

Feature Detection and Matching

簡韶逸 Shao-Yi Chien Department of Electrical Engineering National Taiwan University

- References:
 - Slides from *Digital Visual Effects*, Prof. Y.-Y. Chuang, CSIE, National Taiwan University
 - Slides from CE 5554 / ECE 4554: Computer Vision, Prof. J.-B. Huang, Virginia Tech
 - Slides from *CSE 576 Computer Vision*, Prof. Steve Seitz and Prof. Rick Szeliski, U. Washington
 - Chap. 4 of Computer Vision: Algorithms and Applications
 - Reference papers

Outline

- The requirement for the features
- Points and patches
 - Feature detector
 - Feature descriptors
 - Feature matching
 - Feature tracking
 - SIFT
 - Applications
 - Recent features
- Edges and lines
- Appendix: MPEG-7 descriptors

Credit: Matt Brown

• The same place?

by <u>Diva Sian</u>

M. Riesenhuber and T. Poggio, "Why Can't a Computer be more Like a Brain?" *Nature Neuroscience*, vol. 2, no. 11, 1999.

The Requirement for the Features

- We don't make it by matching pixel values, but with some higher level information: features
- Requirements
 - Invariant: to lighting, color, rotation, scale, view angle...
 - Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
 - **Distinctiveness**: individual features can be matched to a large database of objects
 - Quantity: many features can be generated for even small objects
 - Efficiency: close to real-time performance

• ..

Features

• Interest points

• Edge and lines

• Others

9

Points and Patches

Keypoint Detection and Matching Pipeline

- Feature detection
- Feature description
- Feature matching
- Feature tracking

Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad?

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction "corner": significant change in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Aperture Problem

Aperture Problem

Aperture Problem

• Change of intensity for the shift (*u*,*v*):

Auto-correlation function

Strong Minimum

E(u,v)

Strong Ambiguity

No Stable Minimum

 Small motion assumption → use Taylor Series expansion

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

= $\sum_{x,y} w(x,y) [I(x,y) + \nabla I(x,y) \cdot (u,v) - I(x,y)]^2$
= $\sum_{x,y} w(x,y) [I_x(x,y)u + I_y(x,y)v]^2$
= $\sum_{x,y} w(x,y) [I_x^2(x,y)u^2 + I_y^2(x,y)v^2 + 2I_x(x,y)I_y(x,y)uv]$

$$E(u,v) = \sum_{x,y} w(x,y) \left[I_x^2(x,y)u^2 + I_y^2(x,y)v^2 + 2I_x(x,y)I_y(x,y)uv \right]$$
$$E(u,v) \cong \left[u \ v \right] \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

, where M is a 2×2 matrix computed from image derivatives:

$$\mathbf{M} = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Eigenvectors of Symmetric Matrices

suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$ **fact:** there is a set of orthonormal eigenvectors of A

$$A = Q\Lambda Q^T$$
$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$

$$= \mathbf{x}^{\mathrm{T}} \mathbf{Q} \Lambda \mathbf{Q}^{\mathrm{T}} \mathbf{x}$$
$$= (\mathbf{Q}^{\mathrm{T}} \mathbf{x})^{\mathrm{T}} \Lambda (\mathbf{Q}^{\mathrm{T}} \mathbf{x})$$
$$= \mathbf{y}^{\mathrm{T}} \Lambda \mathbf{y}$$
$$= (\Lambda^{\frac{1}{2}} \mathbf{y})^{\mathrm{T}} (\Lambda^{\frac{1}{2}} \mathbf{y})$$
$$= \mathbf{z}^{\mathrm{T}} \mathbf{z}$$

Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix} \qquad \lambda_1, \lambda_2 - \text{ eigenvalues of } \mathbf{M}$$

Ellipse E(u,v) = const

• Feature scoring function

•
$$\det(M) - \alpha \cdot \operatorname{trace}(M)^2 = \lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2$$

•
$$\lambda_0 - \alpha \lambda_1$$

• $\frac{\det M}{\operatorname{trace} M} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$

Ref: C. Harris and M.J. Stephens, "A combined corner and edge detector," in Proc. Alvey Vision Conference, 1988.

iso-response contours

Whole feature detection flow:

- Compute the gradient at each point in the image
- Create the **M** matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large Feature scoring function

24

Harris Detector Example

f value (red high, blue low)

Threshold (f > value)

Find Local Maxima of f

. .

