

Unfolding

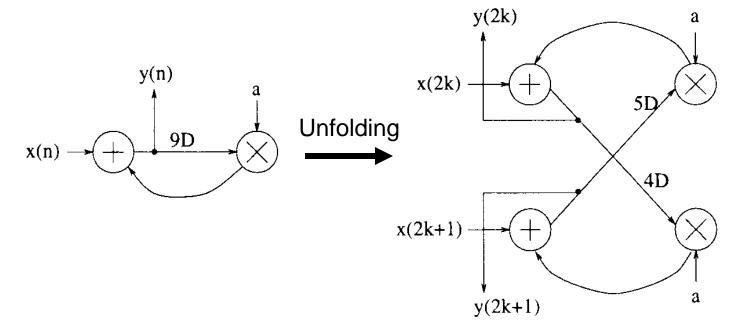
Introduction (1/4)

- Unfolding is a transformation technique that can be applied to a DSP program to create a new program describing more than one iterations of the original program
- Unfolding factor J: J consecutive iterations
 Also called as loop unrolling

Introduction (2/4)

- For the DSP algorithm
 y(n)=ay(n-9)+x(n)
- Replace n with 2k and 2k+1
 - $\Box y(2k) = ay(2k-9) + x(2k)$
 - $\Box y(2k+1)=ay(2k-8)+x(2k+1)$
- It is an unfolded algorithm with J=2!

Introduction (3/4)



Note that, in unfolded systems, each delay is Jslow

Introduction (4/4)

Applications of unfolding

To reveal hidden concurrent so that the program can be scheduled to a smaller iteration period

□ To design parallel architecture

Algorithm for Unfolding

In the J-unfolded DFG

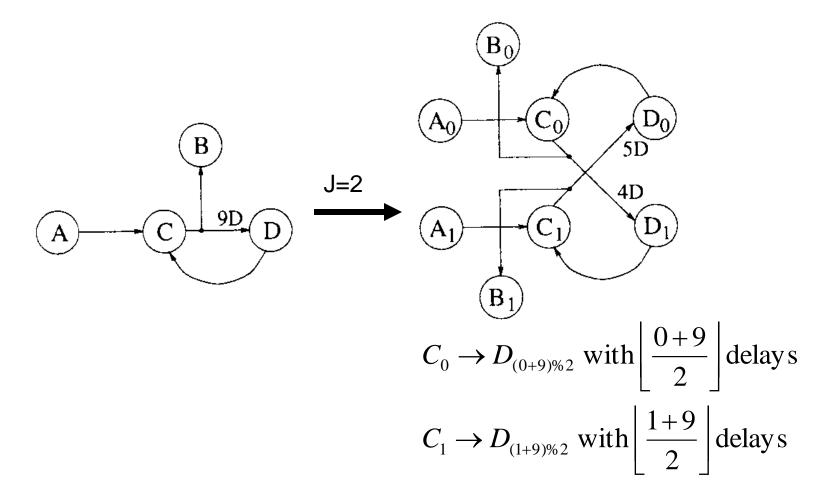
For each node U in the origin DFG, there are J nodes with the same function as U

For each edge in the original DFG, there are J edges

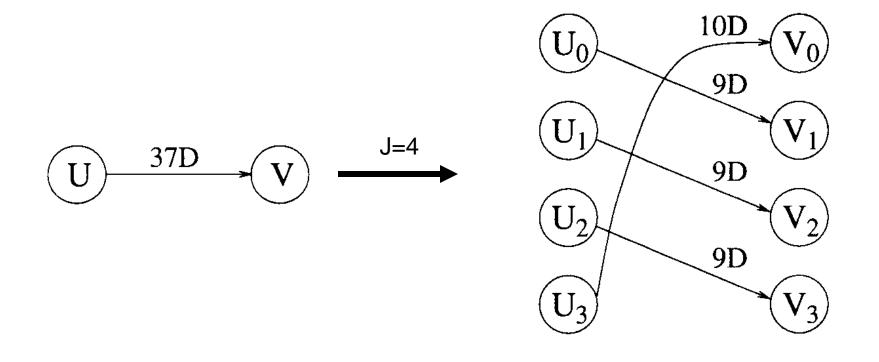
Algorithm for Unfolding

- For each node U in the original DFG, draw the J nodes U₀, U₁, ..., U_{J-1}
- For each edge U→V with w delays in the original DFG, draw the J edges $U_i \rightarrow V_{(i+w)\%J}$ with $\left\lfloor \frac{i+w}{J} \right\rfloor$ delays for i=0, 1, ..., J-1

