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• References:
• Slides from Digital Visual Effects, Prof. Y.-Y. Chuang, CSIE, 

National Taiwan University

• Slides from CE 5554 / ECE 4554: Computer Vision, Prof. 
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• Reference papers
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Outline

• The requirement for the features

• Points and patches
• Feature detector
• Feature descriptors
• Feature matching
• Feature tracking
• SIFT
• Applications
• Recent features

• Edges and lines

• Appendix: MPEG-7 descriptors
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How the Visual Cortex Represents the World?
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Credit: Matt Brown



How the Visual Cortex Represents 
the World?
• The same place?
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by Diva Sian by scgbt

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/


How the Visual Cortex Represents 
the World?
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How the Visual Cortex Represents 
the World?

M. Riesenhuber and T. Poggio, “Why Can't a Computer be 

more Like a Brain?” Nature Neuroscience, vol. 2, no. 11, 

1999.
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The Requirement for the Features

• We don’t make it by matching pixel values, but with 
some higher level information: features

• Requirements
• Invariant: to lighting, color, rotation, scale, view angle…
• Locality: features are local, so robust to occlusion and 

clutter (no prior segmentation)
• Distinctiveness: individual features can be matched to a 

large database of objects
• Quantity: many features can be generated for even 

small objects
• Efficiency: close to real-time performance
• …
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Features

• Interest points

• Edge and lines

• Others

9



Points and Patches
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Keypoint Detection and Matching 
Pipeline
• Feature detection

• Feature description

• Feature matching

• Feature tracking
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Feature Detection – Harris Corner 
Detector
Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad?

12
Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature Detection – Harris Corner 
Detector
Local measure of feature uniqueness

• How does the window change when you shift it?

• Shifting the window in any direction causes a big change

13
Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

“flat” region:

no change in all 

directions

“edge”:  

no change along 

the edge direction

“corner”:

significant change 

in all directions



Aperture Problem
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Aperture Problem
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Aperture Problem
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Feature Detection – Harris Corner 
Detector
• Change of intensity for the shift (u,v):

17

window 

function
intensityshifted 

intensity

𝐸(𝑢, 𝑣) =෍

𝑥,𝑦

𝑤(𝑥, 𝑦) 𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 − 𝐼(𝑥, 𝑦) 2

Auto-correlation function



Feature Detection – Harris Corner 
Detector
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E(u,v)

Strong Minimum Strong Ambiguity No Stable 
Minimum



Feature Detection – Harris Corner 
Detector
• Small motion assumption → use Taylor Series 

expansion
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Feature Detection – Harris Corner 
Detector
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, where M is a 22 matrix computed from image derivatives:
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Eigenvectors of Symmetric Matrices
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Feature Detection – Harris Corner 
Detector

Intensity change in shifting window: eigenvalue analysis

1, 2 – eigenvalues of M

direction of the 

slowest change

direction of the 

fastest change

(max)
-1/2

(min)
-1/2

Ellipse E(u,v) = const
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Feature Detection – Harris Corner 
Detector
• Feature scoring function

•

•

•

det 𝑀 − 𝛼 ∙ trace 𝑀 2 = 𝜆0𝜆1 − 𝛼(𝜆0 + 𝜆1)
2

𝜆0 − 𝛼𝜆1

det𝑀

trace 𝑀
=

𝜆0𝜆1
𝜆0 + 𝜆1
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Ref: C. Harris and M.J. Stephens, “A combined corner and edge detector,” in Proc. Alvey Vision Conference, 1988.



Feature Detection – Harris Corner 
Detector
Whole feature detection flow:

• Compute the gradient at each point in the image

• Create the M matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large Feature scoring function

𝜆0 𝜆1 24



Harris Detector Example
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f value (red high, blue low)
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Threshold (f > value) 
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Find Local Maxima of f
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Harris Features (in Red)
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Harris Detector: Invariance Properties
• Rotation

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response is invariant to image rotation



