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Outline

• Overview of recognition/classification pipeline

• Overview of machine learning

• From probability to Bayes decision rule

• Nonparametric techniques: Parzen window and nearest neighbor

• Unsupervised learning and supervised learning

• Unsupervised learning
• Clustering: k-means
• Dimension reduction: PCA and LDA 

• Training, testing, & validation

• Supervised learning
• Linear classification: support vector machine (SVM)
• Combining models: decision tree, boosting

• Examples
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Image Classification

4

cat
bird
deer
dog
truck

Output: Assign image to one 
of a fixed set of categories

This image by Nikita is 
licensed under CC-BY 2.0

Input: image

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Problem: Semantic Gap
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What the computer sees

An image is just a big grid of numbers 
between [0, 255]
e.g. 800 x 600 x 3
(3 channels RGB)



Challenges

• Viewpoint variation

• Intraclass variation

• Fine-grained categories

• Background clutter

• Illumination changes

• Deformation

• Occlusion

• …
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Overview of Recognition Pipeline
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AI, Machine Learning, and Deep Learning
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[Kaggle]



Machine Learning: 
Data-Driven Approach
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1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set
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From Probability to Bayes Decision Rule
• Example: Testing/Screening of COVID-19

• Distributions between positive/negative test results (e.g., PCR, antibody, etc.)

• further away from each other

• more accurate COVID diagnosis
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Bayesian Decision Theory

• Fundamental statistical approach to classification/detection tasks

• Take a 2-class classification/detection task as an example:

• Let’s see if a student would pass or fail the course of CV.

• Define a probabilistic variable ω describe the case of pass or fail.

• That is, ω = ω1 for pass, and ω = ω2 for fail.

• Prior Probability

• The a priori or prior probability reflects the knowledge of 
how likely we expect a certain state of nature before observation.

• P(ω = ω1) or simply P(ω1) as the prior that the next student would pass CV.

• The priors must exhibit exclusivity and exhaustivity, i.e., 

• Equal priors

• If we have equal numbers of students pass/fail CV, then the priors are equal;
in other words, the priors are uniform.
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𝑗=1

𝐶

𝑝 𝑤𝑗 = 1

𝑝 𝑤1 = 𝑝 𝑤2 = 0.5



Prior Probability (cont’d)

• Decision rule based on priors only

• If the only available info is the prior, 
and the cost of any type of incorrect classification is equal, 
what would be a reasonable decision rule?

• Decide ω1 if

otherwise decide ω2 .

• What’s the incorrect classification rate (or error rate) Pe?
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𝑝 𝑤1 > 𝑝 𝑤2

𝑃𝑒 = min 𝑝 𝑤1 , 𝑝 𝜔2



Class-Conditional Probability Density 
(or Likelihood)
• The probability density function (PDF) for input/observation x given a state of nature ω

is written as:

• Here’s (hopefully) the hypothetical class-conditional densities 
reflecting the time of the students spending on CV who eventually pass/fail this course.
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𝑝 ȁ𝑥 𝑤1

𝑝 ȁ𝑥 𝑤1𝑝 ȁ𝑥 𝑤2

Training data
(observe/collect in advance)

Maximum Likelihood (MLE)



Posterior Probability & Bayes Formula

• If we know the prior distribution and the class-conditional density, 
can we come up with a better decision rule?

• Yes We Can! 

• By calculating the posterior probability.

• Posterior probability 𝑃(𝜔ȁ𝒙) :

• The probability of a certain state of nature ω given an observable x.

• Bayes formula:

𝑃 𝑤𝑗 , 𝒙 = 𝑝 ȁ𝑥 𝑤𝑗 𝑝 𝑤𝑗 = 𝑝 𝑤𝑗ȁ𝑥 𝑝 𝑥

𝑃 𝑤𝑗 𝒙 =
𝑝 ȁ𝑥 𝑤𝑗 𝑃 𝑤𝑗

𝑝 𝑥

And, we have σ𝑗=1
𝐶 𝑃(𝜔𝑗ȁ𝒙) = 1.
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Decision Rule & Probability of Error

• For a given observable x (e.g., time you can spend for CV), 
the decision rule (to take CV or not) will be now based on:

