
1

Processing

Elements Design

Shao-Yi Chien

DSP in VLSI Design Shao-Yi Chien 2

Introduction
 Implementation of basic arithmetic operations

 Number systems

 Conventional number systems

 Redundant number systems

 Residue number systems

 Arithmetic

 Bit-parallel arithmetic

 Bit-serial arithmetic

 Serial-parallel arithmetic

 Division

 Distributed arithmetic

 CORDIC

DSP in VLSI Design Shao-Yi Chien 3

Conventional Number Systems

 Conventional number systems are
nonredundant, weighted, positional number
systems

 Fix-point: the position of binary point is fixed

 Floating point: signed mantissa and signed
exponent

Nonredundant: one number has only one representation

Wd: word length

wi: weightsweighted

wi depends only on the position of the digitpositional

For fix-radix systems, wi=ri

DSP in VLSI Design Shao-Yi Chien 4

Signed-Magnitude

Representation
 Range

 [-1+Q, 1-Q]

Q=(0.00..01)

 Complex for
addition and
subtraction

 Easy for
multiplication
and division

DSP in VLSI Design Shao-Yi Chien 5

One’s Complement

 Range

 [-1+Q, 1-Q]

 Change sign is

easy

 Addition,

subtraction, and

multiplication are

complex

DSP in VLSI Design Shao-Yi Chien 6

Two’s Complement

 Range

 [-1, 1-Q]

 The most widely used representation

DSP in VLSI Design Shao-Yi Chien 7

Binary Offset Representation

 Range
 [-1,1-Q]

 The sequence of digits is equal to the two’s
complement representation, except for the
sign bit

DSP in VLSI Design Shao-Yi Chien 8

Redundant Number Systems

(1/2)
 Redundant: one number has more than one

representation

 Advantages
 Simply and speed up certain arithmetic operation

 Addition and subtraction can be performed without
carry (barrow) paths

 Disadvantages
 Increase the complexity for other operations, such as

zero detection, sign detection, and sign conversion

DSP in VLSI Design Shao-Yi Chien 9

Redundant Number Systems

(2/2)

 Signed-digit code

 Canonic signed digit code

 On-line arithmetic

DSP in VLSI Design Shao-Yi Chien 10

Signed-Digit Code (1/4)

 Range: [-2+Q, 2-Q]

 Redundant

 (15/32)10=(0.01111)2C=(0.1000-1)SDC=(0.01111)SDC

 (-15/32)10=(1.10001)2C=(0.-10001)SDC

 =(0.0-1-1-1-1)SDC

DSP in VLSI Design Shao-Yi Chien 11

Signed-Digit Code (2/4)

 SDC number is not unique

 Has problems to

Quantize

Compare

Overflow check

Change to conventional number systems for

these operations

DSP in VLSI Design Shao-Yi Chien 12

Signed-Digit Code (3/4)

 Example of addition
 (1-11-1)SDC=(5)10

 (0-111)SDC=(-1)10

 Rules for adding SDC
numbers

 si=zi+ci+1

xiyi or yixi 0 0 0 1 0 1 0 -1 0 -1 1 -1 1 1 -1 -1

xi+1 yi+1 -- Neither is -1 At least one

is -1

Neither is -1 At least one

is -1

-- -- --

ci 0 1 0 0 -1 0 1 -1

zi 0 -1 1 -1 1 0 0 0

DSP in VLSI Design Shao-Yi Chien 13

Signed-Digit Code (4/4)

 (0100)SDC=(4)10

DSP in VLSI Design Shao-Yi Chien 14

Canonic Signed Digit Code (1/3)

 Range: [-4/3+Q, 4/3-Q]

 CSDC is a special case of SDC having a

minimum number of nonzero digits

DSP in VLSI Design Shao-Yi Chien 15

Canonic Signed Digit Code (2/3)

 Conversion of two’s-complement to CSDC
numbers

(0.011111)2C=(0.10000-1)CSDC

Convert in iterative manner

Step1: 011…1100…-1

Step2: (-1,1)(0,-1), (0,1,1)(1,0,-1)

