
HW2 –
Scene Recognition &  

Image Classification Using CNN

Computer Vision

NTU, Spring 2022

Announced: 03/25 2022(Fri.)

Due: 04/14 2022(Thur.) 23:59
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Outline

• Part 1. Scene Recognition 

• Use SIFT in cyvlfeat as a feature extractor.

• Apply K-Nearest Neighbor Algorithm as a weak classifier.

• Part 2. Image Classification 

• Use convolutional neural network as a feature extractor and perform 

image classification. 
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What You Will Learn 

• Basics 
• What the pipeline of bag of sifts is.  
• How to build a KNN classifier.
• Some useful function in opencv and cyvlfeat. 
• How to build convolutional layers, fully-connected layers and residual 

blocks in CNN-based model. 
• How to train a model under pytorch framework.

• Advanced learning (optional)
• How to perform simple data augmentation method in pytorch to 

gain accuracy.
• How to perform data cleaning method on some dirty data.
• How to supply semi-supervised to unlabeled data.   
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Preparation

• Before getting started, you have to 
download the dataset in the following 
link, 

• Install pytorch package in official 
website. ( strongly recommended)
• Start Locally | PyTorch [1]
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https://pytorch.org/get-started/locally/


Preparation
• Extract hw2_data.zip. Move ‘’p1_data’’ and ‘’p2_data’’ in your 

working space as shown in the following directory.

• The download link for hw2_data.zip 
• https://drive.google.com/u/1/uc?id=1Uq1_00JtfZ8ETueo8RjPvL6ANhIc1qv

D&export=download
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https://drive.google.com/u/1/uc?id=1Uq1_00JtfZ8ETueo8RjPvL6ANhIc1qvD&export=download


Part 1. Scene Recognition
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BoW Scene Recognition

• Tiny images representation and nearest neighbor  classifier.

• Bag of SIFT representation and nearest neighbor classifier.
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Reference:[2] http://media.ee.ntu.edu.tw/courses/cv/21S/slides/cv2021_lec05.pdf , page 46-49

http://media.ee.ntu.edu.tw/courses/cv/21S/slides/cv2021_lec05.pdf


Dataset Description [3]

• hw2_data/p1/train 

• 100 images per category 

• hw2_data/p1/test  

• 100+ images per category 

Media IC and System Lab 8



9

Assignment Description



You will have the files….
• part1/p1.py 

• Read image, construct feature representations, classify features, etc.  

• part1/get_tiny_images.py ## TO DO ##

• Build tiny images features. 

• part1/build_vocabulary.py  ## TO DO ##

• Sample SIFT descriptors from training images, cluster them with k-means 
and return centroids.  

• part1/get_bags_of_sifts.py • ## TO DO ##

Construct SIFT and build a histogram indicating how many times each 
centroid was used. 

• part1/nearest_neighbor_classify.py ## TO DO ##

• Predict the category for each test image. 

• CAN NOT USE sklearn.neighbors.KNeighborsClassifier
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Confusion Matrix
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• Result visualization – confusion matrix



Part 2. Image Classification 
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Task Description
• In this part, you need to build a CNN-based model to predict the labels for the 

certain images. 
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Ship, Cat, Ship, Dog, Dog, 
Horse, Deer, Frog, Ship, Frog



Dataset Description
• Original Cifar-10 dataset [4] contains

• 50,000 training images.

• For each class it contains 5000 images  

• 10,000 test images.

• In the dataset, all images consists RGB 

channel with resolution equal to 32*32.
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Dataset Description

• In the homework, we are using  Cifar-10 mini given by TA

• It contains only 23,000 images for training.

• In the training set,  TA mixed up to 3000 dirty images which may not belong to any of 

the class.

• Besides, you will get extra 30,000 unlabeled data for semi-supervised

• TA will give  you 5000 images as the public score for testing.

• TA will evaluate another 5000 images as the private score.
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Example for dirty images
Bird, Airplane, Deer, Frog, Bird
Dog, Horse, Deer, Ship, Truck
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Assignment Description



You will have the files….
• part2/main.py 

• Top. Start training and some basics settings, etc.  

• part2/cfg.py 

• Some hyperparameters, seeds setting for certain mode. 

• part2/myDatasets.py

• Define your customized Datasets for training process. ## TO DO ##

• part2/tool.py  ## TO DO ##

• Functions/tools for saving/loading model parameters, Training/validation process, and some 
other useful function.

• part2/myModels.py • ## TO DO ##

• Define your own modelzoo including at least myResnet and myLenet

• part2/eval.py 

• Predict the labels for public datasets. ## TO DO ## 

• Note : In part2. , feel free to modify all the files as long as it’s reasonable and reproducible.
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Basic Flows for Training a Model 

1. Define your “cifar10_dataset” for data.

• You can apply data augmentation in the stage. 

