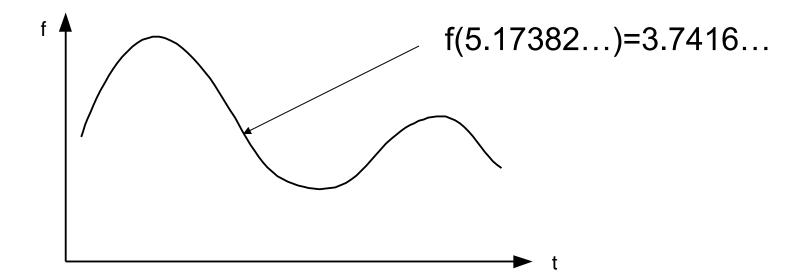
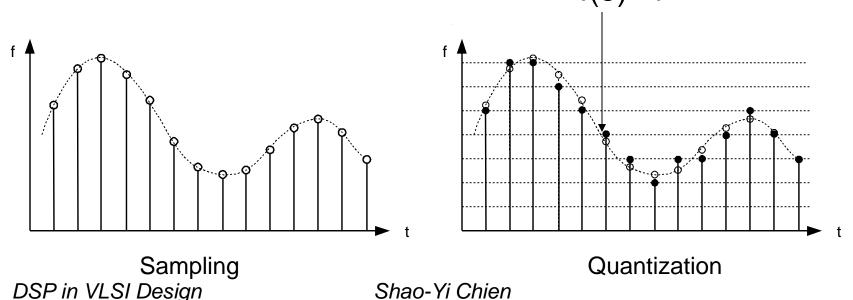


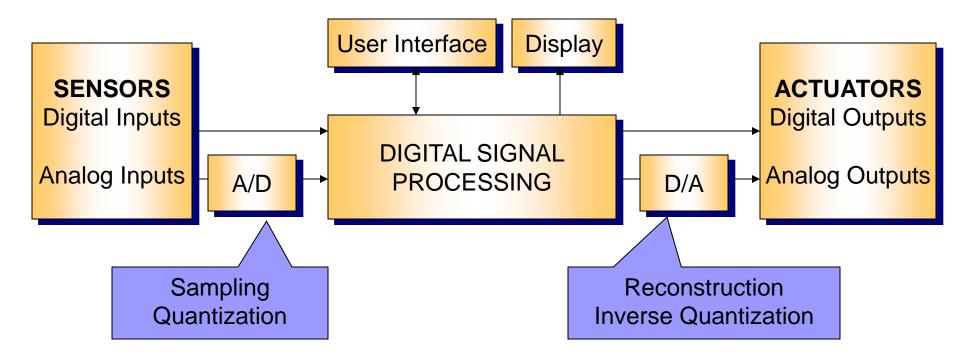
Introduction to Digital Signal Processing Systems


Outline

- Introduction
- Typical DSP algorithms
- Scaled CMOS technologies
- Representations of DSP algorithms

Analog Signal


- Real-word signal
- Infinite accuracy on time and magnitude


Digital Signal

- Get after sampling and quantization
- Finite accuracy on time and magnitude
- Easy to process with digital processing element f(5)=4

Typical DSP Systems

Advantages of Analog Signal Processing

- Can operate in very high frequency
- Sometimes low area
- Low power

Advantages of Digital Signal Processing (DSP)

More robust

- □ Insensitive to environment and component tolerance
- The accuracy can be controlled better
- Can cancel the noise and interference while amplifying the signal
- Predictable, repeatable behavior
 - Can be stored and recovered, transmitted and received, processed and manipulated without error

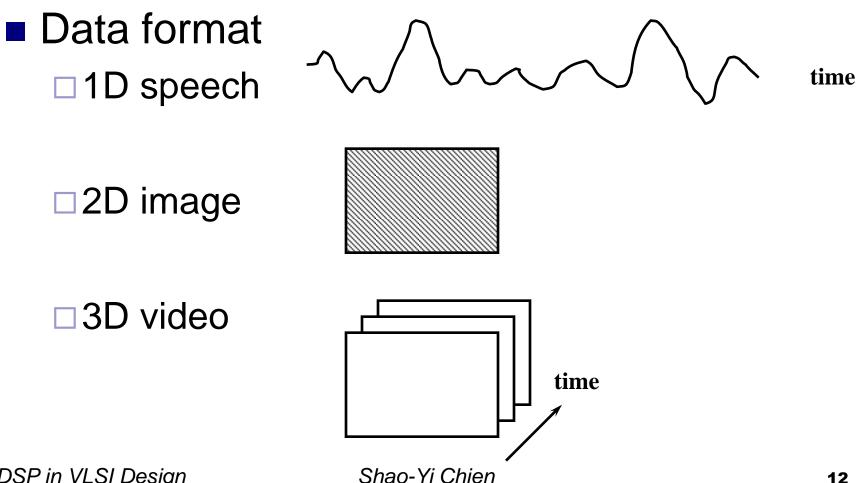
Features of DSP Systems

- Real-time throughput requirement
 So-called hard real-time systems
- Data-driven property
- Non-terminating program

Hard Real-Time Systems

DSP in VLSI Design

"Real-time Computing" for Formula 1

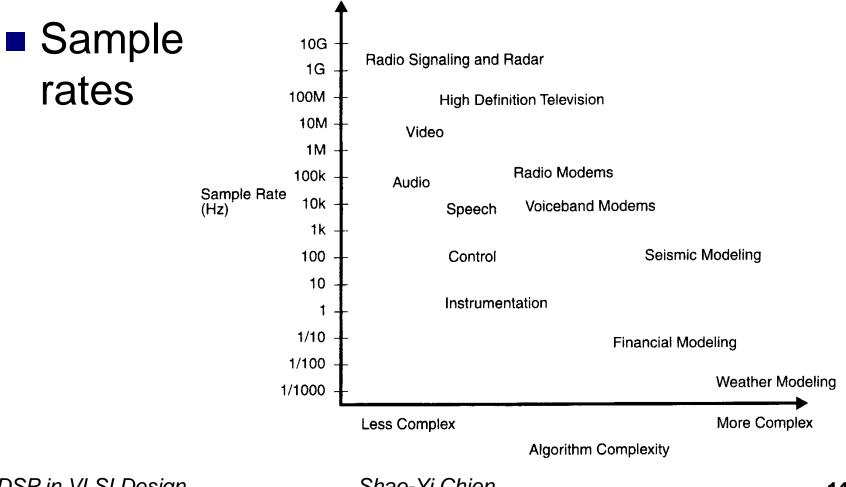


Performance Metrics of DSP Systems

- Hardware circuitry and resources (area)
- Speed of execution
- Power consumption
- Finite word length performance