Ex: (0.110101101101)2C

 =(1.00-10-100-10-101)CSDC

DSP in VLSI Design Shao-Yi Chien 16

Canonic Signed Digit Code (3/3)

 Conversion of SDC to two’s complement

numbers

Separate the SDC number into two parts

 One parts holds the digit that are either 0 or 1

 The other part has –1 digits

Subtract these two numbers

DSP in VLSI Design Shao-Yi Chien 17

On-Line Arithmetic

 The number systems with the property that
it is possible to compute the i-th digit of
the results using only the first (i+d)-th
digit, where d is a small positive constant

 Favorable in recursive algorithm using
numbers with very long word lengths

 SDC can be used for on-line addition and
subtraction, d=1

DSP in VLSI Design Shao-Yi Chien 18

Residue Number Systems (1/2)

 For a given number x and moduli set {mi}, i=1,
2, …, p
 x=qimi+ri
 RNS representation: x=(r1, r2, …, rp)

 Advantages
 The arithmetic operations (+, -, *) can be performed

for each residue independently

 Disadvantages
 Hard for comparison, overflow detection, and

quantization

 Not easy to convert to other number systems

DSP in VLSI Design Shao-Yi Chien 19

Residue Number Systems (2/2)

 Example

Moduli set={5,3,2}

Number range=5*3*2=30

9+19=(4,0,1)RNS+(4,1,1)RNS

 =((4+4)5,(0+1)3, (1+1)2)RNS=(3,1,0)RNS=28

8*3=(3,2,0)RNS+(3,0,1)RNS

 =((3*3)5,(2*0)3,(0*1)2)RNS=(4,0,0)RNS=24

DSP in VLSI Design Shao-Yi Chien 20

Bit-Parallel Arithmetic (1/2)

 Addition and subtraction

Ripple carry adder (RCA) (carry propagation
adder, CPA)

Carry-look-ahead adder (CLA)

Carry-save adder

Carry-select adder (CSA)

Carry-skip adder

Conditional-sum adder

DSP in VLSI Design Shao-Yi Chien 21

Bit-Parallel Arithmetic (2/2)

 Multiplication

Shift-and-add multiplication

Booth’s algorithm

Tree-based multipliers

Array multipliers

Look-up table techniques

DSP in VLSI Design Shao-Yi Chien 22

Ripple Carry Adder (RCA) (1/2)

 Also called carry propagation adder (CPA)

Full adder

DSP in VLSI Design Shao-Yi Chien 23

Ripple Carry Adder (RCA) (2/2)

 The speed of the RCA is determined by

the carry propagation time

Ripple-carry adder Ripple-carry adder/subtractor

DSP in VLSI Design Shao-Yi Chien 24

Carry-Look-Ahead Adder (CLA)

 Generate the carry with separate circuits

 Ci=Gi+Pi.Ci-1

 Gi=Ai.Bi

 Pi=Ai+Bi

*Different digit notation in this slide

DSP in VLSI Design Shao-Yi Chien 25

Carry-Save Adder

 Used when adding three or more operands

 Reduce the number of operands by one for each

stage

FA

x
3 cin

3
y

3

s
3

c
3

FA

x
2

cin
2 y

2

s
2c

2

FA

x
1

cin
1 y

1

s
1c

1

FA

x
0

cin
0 y

0

s
0

c
0

*Different digit notation in this slide

DSP in VLSI Design Shao-Yi Chien 26

Carry-Select Adder (CSA)

*Different digit notation in this slide

DSP in VLSI Design Shao-Yi Chien 27

Carry-Skip Adder

*Different digit notation in this slide

DSP in VLSI Design Shao-Yi Chien 28

Conditional-Sum

Adder

*Different digit notation in this slide

BAC

BAC

BAS

BAS

1

0

1

0

)(

DSP in VLSI Design Shao-Yi Chien 29

Multiplication

 Bit-parallel multiplication

DSP in VLSI Design Shao-Yi Chien 30

Shift-and-Add Multiplication (1/2)

DSP in VLSI Design Shao-Yi Chien 31

Shift-and-Add Multiplication (2/2)