· • • •

Harris Features (in Red)

Harris Detector: Invariance Properties

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation

Harris Detector: Invariance Properties

- Affine intensity change: $I \rightarrow aI + b$
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$

Partially invariant to affine intensity change

Harris Detector: Invariance Properties

Scaling

Not invariant to scaling

Scale Invariant Detection

Suppose you're looking for corners

Key idea: find scale that gives local maximum of f

- in both position and scale
- One definition of *f*: the Harris operator

DoG – Efficient Computation

Computation in Gaussian scale pyramid

Find Local Maxima in Position-Scale Space of Difference-of-Gaussian

Results: Difference-of-Gaussian

K. Grauman, B. Leibe
Orientation Normalization

[Lowe, SIFT, 1999]

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

Scale Invariant Feature Transform

Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Local Descriptors: SIFT Descriptor

Histogram of oriented gradients

- Captures important texture information
- Robust to small translations / affine deformations

[Lowe, ICCV 1999]

K. Grauman, B. Leibe

Details of Lowe's SIFT algorithm

- Run DoG detector
 - Find maxima in location/scale space
 - Remove edge points
- Find all major orientations
 - Bin orientations into 36 bin histogram
 - Weight by gradient magnitude
 - Weight by distance to center (Gaussian-weighted mean)
 - Return orientations within 0.8 of peak
 - Use parabola for better orientation fit
- For each (x,y,scale,orientation), create descriptor:
 - Sample 16x16 gradient mag. and rel. orientation
 - Bin 4x4 samples into 4x4 histograms
 - Threshold values to max of 0.2, divide by L2 norm
 - Final descriptor: 4x4x8 normalized histograms

Ref: D.G. Lowe, "Distinctive image features from scale-invariant keypoints," *International Journal of Computer Vision*, 2004.

 $\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}$ $\frac{\mathrm{Tr}(\mathbf{H})^2}{\mathrm{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$

SIFT Example

sift

4 DI GORANS SCON MECLOUD

868 SIFT features

PCA SIFT

- 39 x 39 patch \rightarrow 3042-D vector
- Dimension reduction to 36-D with principal component analysis (PCA)

Ref: Y. Ke and R. Sukthankar, "PCA-SIFT: a more distinctive representation for local image descriptors," in *Proc. CVPR2004*.

Gradient Location-Orientation Histogram (GLOH)

Ref: K. Mikolajczyk and C. Schmid, "A performance evaluation of local descriptors," *IEEE Tran. Pattern Analysis and Machine Intelligence*, 2005.

Speed Up Robust Feature (SURF)

- SURF detector
 - Hessian Matrix Based Interest Points

$$\mathcal{H}(\mathbf{x},\,\sigma) = \begin{bmatrix} L_{xx}(\mathbf{x},\,\sigma) & L_{xy}(\mathbf{x},\,\sigma) \\ L_{xy}(\mathbf{x},\,\sigma) & L_{yy}(\mathbf{x},\,\sigma) \end{bmatrix}$$

- Approximation for Hessian Matrix
- Low computational cost

Ref: T. Tuytelaars H. Bay, A. Ess and L. V. Gool, "SURF: Speeded up robust features," in *Proceedings* of Computer Vision and Image Understanding (CVIU), 2008, vol. 110, pp. 346-359.

Speed Up Robust Feature (SURF)

- SURF detector
 - Scale space representation

Octave	Filter size	Sampling Interval
1	$9 \times 9, 15 \times 15, 21 \times 21, 27 \times 27$	2
2	$39 \times 39, 51 \times 51$	4
3	$75 \times 75, 99 \times 99$	8
4	$147\times147,195\times195$	16
5	$291\times291,387\times387$	32

Speed Up Robust Feature (SURF)

- Descriptor
 - Based on sum of Haar wavelet response
 - dx,dy : wavelet responses in x & y direction
 - 4x4 sub-region
 - Calculate Σdx , Σdy , $\Sigma |dx|$, $\Sigma |dy|$
 - 4*4*4 = 64 dimensions
 - 4*4*5*5=400 times calculation for an interest point
 - Irregular pattern

How to define the difference between two features f_1 , f_2 ?

