficult and slower than multiplication
 Long critical path

DSP in VLSI Design

Division

- Bit-serial division (sequential division algorithm)
- Programmed division
- Restoring bit-serial hardware divider
- Nonrestoring bit-serial hardware divider
- Division by constants
- Array divider

Bit-Serial division (Sequential Division) Algorithm

• $s^{(j)}=2s^{(j-1)}-q_{k-j}(2^kd)$ with $s^{(0)}=z$ and $s^{(k)}=2^ks$

	ועוג	SIC	211			
z 24d		0 1	1 0	1	1 0	0101
$s^{(0)}$ 2 $s^{(0)}$ $-q_3 2^4 d$	0	0 1 1	1 1 0	1 1 1	1 0 0	$\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 \\ \{q_3 = 1\} \end{array}$
s(1) 2s(1) -q ₂ 24d	0	0 1 0	1 0 0	0 0 0	0 1 0	$\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 \\ \{q_2 = 0\} \end{array}$
$s^{(2)}$ 2 $s^{(2)}$ $-q_1 2^4 d$	1	1 0 1	0 0 0	0 1 1	1 0 0	$\begin{array}{cc} 0 & 1 \\ 1 \\ \{q_1 = 1\} \end{array}$
$s^{(3)}$ 2 $s^{(3)}$ $-q_0 2^4 d$	1	1 0 1	0 0 0	0 0 1	0 1 0	1 {q ₀ = 1}
s ⁽⁴⁾ s q		0	1	1	1	0 1 1 1 1 0 1 1

or division

DSP in VLSI Design

Programmed Division

Need more than 200 instructions for a 32-bit division!!

{Using left shi z_highlz_low, Registers:	fts, divide u storing the R0 holds (Rd for divi Rq for z_le	Insigned 2 <i>k</i> -bit dividend, <i>k</i> -bit quotient and remainder. D Rc for counter isor Rs for z_high & remainder ow & quotient}
{Load operand	ds into regis	sters Rd, Rs, and Rq}
div:	load load load	Rd with divisor Rs with z_high Rq with z_low
{Check for exe	ceptions}	
	branch branch	d_by_0 if Rd = R0 d_ovfl if Rs > Rd
{Initialize cour	nter}	
	load	k into Rc
{Begin divisio	n loop}	
d_loop: no_sub:	shift rotate skip branch sub incr decr	Rq left 1{zero to LSB, MSB to carry}Rs left 1{carry to LSB, MSB to carry}if carry = 1no_sub if Rs < Rd
a standard a	branch	d_loop if Rc ≠0
{Store the quo	otient and re	emainder}
d_done: d_by_0: d_ovfl:	store store 	Rq into quotient Rs into remainder

Restoring Bit-Serial Hardware Divider (1/3)

- "Restoring division"
 - □ Assume q=1 first, do the trial difference
 - The remainder is restored to its correct value if the trial subtraction indicates that 1 was not the right choice for q

Restoring Bit-Serial Hardware Divider (2/3)

DSP in VLSI Design

Restoring Bit-Serial Hardware Divider (3/3)

Nonrestoring Bit-Serial Hardware Divider (1/4)

- Always store u-2^kd back to the register
- If the value q in this stage is 1 → correct!
 Next stage: 2(u-2^kd)-2^kd=2u-3x2^kd
- If the value q in this stage is 0 → incorrect!

Next stage should be: 2u-2^kd

 \Box Is equal to 2(u-2^kd)+2^kd

Always store the result of trail difference
 □ If q=1 → use subtraction; if q=0 → use addition
 Can reduce critical path

Nonrestoring Bit-Serial Hardware Divider (2/4)

24d -24d	0 1	0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0
======= s(0) ≥s(0) ⊦(24d)	0 0 1	0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0
_S (1) 2 <i>S</i> (1) ⊦(–2 ⁴ <i>d</i>)	0 0 1	0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0
s(2) 2 <i>s</i> (2) +2 ⁴ d	1 1 0	1 1 1 1 0 1 1 1 1 0 1 1 0 1 0
s(3) 2s(3) +(-2 ⁴ d)	0 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
s(4) s q	0	0 1 1 1 0 1 1 1 1 0 1 1

No overflow, since: $(0111)_{two} < (1010)_{two}$

Positive, so subtract

Positive, so set $q_3 = 1$ and subtract

Negative, so set $q_2 = 0$ and add

Positive, so set $q_1 = 1$ and subtract

Positive, so set $q_0 = 1$

Nonrestoring Bit-Serial Hardware Divider (3/4)