Harris Detector: Invariance Properties
• Affine intensity change: I → aI + b

✓ Only derivatives are used =>        
invariance to intensity shift I → I + b

✓ Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change



Harris Detector: Invariance Properties
• Scaling

All points will be 
classified as edges

Corner

Not invariant to scaling



Scale Invariant Detection
Suppose you’re looking for corners

Key idea:  find scale that gives local maximum of f
• in both position and scale
• One definition of f: the Harris operator



DoG – Efficient Computation
• Computation in Gaussian scale pyramid

K. Grauman, B. Leibe

s

Original image
4

1

2=s

Sampling with
step s4 =2

s

s

s



Find Local Maxima in Position-Scale 
Space of Difference-of-Gaussian

K. Grauman, B. Leibe
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Results: Difference-of-Gaussian

K. Grauman, B. Leibe



T. Tuytelaars, B. Leibe

Orientation Normalization

• Compute orientation histogram

• Select dominant orientation

• Normalize: rotate to fixed orientation 

0 2p

[Lowe, SIFT, 1999]



Basic idea:

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p

angle histogram



SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe



Local Descriptors: SIFT Descriptor

[Lowe, ICCV 1999]

Histogram of oriented 

gradients

• Captures important texture 

information

• Robust to small translations /

affine deformations
K. Grauman, B. Leibe



Details of Lowe’s SIFT algorithm

• Run DoG detector
– Find maxima in location/scale space
– Remove edge points

• Find all major orientations
– Bin orientations into 36 bin histogram

• Weight by gradient magnitude
• Weight by distance to center (Gaussian-weighted mean)

– Return orientations within 0.8 of peak
• Use parabola for better orientation fit

• For each (x,y,scale,orientation), create descriptor:
– Sample 16x16 gradient mag. and rel. orientation
– Bin 4x4 samples into 4x4 histograms
– Threshold values to max of 0.2, divide by L2 norm
– Final descriptor: 4x4x8 normalized histograms

Ref: D.G. Lowe, “Distinctive image features from scale-invariant keypoints,” International 
Journal of Computer Vision, 2004.



SIFT Example

sift

868 SIFT features



PCA SIFT

• 39 x 39 patch → 3042-D vector

• Dimension reduction to 36-D with principal 
component analysis (PCA)

43

Ref: Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation for local 
image descriptors,” in Proc. CVPR2004.



Gradient Location-Orientation Histogram 
(GLOH)

44

Ref: K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” 
IEEE Tran. Pattern Analysis and Machine Intelligence, 2005.



Speed Up Robust Feature (SURF)

• SURF detector
• Hessian Matrix Based Interest Points

• Approximation for Hessian Matrix

• Low computational cost 

45
Ref: T. Tuytelaars H. Bay, A. Ess and L. V. Gool, “SURF: Speeded up robust features," in Proceedings 
of Computer Vision and Image Understanding (CVIU), 2008, vol. 110, pp. 346-359.



Speed Up Robust Feature (SURF)
• SURF detector

• Scale space representation

46

9x9 15x15



Speed Up Robust Feature (SURF)

• Descriptor
• Based on sum of Haar wavelet response

• dx,dy : wavelet responses in x & y direction

• 4x4 sub-region

• Calculate Σdx , Σdy, Σ|dx|, Σ|dy|

• 4*4*4 = 64 dimensions

• 4*4*5*5=400 times calculation for an interest point

• Irregular pattern

47

dx dyΣ dx
Σ |dx|
Σ dy
Σ |dy|



Feature Matching
How to define the difference between two features f1, f2?

• Simple approach is SSD(f1, f2) 
• sum of square differences between entries of the two descriptors

• can give good scores to very ambiguous (bad) matches 

48I1 I2

f1 f2



Feature Matching
How to define the difference between two features f1, f2?

• Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’)
• f2 is best SSD match to f1 in I2

• f2’  is  2nd best SSD match to f1 in I2

• gives small values for ambiguous matches

49I1 I2

f1 f2f2
'



Feature Matching

• Matching? The difference < threshold

• How to evaluate?

• TP: true positives

• FN: false negatives

• FP: false positives

• TN: true negatives

50



Feature Matching

• How to evaluate?

• True positive rate (TPR), recall

• False positive rate (FPR), false alarm

• Positive predictive value (PPV), precision

• Accuracy (ACC)
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𝑇𝑃𝑅 =
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Feature Matching

• How to evaluate?