 The operation can

be reduced with

CSDC

 Can be used to

design fix-operand

multiplier

DSP in VLSI Design Shao-Yi Chien 32

Booth’s Algorithm (1/3)
 Used in modern general-purpose processors,

such as MIPS R4000

DSP in VLSI Design Shao-Yi Chien 33

Booth’s Algorithm (2/3)

x2i-2 x2i-1 x2i x2i-1’ Operation Comments

0 0 0 0 +0 String of zeros

0 0 1 1 +y Beginning of 1s

0 1 0 1 +y A single 1

0 1 1 2 +2y Beginning of 1s

1 0 0 -2 -2y End of 1’s

1 0 1 -1 -y A single 0

(beginning/end of 1’s)

1 1 0 -1 -y End of 1’s

1 1 1 0 -0 String of 1’s

DSP in VLSI Design Shao-Yi Chien 34

Booth’s Algorithm (3/3)

Z=X Y

Encoder

X’

Xi+1 Xi Xi-1

0 0 0 0

0 0 1 +Y (beginning of string)

0 1 0 +Y (isolated)

0 1 1 +2Y (beginning of string)

1 0 0 -2Y (end of string)

1 0 1 -Y (beginning / end of string)

1 1 0 -Y (end of string)

1 1 1 0

DSP in VLSI Design Shao-Yi Chien 35

Tree-Based Multipliers (Wallace

Tree Multipliers)

DSP in VLSI Design Shao-Yi Chien 36

Array Multipliers (1/3)

 Baugh-

Wooley’s

multiplier

DSP in VLSI Design Shao-Yi Chien 37

Array Multipliers (2/3)

 Partial products

DSP in VLSI Design Shao-Yi Chien 38

Array Multipliers (3/3)

DSP in VLSI Design Shao-Yi Chien 39

Look-Up Table Techniques

 A multiplier AxB can be done with a large

table with 2WA+WB words

 Simplified method

Can be implemented with one addition, two

subtraction, and two table look-up operations

4

)(

4

)(22 yxyx
yx

DSP in VLSI Design Shao-Yi Chien 40

Bit-Serial Arithmetic

 Advantages

 Significantly reduce chip area

 Eliminate wide bus

 Small processing elements

 Higher clock frequency

Often superior than bit-parallel

 Disadvantages

 S/P P/S interface

 Complicated clocking scheme

DSP in VLSI Design Shao-Yi Chien 41

Bit-Serial Addition and

Subtraction

Addition Subtraction

DSP in VLSI Design Shao-Yi Chien 42

Serial/Parallel Multiplier

 Use carry-save adders

 Need Wd+Wc-1 cycles to compute the

result

DSP in VLSI Design Shao-Yi Chien 43

Modified Serial/Parallel

Multiplier

Can be

implemented

with a half adder

DSP in VLSI Design Shao-Yi Chien 44

Transpose Serial/Parallel

Multiplier

DSP in VLSI Design Shao-Yi Chien 45

S/P Multiplier-Accumulator

 y=a*x+z

DSP in VLSI Design Shao-Yi Chien 46

S/P Multiplier with Fixed

Coefficients (1/3)

 Remove all AND gates

 Remove all FAs and corresponding D flip-
flops, starting with the MSB in the
coefficient, up to the first 1 in the
coefficient

 Replace each FA that corresponds to a
zero-bit in the coefficient with a
feedthrough

DSP in VLSI Design Shao-Yi Chien 47

S/P Multiplier with Fixed

Coefficients (2/3)

DSP in VLSI Design Shao-Yi Chien 48

S/P Multiplier with Fixed

Coefficients (3/3)

 The number of FA = (the number of 1’s)-1

 The number of D flip-flops = the number of 1-bit
positions between the first and last bit positions

DSP in VLSI Design Shao-Yi Chien 49

S/P Multiplier with CSDC

Coefficients

 a=(0.00111)2C=(0.0100-1)CSDC

DSP in VLSI Design Shao-Yi Chien 50

Minimum Number of Basic

Operations

DSP in VLSI Design Shao-Yi Chien 51

Division

 How to do binary division?