			4	-	4		4	~	4
z 24d -24d	0 1	0 1 0	0	1 1	0	0		0	
s(0) 2 <i>s</i> (0) +(-2 ⁴ <i>d</i>)	0 0 1	0 1 0	1 1 1	1 1 1	1 0 0	0 1	1 0	0 1	1
s(1) 2 <i>s</i> (1) +(-24 <i>d</i>)	0 0 1	0 1 0	1 0 1	0 0 1	0 1 0	1 0	0 1	1	
s(2) 2 <i>s</i> (2) +2 ⁴ d	1 1 0	1 1 1	1 1 0	1 1 1	1 0 0	0 1	1		
s(3) 2 <i>s</i> (3) +(-2 ⁴ <i>d</i>)	0 1 1	1 0 0	0 0 1	0 0 1	0 1 0	1			
s ⁽⁴⁾ s q	0	0	1	1	1	0	1 0	1	1

No overflow, since: $(0111)_{two} < (1010)_{two}$

Po	sitive,
SO	subtract

Positive, so set $q_3 = 1$ and subtract

Negative, so set $q_2 = 0$ and add

Positive, so set $q_1 = 1$ and subtract

Positive, so set $q_0 = 1$

DSP in VLSI Design

Nonrestoring Bit-Serial Hardware Divider (4/4)

Division by Constants (1/2)

- Use lookup table + constant multiplier
- Exploit the following equations
 - Consider odd divisor only since even divisor can be performed by first dividing by an odd integer and then shifting the result
 - □ For an odd integer d, there exists an odd integer m such that d x m=2ⁿ-1

Division by Constants (2/2)

$$\frac{1}{d} = \frac{m}{2^{n} - 1} = \frac{m}{2^{n}(1 - 2^{-n})} = \frac{m}{2^{n}}(1 + 2^{-n})(1 + 2^{-2n})(1 + 2^{-4n})\cdots$$

□ For example, for 24-bit precision:

 $d = 5, \Rightarrow m = 3, n = 4$ Easy for hardware implementation $\frac{z}{5} = \frac{3z}{2^4 - 1} = \frac{3z}{16(1 - 2^{-4})} = \frac{3z}{16} (1 + 2^{-4})(1 + 2^{-8})(1 + 2^{-16})$

Next term (1+2⁻³²) does not contribute anything to 24-bit precision

DSP in VLSI Design

Array Divider (1/2)

Restoring array divider

The critical path passes through all k² cells

DSP in VLSI Design

Array Divider (2/2)

Nonrestoring array divider

The critical path passes through all k² cells

Distributed Arithmetic (1/7)

 Most DSP algorithms involve sum-ofproducts (inner products)

$$\mathbf{y} = \mathbf{x} \cdot \mathbf{x} = \sum_{i=1}^{N} \mathbf{a}_{i} \mathbf{x}_{i}$$

Fixed coefficient

Distributed arithmetic (DA) is an efficient procedure for computing inner products between a fixed and a variable data vector

Distributed Arithmetic (2/7)

$$y = \sum_{i=1}^{N} a_{i} \left[-x_{i0} + \sum_{k=1}^{W_{d}-1} x_{ik} 2^{-k} \right]$$

$$y = -\sum_{i=1}^{N} a_{i} x_{i0} + \sum_{k=1}^{W_{d}-1} \left[\sum_{i=1}^{N} a_{i} x_{ik} \right] 2^{-k}$$

$$y = -F_{0}(x_{10}, x_{20}, ..., x_{N0}) + \sum_{k=1}^{W_{d}-1} F_{k} \left(x_{1k}, x_{2k}, ..., x_{Nk} \right) 2^{-k}$$

where $F_{k}(x_{1k}, x_{2k}, ..., x_{Nk}) = \sum_{i=1}^{N} a_{i} x_{ik}$ Put F_{k} in ROM

DSP in VLSI Design

Distributed Arithmetic (3/7)

$$\mathbf{y} = ((\dots((0+F_{W_d-1})2^{-1}+F_{W_d-2})2^{-1}+\dots+F_2)2^{-1}+F_1)2^{-1}-F_0$$

- DA can be implemented with a ROM and a shiftaccumulator
- The computation time: Wd cycles
- Word length of ROM: $W_{ROM} \le W_C + \log_2(N)$

DSP in VLSI Design

Distributed Arithmetic (4/7)

Example

- $\Box y = a_1 x_1 + a_2 x_2 + a_3 x_3$
- $\Box a_1 = (0.0100001)_{2C}$
- $\Box a_2 = (0.1010101)_{2C}$
- $\Box a_3 = (1.1110101)_{2C}$
- (a) The table? (b) The word length of the shift-accumulator?