- Simple approach is SSD(f₁, f₂)
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches

How to define the difference between two features f_1 , f_2 ?

- Better approach: ratio distance = SSD(f₁, f₂) / SSD(f₁, f₂')
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives small values for ambiguous matches

- Matching? The difference < threshold
- How to evaluate?

	True matches	True non-matches		_	
Predicted matches	TP = 18	FP = 4	P' = 22		PPV = 0.82
Predicted non-matches	FN = 2	TN = 76	N' = 78		
	P = 20	N = 80	Total = 100		
	TPR = 0.90	FPR = 0.05			ACC = 0.94

- TP: true positives
- FN: false negatives
- FP: false positives
- TN: true negatives

How to evaluate?

_	True matches	True non-matches		
Predicted matches	TP = 18	FP = 4	P' = 22	PPV = 0.82
Predicted non-matches	FN = 2	TN = 76	N' = 78	
	P = 20	N = 80	Total = 100	
	TPR = 0.90	FPR = 0.05		ACC = 0.94
-				

True positive rate (TPR), recall

$$TPR = \frac{TP}{TP + FN} = \frac{TP}{P}$$

- False positive rate (FPR), false alarm $FPR = \frac{FP}{FP + TN} = \frac{FP}{N}$
- Positive predictive value (PPV), precision

 $PPV = \frac{TP}{TP + FP} = \frac{TP}{P'}$

• Accuracy (ACC) $ACC = \frac{TP + TN}{P + N}$

- Efficient matching
 - Full search
 - Indexing structure
 - Multi-dimensional hashing
 - Locality sensitive hashing (LSH)
 - K-d tree

Applications

Features are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Object Recognition (David Lowe)

BRIEF (ECCV 2010)

• We define test τ on patch **p** of size $S \times S$ as

$$\tau(\mathbf{p}; \mathbf{x}, \mathbf{y}) := \begin{cases} 1 & \text{if } \mathbf{p}(\mathbf{x}) < \mathbf{p}(\mathbf{y}) \\ 0 & \text{otherwise} \end{cases}$$

- where p(x) is the pixel intensity in a smoothed version of p at x = (u, v)T.
- Choosing a set of n_d (x, y)-location pairs uniquely defines a set of binary tests.
 - We take our BRIEF descriptor to be the n_d -dimensional bitstring

$$f_{n_d}(\mathbf{p}) := \sum_{1 \le i \le n_d} 2^{i-1} \tau(\mathbf{p}; \mathbf{x}_i, \mathbf{y}_i)$$

BRISK (ICCV2011)

Scale-space keypoint detection:

Keypoint description:

 $b = \begin{cases} 1, & I(\mathbf{p}_{j}^{\alpha}, \sigma_{j}) > I(\mathbf{p}_{i}^{\alpha}, \sigma_{i}) \\ 0, & \text{otherwise} \end{cases}$ $\forall (\mathbf{p}_{i}^{\alpha}, \mathbf{p}_{j}^{\alpha}) \in \mathcal{S}$

FREAK (CVPR 2012)

- Retinal sampling pattern
- Coarse-to-fine descriptor

$$F = \sum_{0 \le a < N} 2^{a} T(P_{a}) \qquad T(P_{a}) = \begin{cases} 1 & \text{if } (I(P_{a}^{r_{1}}) - I(P_{a}^{r_{2}}) > 0) \\ 0 & \text{otherwise,} \end{cases}$$

- How to select pairs?
 - Learn the best The 1st cluster pairs from training data

4 clusters 128 pairs per group

FREAK (CVPR 2012)

ORB: An efficient alternative to SIFT or SURF

- ORB = oFAST + rBRIEF
- oFAST: FAST Keypoint Orientation
- rBRIEF: Rotation-Aware Brief

E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," in *Proc. 2011 International Conference on Computer Vision*, Barcelona, 2011.

FAST¹

- Features from Accelerated Segment Test.
 - The segment test criterion operates by considering a circle of sixteen pixels around the corner candidate p.
 - The original detector classifies p as a corner if there exists a set of n contiguous pixels in the circle which are all brighter than the intensity of the candidate pixel I_p + t, or all darker than I_p - t.

