

Camera Basics, Image Formation, and Image Processing

First version was created by Wei-Chih Tu, 2018

Vision

• How vision is formed

• Emission theory of vision

Eyes send out "feeling rays" into the world

Supported by:

- Empedocles
- Plato
- Euclid
- Ptolemy
- .
- 50% of US college students*

<u>*http://www.ncbi.nlm.nih.gov/pubmed/12094435?dopt=Abstract</u>

"For every complex problem there is an answer that is clear, simple, and wrong." -- H. L. Mencken

- The human eye is a camera
 - The image is inverted, but the spatial relationships are preserved

- Building a camera
 - Put a piece of film in front of an object

- Add a barrier to block off most of the rays
 - This reduces blurring

Aperture Size Matters

- Why not making the aperture as small as possible?
 - Less light get through
 - Diffraction effect

The "Trashcam" Project

https://petapixel.com/2012/04/18/german-garbage-men-turn-dumpsters-into-giant-pinhole-cameras/

• Adding a lens

• Thin lens equation

Source: https://www.chegg.com/homework-help/questions-and-answers/theory-thin-lens-equation-written-1-f-1-0-1-f-focal-length-o-object-distance-image-distanc-q13090621

• The lens focuses light onto the film

• Circle of confusion controls depth of field

Depth of field

• Aperture also controls depth of field

• Defocus

Source: AMC

- Real lens consists of two or more pieces of glass
 - To alleviate chromatic aberration and vignetting

Vignetting

- Focal length controls field of view
- Shutter speed (exposure time) also matters

Source: National Geographic

- Images are sampled and quantized
 - Sampled: discrete space (and time)
 - Quantized: only a finite number of possible values (*i.e.* 0 to 255)

Source: Ulas Bagci

Camera pipeline

Figure 2.23 from Computer Vision: Algorithms and Applications

- Resolution
 - Image sensor samples and quantizes the scene

High resolution

Low sampling rate may cause **aliasing** artifact

Low resolution

Figure by Yen-Cheng Liu

• Super resolution: the problem of resolving the high resolution image from the low resolution image

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832) SRGAN (21.15dB/0.6868)

original

Example results of 4x upscaling. Figure from SRGAN [Ledig et al. CVPR 2017]

- Dynamic range
 - Information loss due to A/D conversion
 - Typical image: 8 bit (0~255)

The world is HDR and our eyes have great ability to sense it

An exposure bracketed sequence (Each picture is a LDR image)

- HDR imaging: LDRs \rightarrow HDR
- Tone mapping: HDR \rightarrow LDR
- Do we really need HDR?
 - Exposure fusion: LDRs → LDR [Mertens et al. PG 2007]

3 exposure (-2,0,+2) tone mapped image of a scene at Nippori Station.

- Demosaicing: color filter array interpolation
 - The image sensor knows nothing about color!

Color filter array (CFA) Bayer pattern: 1R1B2G in a 2x2 block

A picture of Alim Khan (1880-1944), Emir of Bukhara, taken in 1911.

• More CFA design

More Sensing Devices

• 360 camera

Source: LUNA

More Sensing Devices

• Infra-red camera

More Sensing Devices

• Depth camera

Kinect V2 (time of flight)

PointGrey Bumblebee 2 (stereo)

Vision

• How vision is formed

Image Processing in the Brain

 The dorsal stream (green) and ventral stream (purple) are shown. They originate from a common source in the visual cortex.

Digital Image Processing

• Extract information (what and where) from digital images

Digital Image Processing

- Some low-level image processing
 - Histogram
 - Morphological operations
 - Edge detection
 - Image filtering
- Topics to be covered in this course
 - Key point and feature descriptor
 - Matching
 - Geometric transformation
 - Semantic analysis
 - Learning-based techniques
 - ...

Histogram

Histogram

- Histogram equalization
 - By mapping CDF to the line y = x

Histogram

• Understanding data distribution

Morphological Operations

• Take a binary image and a structuring element as input.