 In the following slides, we define
 Dividend z = z2k-1z2k-2…z1z0

 Divisor d = dk-1dk-2…d1d0

Quotient q = qk-1qk-2…q1q0

 Remainder s = [z-(dxq)]=sk-1sk-2…s1s0

Major reference:

B. Parham, Computer Arithmetic: Algorithms and Hardware Designs,

Oxford, 2000.

DSP in VLSI Design Shao-Yi Chien 52

What’s Different?

 Added complication of requiring quotient
digit selection or estimation

The terms to be subtracted from the dividend
z are not known a priori but become known as
the quotient digits are computed

The terms to be subtracted from the initial
partial remainder must be produced from top
to bottom

More difficult and slower than multiplication

Long critical path

DSP in VLSI Design Shao-Yi Chien 53

Division

 Bit-serial division (sequential division
algorithm)

 Programmed division

 Restoring bit-serial hardware divider

 Nonrestoring bit-serial hardware divider

 Division by constants

 Array divider

DSP in VLSI Design Shao-Yi Chien 54

 s(j)=2s(j-1)-qk-j(2
kd) with s(0)=z and s(k)=2ks

 Or
For j=1 to k

{

If(2s(j-1)>=(2kd))

{

 qk-j=1;

 s(j)=2s(j-1)-(2kd);

}

Else

{

 qk-j=0;

 s(j)=2s(j-1);

}

}

Subtract

Bit-Serial division

(Sequential Division) Algorithm

Shift

DSP in VLSI Design Shao-Yi Chien 55

Programmed Division

Need more than 200 instructions

for a 32-bit division!!

DSP in VLSI Design Shao-Yi Chien 56

Restoring Bit-Serial Hardware

Divider (1/3)

 “Restoring division”

Assume q=1 first, do the trial difference

The remainder is restored to its correct value

if the trial subtraction indicates that 1 was not

the right choice for q

DSP in VLSI Design Shao-Yi Chien 57

Restoring Bit-Serial Hardware

Divider (2/3)

DSP in VLSI Design Shao-Yi Chien 58

Restoring Bit-Serial Hardware

Divider (3/3)
Can be shared together

Critical path

DSP in VLSI Design Shao-Yi Chien 59

Nonrestoring Bit-Serial

Hardware Divider (1/4)

 Always store u-2kd back to the register

 If the value q in this stage is 1 correct!

 Next stage: 2(u-2kd)-2kd=2u-3x2kd

 If the value q in this stage is 0 incorrect!

 Next stage should be: 2u-2kd

 Is equal to 2(u-2kd)+2kd

 Always store the result of trail difference

 If q=1 use subtraction; if q=0 use addition

 Can reduce critical path

DSP in VLSI Design Shao-Yi Chien 60

Nonrestoring Bit-Serial

Hardware Divider (2/4)

DSP in VLSI Design Shao-Yi Chien 61

Nonrestoring Bit-Serial

Hardware Divider (3/4)

Critical path

DSP in VLSI Design Shao-Yi Chien 62

Nonrestoring Bit-

Serial Hardware

Divider (4/4)

DSP in VLSI Design Shao-Yi Chien 63

Division by Constants (1/2)

 Use lookup table + constant multiplier

 Exploit the following equations

Consider odd divisor only since even divisor

can be performed by first dividing by an odd

integer and then shifting the result

For an odd integer d, there exists an odd

integer m such that d x m=2n-1

DSP in VLSI Design Shao-Yi Chien 64

Division by Constants (2/2)

For example, for 24-bit precision:

)21)(21)(21(
2)21(212

1 42 nnn

nnnn

mmm

d

)21)(21)(21(
16

3

)21(16

3

12

3

5

4,3,5

1684

44

zzzz

nmd

Next term (1+2-32) does not contribute anything to 24-bit precision

Easy for hardware implementation

DSP in VLSI Design Shao-Yi Chien 65

Array Divider (1/2)

 Restoring array divider

FS: full subtractor

The critical path

passes through all k2

cells

DSP in VLSI Design Shao-Yi Chien 66

Array Divider (2/2)

 Nonrestoring array divider

FA: full adder

The critical path

passes through all k2

cells

DSP in VLSI Design Shao-Yi Chien 67

Distributed Arithmetic (1/7)

 Most DSP algorithms involve sum-of-

products (inner products)