Distributed Arithmetic (5/7)

](a) [x1 x9 x9	Fh	Fh	Fh
()		- ĸ	- ĸ	- K
	0 0 0	0	0.0000000	0.0000000
	0 0 1	$oldsymbol{a}_3$	1.1110101	0.0859375
	0 1 0	$oldsymbol{a}_2$	0.1010101	0.6640625
	$0 \ 1 \ 1$	a 2 + a 3	0.1001010	0.5781250
	1 0 0	a ₁	0.0100001	0.2578125
	1 0 1	a ₁ + a ₃	0.0010110	0.1718750
	$1 \ 1 \ 0$	$a_1 + a_2$	0.1110110	0.9218750
	$1 \ 1 \ 1$	$a_1 + a_2 + a_3$	0.1101011	0.8359375

□ (b) Word length=7 bits + 1 bit (sign bit) +1 bit (guard bit) = 9 bits

 $|\mathbf{y}| = ((...(0 + F_{max})2^{-1} + F_{max})2^{-1} + ... + F_{max})2^{-1} + F_{max})2^{-1} \le F_{max}$

DSP in VLSI Design

Distributed Arithmetic (6/7)

Example: linear-phase FIR filter

DSP in VLSI Design

Distributed Arithmetic (7/7)

Parallel implementation of distributed arithmetic x₁₀x₂₀ x_{N0} x₁₁x₂₁ x_{N1} x_{1Wd} x_{1Wd} x_{1Wd} x_{1Wd} x_{1Wd} x_{1Wd} x_{1Wd} x_{1Wd}

Shift-Accumulator (1/4)

The number of cycles for one inner product is W_d+W_{ROM}
 First W_d cycles: input data
 Lost W_d = cycles: shift out the results

 \Box Last W_{ROM} cycles: shift out the results

Shift-Accumulator (2/4)

Shift-accumulator augmented with two shift registers

Shift-Accumulator (3/4)

Scheduling

Clock cycle
INCL=max{WROM, Wd}

Shift-Accumulator (4/4)

Detailed architecture

DSP in VLSI Design

Reducing the Memory Size (1/4)

Reducing the Memory Size (2/4)

Method 2: memory coding $\boldsymbol{x} = \frac{1}{2} [\boldsymbol{x} - (-\boldsymbol{x})]$ $=\frac{1}{2}\left[-x_{0}+\sum_{k=1}^{W_{d}-1}x_{k}2^{-k}-\left(-\overline{x_{0}}+\sum_{k=1}^{W_{d}-1}\overline{x_{k}}2^{-k}+2^{-(W_{d}-1)}\right)\right]$ $= -(x_0 - \overline{x_0})2^{-1} + \sum^{W_d - 1} (x_k - \overline{x_k})2^{-k-1} - 2^{-W_d}$ b = 1 $W_d - 1$ $y = \sum F_k(x_{1k}, ..., x_{Nk}) 2^{-k-1} - F_0(x_{10}, ..., x_{N0}) 2^{-1} + F(0, ..., 0) 2^{-W_d}$ k = 1where $F_k(x_{1k}, x_{2k}, ..., x_{Nk}) = \sum a_i(x_k - \overline{x_k})$ i = 1DSP in VLSI Design Shao-Yi Chien

79

Reducing the Memory Size (3/4)

$$u_1 = x_1 \otimes x_2 \qquad A/S = x_1 \otimes x_{sign-bit}$$
$$u_2 = x_1 \otimes x_3$$

	$x_1 x_2 x_3$	F_k	u ₁ u ₂ A	/S
Complement	0 0 0	- a ₁ - a ₂ - a ₃	0 0	Α
	0 0 1	$-a_1^{-} - a_2^{-} + a_3^{-}$	0 1	Α
	0 1 0	$-a_1^- + a_2^ a_3^-$	1 0	Α
	nt <u>0 1 1</u>	$-a_1 + a_2 + a_3$	1 1	Α
		+ $a_1 - a_2 - a_3$	1 1	S
		+ $a_1 - a_2 + a_3$	1 0	S
		+ a_1 + a_2 - a_3	0 1	\mathbf{S}
	1 1 1	$+a_1 + a_2 + a_3$	0 0	S

DSP in VLSI Design

Reducing the Memory Size (4/4)

CORDIC

Major reference:
[1] A.-Y. Wu, "CORDIC," Slides of *Advanced VLSI*[2] Y. H. Hu, "CORDIC-based VLSI architectures for digital signal processing," *IEEE Signal Processing Magazine*, pp. 16—35, July 1992.
[3] J. E. Volder, "The Birth of CORDIC," J. VLSI Signal Processing, vol.25, pp. 101—105, 2000.