Characteristics of DSP Systems (1/4)

DSP in VLSI Design


Characteristics of DSP Systems (2/4)

Algorithms

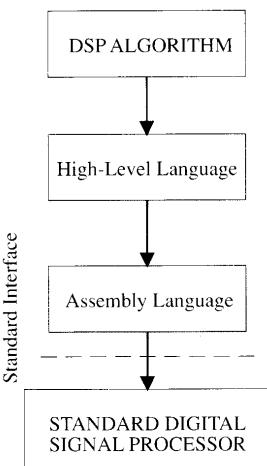
DSP Algorithm	System Application
Speech coding and decoding	Digital cellular telephones, personal communications systems, digital cordless telephones, multimedia computers, secure communications
Speech encryption and decryption	Digital cellular telephones, personal communications systems, digital cordless telephones, secure communications
Speech recognition	Advanced user interfaces, multimedia workstations, robotics, automotive applications, digital cellular telephones, personal communications systems, digital cordless telephones
Speech synthesis	Multimedia PCs, advanced user interfaces, robotics
Speaker identification	Security, multimedia workstations, advanced user interfaces
Hi-fi audio encoding and decoding	Consumer audio, consumer video, digital audio broadcast, professional audio, multimedia computers
Modem algorithms	Digital cellular telephones, personal communications systems, digital cordless telephones, digital audio broadcast, digital signaling on cable TV, multimedia comput- ers, wireless computing, navigation, data/facsimile modems, secure communications
Noise cancellation	Professional audio, advanced vehicular audio, industrial applications
Audio equalization	Consumer audio, professional audio, advanced vehicular audio, music
Ambient acoustics emulation	Consumer audio, professional audio, advanced vehicular audio, music
Audio mixing and editing	Professional audio, music, multimedia computers
Sound synthesis	Professional audio, music, multimedia computers, advanced user interfaces
Vision	Security, multimedia computers, advanced user interfaces, instrumentation, robotics, navigation
Image compression and decompression	Digital photography, digital video, multimedia computers, video-over-voice, consumer video
Image compositing	Multimedia computers, consumer video, advanced user interfaces, navigation
Beamforming	Navigation, medial imaging, radar/sonar, signals intelligence
Echo cancellation	Speakerphones, modems, telephone switches
Spectral estimation	Signals intelligence, radar/sonar, professional audio, music

Characteristics of DSP Systems (3/4)

DSP in VLSI Design

Characteristics of DSP Systems (4/4)

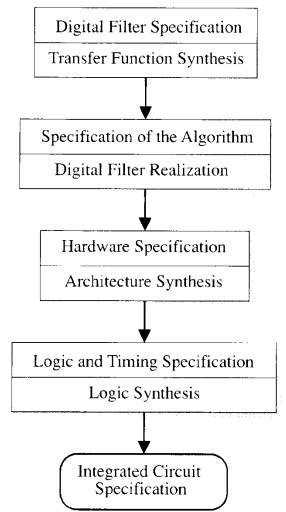
- Clock rates
- Numeric representations


Standard Digital Signal Processors (1/2)

- Allow rapid prototyping and time-to-market
- Sometimes, the execution speed and code size is reasonably good
- Not always cost effective
- Often cannot meet the requirements of throughput, power consumption, and size

Standard Digital Signal Processors (2/2)

- DSP Architectures
 Harvard architecture
 MAC
 - □ Fixed-point arithmetic


Application-Specific ICs for DŠP (1/2)

Better performances
 Processing capacity
 Power consumption
 Pin-restriction problem
 Main problem is the system is very complex to design

Long time-to-market

Application-Specific ICs for DSP (2/2)

- Large design space
- Hard to find optimal solution
- System → specification → algorithm → hardware architecture → logic implementation → VLSI implementation

Typical DSP Algorithms

- Convolution
- Correlation
- Digital filters
- Adaptive filters
- Motion estimation
- Discrete cosine transform (DCT)
- Vector quantization (VQ)
- Viterbi algorithm and dynamic programming
- Decimator and expander
- Wavelets and filter banks

DSP in VLSI Design

Convolution (1/2)

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k).$$

Can be used to describe the behavior of a linear time-invariant systems

 x(n): input signal
 y(n): output signal
 h(n): unit-sample response

Convolution (2/2)

- Finite impulse response (FIR) system $h(n) = \frac{1}{M_1 + M_2 + 1} \sum_{-M_1}^{M_2} \delta(n - k)$
- Infinite impulse response (IIR) system

$$h(n) = \sum_{k=-\infty}^{n} \delta(k)$$

Digital Filters

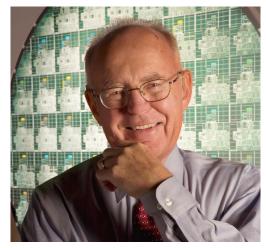
• LTI, causal filter $y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M-1} b_k x(n-k).$

