
HW2 –
Scene Recognition &

Image Classification Using CNN

Computer Vision

NTU, Spring 2022

Announced: 03/25 2022(Fri.)

Due: 04/14 2022(Thur.) 23:59

1

Outline

• Part 1. Scene Recognition

• Use SIFT in cyvlfeat as a feature extractor.

• Apply K-Nearest Neighbor Algorithm as a weak classifier.

• Part 2. Image Classification

• Use convolutional neural network as a feature extractor and perform

image classification.

2

What You Will Learn

• Basics
• What the pipeline of bag of sifts is.
• How to build a KNN classifier.
• Some useful function in opencv and cyvlfeat.
• How to build convolutional layers, fully-connected layers and residual

blocks in CNN-based model.
• How to train a model under pytorch framework.

• Advanced learning (optional)
• How to perform simple data augmentation method in pytorch to

gain accuracy.
• How to perform data cleaning method on some dirty data.
• How to supply semi-supervised to unlabeled data.

3

Preparation

• Before getting started, you have to
download the dataset in the following
link,

• Install pytorch package in official
website. (strongly recommended)
• Start Locally | PyTorch [1]

4

https://pytorch.org/get-started/locally/

Preparation
• Extract hw2_data.zip. Move ‘’p1_data’’ and ‘’p2_data’’ in your

working space as shown in the following directory.

• The download link for hw2_data.zip
• https://drive.google.com/u/1/uc?id=1Uq1_00JtfZ8ETueo8RjPvL6ANhIc1qv

D&export=download

5

https://drive.google.com/u/1/uc?id=1Uq1_00JtfZ8ETueo8RjPvL6ANhIc1qvD&export=download

Part 1. Scene Recognition

6

BoW Scene Recognition

• Tiny images representation and nearest neighbor classifier.

• Bag of SIFT representation and nearest neighbor classifier.

7

Reference:[2] http://media.ee.ntu.edu.tw/courses/cv/21S/slides/cv2021_lec05.pdf , page 46-49

http://media.ee.ntu.edu.tw/courses/cv/21S/slides/cv2021_lec05.pdf

Dataset Description [3]

• hw2_data/p1/train

• 100 images per category

• hw2_data/p1/test

• 100+ images per category

Media IC and System Lab 8

9

Assignment Description

You will have the files….
• part1/p1.py

• Read image, construct feature representations, classify features, etc.

• part1/get_tiny_images.py ## TO DO ##

• Build tiny images features.

• part1/build_vocabulary.py ## TO DO ##

• Sample SIFT descriptors from training images, cluster them with k-means
and return centroids.

• part1/get_bags_of_sifts.py • ## TO DO ##

Construct SIFT and build a histogram indicating how many times each
centroid was used.

• part1/nearest_neighbor_classify.py ## TO DO ##

• Predict the category for each test image.

• CAN NOT USE sklearn.neighbors.KNeighborsClassifier

10

Confusion Matrix

Media IC and System Lab 11

• Result visualization – confusion matrix

Part 2. Image Classification

12

Task Description
• In this part, you need to build a CNN-based model to predict the labels for the

certain images.

13

Ship, Cat, Ship, Dog, Dog,
Horse, Deer, Frog, Ship, Frog

Dataset Description
• Original Cifar-10 dataset [4] contains

• 50,000 training images.

• For each class it contains 5000 images

• 10,000 test images.

• In the dataset, all images consists RGB

channel with resolution equal to 32*32.

14

Dataset Description

• In the homework, we are using Cifar-10 mini given by TA

• It contains only 23,000 images for training.

• In the training set, TA mixed up to 3000 dirty images which may not belong to any of

the class.

• Besides, you will get extra 30,000 unlabeled data for semi-supervised

• TA will give you 5000 images as the public score for testing.

• TA will evaluate another 5000 images as the private score.

15

Example for dirty images
Bird, Airplane, Deer, Frog, Bird
Dog, Horse, Deer, Ship, Truck

16

Assignment Description

You will have the files….
• part2/main.py

• Top. Start training and some basics settings, etc.

• part2/cfg.py

• Some hyperparameters, seeds setting for certain mode.

• part2/myDatasets.py

• Define your customized Datasets for training process. ## TO DO ##

• part2/tool.py ## TO DO ##

• Functions/tools for saving/loading model parameters, Training/validation process, and some
other useful function.

• part2/myModels.py • ## TO DO ##

• Define your own modelzoo including at least myResnet and myLenet

• part2/eval.py

• Predict the labels for public datasets. ## TO DO ##

• Note : In part2. , feel free to modify all the files as long as it’s reasonable and reproducible.

17

Basic Flows for Training a Model

1. Define your “cifar10_dataset” for data.

• You can apply data augmentation in the stage.

2. Define your objective function or loss function.

3. Train the model iteratively

• Forward → Calculate gradient → Backpropagation

4. Apply validation set in the case of overfitting.

• Only apply forward path to check accuracy compared with the
training process.

5. Apply the well-trained model on your test set.

18

Residual Block

• Build your own Resnet
using the residual block.

