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Image Classification

Input: image Output: Assign image to one
of a fixed set of categories

cat



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Problem: Semantic Gap

[[1e5 112 1@8 111 14 99 186 99 96 183 112 119 184 97 93 B7]
[ 91 98 182 106 184 79 098 183 99 185 123 136 118 185 94 85]
[ 76 B85 9@ 185 128 185 B7 96 95 99 115 112 186 183 93 B&5]
[ 99 B1 81 93 129 131 127 188 95 9B 182 99 96 093 101 94]
[1e6 91 61 64 6% 591 BB B85 191 187 189 98 75 B4 96 95]
[114 188 85 55 55 69 64 54 64 87 112 129 98 74 B4 91]
[133 137 147 183 65 B1 BB 65 52 54 74 B4 182 93 85 B82]
[128 137 144 140 189 95 B6 78 62 65 63 63 68 73 86 101]
[125 133 148 137 119 121 117 %4 65 79 B0 65 54 64 72 98]
[127 125 131 147 133 127 126 131 111 96 B9 75 61 64 72 84]
[115 114 189 123 150 148 131 118 113 189 188 92 74 65 72 78]
[ 83 93 9@ 97 188 147 131 118 113 114 113 189 186 95 77 &el
[ 63 77 86 &1 77 79 182 123 117 115 117 125 125 138 115 &7]
[ 62 65 B2 B9 7B 71 B0 101 124 126 119 181 107 114 131 119]
[ 63 65 75 B8 B9 71 62 81 120 138 135 185 81 098 118 118]
[ 87 65 71 87 186 95 69 45 76 130 126 187 92 94 185 112]
[118 97 82 &6 117 123 116 66 41 51 95 93 B9 95 182 187]
[164 146 112 8@ B2 128 124 184 76 4B 45 66 BB 101 182 189]
[157 170 157 120 93 B6 114 132 112 97 6% 55 7@ B2 99 094]
[138 128 134 161 139 188 109 118 121 134 114 B7 65 53 69 B86]
[128 112 96 117 150 144 120 115 104 187 182 93 87 B1 72 79]
[123 187 96 86 B3 112 153 149 122 189 184 75 8@ 187 112 99]
[122 121 182 8@ B2 B6 94 117 145 148 153 182 58 78 92 187]
[122 164 148 1083 71 56 78 B3 93 183 119 139 102 61 69 B84]]

What the computer sees

An image is just a big grid of numbers
between [0, 255]
e.g. 800 x 600 x 3
(3 channels RGB)



Challenges

* Viewpoint variation

* Intraclass variation
* Fine-grained categories
* Background clutter

* lllumination changes
e Deformation

* Occlusion



Overview of Recognition Pipeline

Hand-crafted Hand-crafted
Input —> —> —|  Output

features algorithm

(a) Traditional vision pipeline

Hand-crafted Machine
Input —> ‘~ ‘ —> o —»  Output
features learning <« -
(b) Classic machine learning pipeline
Learned Machine
Input ——» ——» o —>»{  Output
features - - . Learning € - -

(c) Deep learning pipeline
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Machine Learning:
Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):
# Use model to predict labels
return test_labels
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Pattern Recognition
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From Probability to Bayes Decision Rule

* Example: Testing/Screening of COVID-19

 Distributions between positive/negative test results (e.g., PCR, antibody, etc.)
e further away from each other
* more accurate COVID diagnosis

—» Ground Truth

Positive ~ Negative
Negative ; Positive

|
for COVID for COVID

+

Testing Result

100%

P(TP)

-’
/ -
. .
. .
. .
:
.
‘
;

0% P(FP) 100%
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Bayesian Decision Theory

* Fundamental statistical approach to classification/detection tasks

* Take a 2-class classification/detection task as an example:
* Let’s see if a student would pass or fail the course of CV.
» Define a probabilistic variable w describe the case of pass or fail.
* Thatis, w = w, for pass, and w = w, for fail.

* Prior Probability

* The a priori or prior probability reflects the knowledge of
how likely we expect a certain state of nature before observation.