M-tap finite impulse response filter

$$y(n) = \sum_{k=0}^{M-1} b_k x(n-k)$$

DSP in VLSI Design

Chip Development

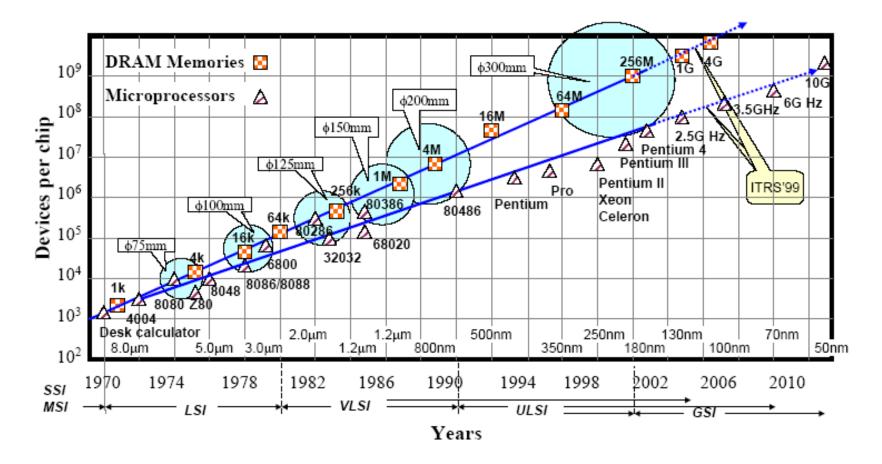

10 miljarder ANTAL TRANSISTORER 1 miljard Pentium II Pentium Pro NOOre'S IAW 100 miljoner 10 miljoner Pentium 1 miljon 386 100 tusen 80286 10 tusen 18085 ÅR 8080 $\bar{0}04$ 1 tusen 1971 1976 1981 1986 1991 1996 2001

<u>Technology roadmap:</u>

http://notes.sematech.org/ntrs/PubINTRS.nsf

Shao-Yi Chien

<u>Moore's law:</u> The number of transistors per chip doubles every 18 months.



Gordon Moore One of the founders of Intel

DSP in VLSI Design

Moore's Law

DSP in VLSI Design

Scaled CMOS technology (Moore's Law) (1/3)

Year of Production:	2001	2003	2005	2007	2010	2016
DRAM Half-Pitch [nm]:	130	100	80	65	45	22
Overlay Accuracy [nm]:	46	35	28	23	18	9
MPU Gate Length [nm]:	90	65	45	35	25	13
CD Control [nm]:	8	5.5	3.9	3.1	2.2	1.1
T _{ox} (equivalent) [nm]:	1.3-1.6	1.1-1.6	0.8-1.3	0.6-1.1	0.5-0.8	0.4-0.5
Junction Depth [nm]:	48-95	33-66	24-47	<mark>18-37</mark>	13-26	7-13
Metal Cladding [nm]:	16	12	9	7	5	2.5
Inter-Metal Dielectric K:	3.0-3.6	3.0-3.6	2.6-3.1	2.3-2.7	2.1	1.8

DSP in VLSI Design

Scaled CMOS technology (Moore's Law) (2/3)

Year of first DRAM shipment	1995	1998	2001	2004	2007	2010
Minimum feature of size (um)	0.35	0.25	0.18	0.13	0.10	0.07
Memory in bits/chip (DRAM/FLASH)	64M	256M	1G	4G	16G	64G
Microprocessor transistor per chip (2.3 times per generation)	12M	28M	64M	150M	350M	800M
ASIC (gate per chip)	5M	14M	26M	50M	210M	430M
Chip frequency (MHz) for a high-performance on-chip clock	300	450	600	800	1,000	1,100
Maximum number of wiring levels (logic), on chip	4-5	5	5-6	6	6-7	7-8
Power supply voltage (V) for desktop	3.3	2.5	1.8	1.5	1.2	0.9
Maximum power for high performance with heat sink (W)	80	100	120	140	160	180

Source: SIA (Semiconductor Industry Association) road map ITRS: International Technology Roadmap for Semiconductors http://www.itrs.net/

DSP in VLSI Design

Scaled CMOS technology (Moore's Law) (3/3)

Year of Production	2013	2015	2017	2019	2021	2023	2025	2028
Logic Industry "Node Name" Label	"16/14"	"10"	"7"	"5"	"3.5"	"2.5"	"1.8"	
Logic ½ Pitch (nm)	40	32	25	20	16	13	10	7
Flash ½ Pitch [2D] (nm)	18	15	13	11	9	8	8	8
DRAM ½ Pitch (nm)	28	24	20	17	14	12	10	7.7
FinFET Fin Half-pitch (new) (nm)	30	24	19	15	12	9.5	7.5	5.3
FinFET Fin Width (new) (nm)	7.6	7.2	<mark>6.</mark> 8	6.4	6.1	5.7	5.4	5.0
6-t SRAM Cell Size(um2) [@60f2]	0.096	0.061	0.038	0.024	0.015	0.010	0.0060	0.0030
MPU/ASIC HighPerf 4t NAND Gate Size(um2)	0.248	0.157	0.099	0.062	0.039	0.025	0.018	0.009
4-input NAND Gate Density (Kgates/mm) [@155f2]	4.03E+03	6.37E+03	1.01 E+ 04	1.61 E+ 04	2.55 E+ 04	4.05 E+ 04	6.42E+04	1.28 E+ 05
Flash Generations Label (bits per chip) (SLC/MLC)	64G /128G	128G /256G	256G / 512G	512 G / 1 T	512 G / 1 T	1T / 2T	2T / 4T	4T / 8T
Flash 3D Number of Layer targets (at relaxed Poly half pitch)	16-32	16-32	16-32	32-64	48-96	64-128	96-192	192-384
Flash 3D Layer half-pitch targets (nm)	64nm	54nm	45nm	30nm	28nm	27nm	25nm	22nm
DRAM Generations Label (bits per chip)	4G	8G	8 G	16 G	32G	32G	32G	32G
450mm Production High Volume Manufacturing Begins (100Kwspm)				2018				
Vdd (High Performance, high Vdd transistors)[**]	0.86	0.83	0.80	0.77	0.74	0.71	0.68	0.64
1/(CV/I) (1/psec) [**]	1.13	1.53	1.75	1.97	2.10	2.29	2.52	3.17
On-chip local clock MPU HP [at 4% CAGR]	5.50	5.95	6.44	6.96	7.53	8.14	8.8	9.9
Maximum number wiring levels [unchanged	13	13	14	14	15	15	16	17
MPUHigh-Performance (HP) Printed Gate Length (GLpr) (nm) [**]	28	22	18	14	11	9	7	5
MPU High-Performance Physical Gate Length (GLph) (nm) [**]	20	17	14	12	10	8	7	5
ASIC/Low Standby Power (LP) Physical Gate Length (nm) (GLph)[**]	23	19	16	13	11	9	8	6
** Note: from the PIDS working group data; however, the calibration o	of Vdd, GLph, a	nd I/CV is ong	oing for improv	ed targets in 2	014 ITRS work	ļ		