CORDIC (COordinate Rotation DIgital Computer)

- An iterative arithmetic algorithm introduced by Volder in 1956
- Can handle many elementary functions, such as trigonometric, exponential, and logarithm with only shift-and-add arithmetic
- For these functions CORDIC based architecture is much efficient than multiplier and accumulator (MAC) based architecture
- Suitable for transformations and matrix based filters

The Birth of CORDIC

B-58 Supersonic Bomber

DSP in VLSI Design

Simple Concepts of CORDIC (1/2)

Originally, CORDIC is invented to deal with rotation problem with shift-and-add arithmetic

.

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

國大學

Simple Concepts of CORDIC (2/2)

- How to make it with shift-and-add?
- Decompose the desired rotation angle into small rotation angles (micro-rotation)
- Rotate finite times (by "elementary angles" $\{a_i \mid 0 \le i \le n-1\}$) to achieve the desired rotation θ

Conventional CORDIC Algorithm (1/2)

 $\begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \begin{bmatrix} \cos a_i & -\sin a_i \\ \sin a_i & \cos a_i \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$ $\Rightarrow \begin{vmatrix} x(i+1) \\ v(i+1) \end{vmatrix} = \cos a_i \begin{vmatrix} 1 & -\tan a_i \\ \tan a_i & 1 \end{vmatrix} \begin{vmatrix} x(i) \\ v(i) \end{vmatrix}$ $\Rightarrow \begin{vmatrix} x(i+1) \\ v(i+1) \end{vmatrix} = \cos a_i \begin{vmatrix} 1 & -2^{-i} \\ 2^{-i} & 1 \end{vmatrix} \begin{vmatrix} x(i) \\ v(i) \end{vmatrix}$ $a_i = \tan^{-1} 2^{-i}, \cos a_i = \frac{1}{\sqrt{1 + 2^{-2i}}}$

DSP in VLSI Design

Conventional CORDIC Algorithm (2/2)

Generalized CORDIC (1/2)

Target: $\theta = \sum_{i=0}^{n-1} \mu_i a_m(i)$ i-th elementary rotation angle is defined by

$$a_m(i) = \frac{1}{\sqrt{m}} \tan^{-1} \left[\sqrt{m} 2^{-s(m,i)} \right] = \begin{cases} -2^{s(0,i)} & m \to 0 & \text{Linear coordinate} \\ \tan^{-1} 2^{-s(1,i)} & m = 1 & \text{Circular coordinate} \\ \tanh^{-1} 2^{-s(-1,i)} & m = -1 & \text{Hyperbolic coordinate} \end{cases}$$

norm of a vector $[\mathbf{x} \mathbf{y}]^T$ is $\sqrt{\mathbf{x}^2 + my^2}$ $\mu_i \in \{-1,1\}$: mode of rotation s(m,i): non - descreasing integer shift sequence

DSP in VLSI Design

CORDIC Algorithm

Initiation : Given x(0), y(0), z(0)

For i = 0 to n - 1, Do /* CORDIC iteration equation */ $\begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \begin{bmatrix} 1 & -\mu_i 2^{-s(m,i)} \\ \mu_i 2^{-s(m,i)} & 1 \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$ /* Angle up dating equation */ $z(i+1) = z(i) - \mu_i a_m(i)$ End i - loop

Remained problems:

 μ_i s(m,i)Scaling

/*Scaling operation (required for $m = \pm 1 \text{ only}$)*/

$$\begin{bmatrix} x_f \\ y_f \end{bmatrix} = \frac{1}{K_m(n)} \cdot \begin{bmatrix} x(n) \\ y(n) \end{bmatrix} = \frac{1}{\prod_{i=0}^{n-1} \sqrt{1 + m\mu_i^2 2^{-2s(m,i)}}} \cdot \begin{bmatrix} x(n) \\ y(n) \end{bmatrix}$$

DSP in VLSI Design

Mode of Operation (1/2)