* P(w = w,) or simply P(w,) as the prior that the next student would pass CV.
* The priors must exhibit exclusivity and exhaustivity, i.e.,

ZP(WJ') =1

* If we have equal numbers of students pass/fail CV, then the priors are equal;
in other words, the priors are uniform.

* Equal priors

p(wy) =p(wy) = 0.5



Prior Probability (cont’d)

* Decision rule based on priors only

* |If the only available info is the prior,
and the cost of any type of incorrect classification is equal,

what would be a reasonable decision rule?

* Decide w, if
p(wy) > p(w,)

otherwise decide w, .
* What’s the incorrect classification rate (or error rate) P,?

P, = min{p(wy),p(w3)}



Class-Conditional Probability Density
(or Likelihood)

* The probability density function (PDF) for input/observation x given a state of nature w
is written as:

p(x|wy)

* Here’s (hopefully) the hypothetical class-conditional densities
reflecting the time of the students spending on CV who eventually pass/fail this course.

p(x|wy) p(x|wy)

Training data
(observe/collect in advance)

v

Maximum Likelihood (MLE)
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Posterior Probability & Bayes Formula

* If we know the prior distribution and the class-conditional density,
can we come up with a better decision rule?

* Yes We Can!
* By calculating the posterior probability.

 Posterior probability P(w|x) : |
* The probability of a certain state of nature w given an observable x.

* Bayes formula:
P(wj, x) = p(xlw;)p(w;) = p(w;lx)p(x)

p(x|w;)P(w;)
p(x)

P(wjlx) =

And, we have 25;:1 P(wj|x) = 1.

15



Decision Rule & Probability of Error

* For a given observable x (e.g., time you can spend for CV),
the decision rule (to take CV or not) will be now based on: / \

<

Decide wy if p(wy|x) > p(w,|x) N

w* = argmaxp(w;|x) ~ Maximum A Posterior (MAP)~-cr ALL] ‘
i

NOT PASS

* What’s the probability of error P(error) (or P,)? :

p(wy|x) p(wq|x)

[
»

P, = min{p(w;|x), P(w,|x)} overall x

ST [ IV S p——



From Bayes Decision Rule to Detection Theory

* Hit (detection, TP), false alarm (FA, FP), miss (false reject, FN), rejection (TN)

p(x|wy)p(ws,) p(x|wy)p(wy) TP =j p(x|wy)p(wy) dx
T

FP:] p(x|wy)p(w,) dx
T

v

T T*: EER (equal error rate): FP=FN

* Receiver Operating Characteristics (ROC) o ) €qual error
. . . = 0.8
* To assess the effectiveness of the designed features/classifiers 0
* False alarm (Pg, or FP) vs. detection (P4 or TP) rates a /fil/;ldom chance
0 0.1 1

false positive rate
17



Nonparametric Techniques:
Parzen Window

* Parzen-window approach to estimate densities: assume
e.g. that the region R|n is a d-dimensional hypercube

V_=h¢ (h_:length of the edge of R )
Let @(u) be the following hypercube window function :

. .
go(u):<1 ‘UJ‘SE ]=1,....d

0 otherwise

* o((x-x;)/h_) is equal to unity if x; falls within the
hypercube of volume V, centered at x, and equal to zero
otherwise.



* The number of samples in this hypercube is:

I=n

kn =Z§0 X;Xi
=1

n

Substituting k. in p,(x) = (k,/n)/V, we obtain:

1381 (x—x
pn(X)=HZ\7§0£ n )

i=1 Vn n

P (x) estimates p(x) as an average of functions of x and
the samples (x)) (i=1,... ,n).

P, (X) = p(X)



Nonparametric Techniques:
Nearest Neighborhood

def train(images, labels): Memorize all data
return model and labels

def predict(model, test_images): Predict the label of
" the most similar
training image

return test labels

20
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Nearest Neighbor Decision
Boundaries

X1
Decision boundary is
the boundary
between two
classification regions

Nearest neighbors
in two dimensions .