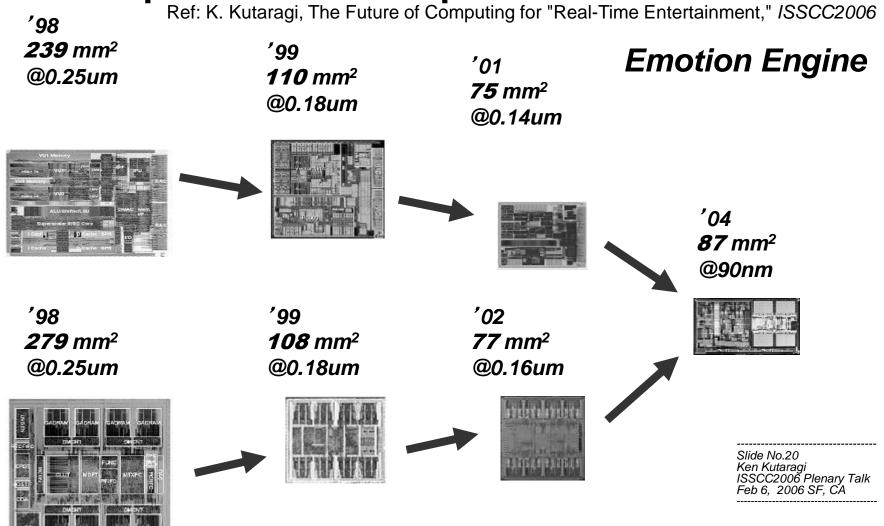
DSP in VLSI Design

DSP and VLSI

Modern DSP

□ Well suite to VLSI implementation

Feasible or economically viable only if implemented using VLSI technologies

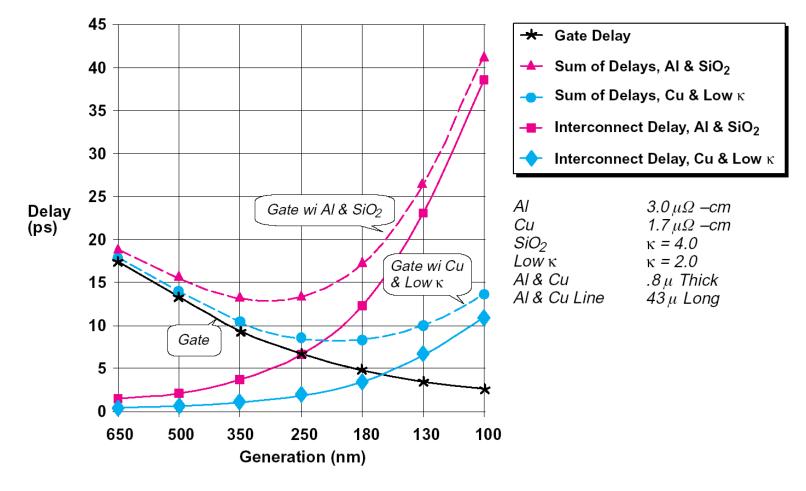

VLSI

□ Large investment → need large volume of products

- Communication
- Consumer applications
- Necessary performance requirement (especially realtime requirement)
 - DSP systems are hard real-time systems

Example: the Chip for PS2

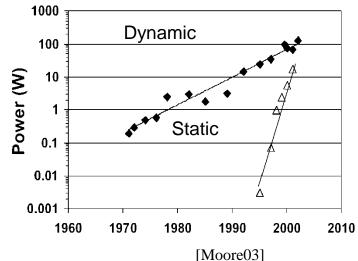
DSP in VLSI Design


Shao-Yi Chien

30

Graphics Synthesizer

Problems: Interconnection


DSP in VLSI Design

Problems: Increasing Static Power

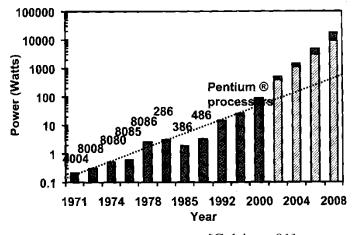
V_{DD} decreases

- □ Save dynamic power
- Protect thin gate oxides and short channels
- No point in high value because of velocity sat.
- V_t must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