• What’s the probability of error P(error) (or Pe)?
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Decide 𝑤1 if 𝑝 𝑤1 𝒙 > 𝑝 𝑤2 𝒙

𝑤∗ = argmax
𝑖

𝑝 ȁ𝑤𝑖 𝑥

𝑝 𝑤2ȁ𝑥 𝑝 𝑤1ȁ𝑥

𝑃𝑒 = min 𝑝 ȁ𝑤1 𝑥 , 𝑃 ȁ𝑤2 𝑥 over all x
T

Maximum A Posterior (MAP)



From Bayes Decision Rule to Detection Theory

• Hit (detection, TP), false alarm (FA, FP), miss (false reject, FN), rejection (TN)

• Receiver Operating Characteristics (ROC)

• To assess the effectiveness of the designed features/classifiers

• False alarm (PFA or FP) vs. detection (Pd or TP) rates
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𝑝 𝑥ȁ𝑤2 𝑝 𝑤2
𝑝 𝑥ȁ𝑤1 𝑝 𝑤1

T

𝑇𝑃 = න
𝑇

∞

𝑝 ȁ𝑥 𝑤1 𝑝 𝑤1 ⅆ𝑥

𝐹𝑃 = න
𝑇

∞

𝑝 ȁ𝑥 𝑤2 𝑝 𝑤2 ⅆ𝑥

T*: EER (equal error rate): FP=FN



Nonparametric Techniques: 
Parzen Window

• Parzen-window approach to estimate densities: assume 
e.g. that the region Rn is a d-dimensional hypercube

• ((x-xi)/hn) is equal to unity if xi falls within the 
hypercube of volume Vn centered at x, and equal to zero 
otherwise.
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• The number of samples in this hypercube is:

Substituting kn in pn(x) = (kn/n)/Vn we obtain:

Pn(x) estimates p(x) as an average of functions of x and 

the samples (xi) (i = 1,… ,n).
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Nonparametric Techniques: 
Nearest Neighborhood
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Memorize all data 
and labels

Predict the label of 
the most similar 
training image
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Nearest Neighbor Decision 
Boundaries
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x0

x1

Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels

Background colors 
give the category a 
test point would 
be assigned 

x

Decision boundary is 
the boundary 
between two 
classification regions

Decision boundaries 
can be noisy; affected 
by outliers

How to smooth out 
decision boundaries?
Use more neighbors!



K-Nearest Neighbors (kNN)

• Instead of copying label from nearest neighbor, 
take majority vote from K closest points
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K = 1 K = 3



K-Nearest Neighbors (kNN)

• Make the decision boundary more smooth

• Reduce the effect of outliers
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K = 1 K = 3

http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Minor Remarks on NN-based Methods

• k-NN is easy to implement but not of much interest in practice. Why?

• Choice of distance metrics might be an issue (see example below)

• Measuring distances in high-dimensional spaces might not be a good idea.

• Moreover, NN-based methods require lots of space and computation time!
(NN-based methods are viewed as data-driven approaches.)

25Image credit: Stanford CS231n

All three images have the same Euclidean distance to the original one.



Nonparametric Techniques

• kNN is also a nonparametric technique:
• Specify kn as a function of n,  such as kn = n; the volume 

Vn is grown until it encloses kn neighbors of x
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Unsupervised Learning and 
Supervised Learning
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Clustering

• Clustering is an unsupervised algorithm.
• Given:  

a set of N unlabeled instances {x1, …, xN}; # of clusters K

• Goal: group the samples into K partitions

• Remarks:
• High within-cluster (intra-cluster) similarity

• Low between-cluster (inter-cluster) similarity

• But…how to determine a proper similarity measure?
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Similarity is NOT Always Objective…
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Clustering (cont’d) 

• Similarity:

• A key component/measure to perform data clustering

• Inversely proportional to distance

• Example distance metrics:

• Euclidean distance (L2 norm): ⅆ 𝑥, 𝑧 = 𝑥 − 𝑧 2 = σ𝑖=1
𝐷 𝑥𝑖 − 𝑧𝑖

2

• Manhattan distance (L1 norm): ⅆ 𝑥, 𝑧 = 𝑥 − 𝑧 1 = σ𝑖=1
𝐷 𝑥𝑖 − 𝑧𝑖

• Note that p-norm of x is denoted as:
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𝐿𝑃 𝒙, 𝒛 = 