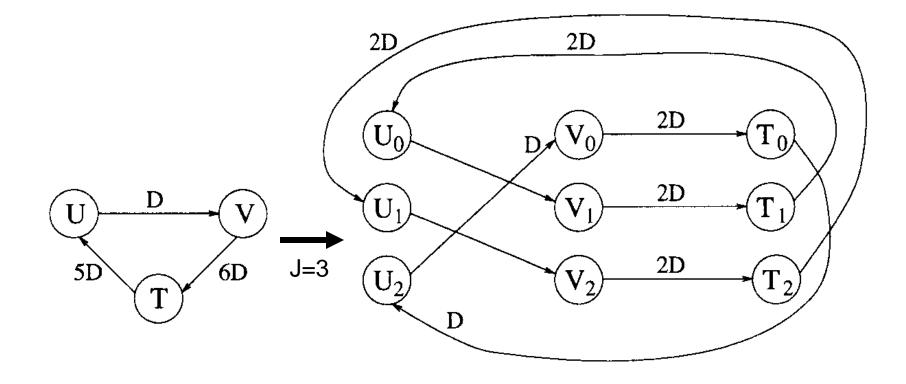
Example 1 of Unfolding



Example 2 of Unfolding



Example 3 of Unfolding



Proof of the Unfolding Algorithm (1/2)

- Unfolding preserve precedence constraints of a DSP program
- For $U_i \rightarrow V_{(i+w)\%J}$ with $\left\lfloor \frac{i+w}{J} \right\rfloor$ delays output of U_i in the k-th iteration will be connected to $V_{(i+w)\%J}$ in the (k+ $\left\lfloor \frac{i+w}{J} \right\rfloor$)-th iteration
- In the original DFG, it corresponds to:
- output of U in the (Jk+i)-th iteration will be connected to V in the $(J(k + \lfloor \frac{i+w}{J} \rfloor) + (i+w)\%J)$ -th iteration

Proof of the Unfolding Algorithm (2/2)

$$J\left(k + \left\lfloor \frac{i+w}{J} \right\rfloor\right) + (i+w) \% J - (Jk+i)$$
$$= \left(J\left\lfloor \frac{i+w}{J} \right\rfloor + (i+w) \% J\right) - i$$
$$= (i+w) - i = w$$

So the precedence constraints are preserved correctly

Properties of Unfolding (1/5)

Unfolding preserves the number of delays in a DFG

$$\left\lfloor \frac{w}{J} \right\rfloor + \left\lfloor \frac{w+1}{J} \right\rfloor + \dots + \left\lfloor \frac{w+J-1}{J} \right\rfloor = w$$

Properties of Unfolding (2/5)

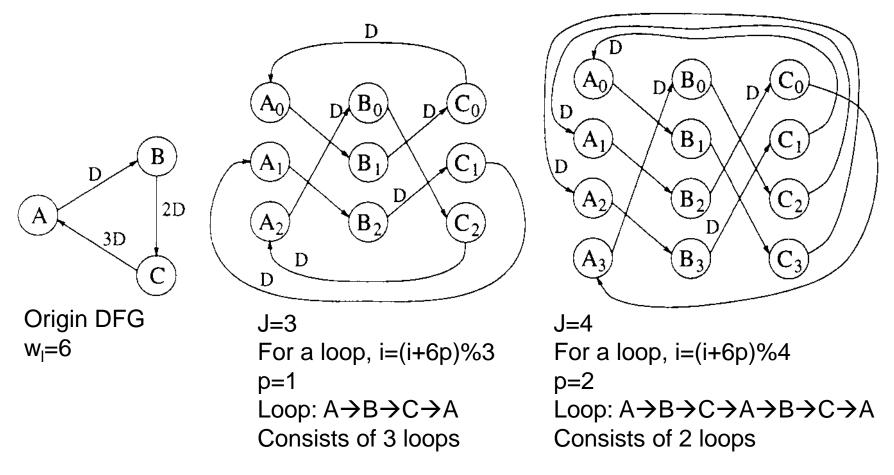
J-unfolding of a loop I with w_I delays in the original DFG leads to gcd(w_I, J) loops in the unfolded DFG, and each of these gcd(w_I, J) loops contains w_I/gcd(w_I, J) delays and J/gcd(w_I, J) copies of each node that appears in I