 Distributed arithmetic (DA) is an efficient

procedure for computing inner products

between a fixed and a variable data vector

Fixed coefficient

DSP in VLSI Design Shao-Yi Chien 68

Distributed Arithmetic (2/7)

Put Fk in ROM

DSP in VLSI Design Shao-Yi Chien 69

Distributed Arithmetic (3/7)

 DA can be

implemented with a

ROM and a shift-

accumulator

 The computation

time: Wd cycles

 Word length of

ROM:)(log2 NWW CROM
Data input from

LSB to MSB in

bit-serial

DSP in VLSI Design Shao-Yi Chien 70

Distributed Arithmetic (4/7)

 Example

y=a1x1+a2x2+a3x3

a1=(0.0100001)2C

a2=(0.1010101)2C

a3=(1.1110101)2C

 (a) The table? (b) The word length of the

shift-accumulator?

DSP in VLSI Design Shao-Yi Chien 71

Distributed Arithmetic (5/7)

 Ans:

(a)

(b) Word length=7 bits + 1 bit (sign bit) +1 bit
(guard bit) = 9 bits

DSP in VLSI Design Shao-Yi Chien 72

Distributed Arithmetic (6/7)

 Example: linear-phase FIR filter

DSP in VLSI Design Shao-Yi Chien 73

Distributed Arithmetic (7/7)

 Parallel implementation of distributed

arithmetic

DSP in VLSI Design Shao-Yi Chien 74

Shift-Accumulator (1/4)

 The number of cycles for one inner product is Wd+WROM

 First Wd cycles: input data

 Last WROM cycles: shift out the results

DSP in VLSI Design Shao-Yi Chien 75

Shift-Accumulator (2/4)

 Shift-accumulator augmented with two

shift registers

DSP in VLSI Design Shao-Yi Chien 76

Shift-Accumulator (3/4)

 Scheduling

 Clock cycle
 NCL=max{WROM, Wd}

LSP(0)

MSP(0)

LSP(1)

MSP(1)

LSP(2)

MSP(2)
......

W
d

W
ROM

DSP in VLSI Design Shao-Yi Chien 77

Shift-Accumulator (4/4)

 Detailed architecture

DSP in VLSI Design Shao-Yi Chien 78

Reducing the Memory Size (1/4)

 Method 1:

memory

partition

2*2N/2 < 2N

Ex: 2*25 = 64

< 210 = 1024

DSP in VLSI Design Shao-Yi Chien 79

Reducing the Memory Size (2/4)

 Method 2: memory coding

DSP in VLSI Design Shao-Yi Chien 80

Reducing the Memory Size (3/4)

Complement

DSP in VLSI Design Shao-Yi Chien 81

Reducing the Memory Size (4/4)

DSP in VLSI Design Shao-Yi Chien 82

CORDIC

 CORDIC (COordinate Rotation DIgital Computer)

 An iterative arithmetic algorithm introduced by

Volder in 1956

 Can handle many elementary functions, such as

trigonometric, exponential, and logarithm with only

shift-and-add arithmetic

 For these functions CORDIC based architecture is

much efficient than multiplier and accumulator (MAC)

based architecture

 Suitable for transformations and matrix based filters

Major reference:

[1] A.-Y. Wu, “CORDIC,” Slides of Advanced VLSI

[2] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal

processing,” IEEE Signal Processing Magazine, pp. 16—35, July 1992.

[3] J. E. Volder, “The Birth of CORDIC,” J. VLSI Signal Processing,

vol.25, pp. 101—105, 2000.

DSP in VLSI Design Shao-Yi Chien 83

The Birth of CORDIC

B-58 Supersonic Bomber

CORDIC I

CORDIC II

DSP in VLSI Design Shao-Yi Chien 84

Simple Concepts of CORDIC

(1/2)

 Originally, CORDIC is invented to deal

with rotation problem with shift-and-add

arithmetic

y

x

y

x

cossin

sincos

'

'

(x, y)

(x', y')

DSP in VLSI Design Shao-Yi Chien 85

Simple Concepts of CORDIC

(2/2)

 How to make it with shift-and-add?