Orientation by Intensity Centroid

Moments of a patch

$$m_{pq} = \sum_{x,y} x^p y^q I(x,y)$$

• with these moments we may find the centroid

$$C = \left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right)$$

• We can construct a vector from the corner's center, O, to the centroid, \overrightarrow{OC} .

Rotation Measure

- IC: intensity centroid
- MAX chooses the largest gradient in the keypoint patch
- BIN forms a histogram of gradient directions at 10 degree intervals, and picks the maximum bin.

Steered BRIEF

• Steer BRIEF according to the orientation of keypoints.

$$\mathbf{S} = egin{pmatrix} \mathbf{x}_1, \dots, \mathbf{x}_n \ \mathbf{y}_1, \dots, \mathbf{y}_n \end{pmatrix}$$

 Using the patch orientation θ and the corresponding rotation matrix R_θ, we construct a "steered" version S_θ of S:

$$\mathbf{S}_{ heta} = \mathbf{R}_{ heta} \mathbf{S}$$

• Now the steered BRIEF operator becomes

$$g_n(\mathbf{p}, \theta) := f_n(\mathbf{p}) | (\mathbf{x}_i, \mathbf{y}_i) \in \mathbf{S}_{\theta}$$

Learning Good Binary Features

- The algorithm is:
 - 1. Run each test against all training patches.
 - 2. Order the tests by their distance from a mean of 0.5, forming the vector T.
 - 3. Greedy search:
 - (a) Put the first test into the result vector R and remove it from T.
 - (b) Take the next test from T, and compare it against all tests in R. If its absolute correlation is greater than a threshold, discard it; else add it to R.
 - (c) Repeat the previous step until there are 256 tests in R. If there are fewer than 256, raise the threshold and try again.

Results (1/3)

 Matching performance of SIFT, SURF, BRIEF with FAST, and ORB (oFAST +rBRIEF) under synthetic rotations with Gaussian noise of 10.

Results (2/3)

• Matching behavior under noise for SIFT and rBRIEF. The noise levels are 0, 5, 10, 15, 20, and 25. SIFT performance degrades rapidly, while rBRIEF is relatively unaffected.

Results (3/3)

• Test on real-world images:

		inlier %	N points
	Magazines		
	ORB	36.180	548.50
2011	SURF	38.305	513.55
	SIFT	34.010	584.15
	Boat		
	ORB	45.8	789
and the second s	SURF	28.6	795
	SIFT	30.2	714

Computation Time

• The ORB system breaks down into the following times per typical frame of size 640x480. Intel i7 2.8 GHz

ORB:	Pyramid	oFAST	rBRIEF
Time (ms)	4.43	8.68	2.12

Detector	ORB	SURF	SIFT
Time per frame (ms)	15.3	217.3	5228.7

Pascal 2009 dataset 2686 images at 5 scales

OpenCV 2.4.9

Detector

- "FAST" FastFeatureDetector
- "STAR" StarFeatureDetector
- "SIFT" SIFT (nonfree module)
- "SURF" SURF (nonfree module)
- "**ORB**" ORB
- "BRISK" BRISK
- "MSER" MSER
- "GFTT" GoodFeaturesToTrackDetector
- "HARRIS" GoodFeaturesToTrackDetector with Harris detector enabled
- "Dense" DenseFeatureDetector
- "SimpleBlob" SimpleBlobDetector

OpenCV 2.4.9

- Descriptor
 - "SIFT" SIFT
 - "SURF" SURF
 - "BRIEF" BriefDescriptorExtractor
 - "BRISK" BRISK
 - "**ORB**" ORB
 - "FREAK" FREAK

Edges and Lines

Y. Cao, C. Wang, L. Zhang and L. Zhang, "Edgel index for large-scale sketchbased image search," in *Proc. CVPR 2011*.

Edge Detection

- Canny edge detector
 - The most widely used edge detector
 - The best you can find in existing tools like MATLAB, OpenCV...
- Algorithm:
 - Apply Gaussian filter to reduce noise
 - Find the intensity gradients of the image
 - Apply **non-maximum suppression** to get rid of false edges
 - Apply **double threshold** to determine potential edges
 - Track edge by hysteresis: suppressing weak edges that are not connected to strong edges