Properties of Unfolding (3/5)

- □ For a loop in origin loop A→A traversed p times with w_l delay elements
- \Box In the unfolded DFG: $A_i \rightarrow A_{(i+pw_l)\%J}$

 \Box This path form a loop if $i = (i + pw_l)\% J$

Properties of Unfolding (4/5)



DSP in VLSI Design

Properties of Unfolding (5/5)

Unfolding a DFG with iteration bound T_∞ results in a J-unfolded DFG with iteration bound JT_∞

Retiming with Unfolding (1/2)

- Consider a path with w delays in the original DFG. J-unfolding of this path leads to (J-w) paths with no delays and w paths with 1 delay each, when w<J</p>
- Any path in the original DFG containing J or more delays leads to J paths with 1 or more delays in each path. Therefore, a path in the original DFG with J or more delays cannot create a critical path in the J-unfolded DFG

Retiming with Unfolding (2/2)

The critical path of the unfolded DFG can be c if there exists a path in the original DFG with computation time c and less than J delay elements

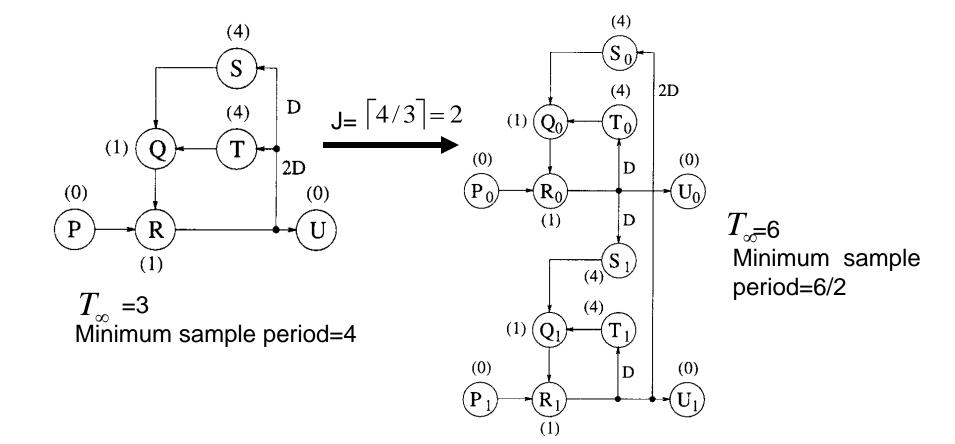
Applications of Unfolding

- Sample period reduction
- Parallel processing
 - □ Word-level parallel processing
 - □ Bit-level parallel processing

Sample Period Reduction (1/5)

- In some cases, the DSP program cannot be implemented with iteration period equal to the iteration bound → use unfolding
- First case: there is a node in the DFG that has computation time greater than T_∞
 If t₁₁ is greater than the iteration bound,
 - then $\left[t_U / T_{\infty} \right]$ -unfolding should be used

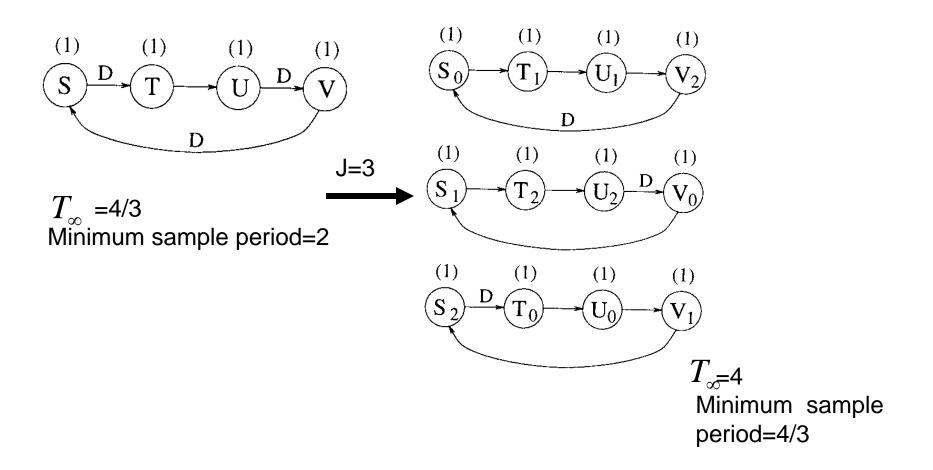
Sample Period Reduction (2/5)