 Decompose the desired rotation angle into

small rotation angles (micro-rotation)

 Rotate finite times (by “elementary angles”

) to achieve the desired

rotation 1

2
3

4

}10|{ niai

DSP in VLSI Design Shao-Yi Chien 86

Conventional CORDIC

Algorithm (1/2)

i
i

i

i

i

i

i

i

i

i

ii

ii

aa

iy

ix
a

iy

ix

iy

ix

a

a
a

iy

ix

iy

ix

aa

aa

iy

ix

2

1

21

1
cos,2tan

)(

)(

12

21
cos

)1(

)1(

)(

)(

1tan

tan1
cos

)1(

)1(

)(

)(

cossin

sincos

)1(

)1(

DSP in VLSI Design Shao-Yi Chien 87

Conventional CORDIC

Algorithm (2/2)

}1,1{ :rotation of Mode

21

1
 :factor Scaling

12

21

12

21

12

21

cossin

sincos

'

'

1

0

22

)1(

1

)1(

1

0

0

0

0

i

n

i

i

i

n

n

n

n

i

i

i

i

S

y

x

S

y

x

y

x

Can be implemented

with shift-and-add

arithmetic

(x, y)

(x', y')

22

21

2

11

11

1

00

01

0

2tan1

2tan1

2tan1

a

a

a

0

1
2

Scaling

DSP in VLSI Design Shao-Yi Chien 88

Generalized CORDIC (1/2)

 Target:

 i-th elementary rotation angle is defined by

1

0

)(
n

i

mi ia

12tanh

12tan

02

2tan
1

)(
),1(1

).1(1

),0(

),(1

m

m

m

m
m

ia
is

is

is

ims

m

Linear coordinate

Circular coordinate

Hyperbolic coordinate

sequenceshift integer gdescreasin-non :),(

rotation of mode :}1,1{

x is yx vector a of norm 22

ims

my

i

T

DSP in VLSI Design Shao-Yi Chien 89

Generalized CORDIC (2/2)

x2+y2=1

v(0)

v(1)

v(2)

v(3)

v(4)

v(i)=[x(i) y(i)]T

Circular Rotation

(m=1)

x=1

v(0)

v(1)

v(2)

v(3)

v(i)=[x(0) y(i)]T

Linear Rotation

(m->0)

y=-x

v(0)

v(1)

v(2)

v(3)

v(i)=[x(i) y(i)]T

Hyperbolic Rotation

(m=-1)
y=x

x2-y2=1

DSP in VLSI Design Shao-Yi Chien 90

CORDIC Algorithm

)(

)(

21

1

)(

)(

)(

1

/* only) 1for (requiredoperation Scaling */

loop-i End

)()()1(

/*equation updating Angle */

)(

)(

12

21

)1(

)1(

/*equationiteration CORDIC */

Do 1,-n to0iFor

)0(),0(),0(Given :Initiation

1

0

),(22

),(

),(

ny

nx

mny

nx

nKy

x

m

iaiziz

iy

ix

iy

ix

zyx

n

i

ims

imf

f

mi

ims

i

ims

i

Scaling

),(ims

i

Remained problems:

DSP in VLSI Design Shao-Yi Chien 91

Mode of Operation (1/2)

 Vector rotation mode (θ is given)

 For many DSP problems, θ is know in advance, and

sequence can be stored instead

)(ofsign

0|)(| make want towe

)()()()0(

:is rotated angle total the,iterationsn After

)0(

1

0

iz

nz

ianznzz

z

i

n

i

mi

}{ i

z(n)

z(0)

DSP in VLSI Design Shao-Yi Chien 92

Mode of Operation (2/2)

 Angle accumulation mode (θ is not given)