Hysteresis

• Find **connected components** from strong edge pixels to finalize edge detection

Hough Transform

Hough Transform

Hough Transform

- Clear the accumulator array
- For each detected edgel at location (x, y) and orientation $\theta = tan^{-1}n_y/n_x$, compute the value of $d = xn_x + yn_y$ and increment the accumulator corresponding to (θ, d)
- Find the peaks in the accumulator corresponding to lines
- Optionally re-fit the lines to the constituent edgels

- Features extracted from Deep Neural Network
 - Ex. Deep Face (CVPR2014)

Layer	1	2	3
Input size	64×64	29×29	8×8
Filter size	7×7	6×6	5×5
Output channels	32	64	128
Pooling & Norm.tion	2×2	3×3	4×4
Nonlinearity	Tanh	Tanh	Tanh
Stride	2	3	4

82

Loss function:

$$l(\mathbf{x}_1, \mathbf{x}_2) = \begin{cases} \|D(\mathbf{x}_1) - D(\mathbf{x}_2)\|_2, & p_1 = p_2 \\ \max(0, C - \|D(\mathbf{x}_1) - D(\mathbf{x}_2)\|_2), & p_1 \neq p_2 \end{cases}$$

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, "Discriminative learning of deep convolutional feature point descriptors," in *Proc. ICCV 2015*.

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, "Discriminative learning of deep convolutional feature point descriptors," in *Proc. ICCV 2015*.

SuperPoint

Ref: D. DeTone, T. Malisiewicz and A. Rabinovich, "SuperPoint: Self-Supervised Interest Point Detection and Description," in Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.

SuperPoint

Self-supervised training

Ref: D. DeTone, T. Malisiewicz and A. Rabinovich , "SuperPoint: Self-Supervised Interest Point Detection and Description," in *Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2018.

Appendix: MPEG-7 Descriptors

Introduction

- MPEG-7 is a standard for describing features of multimedia content
- MPEG-7 provides the world's richest set of audiovisual descriptions
- Comprehensive scope of data interoperability
- Based on XML

Introduction

- General visual descriptors
 - Color
 - Texture
 - Shape
 - Motion
- Domain-specific visual descriptors
 - Face recognition descriptors

What is Standardized?

Only define the descriptions

- Not standardize how to produce the descriptions
- Not standardize how to use the descriptions
- Only define what is needed for the interoperability of MPEG-7 enabled systems

What is Standardized?

Color Descriptors

- Color Space Descriptor
- Dominant Color Descriptor
- Scalable Color Descriptor
- Group of Frames (or Pictures) Descriptor
- Color Structure Descriptor
- Color Layout Descriptor

Example: Dominant Color Descriptor (1)

- Compact description
- Browsing of image databases based on single or several color values
- Definition:
 - $F = \{(c_i, p_i, v_i), s\}, (i = 1, 2, ..., N) (N < 9)$
 - **c**_i: color value vector (default color space: RGB)
 - p_i : percentage ($\sum_i p_i = 1$
 - v_i: optional color variance
 - s : spatial coherency

Dominant Color Descriptor (2)

• Binary syntax of DCD

Field	Number of Bits	Meaning
NumberofColors	3	Specifies number of dominant colors
SpatialCoherency	5	Spatial Coherency Value
Percentage[]	5	Normalized percentage associated with each dominant color
ColorVariance[][]	1	Color variance of each dominant color
Index[][]	1—12	Dominant color values

Dominant Color Descriptor (3)

- Extraction:
 - Clustering is performed in a perceptually uniform color space (Lloyd algorithm)
 - Distortion :

$$D_i = \sum_{i=1}^{n} h(n) \|x(n) - c_i\|^2, x(n) \in C_i$$

• $\mathbf{x}(n)_n$: the color vector at pixel n

- h(n) : perceptual weight for pixel n
- **c**_i: centroid of cluster C_i

$$c_i = \frac{\sum h(n)x(n)}{\sum h(n)}, x(n) \in C_i$$

Dominant Color Descriptor (4)