2. Define your objective function or loss function.

3. Train the model iteratively 

• Forward → Calculate gradient → Backpropagation  

4. Apply validation set in the case of overfitting.

• Only apply forward path to check accuracy compared with the 
training process.

5. Apply the well-trained model on your test set.
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Residual Block

• Build your own Resnet 
using the residual block.

• Residual block [5]
• You can add extra layer 

yourself.
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Data Augmentation 

• CNN are not rotational-invariant !! We need to 
apply a serial of data augmentation to train a 
robust model. 

• You can simply apply a built-in function in 
pytorch

• https://pytorch.org/vision/stable/transforms.ht
ml
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https://pytorch.org/vision/stable/transforms.html


Cleaning The Data 

• You could apply a weak model to the original dataset.
• Discard the image with low confidence.

• Reserve the image with high confidence.

• You could also apply K-mean centroids algorithm.
• Discard the images whose feature maps are far away from the 

centroid.
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Cifar-10
Image

weak model 

> threshold k

< threshold k

Discard images

Add to the clean training set

Clean training 
set



Semi-supervised Learning 
• Apply a well-trained model to verify if the images need to be 

preserved. 
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Cifar-10
Image in  the unlabeled set strong model 

> threshold k_

< threshold k_

Discard images

Add to the clean training set
with new label 

unlabeled
set

new training 
set



Plot Learning Curve

• Report your model’s architecture and 
learning curve for both Lenet and 
resnet. 
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Submission and Some Notes



Execution of hw2
• TAs will run your codes as the following manner,

• Part 1. 

• python3 p1.py $1 $2 $ 3 

• $1: type of feature representation (tiny images/SIFT)  

• $2: type of classifier(nearest neighbor)  

• $3: dataset path 

• E.g., python3 p1.py -- feature tiny_images – classifier nearest_neighbor – dataset_path ./p1_data/ 

• Part 2. 

• python3 main.py → It need to generate your final result (.pt)  and reproduce the accuracy in your 
report. 

• python3 eval.py $1 $2

• $1 the path of model’s parameter

• $2 the path of the annotation for test data

• E.g. 

• python3 eval.py --path ./save_dir/LeNet/best_model.pt --
test_anno ./data/annotations/public_test_annos.json
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Submission
• Directory architecture:

R07654321_hw2/

-- / report.pdf

-- /part1

--/ p1.py, get_tiny_images.py, build_vocabulary.py, get_bags_of_sifts.py,  nearest_neighbor_classify.py

--/ vocab.pkl, train_image_feats.pkl, test_image_feats.pkl

-- /part2

-- / ReadMe.MD → Write a simple read me to tell TA how to run your code. Important !! 

-- / main.py → It needs to generate .pt file, which is the final parameter of the model you use in your report.   

-- / eval.py → TA could simply run, “ python3 eval.py “ to utilize .pt file that train.py generated to evaluate your 
code on public dataset 

-- / myModel.py → To clearly show the model you build yourself. 

-- / any other file you need.

• Put all above files in a directory (StudentID_hw2, e.g. R07654321_hw2) and compress the 
directory into zip file StudentID_hw2.zip (e.g. R07654321_hw2.zip)

• Note : You don’t need to submit your model’s parameter (.pt) or raw data  !!!!!!!!!

• Submit to NTU COOL 

• Deadline: 111/04/14 (Thur.) 23:59
• Late policy: http://media.ee.ntu.edu.tw/courses/cv/22S/hw/delay_policy.pdf
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http://media.ee.ntu.edu.tw/courses/cv/22S/hw/delay_policy.pdf


Rules 
• You can only use the dataset TA provided. You are not allowed to used original dataset online. 

• Pretrained model is allowed if and only if the model is pretrained on ImageNet. No more pretrained weights 

are allowed. 

• TA will reproduce your training in part2. If you cannot match the accuracy in your report, TA will send you an 

e-mail to run another chance only for one time.   

• Note: Your code needs to be finished training in 12 hours and your model size should less than 100 MB.

• Plagiarism is forbidden ! 

• If you violate the any of the rules above, you will get 0 point in the corresponding sections. 

27



Grading
• Part 1 : 30 % + extra 5 %

• Model Performance(25%)

• Accuracy should be above the baseline score to get points

• Tiny images + KNN(10%): 0.2

• Bag of SIFT + KNN (15%):

• Weak baseline (9%): 0.55

• Strong baseline (6%): 0.6

• TAs will execute your code to check if you pass the baseline.