52

ROC curve (Receiver Operating Characteristic)

True positive rate (TPR)

False positive rate (FPR)

Positive predictive value (PPV)

Accuracy (ACC)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁



Feature Matching

• Efficient matching
• Full search

• Indexing structure

• Multi-dimensional hashing

• Locality sensitive hashing (LSH)

• K-d tree

53



Applications

Features are used for:
• Image alignment (e.g., mosaics)

• 3D reconstruction

• Motion tracking

• Object recognition

• Indexing and database retrieval

• Robot navigation

• … other

54



Object Recognition (David Lowe)

55



BRIEF (ECCV 2010)

• We define test 𝜏 on patch 𝐩 of size 𝑆 × 𝑆 as

• where 𝐩(𝐱) is the pixel intensity in a smoothed version of 𝐩
at 𝐱 = (𝑢, 𝑣)⊤.

• Choosing a set of 𝑛𝑑 (𝑥, 𝑦)-location pairs uniquely defines 
a set of binary tests.
• We take our BRIEF descriptor to be the 𝑛𝑑-dimensional 

bitstring
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BRISK (ICCV2011)



FREAK (CVPR 2012)

• Retinal sampling pattern

• Coarse-to-fine descriptor

• How to select pairs?
• Learn the best 

pairs from training 
data



FREAK (CVPR 2012)



ORB: An efficient alternative to 
SIFT or SURF

• ORB = oFAST + rBRIEF

• oFAST: FAST Keypoint Orientation

• rBRIEF: Rotation-Aware Brief

61

E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: An efficient alternative to 

SIFT or SURF,” in Proc. 2011 International Conference on Computer Vision, Barcelona, 

2011.



FAST1

• Features from Accelerated Segment Test.
• The segment test criterion operates by considering a circle of 

sixteen pixels around the corner candidate p.

• The original detector classifies p as a corner if there exists a set 
of n contiguous pixels in the circle which are all brighter than 
the intensity of the candidate pixel Ip + t, or all darker than Ip - t.

62

1Rosten, Edward, and Tom Drummond. "Machine learning for high-speed corner detection." Computer Vision–ECCV 2006.



Orientation by Intensity Centroid

• Moments of a patch

• with these moments we may find the centroid

• We can construct a vector from the corner's center, 𝑂, to the 
centroid, 𝑂𝐶. 

63



Rotation Measure

• IC: intensity centroid

• MAX chooses the largest gradient in the keypoint patch

• BIN forms a histogram of gradient directions at 10 degree intervals, and picks the 
maximum bin.
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Steered BRIEF

• Steer BRIEF according to the orientation of keypoints.

• Using the patch orientation 𝜃 and the corresponding 
rotation matrix R𝜃, we construct a "steered" version S𝜃 of 
S:

• Now the steered BRIEF operator becomes

65



Learning Good Binary Features

• The algorithm is:

66



Results (1/3)

• Matching performance of SIFT, SURF, BRIEF with FAST, and 
ORB (oFAST +rBRIEF) under synthetic rotations with 
Gaussian noise of 10.
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Results (2/3)

• Matching behavior under noise for SIFT and rBRIEF. The 
noise levels are 0, 5, 10, 15, 20, and 25. SIFT performance 
degrades rapidly, while rBRIEF is relatively unaffected.
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Results (3/3)

• Test on real-world images:
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Computation Time

• The ORB system breaks down into the following times per 
typical frame of size 640x480.

70

Intel i7 2.8 GHz

Pascal 2009 dataset
2686 images at 5 scales



OpenCV 2.4.9

• Detector
• "FAST" – FastFeatureDetector

• "STAR" – StarFeatureDetector

• "SIFT" – SIFT (nonfree module)

• "SURF" – SURF (nonfree module)

• "ORB" – ORB

• "BRISK" – BRISK

• "MSER" – MSER

• "GFTT" – GoodFeaturesToTrackDetector

• "HARRIS" – GoodFeaturesToTrackDetector with Harris detector 
enabled

• "Dense" – DenseFeatureDetector

• "SimpleBlob" – SimpleBlobDetector
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OpenCV 2.4.9

• Descriptor
• "SIFT" – SIFT

• "SURF" – SURF

• "BRIEF" – BriefDescriptorExtractor

• "BRISK" – BRISK

• "ORB" – ORB

• "FREAK" – FREAK
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Edges and Lines

73



74

Y. Cao, C. Wang, L. Zhang and L. Zhang, "Edgel index for large-scale sketch-

based image search," in Proc. CVPR 2011.