Set of coordinate points =

- { (-1, -1), (0, -1), (1, -1),
 - (-1, 0), (0, 0), (1, 0),
 - (-1, 1), (0, 1), (1, 1) }

Dilation

Erosion

Morphological Operations

- Opening: erosion \rightarrow dilation
- Closing: dilation \rightarrow erosion

- What is filtering?
 - Forming a new image whose pixel values are transformed from original pixel values
- Goals
 - To extract useful information from images
 - *e.g.* edges
 - To transform images into another domain where we can modify/enhance image properties
 - *e.g.* denoising, image decomposition

• Try it yourself!

input image

output image

http://setosa.io/ev/image-kernels/

$$g(x,y) = \frac{1}{W} \sum_{i,j \in [-r,r]} h(i,j) f(x-i,y-j)$$

$$W = \sum_{i,j \in [-r,r]} h(i,j)$$

=

- Convolution
 - Linear shift invariant (LSI)

45	60	<mark>98</mark>	127	132	133	137	133
46	6 5	98	123	126	128	131	133
47	6 5	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	9 7	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

*

0.1	0.1	0.1
0.1	0.2	0.1
0.1	0.1	0.1

Output size changeu 🛇	O	utput	size	chan	ged	$\overline{\mathbf{S}}$
-----------------------	---	-------	------	------	-----	-------------------------

<u>69</u>	9 5	116	125	129	132
68	9 2	110	120	126	132
66	86	104	114	124	132
6 2	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

f(x,y)

h(x,y)

g(x,y)

Figure 3.10 from Computer Vision: Algorithms and Applications

• Padding

Zero padding

Symmetric

Replicate

Circular

• Box filter

46

47

47

50

49

50

50

- Average filter
- Compute summation if ignoring 1/N
- Complexity: $O(r^2)$

g(x,y)

- Box filter in O(r)
 - Moving sum technique

Source: Ben Weiss

Note: O(1) filter is also called **constant time** filter

- Box filter in O(1)
 - Integral image (sum area table)
 - Computing integral image: 2 addition + 1 subtraction
 - Obtaining box sum: 2 subtraction + 1 addition
 - Regardless of box size 🙂

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

3	5	12	14	17	
4	11	19	24	31	
9	17	28	38	46	
13	24	37	48	62	
15	30	44	59	81	

3	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

Sum = 24

19 + 17 - 11 + 3 = 28 Sum = 48 - 14 - 13 + 3 = 24

- Gaussian filter
 - The kernel weight is a Gaussian function $h(x) = e^{-\frac{x^2}{2\sigma^2}}$
 - Center pixels contribute more weights

- Gaussian filter
 - 2D case: $h(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$
 - Complexity: $O(r^2)$

Original Image

Gaussian filtered image, $\sigma = 2$

$$g(x,y) = \frac{1}{W} \sum_{i,j \in [-r,r]} h(i,j) f(x-i,y-j)$$
$$W = \sum_{i,j \in [-r,r]} h(i,j)$$

- Gaussian filter in O(r)
 - Gaussian kernel is separable (The same technique can be applied to other separable kernels)

$$h(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}} = e^{-\frac{x^2}{2\sigma^2}} \cdot e^{-\frac{y^2}{2\sigma^2}}$$

$$g(x,y) = \frac{1}{W} \sum_{i \in [-r,r]} \sum_{j \in [-r,r]} e^{-\frac{x^2 + y^2}{2\sigma^2}} f(x-i,y-j)$$

$$g(x,y) = \frac{1}{W} \sum_{j \in [-r,r]} e^{-\frac{y^2}{2\sigma^2}} \sum_{i \in [-r,r]} e^{-\frac{x^2}{2\sigma^2}} f(x-i,y-j)$$

• Gaussian filter in O(r)

Direct 2D implementation: $O(r^2)$

Separable implementation: O(r)

- Gaussian filter in O(1)
 - FFT
 - Iterative box filtering
 - Recursive filter

• O(1) Gaussian filter by FFT approach

$$g = h * f$$
$$\mathcal{F}(g) = \mathcal{F}(h) \cdot \mathcal{F}(f)$$
$$g = \mathcal{F}^{-1}(\mathcal{F}(h) \cdot \mathcal{F}(f))$$

- Complexity:
 - Take FFT: $O(wh \ln(w) \ln(h))$
 - Multiply by FFT of Gaussian: O(wh)
 - Take inverse FFT: $O(wh \ln(w) \ln(h))$
 - Cost independent of filter size

- O(1) Gaussian filter by iterative box filtering
 - Based on the **central limit theorem**
 - Pros: easy to implement!
 - Cons: limited choice of box size (3, 5, 7, ...) results in limited choice of Gaussian function σ^2

- O(1) Gaussian filter by recursive implementation
 - All filters we discussed above are FIR filters
 - We can use IIR (infinite impulse response) filters to approximate Gaussians...