𝑖=1
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Clustering (cont’d) 
• Similarity:

• A key component/measure to perform data clustering

• Inversely proportional to distance

• Example distance metrics:

• Kernelized (non-linear) distance: 

ⅆ 𝑥, 𝑧 = Φ(𝑥) − Φ 𝑧 2
2 = Φ(𝑥) 2

2 + Φ(𝑧) 2
2 − 2Φ(𝑥)𝑇Φ(𝑧)

• Taking Gaussian kernel for example: 𝐾 𝑥, 𝑧 = Φ 𝑥 𝑇Φ 𝑧 = 𝑒𝑥𝑝 −
𝑥−𝑧 2

2

2𝜎2
,

we have

distance is more sensitive smaller σ.

• For example, L2 or kernelized distance metrics for the following two cases?
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Φ(𝑥) 2
2 = Φ 𝑥 𝑇Φ 𝑥 = 1



K-Means Clustering

• Input: N examples {x1, . . . , xN } (xn ∈RD ); number of partitions K

• Initialize: K cluster centers µ1, . . . , µK . Several initialization options:
• Randomly initialize µ1, . . . , µK anywhere in RD

• Or, simply choose any K examples as the cluster centers

• Iterate:
• Assign each of example xn to its closest cluster center

• Recompute the new cluster centers µk (mean/centroid of the set Ck )

• Repeat while not converge

• Possible convergence criteria:
• Cluster centers do not change anymore

• Max. number of iterations reached

• Output:
• K clusters (with centers/means of each cluster)
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K-Means Clustering

• Example (K = 2): Initialization, iteration #1: pick cluster centers
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K-Means Clustering

• Example (K = 2): iteration #1-2, assign data to each cluster
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K-Means Clustering

• Example (K = 2): iteration #2-1, update cluster centers
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K-Means Clustering

• Example (K = 2): iteration #2, assign data to each cluster
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K-Means Clustering

• Example (K = 2): iteration #3-1
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K-Means Clustering

• Example (K = 2): iteration #3-2
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K-Means Clustering

• Example (K = 2): iteration #4-1
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K-Means Clustering

• Example (K = 2): iteration #4-2
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K-Means Clustering

• Example (K = 2): iteration #5, cluster means are not changed.
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K-Means Clustering (cont’d)

• Limitation

• Preferable for round shaped clusters with similar sizes

• Sensitive to initialization; how to alleviate this problem?

• Sensitive to outliers; possible change from K-means to…

• Hard assignment only. 

• Remarks
• Expectation-maximization (EM) algorithm

• Speed-up possible by hierarchical clustering (e.g., 100 = 102 clusters)
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Dimension Reduction

• Principal Component Analysis (PCA)

• Unsupervised & linear dimension reduction

• Related to Eigenfaces, etc. feature extraction and classification techniques

• Still very popular despite of its simplicity and effectiveness.

• Goal: 

• Determine the projection, so that the variation of projected data is maximized.

43x

y

axis that describes the 
largest variation for data 
projected onto it.



Formulation & Derivation for PCA

• Input: a set of instances x without label info

• Output: a projection vector u1 maximizing the variance of the projected data

44

x

y

𝑆 = 𝑇𝑇𝑇

T be the matrix of preprocessed training examples, where each 
column contains one mean-subtracted image.



Formulation & Derivation for PCA
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Formulation & Derivation for PCA

46

However TTT is a large matrix, and if instead we take the eigenvalue 

decomposition of

then we notice that by pre-multiplying both sides of the equation 

with T, we obtain

Meaning that, if ui is an eigenvector of TTT, then vi = Tui is an 

eigenvector of S. If we have a training set of 300 images of 100 × 100 

pixels, the matrix TTT is a 300 × 300 matrix, which is much more 

manageable than the 10,000 × 10,000 covariance matrix.



Eigenanalysis

• A d x d covariance matrix contains a maximum of d 
eigenvector/eigenvalue pairs. 
• How dimension reduction is realized? how to reconstruct 

the input data?

• Expanding a signal via eigenvectors as bases
• With symmetric matrices (e.g., covariance matrix), 

eigenvectors are orthogonal.