Points are training
examples; colors
give training labels

Decision boundaries
can be noisy; affected

by outliers
B.ackground colors | How to smooth out
give th_e category a s decision boundaries?
test pc.>|nt would Use more neighbors!
be assigned
Xo



K-Nearest Neighbors (kNN)

* Instead of copying label from nearest neighbor,
take majority vote from K closest points

K=1 K=3

23



K-Nearest Neighbors (kNN)

* Make the decision boundary more smooth
* Reduce the effect of outliers

K=1

http://vision.stanford.edu/teaching/cs231n-demos/knn/

24


http://vision.stanford.edu/teaching/cs231n-demos/knn/

Minor Remarks on NN-based Methods

* k-NN is easy to implement but not of much interest in practice. Why?
e Choice of distance metrics might be an issue (see example below)
* Measuring distances in high-dimensional spaces might not be a good idea.

* Moreover, NN-based methods require lots of space and computation time!
(NN-based methods are viewed as data-driven approaches.)

Original Boxed Shifted Tinted

All three images have the same Euclidean distance to the original one.

Image credit: Stanford CS231n 25



Nonparametric Techniques

* kNN is also a nonparametric technique:

« Specify k, as a function of n, such as k., = Vh; the volume
V_ is grown until it encloses k, neighbors of x



Unsupervised Learning and
Supervised Learning

Parameter

Learning
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Uncorrelated Boundary
< Events
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Clustering

e Clustering is an unsupervised algorithm.

* Given:
a set of N unlabeled instances {x,, ..., x,}; # of clusters K

* Goal: group the samples into K partitions

* Remarks:
* High within-cluster (intra-cluster) similarity
* Low between-cluster (inter-cluster) similarity
e But...how to determine a proper similarity measure?

3
2}
1
o

| ! 1 ] 1 [} | [
@« ~ > » - @ [ - ° - ~
T T T T T T T T T
. .

4k o N
{ifol)]
7 ﬁx*'v"*f 4

(a) Input data (b) Desired clustering
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Similarity is NOT Always Objective...

29



Clustering (cont’d)

e Similarity:
* A key component/measure to perform data clustering
* Inversely proportional to distance
* Example distance metrics:

* Euclidean distance (L2 norm): d(x,z) = ||[x — z||, = le ((x; — z;)?

* Manhattan distance (L1 norm): d(x,z) = |lx — z||, = Yr1lx; — z|

* Note that p-norm of x is denoted as:

1
D /P

Lp(x,z) = Z(xi —z;)P

= Vi
1, Vi

D
Lo(x,z) = 11m Z(xi — z;)P

i=1



Clustering (cont’d)

e Similarity:

* Example distance metrics:
* Kernelized (non-linear) distance:

d(x,z) = |P(x) — (@I = IP)IZ + I3 — 20 (x) P (2)

o2
* Taking Gaussian kernel for example: K(x,z) = ®(x)T®(z) = exp (_ ¢ Z”Z)'

wehave ()|} = e () = 1

distance is more sensitive smaller o.

202

* For example, L2 or kernelized distance metrics for the following two cases?

a® 00
o gBo 4,
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K-Means Clustering

Input: N examples {x1,...,Xn} (X, €RP); number of partitions K

Initialize: K cluster centers ps, ..., Ug. Several initialization options:

¢ Randomly initialize py, .. ., ux anywhere in RP

* Or, simply choose any K examples as the cluster centers
Ilterate:

* Assign each of example x,, to its closest cluster center
* Recompute the new cluster centers ik (mean/centroid of the set C)
* Repeat while not converge

Possible convergence criteria:

* Cluster centers do not change anymore

* Max. number of iterations reached

Output:

* K clusters (with centers/means of each cluster)

32



K-Means Clustering

 Example (K = 2): Initialization, iteration #1: pick cluster centers

33



K-Means Clustering

 Example (K = 2): iteration #1-2, assign data to each cluster

34



K-Means Clustering

 Example (K = 2): iteration #2-1, update cluster centers

35



K-Means Clustering

 Example (K = 2): iteration #2, assign data to each cluster

36



K-Means Clustering

 Example (K = 2): iteration #3-1

37



K-Means Clustering

 Example (K = 2): iteration #3-2

38



K-Means Clustering

 Example (K = 2): iteration #4-1

39



K-Means Clustering

 Example (K = 2): iteration #4-2

40



K-Means Clustering

 Example (K = 2): iteration #5, cluster means are not changed.

