

Machine Learning Basics (I)

簡韶逸 Shao-Yi Chien Department of Electrical Engineering National Taiwan University

References and Slide Credits

- Slides from *Deep Learning for Computer Vision*, Prof. Yu-Chiang Frank Wang, EE, National Taiwan University
- Slides from CE 5554 / ECE 4554: Computer Vision, Prof. J.-B. Huang, Virginia Tech
- Slides from CSE 576 Computer Vision, Prof. Steve Seitz and Prof. Rick Szeliski, U. Washington
- Slides from EECS 498-007/598-005 Deep Learning for Computer Vision, Prof. Justin Johnson
- Slides from CS291A Introduction to Pattern Recognition, Artificial Neural Networks, and Machine Learning, Prof. Professor Yuan-Fang Wang, UCSB
- Duda et al., Pattern Classification
- Bishop, Pattern Recognition and Machine Learning
- Reference papers

Outline

- Overview of recognition/classification pipeline
- Overview of machine learning
- From probability to Bayes decision rule
- Nonparametric techniques: Parzen window and nearest neighbor
- Unsupervised learning and supervised learning
- Unsupervised learning
 - Clustering: k-means
 - Dimension reduction: PCA and LDA
- Training, testing, & validation
- Supervised learning
 - Linear classification: support vector machine (SVM)
 - Combining models: decision tree, boosting
- Examples

Image Classification

Input: image

<u>This image</u> by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

Output: Assign image to one of a fixed set of categories

cat bird deer dog truck

Problem: Semantic Gap

Challenges

- Viewpoint variation
- Intraclass variation
- Fine-grained categories
- Background clutter
- Illumination changes
- Deformation
- Occlusion

Overview of Recognition Pipeline

7

AI, Machine Learning, and Deep Learning

[Kaggle]

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Example training set

From Probability to Bayes Decision Rule

- Example: Testing/Screening of COVID-19
- Distributions between positive/negative test results (e.g., PCR, antibody, etc.)
 - further away from each other
 - more accurate COVID diagnosis

Bayesian Decision Theory

- Fundamental statistical approach to classification/detection tasks
- Take a 2-class classification/detection task as an example:
 - Let's see if a student would pass or fail the course of CV.
 - Define a probabilistic variable ω describe the case of pass or fail.
 - That is, $\omega = \omega_1$ for pass, and $\omega = \omega_2$ for fail.
- Prior Probability
 - The **a priori** or **prior** probability reflects the knowledge of how likely we expect a certain state of nature before observation.
 - $P(\omega = \omega_1)$ or simply $P(\omega_1)$ as the **prior** that the next student would pass CV.
 - The priors must exhibit exclusivity and exhaustivity, i.e.,

$$\sum_{j=1}^{C} p(w_j) = 1$$

- Equal priors
 - If we have *equal* numbers of students pass/fail CV, then the priors are equal; in other words, the priors are uniform.

$$p(w_1) = p(w_2) = 0.5$$

Prior Probability (cont'd)

- Decision rule based on priors only
 - If the only available info is the prior, and the cost of any type of incorrect classification is equal, what would be a reasonable decision rule?
 - Decide ω_1 if

 $p(w_1) > p(w_2)$

otherwise decide ω_2 .

• What's the incorrect classification rate (or error rate) P_e?

$$P_e = \min\{p(w_1), p(\omega_2)\}$$

Class-Conditional Probability Density (or Likelihood)

 The probability density function (PDF) for input/observation x given a state of nature ω is written as:

 $p(x|w_1)$

• Here's (hopefully) the hypothetical class-conditional densities reflecting the time of the students spending on CV who eventually pass/fail this course.