• Residual block [5]
• You can add extra layer

yourself.

19

Data Augmentation

• CNN are not rotational-invariant !! We need to
apply a serial of data augmentation to train a
robust model.

• You can simply apply a built-in function in
pytorch

• https://pytorch.org/vision/stable/transforms.ht
ml

20

https://pytorch.org/vision/stable/transforms.html

Cleaning The Data

• You could apply a weak model to the original dataset.
• Discard the image with low confidence.

• Reserve the image with high confidence.

• You could also apply K-mean centroids algorithm.
• Discard the images whose feature maps are far away from the

centroid.

21

Cifar-10
Image

weak model

> threshold k

< threshold k

Discard images

Add to the clean training set

Clean training
set

Semi-supervised Learning
• Apply a well-trained model to verify if the images need to be

preserved.

22

Cifar-10
Image in the unlabeled set strong model

> threshold k_

< threshold k_

Discard images

Add to the clean training set
with new label

unlabeled
set

new training
set

Plot Learning Curve

• Report your model’s architecture and
learning curve for both Lenet and
resnet.

23

24

Submission and Some Notes

Execution of hw2
• TAs will run your codes as the following manner,

• Part 1.

• python3 p1.py $1 $2 $ 3

• $1: type of feature representation (tiny images/SIFT)

• $2: type of classifier(nearest neighbor)

• $3: dataset path

• E.g., python3 p1.py -- feature tiny_images – classifier nearest_neighbor – dataset_path ./p1_data/

• Part 2.

• python3 main.py → It need to generate your final result (.pt) and reproduce the accuracy in your
report.

• python3 eval.py $1 $2

• $1 the path of model’s parameter

• $2 the path of the annotation for test data

• E.g.

• python3 eval.py --path ./save_dir/LeNet/best_model.pt --
test_anno ./data/annotations/public_test_annos.json

25

Submission
• Directory architecture:

R07654321_hw2/

-- / report.pdf

-- /part1

--/ p1.py, get_tiny_images.py, build_vocabulary.py, get_bags_of_sifts.py, nearest_neighbor_classify.py

--/ vocab.pkl, train_image_feats.pkl, test_image_feats.pkl

-- /part2

-- / ReadMe.MD → Write a simple read me to tell TA how to run your code. Important !!

-- / main.py → It needs to generate .pt file, which is the final parameter of the model you use in your report.

-- / eval.py → TA could simply run, “ python3 eval.py “ to utilize .pt file that train.py generated to evaluate your
code on public dataset

-- / myModel.py → To clearly show the model you build yourself.

-- / any other file you need.

• Put all above files in a directory (StudentID_hw2, e.g. R07654321_hw2) and compress the
directory into zip file StudentID_hw2.zip (e.g. R07654321_hw2.zip)

• Note : You don’t need to submit your model’s parameter (.pt) or raw data !!!!!!!!!

• Submit to NTU COOL

• Deadline: 111/04/14 (Thur.) 23:59
• Late policy: http://media.ee.ntu.edu.tw/courses/cv/22S/hw/delay_policy.pdf

26

http://media.ee.ntu.edu.tw/courses/cv/22S/hw/delay_policy.pdf

Rules
• You can only use the dataset TA provided. You are not allowed to used original dataset online.

• Pretrained model is allowed if and only if the model is pretrained on ImageNet. No more pretrained weights

are allowed.

• TA will reproduce your training in part2. If you cannot match the accuracy in your report, TA will send you an

e-mail to run another chance only for one time.

• Note: Your code needs to be finished training in 12 hours and your model size should less than 100 MB.

• Plagiarism is forbidden !

• If you violate the any of the rules above, you will get 0 point in the corresponding sections.

27

Grading
• Part 1 : 30 % + extra 5 %

• Model Performance(25%)

• Accuracy should be above the baseline score to get points

• Tiny images + KNN(10%): 0.2

• Bag of SIFT + KNN (15%):

• Weak baseline (9%): 0.55

• Strong baseline (6%): 0.6

• TAs will execute your code to check if you pass the baseline.

• Report(10%)

• Plot confusion matrix of two settings. (5%)

• Compare the results/accuracy of both settings and explain the result. (5%)
28

Grading
• Part 2 : 70 % + extra 5 %

• Model Performance(40%)

• TA will test your code on both private and pubic test sets.

• Weak baseline : accuracy > 64.65%. Both 5 % for the private and public test sets (10%)

• Medium baseline : accuracy > 72.30%. Both 7.5 % for the private and public test sets (15%)

• Strong baseline : accuracy > 77.92%. Both 7.5% for the private and public test sets (15%)

• Report(35%)

• Compare the performance on residual networks and LeNet. Plot the learning curve (loss and accuracy) on both

training and validation sets for both 2 schemes. 8 plots in total. (20%)

• Attach basic information of the model you use including model architecture and number of the parameters. (5%)

• Briefly describe what method do you apply ? (e.g. data augmentation, model architecture, loss function,

etc.)(10%)

29

Packages TA used
• python: 3.6+

• numpy: 1.19.2+

• cyvlfeat: 0.5.1+

• matplotlib: 3.3.4+

• pillow: 8.1.2+

• scipy: 1.5.2+

• opencv-python: 4.5.1+

• sklearn: 0.24.1+

• pytorch: 1.5.1+ (https://pytorch.org/get-started/locally/)

• torchvision: 0.6.1+

• And other standard python packages

• E-mail or ask TA first if you want to import other packages. 30

If You Have Problems…

• Use NTU cool (strongly recommended)
• TA will answer the questions every day and record some common

problems you may face.