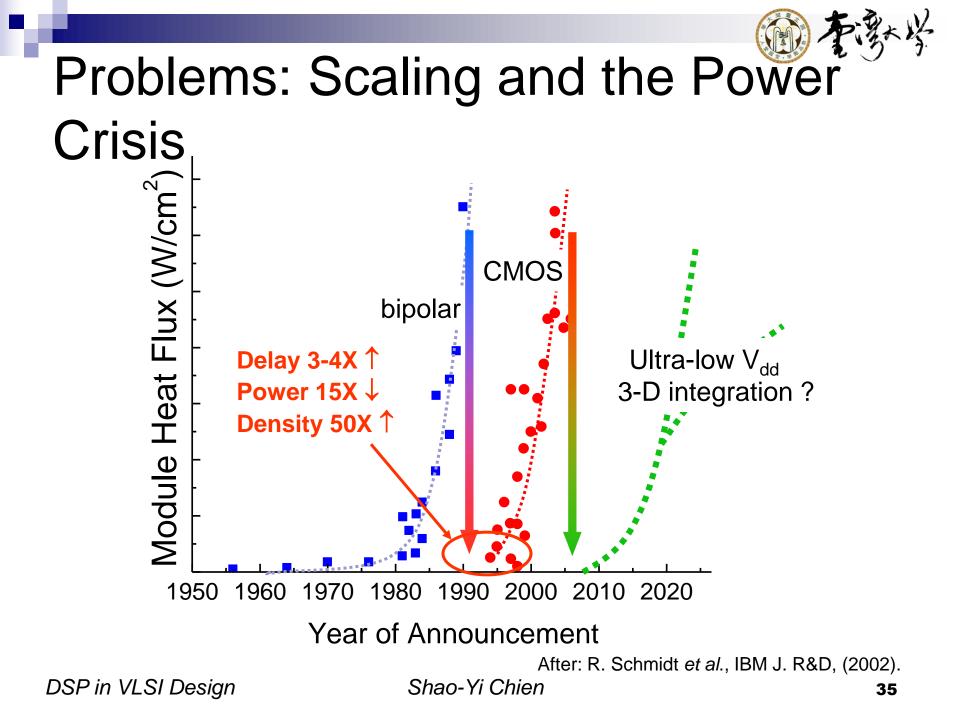
8,000 7.000 6,000 5,000 Power [mW] 4,000 3,000 2,000 1,000 0 2014 2015 2016 2017 2018 2019 2020 2009 2010 2011 2012 2013 2021 2022 2023 2024 Irend: Logic Static Power ITTEND: Memory Static Power Image: Memory Dynamic Power Trend: Logic Dynamic Power -----Requirement: Dynamic plus Static Power

Figure SYSD6 SOC Consumer Portable Power Consumption Trends—UPDATED

DSP in VLSI Design

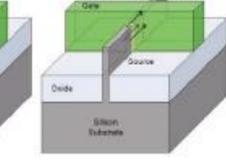


Problems: Power Density

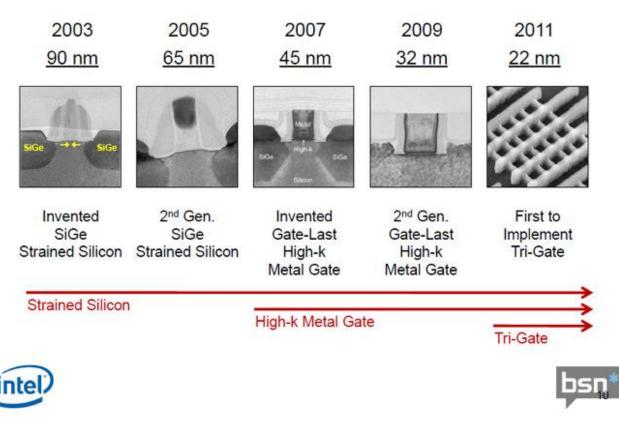

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.

"Business as usual will not work in the future."