Maximum Likelihood (MLE)

Posterior Probability & Bayes Formula

- If we know the prior distribution and the class-conditional density, can we come up with a better decision rule?
 - Yes We Can!
 - By calculating the posterior probability.
- Posterior probability $P(\omega|\mathbf{x})$:

- The probability of a certain state of nature ω given an observable **x**.
- Bayes formula:

$$P(w_j, \mathbf{x}) = p(\mathbf{x}|w_j)p(w_j) = p(w_j|\mathbf{x})p(\mathbf{x})$$

$$P(w_j|\boldsymbol{x}) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

And, we have
$$\sum_{j=1}^{C} P(\omega_j | \mathbf{x}) = 1$$
.

Decision Rule & Probability of Error

For a given observable **x** (e.g., time you can spend for CV), the decision rule (to take CV or not) will be now based on:

Decide w_1 if $p(w_1 | x) > p(w_2 | x)$

What's the probability of error P(error) (or P_{e})?

From Bayes Decision Rule to Detection Theory

• Hit (detection, TP), false alarm (FA, FP), miss (false reject, FN), rejection (TN)

- Receiver Operating Characteristics (ROC)
 - To assess the effectiveness of the designed features/classifiers
 - False alarm (P_{FA} or FP) vs. detection (P_d or TP) rates

Nonparametric Techniques: Parzen Window

- Parzen-window approach to estimate densities: assume e.g. that the region $R_{\rm n}$ is a d-dimensional hypercube

 $V_n = h_n^d$ (h_n : length of the edge of \Re_n)

Let $\varphi(u)$ be the following hypercube window function :

$$\varphi(\mathbf{u}) = \begin{cases} 1 & \left| \mathbf{u}_{j} \right| \leq \frac{1}{2} & j = 1, \dots, d \\ 0 & \text{otherwise} \end{cases}$$

• $\varphi((x-x_i)/h_n)$ is equal to unity if x_i falls within the hypercube of volume V_n centered at x, and equal to zero otherwise.

• The number of samples in this hypercube is:

$$k_n = \sum_{i=1}^{i=n} \varphi \left(\frac{x - x_i}{h_n} \right)$$

Substituting k_n in $p_n(x) = (k_n/n)/V_n$ we obtain:

$$p_n(x) = \frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{V_n} \varphi\left(\frac{x - x_i}{h_n}\right)$$

 $P_n(x)$ estimates p(x) as an average of functions of x and the samples (x_i) (i = 1, ..., n).

$$p_n(x) \xrightarrow[n \to \infty]{} p(x)$$

Nonparametric Techniques: Nearest Neighborhood

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label of the most similar training image

Nearest Neighbor Decision Boundaries

X₁ **Decision boundary** is Nearest neighbors the boundary in two dimensions between two classification regions Points are training **Decision boundaries** examples; colors can be noisy; affected give training labels by outliers **Background colors** How to smooth out give the category a decision boundaries? test point would Use more neighbors! be assigned **X**₀

22

K-Nearest Neighbors (kNN)

• Instead of copying label from nearest neighbor, take majority vote from K closest points

K-Nearest Neighbors (kNN)

- Make the decision boundary more smooth
- Reduce the effect of outliers

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Minor Remarks on NN-based Methods

- k-NN is easy to implement but not of much interest in practice. Why?
 - Choice of distance metrics might be an issue (see example below)
 - Measuring distances in high-dimensional spaces might not be a good idea.
 - Moreover, NN-based methods require lots of space and computation time! (NN-based methods are viewed as *data-driven* approaches.)

All three images have the same Euclidean distance to the original one.

Nonparametric Techniques

- kNN is also a nonparametric technique:
 - Specify k_n as a function of n, such as $k_n = \sqrt{n}$; the volume V_n is grown until it encloses k_n neighbors of x

Unsupervised Learning and Supervised Learning

Clustering

- Clustering is an unsupervised algorithm.
 - Given:
 a set of N unlabeled instances {x₁, ..., x_N}; # of clusters K
 - Goal: group the samples into K partitions
- Remarks:
 - High within-cluster (intra-cluster) similarity
 - Low between-cluster (inter-cluster) similarity
 - But...how to determine a proper similarity measure?

Similarity is NOT Always Objective...