The objective is to rotate the given initial

vector [x(0) y(0)]T back to the x-axis

 Summary

)()(ofsign

0)0(set

iyix

z

i

)()(ofsign

)(ofsign

iyix

iz
i

Vector rotation mode

Angle accumulation mode

DSP in VLSI Design Shao-Yi Chien 93

Shift Sequence

 Usually defined in advance

 Walther has proposed a set of shift

sequence for each of the three coordinate

systems

For m=0 or 1, s(m,i)=i

For m=-1, s(-1, i)=1, 2, 3, 4, 4, 5, …, 12, 13,

13, 14, …

DSP in VLSI Design Shao-Yi Chien 94

Scaling Operation

 Significant computation overhead of
CORDIC

 Fortunately, since , and assume
is given, can be computed in advance

 Two approaches to compute scaling

CSD representation

Project of factors

)(

1

nKm

1|| i

)(nKm

)},({ ims

P

p

i

p

m

p

nK 1

2
)(

1

Q

q

q

i

q

m

q

nK 1

)21(
)(

1

1q

DSP in VLSI Design Shao-Yi Chien 95

Basic CORDIC Processor (1/3)

z-Reg

+/-

z(i)

z(i+1)

i

a(n-1)

.

.

a(1)

a(0)

For CORDIC Iteration and Scaling For Angle Update

X-Reg

Barrel

Shifter

X-Reg Y-Reg

Barrel

Shifter

Y-Reg

MUXMUX MUX MUX

+/- +/-

x(i) y(i)

x(i+1) y(i+1)

s(m,i)

i

DSP in VLSI Design Shao-Yi Chien 96

Basic CORDIC Processor (2/3)

 CORDIC Iteration

)(

)(

12

21

)1(

)1(
),(

),(

iy

ix

iy

ix
ims

i

ims

i

X-Reg

Barrel

Shifter

X-Reg Y-Reg

Barrel

Shifter

Y-Reg

MUXMUX MUX MUX

+/- +/-

x(i) y(i)

x(i+1) y(i+1)

s(m,i)

i

DSP in VLSI Design Shao-Yi Chien 97

Basic CORDIC Processor (3/3)

 Scaling

X-Reg

Barrel

Shifter

X-Reg Y-Reg

Barrel

Shifter

Y-Reg

MUXMUX MUX MUX

+/- +/-

x(i) y(i)

x(i+1) y(i+1)

i
p

or i
q

qp or

P

p

i

p

m

p

nK 1

2
)(

1

Q

q

i

q

m

q

nK 1

)21(
)(

1

I:

II:

)('2)(')1('

)('2)(')1('

:II Type

)(2)(')1('

)(2)(')1('

:I Type

)()0('),()0('Given

qxqyqy

qxqxqx

nxpypy

nxpxpx

nyynxx

q

q

p

p

i

q

i

q

i

p

i

p

DSP in VLSI Design Shao-Yi Chien 98

Parallel and Pipelined Arrays

 n stages for CORDIC, and s stages for scaling

 Parallel

 Pipelined

CORDIC

Processor

(1)

x(0)

y(0)

CORDIC

Processor

(2)

CORDIC

Processor

(n+s)

...

...

x
f

y
f

CORDIC

Processor

(1)

x(0)

y(0)

CORDIC

Processor

(2)

CORDIC

Processor

(n+s)

...

...

x
f

y
f

D D D

DSP in VLSI Design Shao-Yi Chien 99

Discrete Fourier Transform

(DFT) with CORDIC (1/2)
 DFT

 DFT with CORDIC

N

Nkj

N

kj

N

kj

eNXeXeXKY
)1(21202

)1()1()0()(

loop-k End

)(

),(
)(

/*operation Scaling */

loop-m End

),(

),(

)(

)(

2
cos

2
sin

2
sin

2
cos

)(
),1(

),1(

Do 1,-N to0mFor

Do 1,-N to0kFor

10for 0),0(:Initiation

1

1

nK

kNY
kY

kmY

kmY

mx

mx

N

mk

N

mk
N

mk

N

mk

nK
kmY

kmY

NkkY

i

r

i

r

i

r

DSP in VLSI Design Shao-Yi Chien 100

Discrete Fourier Transform

(DFT) with CORDIC (2/2)

0

m=0->N-1

Vector

Rotation

x
r
(m)

x
i
(m)

...

...

Buffer

m=0->N-1

Vector

Rotation

Nkm /2

Y(0) Y(k)

...

...

Buffer

m=0->N-1

Vector

Rotation

NmN /)1(2

Y(N-1)

x
r
(m)

x
i
(m)