- Intel stock dropped 8% on the next day
- But attention to power is increasing

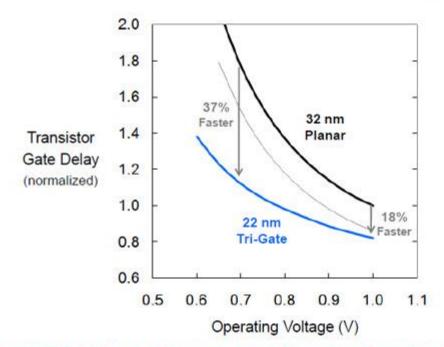

DSP in VLSI Design

FinFET

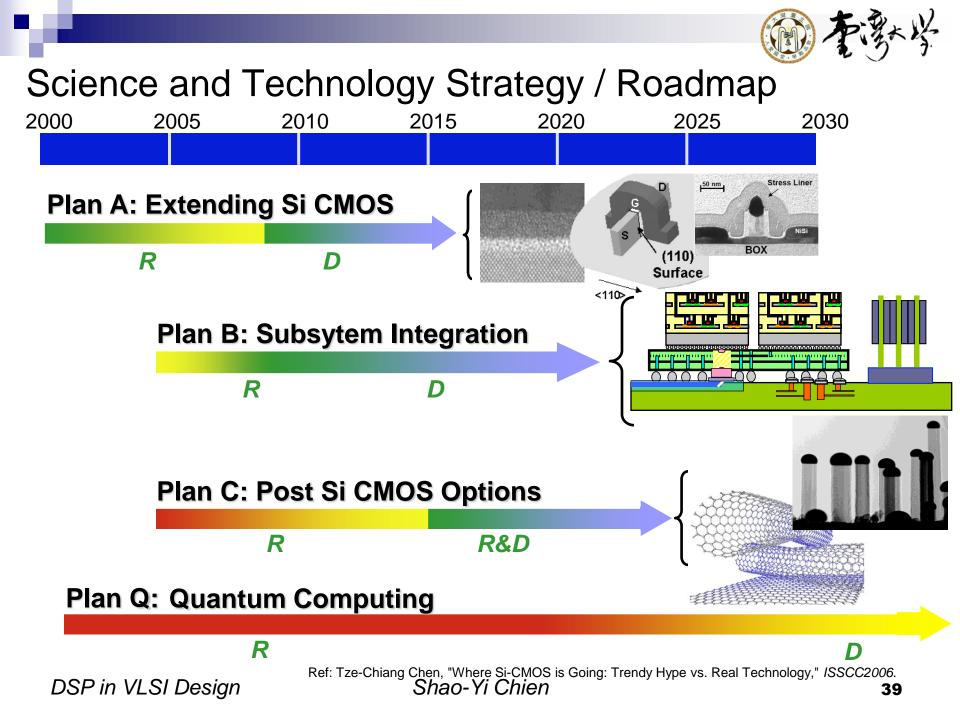

DSP in VLSI Design

Cuari

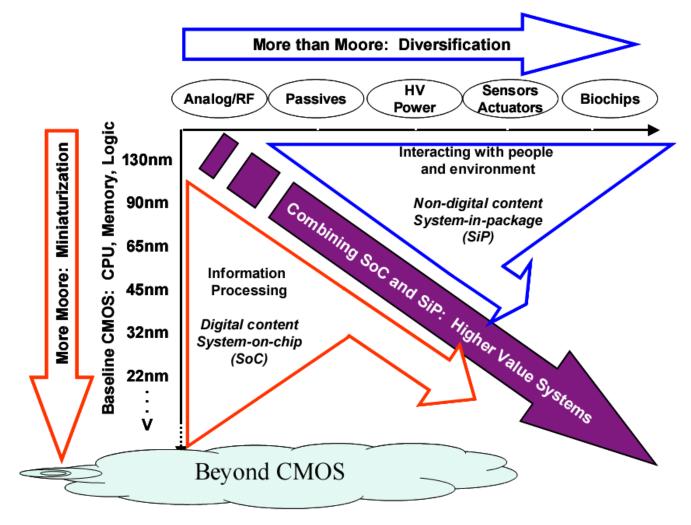
FinFET


Intel Transistor Leadership

FinFET

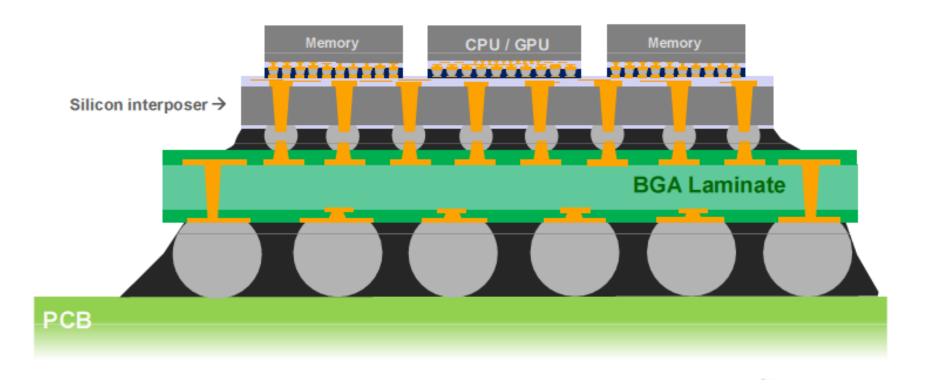


22 nm Tri-Gate transistors provide improved performance at high voltage and an *unprecedented* performance gain at low voltage


DSP in VLSI Design

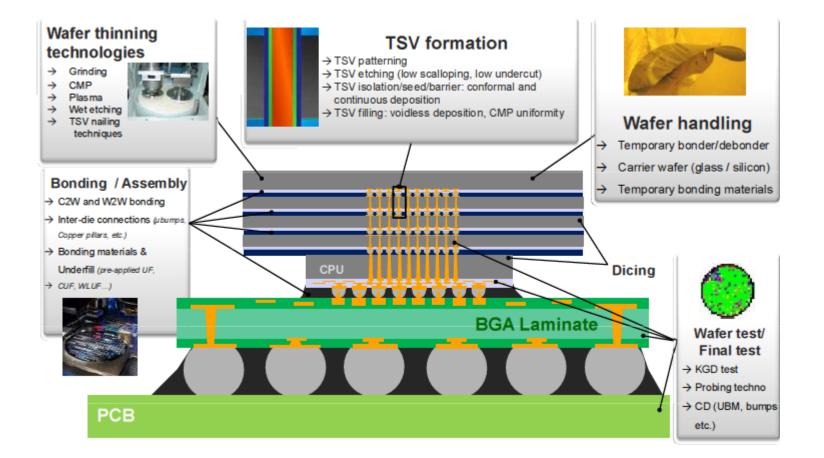
Shao-Yi Chien

More Moore & More than Moore !!!



DSP in VLSI Design

Shao-Yi Chien

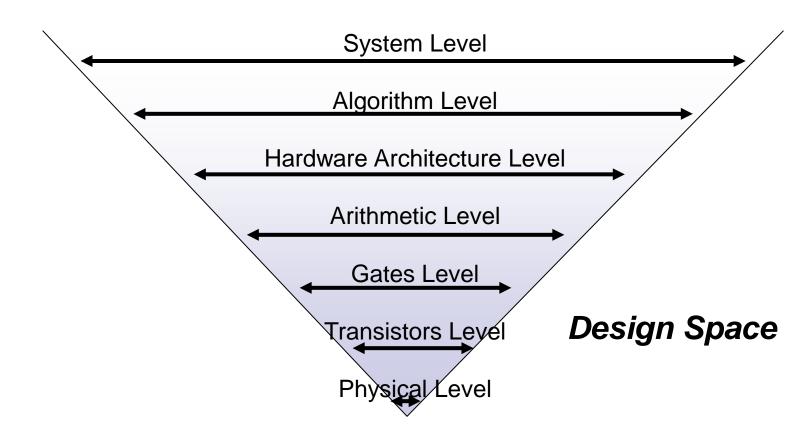


2.5D Interposer

3D-IC Technology

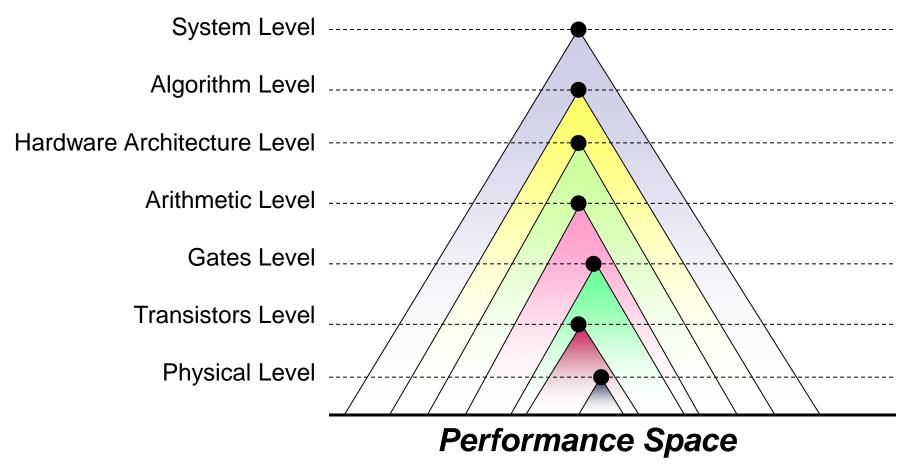
DSP Architecture Design?