• They can be regarded as unit basis vectors to span any 
instance in the d-dim space.
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Let’s See an Example (CMU AMP Face Database)

• Let’s take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.

• # of eigenvectors are expected to use for perfectly reconstructing the input = 64.

• Let’s check it out!
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What Do the Eigenvectors/Eigenfaces Look Like?
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V4 V5 V6 V7

V8 V9 V10 V11

V12 V13 V14 V15

Mean V1 V2 V3



All 64 Eigenvectors, do we need them all?
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Use only 1 eigenvector, MSE = 1233
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MSE=1233.16



Use 2 eigenvectors, MSE = 1027
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MSE=1027.63



Use 3 eigenvectors, MSE = 758
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MSE=758.13



Use 4 eigenvectors, MSE = 634
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MSE=634.54



Use 8 eigenvectors, MSE = 285
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MSE=285.08



With 20 eigenvectors, MSE = 87
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MSE=87.93



With 30 eigenvectors, MSE = 20
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MSE=20.55



With 50 eigenvectors, MSE = 2.14
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MSE=2.14



With 60 eigenvectors, MSE = 0.06
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MSE=0.06



All 64 eigenvectors, MSE = 0
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MSE=0.00



Linear Discriminant Analysis(LDA)
• Linear Discriminant Analysis(LDA)

• Classify objects into one of two or more groups 

• Base on a set of features

• The transform tries to maximize the ratio of between 
variance to within class variance

• Between class variance
•

• Within class variance
•

62
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Mathematical Operations

• Maximize

• If y is the transform of x
•

• Compute J after the transform
•

•

•

• Find W to maximize  

63



Find W

• If we are lucky,      is a non-singular matrix
• We can find 

•
• Calculate the eigenvector of 

• If not, well……….It’s a tough work to do.
• Everyone tries to avoid this

• Using PCA

Arong Media IC & System Lab 64



Small Example

Arong Media IC & System Lab 65



Experiment

Aron 66

Matthew Turk and Alex Pentland, “Eigenfaces for Recognition,” Journal of 
Cognitive Neuroscience, Match 1991.
Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman, “Eigenfaces 
vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE 
Transactions on Pattern Analysis And Machine Intelligence, 1997.



Hyperparameters in ML

• Recall that for k-NN, we need to determine the k value in advance. 

• What is the best k value?

• Or, take PCA for example, what is the best reduced dimension number?

• Hyperparameters: parameter choices for the learning model/algorithm

• We need to determine such hyperparameters instead of guessing.

• Let’s see what we can and cannot do…
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k = 1 k = 3 k = 5

Image credit: Stanford CS231n



How to Determine Hyperparameters?

• Idea #1

• Let’s say you are working on face recognition.

• You come up with your very own feature extraction/learning algorithm.

• You take a dataset to train your model, and select your hyperparameters 
(e.g., k of k-NN) based on the resulting performance.

•

• Might not generalize well.
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Dataset



How to Determine Hyperparameters? (cont’d)

• Idea #2

• Let’s say you are working on face recognition.

• You come up with your very own feature extraction/learning algorithm.

• For a dataset of interest, you split it into training and test sets.

• You train your model with possible hyperparameter choices (e.g., k in k-NN), 
and select those work best on test set data.

•

• That’s called cheating…
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Training set Test set



How to Determine Hyperparameters? (cont’d)

• Idea #3

• Let’s say you are working on face recognition.

• You come up with your very own feature extraction/learning algorithm.

• For the dataset of interest, it is split it into training, validation, and test sets.

• You train your model with possible hyperparameter choices (k in k-NN), 
and select those work best on the validation set.

•

• OK, but…
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Training set Test setValidation set

Training set Test setValidation set



How to Determine Hyperparameters? (cont’d)

• Idea #3.5

• What if only training and test sets are given, not the validation set?

• Cross-validation (or k-fold cross validation)

• Split the training set into k folds with a hyperparameter choice

• Keep 1 fold as validation set and the remaining k-1 folds for training

• After each of k folds is evaluated, report the average validation performance.

• Choose the hyperparameter(s) which result in the highest average validation 
performance. 

• Take a 4-fold cross-validation as an example…
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Training set Test set

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4