Edge Detection

• Canny edge detector
• The most widely used edge detector

• The best you can find in existing tools like MATLAB, OpenCV…

• Algorithm:
• Apply Gaussian filter to reduce noise

• Find the intensity gradients of the image

• Apply non-maximum suppression to get rid of false edges

• Apply double threshold to determine potential edges

• Track edge by hysteresis: suppressing weak edges that are not 
connected to strong edges

75



Hysteresis

• Find connected components from strong edge pixels to 
finalize edge detection

76



Hough Transform
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Hough Transform

• Vote in 𝜃, 𝑟 space
• (Many choices)

78



Hough Transform

• Clear the accumulator array

• For each detected edgel at location (𝑥, 𝑦) and orientation
𝜃 = 𝑡𝑎𝑛−1𝑛𝑦/𝑛𝑥, compute the value of 𝑑 = 𝑥𝑛𝑥 +
𝑦𝑛𝑦 and increment the accumulator corresponding to (𝜃, 𝑑)

• Find the peaks in the accumulator corresponding to lines

• Optionally re-fit the lines to the constituent edgels
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Deep Features

80



Deep Features

• Features extracted from Deep Neural Network
• Ex. Deep Face (CVPR2014)



Deep Features

82

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, 
“Discriminative learning of deep convolutional feature point descriptors,” in Proc. 
ICCV 2015.

Loss function:



Deep Features

83

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, 
“Discriminative learning of deep convolutional feature point descriptors,” in Proc. 
ICCV 2015.



SuperPoint

84

Ref: D. DeTone, T. Malisiewicz and A. Rabinovich , "SuperPoint: Self-Supervised Interest Point Detection and 
Description,” in Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 
(CVPRW), 2018.



SuperPoint

• Self-supervised training

85

Ref: D. DeTone, T. Malisiewicz and A. Rabinovich , "SuperPoint: Self-Supervised Interest Point Detection and 
Description,” in Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 
(CVPRW), 2018.



Appendix: MPEG-7 
Descriptors
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Introduction

• MPEG-7 is a standard for describing features of 
multimedia content

• MPEG-7 provides the world’s richest set of audio-
visual descriptions

• Comprehensive scope of data interoperability

• Based on XML
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Introduction

• General visual descriptors
• Color

• Texture

• Shape

• Motion

• Domain-specific visual descriptors
• Face recognition descriptors
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What is Standardized?

• Only define the descriptions
• Not standardize how to produce the descriptions

• Not standardize how to use the descriptions

• Only define what is needed for the interoperability of 
MPEG-7 enabled systems
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What is Standardized?
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Color Descriptors

• Color Space Descriptor

• Dominant Color Descriptor

• Scalable Color Descriptor

• Group of Frames (or Pictures) Descriptor

• Color Structure Descriptor

• Color Layout Descriptor
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Example:
Dominant Color Descriptor (1)

• Compact description

• Browsing of image databases based on single or 
several color values

• Definition:
• F = {(ci, pi, vi), s}, (i = 1, 2, …, N) (N < 9)

• ci : color value vector (default color space: RGB)

• pi : percentage (       )

• vi : optional color variance

• s : spatial coherency

1=
i

ip
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Dominant Color Descriptor (2)

• Binary syntax of DCD

Field Number of Bits Meaning

NumberofColors 3 Specifies number of 
dominant colors

SpatialCoherency 5 Spatial Coherency Value

Percentage[] 5 Normalized percentage 
associated with each 
dominant color

ColorVariance[][] 1 Color variance of each 
dominant color

Index[][] 1—12 Dominant color values
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Dominant Color Descriptor (3)