Clustering (cont'd)

- Similarity:
 - A key component/measure to perform data clustering
 - Inversely proportional to distance
 - Example distance metrics:
 - Euclidean distance (L2 norm): $d(x, z) = ||x z||_2 = \sqrt{\sum_{i=1}^{D} (x_i z_i)^2}$
 - Manhattan distance (L1 norm): $d(x, z) = ||x z||_1 = \sum_{i=1}^{D} |x_i z_i|$
 - Note that *p*-norm of *x* is denoted as:

$$L_{p}(\mathbf{x}, \mathbf{z}) = \left\{ \sum_{i=1}^{D} (x_{i} - z_{i})^{p} \right\}^{1/p}$$
$$L_{0}(\mathbf{x}, \mathbf{z}) = \lim_{p \to 0} \left\{ \sum_{i=1}^{D} (x_{i} - z_{i})^{p} \right\}^{1/p}$$

Clustering (cont'd)

- Similarity:
 - A key component/measure to perform data clustering
 - Inversely proportional to distance
 - Example distance metrics:
 - Kernelized (non-linear) distance:

$$d(x,z) = \|\Phi(x) - \Phi(z)\|_2^2 = \|\Phi(x)\|_2^2 + \|\Phi(z)\|_2^2 - 2\Phi(x)^T \Phi(z)$$

• Taking Gaussian kernel for example: $K(x, z) = \Phi(x)^T \Phi(z) = exp\left(-\frac{\|x-z\|_2^2}{2\sigma^2}\right)$, we have $\|\Phi(x)\|_2^2 = \Phi(x)^T \Phi(x) = 1$

distance is more sensitive smaller σ .

• For example, L2 or kernelized distance metrics for the following two cases?

- Input: N examples $\{x_1, \ldots, x_N\}$ $(x_n \in \mathbb{R}^D)$; number of partitions K
- Initialize: *K* cluster centers μ_1, \ldots, μ_K . Several initialization options:
 - Randomly initialize μ_1, \ldots, μ_K anywhere in R^D
 - Or, simply choose any K examples as the cluster centers
- Iterate:
 - Assign each of example \boldsymbol{x}_n to its closest cluster center
 - Recompute the new cluster centers μ_k (mean/centroid of the set C_k)
 - Repeat while not converge
- Possible convergence criteria:
 - Cluster centers do not change anymore
 - Max. number of iterations reached
- Output:
 - *K* clusters (with centers/means of each cluster)

• Example (K = 2): Initialization, iteration #1: pick cluster centers

• Example (K = 2): iteration #1-2, assign data to each cluster

• Example (K = 2): iteration #2-1, update cluster centers

• Example (K = 2): iteration #2, assign data to each cluster

• Example (K = 2): iteration #3-1

• Example (K = 2): iteration #3-2

• Example (K = 2): iteration #4-1

• Example (K = 2): iteration #4-2

• Example (K = 2): iteration #5, cluster means are not changed.

K-Means Clustering (cont'd)

- Limitation
 - Preferable for round shaped clusters with similar sizes

- Sensitive to initialization; how to alleviate this problem?
- Sensitive to outliers; possible change from K-means to...
- Hard assignment only.
- Remarks
 - Expectation-maximization (EM) algorithm
 - Speed-up possible by hierarchical clustering (e.g., 100 = 10² clusters)

Dimension Reduction

- Principal Component Analysis (PCA)
 - Unsupervised & linear dimension reduction
 - Related to Eigenfaces, etc. feature extraction and classification techniques
 - Still very popular despite of its simplicity and effectiveness.
 - Goal:
 - Determine the projection, so that the variation of projected data is maximized.

Formulation & Derivation for PCA

- Input: a set of instances **x** without label info
- Output: a projection vector u_1 maximizing the variance of the projected data

the variance of the projected data is given by

$$\frac{1}{N}\sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{\mathrm{T}}\mathbf{x}_{n}-\mathbf{u}_{1}^{\mathrm{T}}\overline{\mathbf{x}}\right\}^{2}=\mathbf{u}_{1}^{\mathrm{T}}\mathbf{S}\mathbf{u}_{1}$$

where \mathbf{S} is the data covariance matrix defined by

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}}.$$

$$S = TT^T$$

Х

T be the matrix of preprocessed training examples, where each column contains one mean-subtracted image.