1st order IIR filter:

$$g(x) = a_0 \cdot f(x) - b_1 \cdot g(x-1)$$

2nd order IIR filter:

$$g(x) = a_0 \cdot f(x) + a_1 \cdot f(x-1) - b_1 \cdot g(x-1) - b_2 \cdot g(x-2)$$

- The example above is an exponential decay
- Equivalent to convolution by:

- Makes large, smooth filters with very little computation! ③
- One forward pass (causal), one backward pass (anti-causal), equivalent to convolution by:

- O(1) Gaussian filter by recursive implementation
 - 2nd order IIR filter approximation

$$g(x) = a_0 \cdot f(x) + a_1 \cdot f(x-1) - b_1 \cdot g(x-1) - b_2 \cdot g(x-2)$$
$$g'(x) = a_2 \cdot f(x+1) + a_3 \cdot f(x+2) - b_1 \cdot g'(x+1) - b_2 \cdot g'(x+2)$$

$$a_{0} = (1 - e^{-\frac{1.695}{\sigma_{S}}})^{2} / (1 + 3.39e^{-\frac{1.695}{\sigma_{S}}} / \sigma_{S} - e^{-\frac{3.39}{\sigma_{S}}}$$

$$a_{1} = (1.695 / \sigma_{S} - 1)e^{-\frac{1.695}{\sigma_{S}}} a_{0},$$

$$b_{1} = -2e^{-\frac{1.695}{\sigma_{S}}},$$

$$b_{2} = e^{-\frac{3.39}{\sigma_{S}}}.$$

$$a_{2} = (1.695 / \sigma_{S} + 1)e^{-\frac{1.695}{\sigma_{S}}} a_{0} \text{ and } a_{3} = -a_{0}b_{2}$$

"Recursively implementing the Gaussian and its derivatives", ICIP 1992

- Median filter
 - 3x3 example:

	11	19	22					
	12	25	27					
	18	26	23					
A local patch								
	Sort							
11, 12,	18, 19	9, <mark>22</mark> , 2	23, 25,	26, 27				
		F	Replac	e centei				
	11	19	22					
	12	22	27					
	18	26	23					

eplace center pixel value by median

- Median filter
 - Useful to deal with salt and pepper noise

Original

Add salt & pepper

Gaussian filter

Median filter

Convert a 2D image into a set of curves

- Extract salient features of the scene
- More compact than pixels

• We know edges are special from mammalian vision studies

• Origin of edges

• Characterizing edges

Gradient magnitude

• How to compute gradient for digital images?

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• Take discrete derivative

$$\frac{\partial f}{\partial x} \approx f(x+1,y) - f(x,y)$$

Gradient direction and magnitude

$$\theta = \tan^{-1}\left(\frac{\partial f/\partial y}{\partial f/\partial x}\right) \qquad \qquad \|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
Discrete Derivative

Backward difference

$$\frac{df}{dx} = f(x) - f(x-1)$$

• Forward difference

$$\frac{df}{dx} = f(x) - f(x+1)$$
 [-1, 1]

• Central difference

$$\frac{df}{dx} = f(x+1) - f(x-1)$$
 [1, 0, -1]

Equivalent to convolve with:

[1, -1]

• Sobel filter

$$G_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} * f \qquad G_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * f \qquad G = \sqrt{G_x^2 + G_y^2}$$

G

Input image

After thresholding

- Effect of noise
 - Difference filters respond strongly to noise
 - Solution: smooth first

Derivative Theorem of Convolution

• Differentiation is convolution, which is associative:

- Tradeoff between smoothing and localization
 - Smoothing filter removes noise but blurs edges $\ensuremath{\mathfrak{S}}$

No filtering

Gaussian filter, $\sigma = 2$

Gaussian filter, $\sigma = 5$

- Criteria for a good edge detector
 - Good detection
 - Find all real edges, ignoring noise
 - Good localization
 - Locate edges as close as possible to the true edges ٠
 - Edge width is only one pixel ٠