- Extraction:
 - The procedure is initialized with one cluster consisting of all pixels and one representative color computed as the centroid of the cluster
 - The algorithm then follows a sequence of centroid calculation and clustering steps until a stopping criterion (minimum distortion or maximum number of iterations)

Dominant Color Descriptor (5)

- Extraction:
 - Spatial coherency (s):
 - 4 connectivity connected component analysis
 - Individual spatial coherence: normalized average number of the connected pixels of each dominant color
 - s = _(individual spatial coherence);
 - S is non-uniformly quantized to 5 bits, 31 means highest confidence 1 means no confidence 0 means not computed

Dominant Color Descriptor (6)

- Similarity Matching:
 - Number of representative colors is small, one can first search the database for each of the representative color separately, then combine.

Dominant Color Descriptor (7)

- Similarity Matching:
 - Consider 2 DCDs :

 $F_1 = \{ (\mathbf{c}_{1i}, p_{1i}, v_{1i}), s_1 \}, \quad (i = 1, 2, \dots, N_1) \text{ and}$ $F_2 = \{ (\mathbf{c}_{2i}, p_{2i}, v_{2i}), s_2 \}, \quad (i = 1, 2, \dots, N_2).$

• Dissimilarity (D): $D^{2}(F_{1}, F_{2}) = \sum_{k=1}^{N_{1}} p_{1i}^{2} + \sum_{k=1}^{N_{2}} p_{2j}^{2} - \sum_{k=1}^{N_{1}} \sum_{k=1}^{N_{2}} 2a_{1i,2j} p_{1i} p_{2j}$ $a_{k,l} = \begin{cases} 1 - d_{k,l}/d_{\max} & d_{k,l} \leq T_{d} \\ 0 & d_{k,l} > T_{d} \end{cases}$ $\mathbf{d}_{k,l} : \quad \mathbf{d}_{k,l} = \|c_{k} - c_{l}\| \text{ is the Euclidean distance between two colors}$ $d_{\max} = \alpha T_{d}$

Dominant Color Descriptor (8)

- Similarity Matching:
 - Dissimilarity (Ds):

 $D_{S} = w_{1} \text{abs}(s_{1} - s_{2})D + w_{2}D$ $w_1 = 0.3, w_2 = 0.7$ (recommanded)

• Dissimilarity (Dv):

$$D_{V} = \sum_{i=1}^{N_{1}} \sum_{j=1}^{N_{2}} p_{1i} p_{1j} f_{1i-1j} + \sum_{i=1}^{N_{1}} \sum_{j=1}^{N_{2}} p_{2i} p_{2j} f_{2i-2j} - \sum_{i=1}^{N_{1}} \sum_{j=1}^{N_{2}} 2p_{1i} p_{2j} f_{1i-2j}$$

$$1$$

W

where
$$f_{x_i \ y_j} = \frac{1}{2\pi \sqrt{v_{x_i \ y_j}}^{(l)} v_{x_i \ y_j}^{(l)} v_{x_i \ y_j}^{(l)} v_{x_i \ y_j}^{(v)}}}{\left(-\left(\frac{c_{x_i \ y_j}}{v_{x_i \ y_j}}^{(l)} + \frac{c_{x_i \ y_j}}{v_{x_i \ y_j}}^{(u)} + \frac{c_{x_i \ y_j}}{v_{x_i \ y_j}}^{(v)} \right) \right) \right) \right)$$

and $c_{x_i \ y_j}^{(l)} = (c_{x_i}^{(l)} - c_{y_j}^{(l)})^2, v_{x_i \ y_j}^{(l)} = (v_{x_i}^{(l)} + v_{y_j}^{(l)})$

Dominant Color Descriptor (9)

• Similarity Matching Results:

Table 13.3 ANMRR results for dominant color					
Average number of colors	$\operatorname{ANMRR}(D)$	$\operatorname{ANMRR}(D_S)$	$\operatorname{ANMRR}(D_V)$		
3	0.31	0.30	0.25		
5	0.25	0.21	0.16		

Texture Descriptors

- Homogeneous Texture Descriptor (HTD)
- Texture Browsing Descriptor (TBD)
- Edge Histogram Descriptor (EHD)