• Extraction:
• Clustering is performed in a perceptually uniform color 

space (Lloyd algorithm)

• Distortion :

• x(n) : the color vector at pixel n

• h(n) : perceptual weight for pixel n

• ci : centroid of cluster Ci

 −=
n

iii CnxcnxnhD )(,)()(
2

ii Cnx
nh

nxnh
c =



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Dominant Color Descriptor (4)

• Extraction:
• The procedure is initialized with one cluster consisting of 

all pixels and one representative color computed as the 
centroid of the cluster

• The algorithm then follows a sequence of centroid 
calculation and clustering steps until a stopping criterion 
(minimum distortion or maximum number of iterations)
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Dominant Color Descriptor (5)

• Extraction:
• Spatial coherency (s):

• 4 connectivity connected component analysis

• Individual spatial coherence: normalized average number of the 
connected pixels of each dominant color

• s =      (individual spatial coherence)i

• S is nonuniformly quantized to 5 bits,
31 means highest confidence
1 means no confidence
0 means not computed


i

ip
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Dominant Color Descriptor (6)

• Similarity Matching:
• Number of representative colors is small, one can first 

search the database for each of the representative color 
separately, then combine.
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Dominant Color Descriptor (7)

• Similarity Matching:
• Consider 2 DCDs :

•

• Dissimilarity (D):

dk,l: colors obetween tw distanceEuclidean   theis , lklk ccd −=

dTd =max



99

Dominant Color Descriptor (8)

• Similarity Matching:
• Dissimilarity (Ds):

w1 = 0.3, w2 = 0.7 (recommanded)

• Dissimilarity (Dv):
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Dominant Color Descriptor (9)

• Similarity Matching Results:
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Texture Descriptors

• Homogeneous Texture Descriptor (HTD)

• Texture Browsing Descriptor (TBD)

• Edge Histogram Descriptor (EHD)



Homogeneous Texture Descriptor

],...,,,...,,,,[ 30213021 dddeeeffHTD SDDC=

62 numbers (496 bits)

Channels used in computing the HTD

Texture feature
channels modeled
using the Gabor
functions in the
polar frequency
domain



HTD Extraction

• On the basis of the frequency layout and the 
Gabor functions:

• ei : log-scaled sum of the square of the Gabor-
filtered Fourier transform coefficients of an image:

],...,,,...,,,,[ 30213021 dddeeeffHTD SDDC=

 
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Edge Histogram Descriptor
• Divide the image into 4x4 subimages

• Block-based edge extraction



Semantics of the Histogram bins 
of the EHD
• 5 edge type x 16 subimages = 80 histogram bins
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Shape Descriptors

• Region-based descriptor 

• Contour-based descriptor

• 3-D Shape Descriptor



Chen-han Tsai 107

Region v.s Contour (1/2)



Chen-han Tsai 108

Region v.s Contour (2/2)



Chen-han Tsai 109

Goal of SDs

• Fast search and browsing
• Concise manner

• Robust to 
• Scaling

• Translation

• Rotation



Chen-han Tsai 110

Region-based descriptor

• Take all pixels into account

• Project the shape onto the 2-D domain by using 
ART



Chen-han Tsai 111

Angular Radial Transform

F: image function

V: ART basis

Define on unit circle in polar 
system



Chen-han Tsai 112

ART basis

Real part



Chen-han Tsai 113

ART basis

Imaginary part



Chen-han Tsai 114

Descriptor Representation

Angular (m):0~11

Radial (n)   :0~2

Normalize by F00:

Fnm /F00        n=0~2,m=0~11



Chen-han Tsai 115

Contour-based descriptor

• Take only border pixels into account

• CSS representation
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CSS Representation
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Descriptor Representation

• Number of Peaks  [6 bits]

• Global Curvature  [2*6 bits]

• Prototype Curvature  [2*6 bits]

• Highest Peak Y  [7 bits]

• Peak X  [6 bits]

• Peak Y  [3 bits]
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Motion Descriptors

• Motion Activity Descriptor

• Camera Motion Descriptor

• Motion Trajectory Descriptor

• Parametric Motion Descriptor