Sample Period Reduction (3/5)

- Second case: the iteration bound is not an integer
 - □ If a critical loop bound is of the form t_l/w_l , where t_l and w_l are mutually coprime, then w_l unfolding should be used

Sample Period Reduction (4/5)



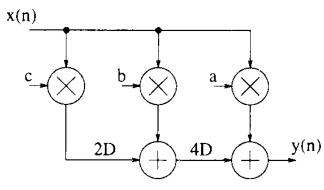
Sample Period Reduction (5/5)

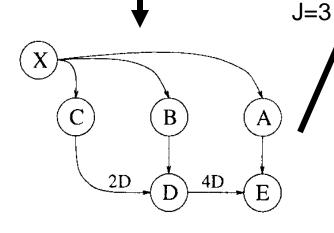
- For both cases, where the longest node computation time is larger than the iteration bound T_∞, and T_∞ is not an integer
 - □ J is the minimum value such that JT_{∞} is an integer and is greater than or equal to the longest node computation time

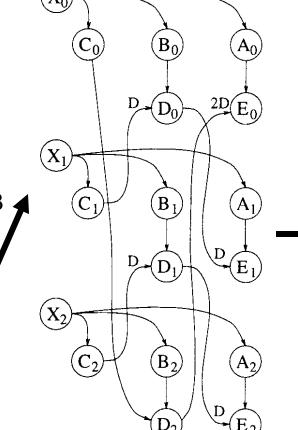
Word-Level Parallel Processing (1/2)

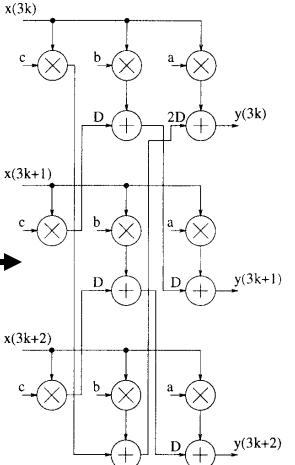
- The unfolding technique can be used to design a word-parallel architecture from a word-serial architecture
 - Unfolding a word-serial architecture by J creates a word-parallel architecture that processes J words per clock cycle
 - Parallel processing

Word-Level Parallel Processing (2/2)





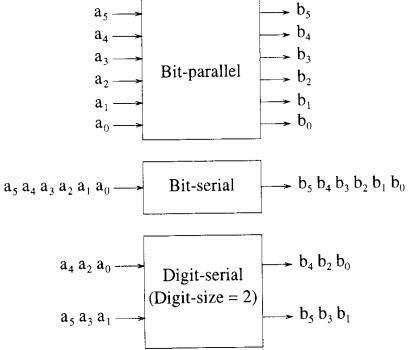




DSP in VLSI Design

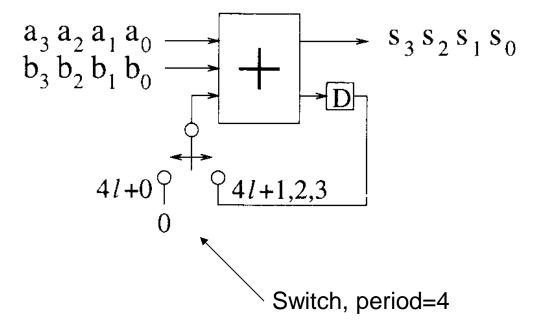
Bit-Level Parallel Processing (1/6)

- Bit-parallel and bit-serial architecture can be derived from bit-serial architectures using the unfolding transformation $a_{s} \rightarrow b_{a_{4}} b_{s}$
 - Bit-serial
 - Bit-parallel: word-length W
 - Digit-serial: N digits



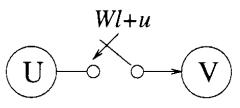
Bit-Level Parallel Processing (2/6)

Bit-serial adder for W=4



Bit-Level Parallel Processing (3/6)