Formulation & Derivation for PCA

We now maximize the projected variance $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$ with respect to \mathbf{u}_1 . Clearly, this has to be a constrained maximization to prevent $\|\mathbf{u}_1\| \to \infty$. The appropriate constraint comes from the normalization condition $\mathbf{u}_1^T \mathbf{u}_1 = 1$. To enforce this constraint, we introduce a Lagrange multiplier that we shall denote by λ_1 , and then make an unconstrained maximization of

$$\mathbf{u}_1^{\mathrm{T}} \mathbf{S} \mathbf{u}_1 + \lambda_1 \left(1 - \mathbf{u}_1^{\mathrm{T}} \mathbf{u}_1
ight)$$
 .

By setting the derivative with respect to u_1 equal to zero, we see that this quantity will have a stationary point when

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

which says that \mathbf{u}_1 must be an eigenvector of **S**. If we left-multiply by $\mathbf{u}_1^{\mathrm{T}}$ and make use of $\mathbf{u}_1^{\mathrm{T}}\mathbf{u}_1 = 1$, we see that the variance is given by

$$\mathbf{u}_1^{\mathrm{T}} \mathbf{S} \mathbf{u}_1 = \lambda_1$$

and so the variance will be a maximum when we set u_1 equal to the eigenvector having the largest eigenvalue λ_1 . This eigenvector is known as the first principal component.

Formulation & Derivation for PCA

However \mathbf{TT}^{T} is a large matrix, and if instead we take the eigenvalue decomposition of

 $\mathbf{T}^T\mathbf{T}\mathbf{u}_i=\lambda_i\mathbf{u}_i$

then we notice that by pre-multiplying both sides of the equation with \mathbf{T} , we obtain

 $\mathbf{T}\mathbf{T}^T\mathbf{T}\mathbf{u}_i=\lambda_i\mathbf{T}\mathbf{u}_i$

Meaning that, if \mathbf{u}_i is an eigenvector of $\mathbf{T}^{\mathsf{T}}\mathbf{T}$, then $\mathbf{v}_i = \mathbf{T}\mathbf{u}_i$ is an eigenvector of \mathbf{S} . If we have a training set of 300 images of 100×100 pixels, the matrix $\mathbf{T}^{\mathsf{T}}\mathbf{T}$ is a 300×300 matrix, which is much more manageable than the $10,000 \times 10,000$ covariance matrix.

Eigenanalysis

- A *d* x *d* covariance matrix contains a maximum of *d* eigenvector/eigenvalue pairs.
 - How dimension reduction is realized? how to reconstruct the input data?

- Expanding a signal via eigenvectors as bases
 - With symmetric matrices (e.g., covariance matrix), eigenvectors are orthogonal.
 - They can be regarded as unit basis vectors to span any instance in the d-dim space.

Let's See an Example (CMU AMP Face Database)

- Let's take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.
- # of eigenvectors are expected to use for perfectly reconstructing the input = 64.
- Let's check it out!

What Do the Eigenvectors/Eigenfaces Look Like?

Mean

V8

V12

V1

V9

V13

V6

V10

V14

All 64 Eigenvectors, do we need them all?