- Given DSP algorithms, find the "best" solution in the design space under certain constraints
- Or, modified or develop the algorithm to be "hardware oriented" or "hardware friendly," and then develop the hardware architecture



Abstraction Layers

- System (ex: MP3 player)
- Algorithm (ex: FIR filter)
- Hardware architecture (ex: array architecture,...)
- Arithmetic units (ex: multiplier, adder, ...)
- Logic gates (ex: AND, OR, ...)
- Transistors (ex: NMOS, PMOS)
- Layout



The Higher the Abstraction, The Larger Design Space

The Higher the Abstraction, The More Important

DSP in VLSI Design

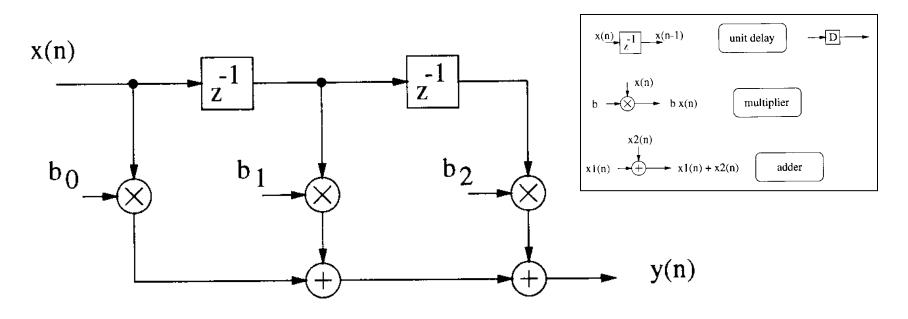
Shao-Yi Chien

Representations of DSP Algorithms

- DSP algorithms: nonterminating program y(n) = ax(n) + bx(n-1) + cx(n-2) for n = 1 to $n = \infty$.
- Iteration period
- Sampling rate
- Latency
- Throughput
- Clock frequency
- Critical path

Graphical Representations of DSP Algorithms

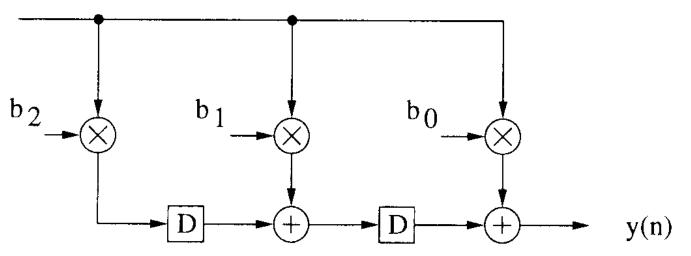
- Can bridge the gap between algorithmic descriptions and structural implementations
- Block diagram
- Signal-flow graph (SFG)
- Data-flow graph (DFG)
- Dependence graph (DG)


Block Diagram (1/5)

- The most frequently used representation
- Can be constructed with different levels of abstraction
- Can be directly mapped to circuits implementation

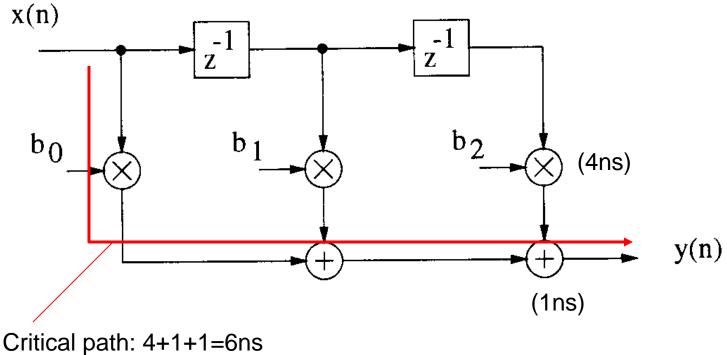
Block Diagram (2/5)

 $y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$

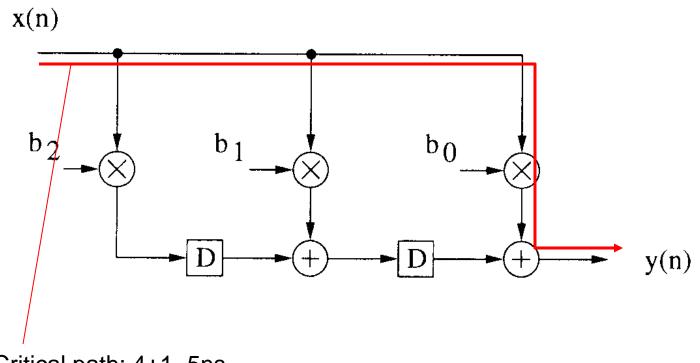


Block Diagram (3/5)

Data broadcast FIR filter


 $\mathbf{x}(\mathbf{n})$

I


Block Diagram (4/5)

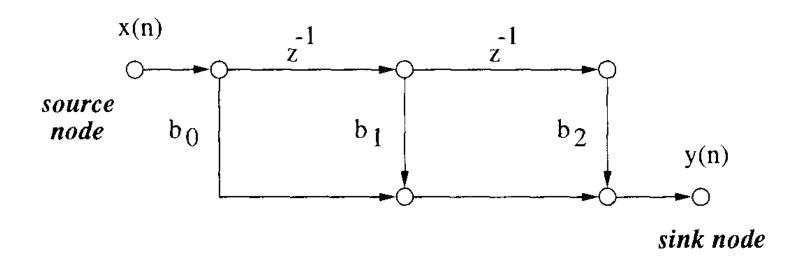
Max clock frequency = 1s/6ns=167MHz

Block Diagram (5/5)