41



K-Means Clustering (cont’d)

 Limitation

* Preferable for round shaped clusters with similar sizes

=8 5 SR
L 8 L 4R

h i,

e T P xR ~ chig? - b +4
: 355 A #e ;‘ | - .

i > & 7 e > ol il

e S Sk, RIBEE _ d

& Y L SLY

* Sensitive to initialization; how to alleviate this problem?
* Sensitive to outliers; possible change from K-means to...
* Hard assignment only.

 Remarks
* Expectation-maximization (EM) algorithm
» Speed-up possible by hierarchical clustering (e.g., 100 = 102 clusters)



Dimension Reduction

* Principal Component Analysis (PCA)

* Unsupervised & linear dimension reduction

Related to Eigenfaces, etc. feature extraction and classification techniques

Still very popular despite of its simplicity and effectiveness.

Goal:

* Determine the projection, so that the variation of projected data is maximized.

y

A

axis that describes the
largest variation for data
projected onto it.

\ 4



Formulation & Derivation for PCA

* Input: a set of instances x without label info

* Output: a projection vector u; maximizing the variance of the projected data

y the variance of the projected data is given by

N
37 {ulx, - ul®}’ = uf'su,
n=1

where S is the data covariance matrix defined by

=~ Z(Xn —%)(x, - %)T.

S=TT"

T be the matrix of preprocessed training examples, where each
column contains one mean-subtracted image.

\ 4
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Formulation & Derivation for PCA

We now maximize the projected variance u] Su; with respect to u,. Clearly, this has
to be a constrained maximization to prevent ”111 “ — o0. The appropriate constraint
comes from the normalization condition uu; = 1. To enforce this constraint,
we introduce a Lagrange multiplier that we shall denote by \;, and then make an
unconstrained maximization of

ulTSul + A\ (1 — uful) ;

By setting the derivative with respect to u; equal to zero, we see that this quantity
will have a stationary point when

Sll1 = )\1111

which says that u; must be an eigenvector of S. If we left-multiply by u; and make
use of uj u; = 1, we see that the variance is given by

urIFSul = )tl

and so the variance will be a maximum when we set u; equal to the eigenvector
having the largest eigenvalue A;. This eigenvector is known as the first principal
component.

45



Formulation & Derivation for PCA

However TTT is a large matrix, and if instead we take the eigenvalue
decomposition of

TT Tui = )\z u;

then we notice that by pre-multiplying both sides of the equation
with T, we obtain

TT!  Tu;, = \; Tu,
Meaning that, if u, is an eigenvector of T™T, then v, = Tu, is an
eigenvector of S. If we have a training set of 300 images of 100 x 100

pixels, the matrix TTT is a 300 x 300 matrix, which is much more
manageable than the 10,000 x 10,000 covariance matrix.

46



Eigenanalysis

A d X d covariance matrix contains a maximum of d
eigenvector/eigenvalue pairs.

* How dimension reduction is realized? how to reconstruct
the input data?

* Expanding a signal via eigenvectors as bases

* With symmetric matrices (e.g., covariance matrix),
eigenvectors are orthogonal.

* They can be regarded as unit basis vectors to span any
instance in the d-dim space.



Let’s See an Example (CMU AMP Face Database)

* Let’s take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.
* # of eigenvectors are expected to use for perfectly reconstructing the input = 64.

e Let’s check it out!

49



What Do the Eigenvectors/Eigenfaces Look Like?