Unfolding the switch
 Assume W=W'J



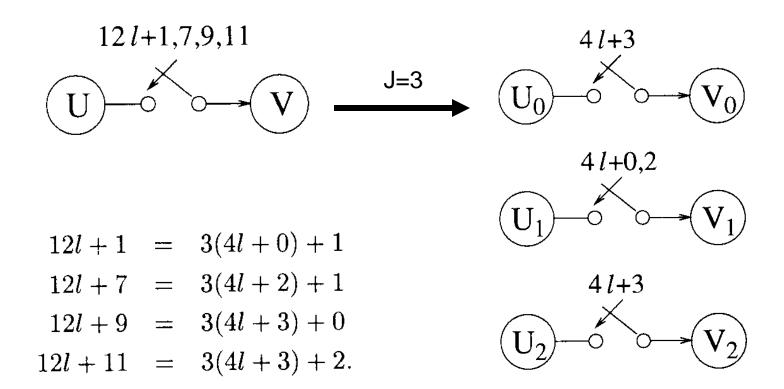
□ Assume all edges have no delays

□ Write the switch instance as

$$Wl + u = J\left(W'l + \left\lfloor \frac{u}{J} \right\rfloor\right) + (u\%J).$$

□ Draw an edge with no delays in the unfolded graph from the node $U_{u\%J}$ to the node $V_{u\%J}$, which is switched at time instance $(W'l + \lfloor \frac{u}{J} \rfloor)$

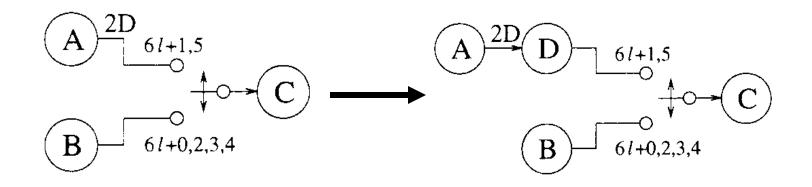
Bit-Level Parallel Processing (4/6)



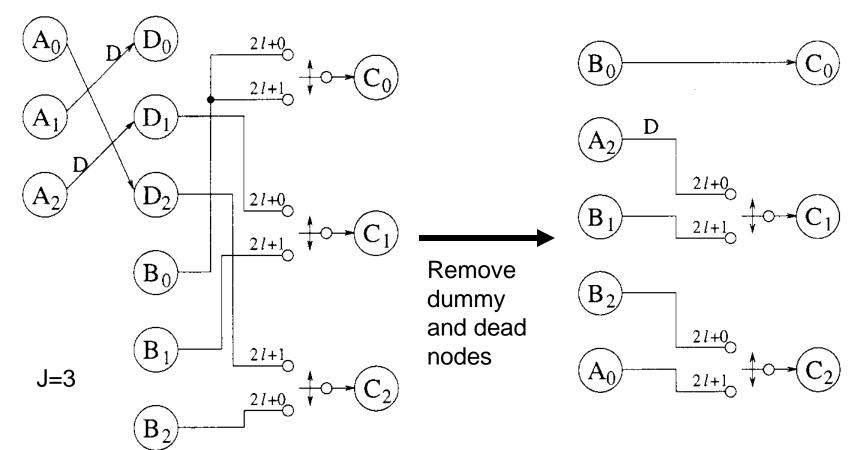
DSP in VLSI Design

Bit-Level Parallel Processing (5/6)

For edges with delays Add dummy nodes

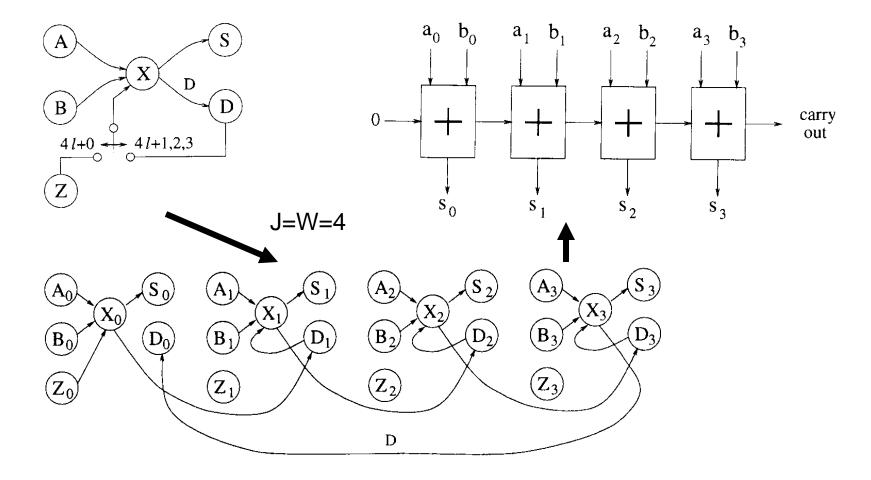


Bit-Level Parallel Processing (6/6)