• Report(10%)

• Plot confusion matrix of two settings. (5%)

• Compare the results/accuracy of both settings and explain the result. (5%)
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Grading
• Part 2 : 70 % + extra 5 %

• Model Performance(40%)

• TA will test your code on both private and pubic test sets.

• Weak baseline : accuracy > 64.65%. Both 5 % for the private and public test sets (10%)

• Medium baseline : accuracy > 72.30%. Both 7.5 % for the private and public test sets (15%)

• Strong baseline : accuracy > 77.92%. Both 7.5% for the private and public test sets (15%)

• Report(35%)

• Compare the performance on residual networks and LeNet. Plot the learning curve (loss and accuracy ) on both 

training and validation sets for both 2 schemes. 8 plots in total. (20%)

• Attach basic information of the model you use including model architecture and number of the parameters. (5%)

• Briefly describe what method do you apply ? (e.g. data augmentation, model architecture, loss function, 

etc. )(10%) 
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Packages TA used 
• python: 3.6+

• numpy: 1.19.2+

• cyvlfeat: 0.5.1+

• matplotlib: 3.3.4+

• pillow: 8.1.2+

• scipy: 1.5.2+

• opencv-python: 4.5.1+ 

• sklearn: 0.24.1+ 

• pytorch: 1.5.1+ (https://pytorch.org/get-started/locally/ ) 

• torchvision: 0.6.1+ 

• And other standard python packages 

• E-mail or ask TA first if you want to import other packages. 30



If You Have Problems…

• Use NTU cool (strongly recommended)
• TA will answer the questions every day and record some common 

problems you may face.

• https://cool.ntu.edu.tw/courses/14814/discussion_topics/94504

• Attach TA
• E-main: mjsun@media.ee.ntu.edu.tw

• Office hour in the lab or online TA hour

• Goooooooooogle yourself.
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https://cool.ntu.edu.tw/courses/14814/discussion_topics/94504
mailto:mjsun@media.ee.ntu.edu.tw


TA information

• Ming-Jhih Sun (孫名志)

E-mail: mjsun@media.ee.ntu.edu.tw

TA hour: Wed. 10:00 - 12:00

Location: 博理 421

Online TA hour :  Every Mon. & Thur. 20:00 – 21:00 during the period of hw2 

https://meet.google.com/txc-ppsa-sai

Note: Send an e-mail including your problems if you want to attend 

online TA hour !! 

• Chih-Ting Liu (劉致廷)

E-mail: jackieliu@media.ee.ntu.edu.tw

Location: 博理 421
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Supplementary
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Tips for Achieving the Baselines
• In Part 1.

• Consider different metrics to evaluate the distance between features.

• Ref: scipy.spatial.distance.cdist — SciPy v1.8.0 Manual [6]

• In part 2. 

• Weak baseline – a simple residual model + little effort  

• Medium baseline – data augmentation + adjusting learning rate 
( +add some batchnorm and pooling layers) 

• Strong baseline – a stronger model + data augmentation + data 
cleaning + semi-supervised + adjusting learning rate +add some 
batchnorm and pooling layers
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist


TA’s Experience for Part 2.
• TA trained the model by CPU only. 

• TA’s equiptments : Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz + 128 GB RAM

• The model TA applied. 

• TA applied a super shallow model with only 3 residual blocks without any 
pretrained weight.

• The size of the parameter is approximately 17 MB only.

• Training milestones

• For each epoch with 23,000 images, it takes ~ 4 mins. 

• TA runs total 25 epochs to get the performance by 73.1%

• With another 25 epochs for data cleaning, TA get the performance by 77.3%.

• Semi-supervised is applied and TA trained 48,262 images in total.

• For each epoch, it takes ~ 8 min. With total 25 epochs, TA get the performance 
by 79.54%.   
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For Pytorch & Colab Tutorial 

• For Pytorch & colab tutorial 
• [7] Machine Learning Couse. Prof. Lee-HY Website ML 2022 Spring (ntu.edu.tw)

• colab tutorial 
• https://www.youtube.com/watch?v=YmPF0jrWn6Y

• https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-
data/Colab%20Tutorial%202022.pdf

• Pyortch tutorial 1 
• https://www.youtube.com/watch?v=85uJ9hSaXig

• https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%201.pdf

• Pytorch tutorial 2 
• https://www.youtube.com/watch?v=VbqNn20FoHM

• https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-
data/Pytorch%20Tutorial%202.pdf
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https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
https://www.youtube.com/watch?v=YmPF0jrWn6Y
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Colab%20Tutorial%202022.pdf
https://www.youtube.com/watch?v=85uJ9hSaXig
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%201.pdf
https://www.youtube.com/watch?v=VbqNn20FoHM
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%202.pdf


Reference
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