• https://cool.ntu.edu.tw/courses/14814/discussion_topics/94504

• Attach TA
• E-main: mjsun@media.ee.ntu.edu.tw

• Office hour in the lab or online TA hour

• Goooooooooogle yourself.

31

https://cool.ntu.edu.tw/courses/14814/discussion_topics/94504
mailto:mjsun@media.ee.ntu.edu.tw

TA information

• Ming-Jhih Sun (孫名志)

E-mail: mjsun@media.ee.ntu.edu.tw

TA hour: Wed. 10:00 - 12:00

Location: 博理 421

Online TA hour : Every Mon. & Thur. 20:00 – 21:00 during the period of hw2

https://meet.google.com/txc-ppsa-sai

Note: Send an e-mail including your problems if you want to attend

online TA hour !!

• Chih-Ting Liu (劉致廷)

E-mail: jackieliu@media.ee.ntu.edu.tw

Location: 博理 421

32

mailto:mjsun@media.ee.ntu.edu.tw
https://meet.google.com/txc-ppsa-sai

Supplementary

33

Tips for Achieving the Baselines
• In Part 1.

• Consider different metrics to evaluate the distance between features.

• Ref: scipy.spatial.distance.cdist — SciPy v1.8.0 Manual [6]

• In part 2.

• Weak baseline – a simple residual model + little effort

• Medium baseline – data augmentation + adjusting learning rate
(+add some batchnorm and pooling layers)

• Strong baseline – a stronger model + data augmentation + data
cleaning + semi-supervised + adjusting learning rate +add some
batchnorm and pooling layers

34

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist

TA’s Experience for Part 2.
• TA trained the model by CPU only.

• TA’s equiptments : Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz + 128 GB RAM

• The model TA applied.

• TA applied a super shallow model with only 3 residual blocks without any
pretrained weight.

• The size of the parameter is approximately 17 MB only.

• Training milestones

• For each epoch with 23,000 images, it takes ~ 4 mins.

• TA runs total 25 epochs to get the performance by 73.1%

• With another 25 epochs for data cleaning, TA get the performance by 77.3%.

• Semi-supervised is applied and TA trained 48,262 images in total.

• For each epoch, it takes ~ 8 min. With total 25 epochs, TA get the performance
by 79.54%.

35

For Pytorch & Colab Tutorial

• For Pytorch & colab tutorial
• [7] Machine Learning Couse. Prof. Lee-HY Website ML 2022 Spring (ntu.edu.tw)

• colab tutorial
• https://www.youtube.com/watch?v=YmPF0jrWn6Y

• https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-
data/Colab%20Tutorial%202022.pdf

• Pyortch tutorial 1
• https://www.youtube.com/watch?v=85uJ9hSaXig

• https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%201.pdf

• Pytorch tutorial 2
• https://www.youtube.com/watch?v=VbqNn20FoHM

• https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-
data/Pytorch%20Tutorial%202.pdf

36

https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
https://www.youtube.com/watch?v=YmPF0jrWn6Y
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Colab%20Tutorial%202022.pdf
https://www.youtube.com/watch?v=85uJ9hSaXig
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%201.pdf
https://www.youtube.com/watch?v=VbqNn20FoHM
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%202.pdf

Reference
• [1] Pytoch download. https://pytorch.org/get-started/locally/

• [2] Introduction to BoW.
http://media.ee.ntu.edu.tw/courses/cv/21S/slides/cv2021_lec05.pdf

• [3] Scence Recognition datasets. S. Lazebnik, C. Schmid, and J. Ponce,
“Beyond bags of features: Spatial pyramid matching for recognizing
natural scene categories,” CVPR, 2006

• [4] Cifar 10 Datasets Learning Multiple Layers of Features from Tiny

Images, Alex Krizhevsky, 2009. CIFAR-10 and CIFAR-100 datasets

(toronto.edu).

37

https://pytorch.org/get-started/locally/
http://media.ee.ntu.edu.tw/courses/cv/21S/slides/cv2021_lec05.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/cifar.html

Reference

• [5] Deep Residual Learning for Image Recognition. K. He, X. Zhang, S.

Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2016, pp. 770-778, doi: 10.1109/CVPR.2016.90

• [6] scipy.spatial.distance.cdist — SciPy v1.8.0 Manual

• [7] Pytorch & Colab tutorial ML 2022 Spring (ntu.edu.tw)

Media IC and System Lab 38

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php