Critical path: 4+1=5ns Max clock frequency = 1s/5ns=200MHz

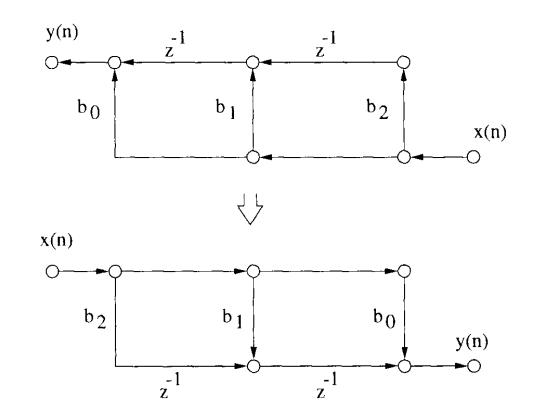
DSP in VLSI Design

Shao-Yi Chien



Signal Flow Graph (SFG) (1/4)

Nodes k
Computation or task
Directed edges (j, k)
Linear transformation
Source node
Sink node

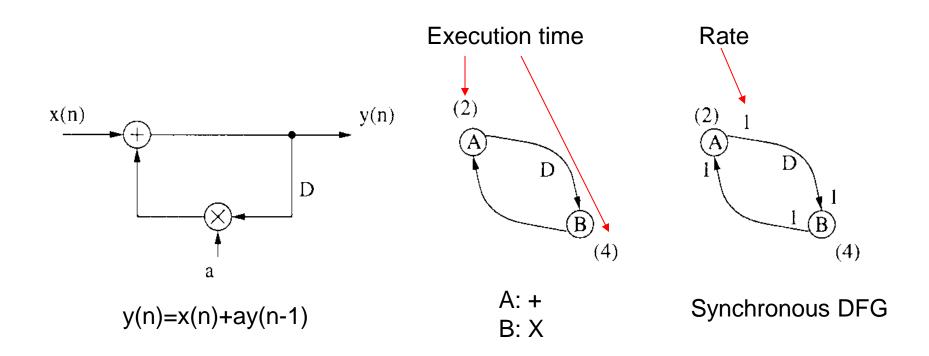

Signal Flow Graph (SFG) (2/4)

Signal Flow Graph (SFG) (3/4)

Transpose property

Signal Flow Graph (SFG) (4/4)

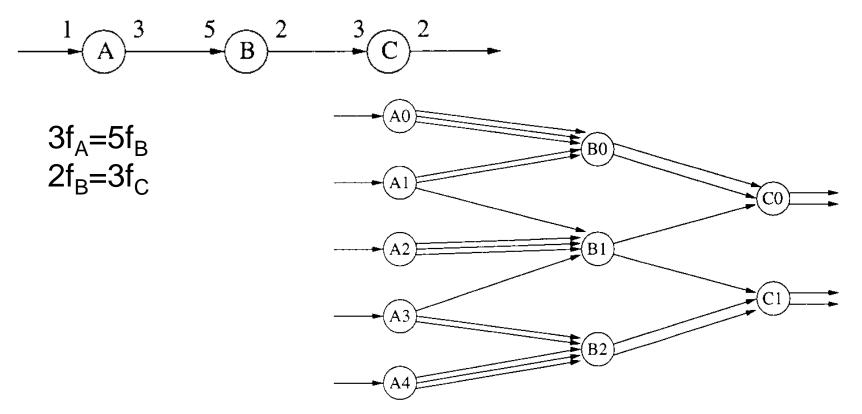
- Used in digital filter structure and analysis of finite word-length effects
- Only applicable to linear networks
- Cannot be used to describe multi-rate DSP systems


Data-Flow Graph (DFG) (1/4)

Nodes

- Computations
- Directed edges
 - □ Data paths (communication)
 - □ Has a nonnegative number of delays

Data-Flow Graph (DFG) (2/4)


Data-Flow Graph (DFG) (3/4)

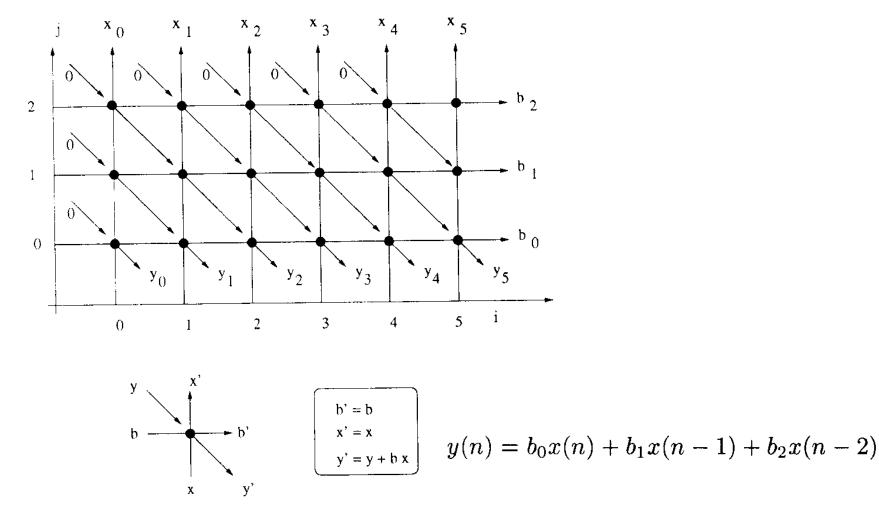
- Data-driven property of DSP
 - Any node can fire whenever all the input data are available
 - □ Intra-iteration precedence constraint
 - □ Inter-iteration precedence constraint
- Can be used to describe both linear single-rate and nonlinear multi-rate DSP systems

Data-Flow Graph (DFG) (4/4)

 Use single rate DFG (SRDFG) to represent multi-rate DFG (MRDFG)

Shao-Yi Chien

Dependence Graph (1/2)


- A directed graph that shows the dependence of the computation
- Node: computation
- No node in a DG is ever reused on a single computation basis

□ Single-assignment representation

Used for systolic-array design

Dependence Graph (2/2)

DSP in VLSI Design

Shao-Yi Chien

63

DFG v.s. DG

DFG

- Nodes only cover computation in one iteration, and will be reused iteratively
- Contain delay elements

DG

- Contains computation for all iterations, and is used only once
- No delay elements contained