• Vector rotation mode (θ is given) $z(0) = \theta$ After n iterations, the total angle rotated is :

$$z(0) - z(n) = \theta - z(n) = \sum_{i=0}^{n-1} \mu_i a_m(i)$$

we want to make $|z(n)| \rightarrow 0$

$$\mu_i = \text{sign of } z(i)$$

□ For many DSP problems, θ is know in advance, and sequence $\{\mu_i\}$ can be stored instead

Mode of Operation (2/2)

Angle accumulation mode (θ is not given)
 The objective is to rotate the given initial vector [x(0) y(0)]^T back to the x-axis

```
set z(0) = 0

\mu_i = -\text{sign of } x(i) \cdot y(i)
```

Summary

 $\mu_i = \begin{cases} \text{sign of } z(i) & \text{Vector rotation mode} \\ -\text{sign of } x(i) \cdot y(i) & \text{Angle accumulation mode} \end{cases}$

DSP in VLSI Design

Shift Sequence

- Usually defined in advance
- Walther has proposed a set of shift sequence for each of the three coordinate systems
 - For m=0 or 1, s(m,i)=i
 For m=-1, s(-1, i)=1, 2, 3, 4, 4, 5, ..., 12, 13, 13, 14, ...

Scaling Operation $\frac{1}{K_m(n)}$

- Significant computation overhead of CORDIC
- Fortunately, since $|\mu_i|=1$, and assume $\{s(m,i)\}$ is given, $K_m(n)$ can be computed in advance
- Two approaches to compute scaling \Box CSD representation 1 $\sum_{r=1}^{p} 2^{-i_r}$

□ Project of factors

$$\frac{1}{K_m(n)} = \sum_{p=1}^p \kappa_p 2^{-i_p}$$

$$\frac{1}{K_m(n)} = \prod_{q=1}^Q (1 + \kappa_q 2^{-i_q}) + \varepsilon_q$$

DSP in VLSI Design

Basic CORDIC Processor (1/3)

For Angle Update

DSP in VLSI Design

Basic CORDIC Processor (2/3)

CORDIC Iteration

$$\begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \begin{bmatrix} 1 & -\mu_i 2^{-s(m,i)} \\ \mu_i 2^{-s(m,i)} & 1 \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$

DSP in VLSI Design

Basic CORDIC Processor (3/3)

Scaling

$$I: \frac{1}{K_m(n)} = \sum_{p=1}^{\infty} \kappa_p 2^{-i_p}$$
$$II: \frac{1}{K_m(n)} = \prod_{q=1}^{Q} (1 + \kappa_q 2^{-i_q})$$

P

1

Given x'(0) = x(n), y'(0) = y(n)TypeI:

$$\begin{cases} x'(p+1) = x'(p) + \kappa_p 2^{-i_p} x(n) \\ y'(p+1) = y'(p) + \kappa_p 2^{-i_p} x(n) \end{cases}$$

TypeII:

$$\begin{cases} x'(q+1) = x'(q) + \kappa_q 2^{-i_q} x'(q) \\ y'(q+1) = y'(q) + \kappa_q 2^{-i_q} x'(q) \end{cases}$$

DSP in VLSI Design

Parallel and Pipelined Arrays

n stages for CORDIC, and s stages for scaling
Parallel

Pipelined

DSP in VLSI Design

Discrete Fourier Transform (DFT) with CORDIC (1/2) DFT $Y(K) = X(0)e^{\frac{-j2\pi k \cdot 0}{N}} + X(1)e^{\frac{-j2\pi k \cdot 1}{N}} + \cdots + X(N-1)e^{\frac{-j2\pi k \cdot (N-1)}{N}}$

DFT with CORDIC

Initiation : Y(0, k) = 0 for $0 \le k \le N - 1$ For k = 0 to N - 1, Do For m = 0 to N - 1, Do

$$\begin{bmatrix} Y_r(m+1,k) \\ Y_i(m+1,k) \end{bmatrix} = K_1(n) \cdot \begin{bmatrix} \cos\frac{-2\pi mk}{N} & -\sin\frac{-2\pi mk}{N} \\ \sin\frac{-2\pi mk}{N} & \cos\frac{-2\pi mk}{N} \end{bmatrix} \begin{bmatrix} x_r(m) \\ x_i(m) \end{bmatrix} + \begin{bmatrix} Y_r(m,k) \\ Y_i(m,k) \end{bmatrix}$$

End m - loop

/*Scaling operation*/

$$Y(k) = \frac{Y(N,k)}{K_1(n)}$$

End k - loop

DSP in VLSI Design

Discrete Fourier Transform (DFT) with CORDIC (2/2)