Use only 1 eigenvector, MSE = 1233

MSE=1233.16

Use 2 eigenvectors, MSE = 1027

MSE=1027.63

Use 3 eigenvectors, MSE = 758

MSE=758.13

Use 4 eigenvectors, MSE = 634

MSE=634.54

Use 8 eigenvectors, MSE = 285

MSE=285.08

With 20 eigenvectors, MSE = 87

MSE=87.93

With 30 eigenvectors, MSE = 20

MSE=20.55

With 50 eigenvectors, MSE = 2.14

MSE=2.14

With 60 eigenvectors, MSE = 0.06

MSE=0.06

All 64 eigenvectors, MSE = 0

MSE=0.00

Linear Discriminant Analysis(LDA)

- Linear Discriminant Analysis(LDA)
 - Classify objects into one of two or more groups
 - Base on a set of features
- The transform tries to maximize the ratio of between variance to within class variance
- Between class variance

•
$$S_b = \frac{1}{m} \cdot \sum_{i=1}^k \sum_{j=1}^{m_i} (x_{ij} - \overline{x}) \cdot (x_{ij} - \overline{x})^T$$

• Within class variance
• $S_w = \frac{1}{m} \cdot \sum_{i=1}^k \sum_{j=1}^{m_i} (x_{ij} - \overline{x}_i) \cdot (x_{ij} - \overline{x}_i)^T = \sum_{i=1}^k p_i \times (cov_i)$

Mathematical Operations

- Maximize $J = \frac{|S_b|}{|S_w|}$
- If y is the transform of x
 - $\mathbf{y} = \mathbf{W}^{\mathrm{T}}\mathbf{x}$
- Compute J after the transform

•
$$S'_{w} = W^{T}S_{w}W$$

$$S'_{b} = W^{T}S_{b}W$$
$$J' = \frac{|S'_{b}|}{|S'_{w}|} = \frac{|W^{T}S_{b}W|}{|W^{T}S_{w}W|}$$

• Find W to maximize

Find W

- If we are lucky, S_w is a non-singular matrix
 - We can find S_w^{-1}
 - $S_b w = \lambda S_w w$
 - Calculate the eigenvector of $S_w^{-1}S_b$

- If not, well.....It's a tough work to do.
 - Everyone tries to avoid this
 - Using PCA

Small Example

original data

LDA

6

4

2

0

-2

-4

-6

Matthew Turk and Alex Pentland, "Eigenfaces for Recognition," Journal of Cognitive Neuroscience, Match 1991.

Experiment

Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection," *IEEE Transactions on Pattern Analysis And Machine Intelligence*, 1997.

Hyperparameters in ML

- Recall that for k-NN, we need to determine the k value in advance.
 - What is the best k value?
 - Or, take PCA for example, what is the best reduced dimension number?
- Hyperparameters: parameter choices for the learning model/algorithm
 - We need to determine such hyperparameters instead of guessing.
 - Let's see what we can and cannot do...

k = 1

How to Determine Hyperparameters?

- Idea #1
 - Let's say you are working on face recognition.
 - You come up with your very own feature extraction/learning algorithm.
 - You take a dataset to train your model, and select your hyperparameters (e.g., k of k-NN) based on the resulting performance.

• Might not generalize well.

Dataset

How to Determine Hyperparameters? (cont'd)

- Idea #2
 - Let's say you are working on face recognition.
 - You come up with your very own feature extraction/learning algorithm.
 - For a dataset of interest, you split it into training and test sets.
 - You train your model with possible hyperparameter choices (e.g., k in k-NN), and select those work best on test set data.

• That's called cheating...

How to Determine Hyperparameters? (cont'd)

- Idea #3
 - Let's say you are working on face recognition.
 - You come up with your very own feature extraction/learning algorithm.
 - For the dataset of interest, it is split it into training, validation, and test sets.
 - You train your model with possible hyperparameter choices (k in k-NN), and select those work best on the validation set.

• OK, but...

Training set	Validation set	Test set	
Training set	Validation set	Test set	

How to Determine Hyperparameters? (cont'd)

- Idea #3.5
 - What if only training and test sets are given, not the validation set?
 - Cross-validation (or *k-fold* cross validation)
 - Split the training set into k folds with a hyperparameter choice
 - Keep 1 fold as validation set and the remaining k-1 folds for training
 - After each of k folds is evaluated, report the average validation performance.
 - Choose the hyperparameter(s) which result in the highest average validation performance.
 - Take a 4-fold cross-validation as an example...

Training set			Test set	
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set