Mean

3

V1
.
V5
-
V9
.
V13

50



All 64 Eigenvectors, do we need them all?
Mean w1 w2 W3 V4 Wh ()] T
-

e 2 2-R°% R §
S E S S S e
- - z s
& ¥ ¥ FR B B
W24 W25 ] VaT V28 ] vag | Wl
ol B 2 B9 T S B B
Va2 W33 Va4 Wag Tk ] VaT vaa Wag
By e e Bl = e v
W40 W41 V42 Va3 W4 V45 V4a WaT
B kS BB v TS
V4B W4a VED Wa1 Va2 VE3 Wi V55
R e B

W56 VAT VEE L] VG Vi1 V2 Vi3
S e




Use only 1 eigenvector, MSE = 1233

MSE=1233.16
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Use 2 eigenvectors, MSE = 1027

MSE=1027.63
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Use 3 eigenvectors, MSE = 758

MSE=758.13
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Use 4 eigenvectors, MSE = 634

MSE=634.54
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Use 8 eigenvectors, MSE = 285

MSE=285.08

56



With 20 eigenvectors, MSE = 87

MSE=87.93

57



With 30 eigenvectors, MSE = 20

MSE=20.55

58



With 50 eigenvectors, MSE = 2.14

MSE=2.14

59



With 60 eigenvectors, MSE = 0.06

MSE=0.06

60



All 64 eigenvectors, MSE =0

MSE=0.00

61



Linear Discriminant Analysis(LDA)

* Linear Discriminant Analysis(LDA)
» Classify objects into one of two or more groups
* Base on a set of features

* The transform tries to maximize the ratio of between
variance to within class variance
 Between class variance

. 1 k M
= ZZ(XH ~%) - (x;— %)
io1 j=1

e Within class variance

ITlj

:% Z (xi — %) - (x3 —x) —Zplx(mv)

i=1 j=1



Mathematical Operations

My ]_|Sb|
aximize |Sw|

 If y is the transform of x

- y=Wk
 Compute J after the transform
. Si, = WIS, W
) Si, = WIS, W
y ISyl (WS, w
CISwl [WTS, W

e Find W to maximize ]’



Find W

* If we are lucky, S,, is @ non-singular matrix
* We can find S

* Sp,w = AS,,w
e Calculate the eigenvector of Su}l Sy

* If not, well.......... It’s a tough work to do.

e Everyone tries to avoid this
* Using PCA

Arong Media IC & System Lab



Small Example

* O ¥ OO

* O ¥ OO

test vectar

zetl

sets
transformed setl
transformed sete

Arong

Media IC & System Lab
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Hyperparameters in ML

* Recall that for k-NN, we need to determine the k value in advance.
* What is the best k value?

* Or, take PCA for example, what is the best reduced dimension number?

* Hyperparameters: parameter choices for the learning model/algorithm
* We need to determine such hyperparameters instead of guessing.
* Let’s see what we can and cannot do...

Image credit: Stanford CS231n 67



How to Determine Hyperparameters?

ldea #1

* Let’s say you are working on face recognition.
* You come up with your very own feature extraction/learning algorithm.

You take a dataset to train your model, and select your hyperparameters
(e.g., k of k-NN) based on the resulting performance.

-2 -1

Might not generalize well.

68



How to Determine Hyperparameters? (cont’d)

ldea #2

Let’s say you are working on face recognition.
You come up with your very own feature extraction/learning algorithm.
For a dataset of interest, you split it into training and test sets.

You train your model with possible hyperparameter choices (e.g., kin k-NN),
and select those work best on test set data.

¢r

That’s called cheating...

Training set Test set
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How to Determine Hyperparameters? (cont’d)

ldea #3

Let’s say you are working on face recognition.
You come up with your very own feature extraction/learning algorithm.
For the dataset of interest, it is split it into training, validation, and test sets.

You train your model with possible hyperparameter choices (k in k-NN),
and select those work best on the validation set.

¢r

OK, but...

Training set Validation set Test set

70



How to Determine Hyperparameters? (cont’d)

e ldea #3.5
* What if only training and test sets are given, not the validation set?
e Cross-validation (or k-fold cross validation)

* Split the training set into k folds with a hyperparameter choice
* Keep 1 fold as validation set and the remaining k-1 folds for training

» After each of k folds is evaluated, report the average validation performance.

* Choose the hyperparameter(s) which result in the highest average validation
performance.

e Take a 4-fold cross-validation as an example...

Fold 1 Fold 2 Fold 3 Fold 4 Test set

Fold 1 Fold 2 Fold 3 Fold 4 Test set
Fold 1 Fold 2 Fold 3 Fold 4 Test set
Fold 1 Fold 2 Fold 3 Fold 4 Test set
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