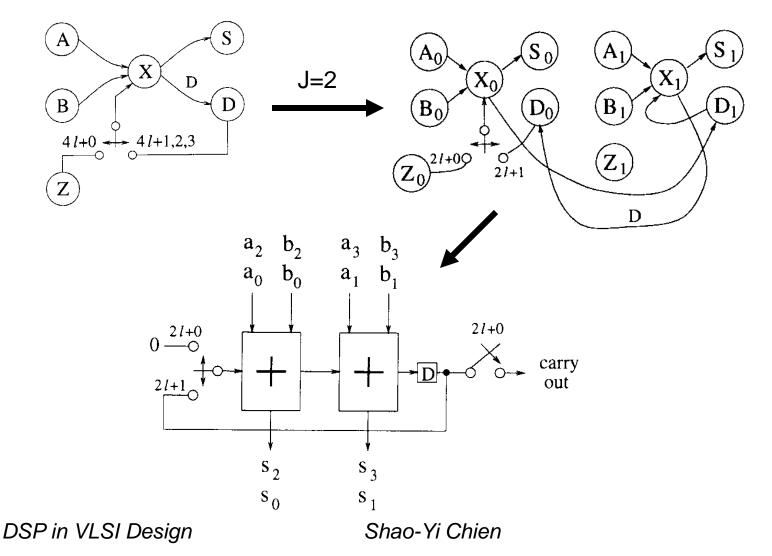


DSP in VLSI Design

Bit-Parallel Adder



Digit-Serial Adder (1/4)

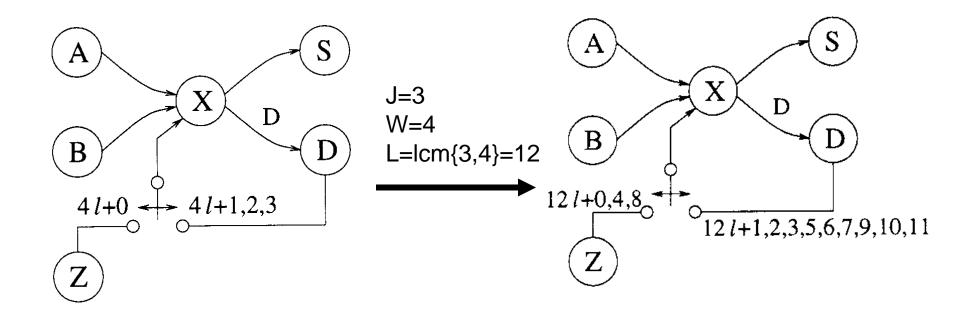


35

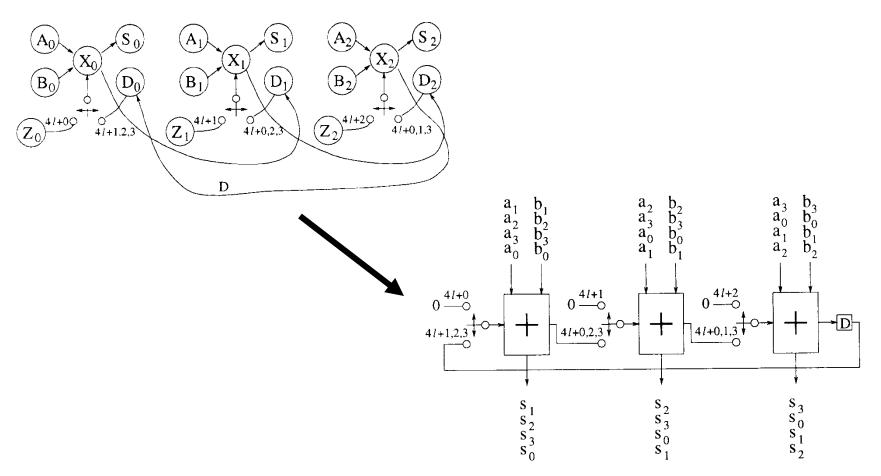
Digit-Serial Adder (2/4)

- If W is not a multiple of the unfolding factor J
 - \Box L=lcm{W,J}
 - □ Replace the period of the switch W as L

Digit-Serial Adder (3/4)



Digit-Serial Adder (4/4)



DSP in VLSI Design