Homogeneous Texture Descriptor

$$HTD = [f_{DC}, f_{SD}, e_1, e_2, \dots, e_{30}, d_1, d_2, \dots, d_{30}]$$

62 numbers (496 bits)

Texture feature channels modeled using the Gabor functions in the polar frequency domain

HTD Extraction

$$HTD = [f_{DC}, f_{SD}, e_1, e_2, \dots, e_{30}, d_1, d_2, \dots, d_{30}]$$

- On the basis of the frequency layout and the Gabor functions:
- e_i: log-scaled sum of the square of the Gaborfiltered Fourier transform coefficients of an image:

$$e_{i} = \log_{10}[1 + p_{i}]$$
where $p_{i} = \sum_{\omega=0^{+}\theta=(0^{\circ})^{+}}^{1} \int_{\theta=(0^{\circ})^{+}}^{360^{\circ}} [G_{s,r}(\omega,\theta)|\omega|P(\omega,\theta)]^{2}$

Edge Histogram Descriptor

- Divide the image into 4x4 subimages
- Block-based edge extraction

Semantics of the Histogram bins of the EHD

• 5 edge type x 16 subimages = 80 histogram bins

H _E	Semantics		
h(0)	Relative population of vertical edges in subimage at (0,0)		
h(1)	Relative population of horizontal edges in subimage at $(0,0)$		
h(2)	Relative population of 45° edges in subimage at (0,0)		
h(3)	Relative population of 135° edge in subimage at (0,0)		
h(4)	Relative population of nondirectional edges in subimage at $(0,0)$		
÷			
h(75)	Relative population of vertical edges in subimage at (3,3)		
h(76)	Relative population of horizontal edges in subimage at (3,3)		
h(77)	Relative population of 45° edges in subimage at (3,3)		
h(78)	Relative population of 135° edges in subimage at (3,3)		
h(79)	Relative population of nondirectional edges in subimage at (3,3)		

Shape Descriptors

- Region-based descriptor
- Contour-based descriptor
- 3-D Shape Descriptor

Region v.s Contour (1/2)

Figure 15.1 Example of contour-based and region-based region similarity (© 2001 IEEE, from M. Bober; MPEG-7 Visual Descriptors, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 6, June 2001)

Region v.s Contour (2/2)

Figure 15.2 Example of shapes in which region-based shape is applicable

Figure 15.3 Examples of shapes in which contour-based shape is applicable
Goal of SDs

- Fast search and browsing
 - Concise manner
- Robust to
 - Scaling
 - Translation
 - Rotation

Region-based descriptor

- Take all pixels into account
- Project the shape onto the 2-D domain by using ART

Angular Radial Transform

$$F_{nm} = \langle V_{nm} (\rho, \theta), f (\rho, \theta) \rangle = \int_0^{2\pi} \int_0^1 V_{nm}^* (\rho, \theta) f (\rho, \theta) \rho \, d\rho \, d\theta$$

$$V_{nm}(\rho, \theta) = A_m(\theta) R_n(\rho)$$
$$A_m(\theta) = \frac{1}{2\pi} \exp(jm\theta)$$
$$R_n(\rho) = \begin{cases} 1 & n = 0\\ 2\cos(\pi n\rho) & n \neq 0 \end{cases}$$

F: image function

V: ART basis

Define on unit circle in polar system

ART basis

Real part

Chen-han Tsai

ART basis

Imaginary part

Chen-han Tsai

Descriptor Representation

Table 15.1Representation of the region-SD		
. Field	Number of bits	Meaning
Magnitude of ART[k]	4	An array of 35 normalized and quantized magnitudes of the shape coefficients.

Angular (m):0~11	Normalize by F ₀₀ :
Radial (n) :0~2	F _{nm} /F ₀₀ n=0~2,m=0~11

Contour-based descriptor

- Take only border pixels into account
- CSS representation

CSS Representation

Chen-han Tsai

Descriptor Representation

- Number of Peaks [6 bits]
- Global Curvature [2*6 bits]
- Prototype Curvature [2*6 bits]
- Highest Peak Y [7 bits]
- Peak X [6 bits]
- Peak Y [3 bits]

Motion Descriptors

- Motion Activity Descriptor
- Camera Motion Descriptor
- Motion Trajectory Descriptor
- Parametric Motion Descriptor