Bad localization

Missing edge

- Canny edge detector
 - The most widely used edge detector
 - The best you can find in existing tools like MATLAB, OpenCV...
- Algorithm:
 - Apply Gaussian filter to reduce noise
 - Find the intensity gradients of the image
 - Apply **non-maximum suppression** to get rid of false edges
 - Apply **double threshold** to determine potential edges
 - Track edge by hysteresis: suppressing weak edges that are not connected to strong edges

Non-Maximum Suppression

Gradient magnitude

After NMS

Double Thresholding

Hysteresis

• Find **connected components** from strong edge pixels to finalize edge detection

More Image Filtering

- Bilateral filter
 - Smoothing images while preserving edges

Small fluctuations are removed

Edge remains sharp

Bilateral Filtering

• Bilateral filter

$$g(x,y) = \frac{1}{W} \sum_{i,j \in [-r,r]} h(i,j) f(x-i,y-j)$$

$$g(x,y) = \frac{1}{W} \sum_{i,j \in [-r,r]} h_s(i,j) \cdot h_r(i,j) \cdot f(x-i,y-j)$$
Spatial kernel

• Spatial kernel: weights are larger for pixels near the window center

$$h_s(i,j) = e^{-\frac{i^2+j^2}{2\sigma_s^s}}$$

• **Range kernel**: weights are larger if the neighbor pixel has similar intensity (color) to the center pixel

$$h_r(i,j) = e^{-\frac{[f(x-i,y-j)-f(x,y)]^2}{2\sigma_r^s}}$$

Bilateral Filtering

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Joint Bilateral Filtering

• The range kernel takes another guidance image as reference

$$g(x,y) = \frac{1}{W} \sum_{i,j \in [-r,r]} h_s(i,j) \cdot h_r(i,j) \cdot f(x-i,y-j)$$

$$h_s(i,j) = e^{-\frac{i^2 + j^2}{2\sigma_s^s}} \qquad h_r(i,j) = e^{-\frac{[f'(x-i,y-j) - f'(x,y)]^2}{2\sigma_r^s}}$$

Flash

No flash

Joint bilateral filtering

Bilateral Filtering

- Fast bilateral filtering also exists
 - "A fast approximation of the bilateral filter using a signal processing approach", ECCV 2006
 - "Constant time O(1) bilateral filtering", CVPR 2008
 - "Real-time O(1) bilateral filtering", CVPR 2009
 - "Fast high-dimensional filtering using the permutohedral lattice", EG 2010
 - and many more...
- We also contribute some works in this field
 - "Constant time bilateral filtering for color images", ICIP 2016
 - "VLSI architecture design of layer-based bilateral and median filtering for 4k2k videos at 30fps", ISCAS 2017

Guided Image Filtering

- Local linear assumption
- Per pixel O(1)

$$\min_{(a,b)}\sum_{i}(aI_i+b-p_i)^2+\varepsilon a^2$$

Algorithm 1. Guided Filter. Input: filtering input image p, guidance image I, radius r, regularization ϵ Output: filtering output q. 1: mean_I = $f_{mean}(I)$ mean_p = $f_{mean}(p)$ corr_I = $f_{mean}(I. * I)$ corr_{Ip} = $f_{mean}(I. * p)$ 2: var_I = corr_I - mean_I. * mean_I cov_{Ip} = corr_{Ip} - mean_I. * mean_p 3: $a = cov_{Ip}./(var_I + \epsilon)$ $b = mean_p - a. * mean_I$ 4: mean_a = $f_{mean}(a)$ mean_b = $f_{mean}(b)$ 5: $q = mean_a. * I + mean_b$

Edge-Preserving Filtering

- Both the bilateral filter and the guided image filter are called **edge-preserving filters** (EPF)
 - They can smooth images while preserving edges
- Other widely used EPFs with source code
 - Weighted least square filter, SIGGRAPH 2008
 - Domain transform filter, SIGGRAPH 2011
 - <u>L₀ filter</u>, SIGGRAPH Asia 2011
 - Fast global smoothing filter, TIP 2014

Edge-Preserving Filtering

• Applications

Edit (e.g. color) propagation

Detail manipulation

Guided upsampling (depth maps, features, ..., etc.)

What we have learned today

- Digital imaging
- Some low-level image processing

