

Camera Calibration (Compute Camera Matrix P)

簡韶逸 Shao-Yi Chien

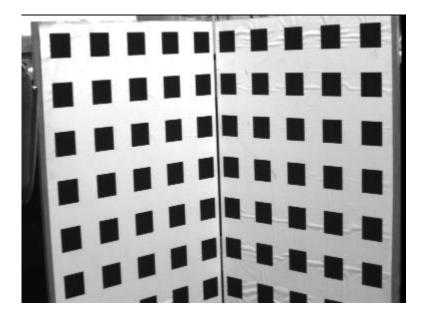
Department of Electrical Engineering

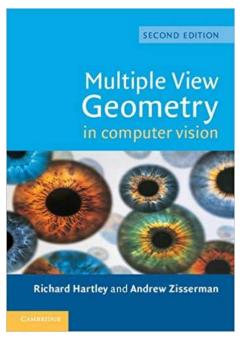
National Taiwan University

Spring 2021

Outline

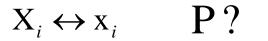
Camera calibration

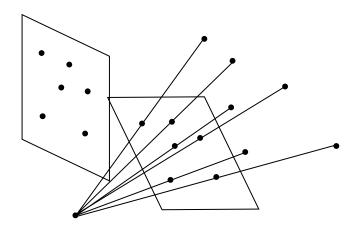




[Slides credit: Marc Pollefeys]

Resectioning





Basic Equations

 $\mathbf{x}_{i} = \mathbf{P}\mathbf{X}_{i}$ $[\mathbf{x}_{i}] \times \mathbf{P}\mathbf{X}_{i}$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \\ -y_i \mathbf{X}_i^{\top} & x_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

Ap = 0

Basic Equations

Ap = 0

minimal solution

P has 11 dof, 2 independent eq./points

 \Rightarrow 5½ correspondences needed (say 6)

Over-determined solution

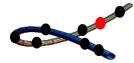
 $n \ge 6$ points

minimize ||Ap|| subject to constraint ||p|| = 1or $||\hat{p}^3|| = 1$ $P = \frac{\hat{p}^3}{\hat{p}^3}$

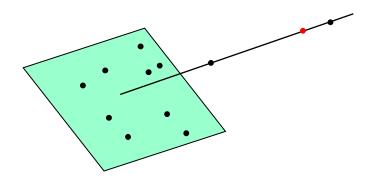
Degenerate Configurations

More complicate than 2D case

(i) Camera and points on a twisted cubic



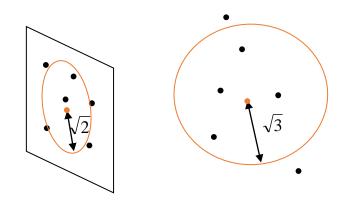
(ii) Points lie on plane or single line passing through projection center



Data Normalization

Less obvious

(i) Simple, as before

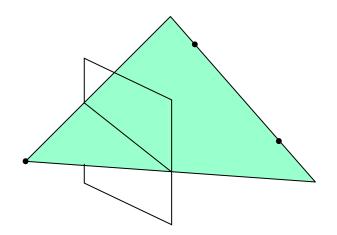


(ii) Anisotropic scaling

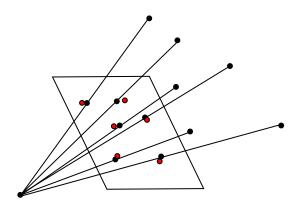
Line Correspondences

Extend DLT to lines

 $\Pi = \mathbf{P}^{\mathrm{T}} \mathbf{l}_{i} \quad \text{(back-project line)}$ $\mathbf{l}_{i}^{\mathrm{T}} \mathbf{P} \mathbf{X}_{1i} \quad \mathbf{l}_{i}^{\mathrm{T}} \mathbf{P} \mathbf{X}_{2i} \quad \text{(2 independent eq.)}$



Geometric Error



 $\sum_{i} d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2$

 $\min_{\mathbf{P}} \sum_{i} d(\mathbf{x}_i, \mathbf{P}\mathbf{X}_i)^2$

Gold Standard Algorithm

Objective

Given $n \ge 6$ 2D to 2D point correspondences $\{X_i \mapsto x_i^{i}\}$, determine the Maximum Likelyhood Estimation of P

Algorithm

(i) Linear solution:

(a) Normalization: $\tilde{X}_i = UX_i$ $\tilde{x}_i = Tx_i$

(b) DLT:

(ii) Minimization of geometric error: using the linear estimate as a starting point minimize the geometric error:

$$\min_{\mathbf{P}} \sum_{i} d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{P}}\tilde{\mathbf{X}}_{i})^{2}$$

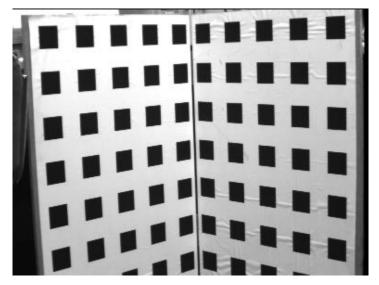
(iii) Denormalization: $P = T^{-1}\tilde{P}U$

Calibration Example

- (i) Canny edge detection
- (ii) Straight line fitting to the detected edges
- (iii) Intersecting the lines to obtain the images corners

typically precision <1/10

(HZ rule of thumb: 5n constraints for n unknowns



	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Errors in the World

$$\sum_{i} d(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i})^{2} \qquad \mathbf{x}_{i} = \mathbf{P}\widehat{\mathbf{X}}_{i}$$

Errors in the image and in the world

 $\sum_{i=1}^{n} d_{\mathrm{Mah}}(\mathbf{x}_{i}, \mathsf{P}\widehat{\mathbf{X}}_{i})^{2} + d_{\mathrm{Mah}}(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i})^{2}$

Geometric Interpretation of Algebraic error

 $\sum_{i} \left(\hat{w}_i d(\mathbf{x}_i, \hat{\mathbf{x}}_i) \right)^2$ $\hat{w}_{i}(\hat{x}_{i}, \hat{y}_{i}, 1) = PX_{i}$ $\hat{w}_{i} = \pm \|\hat{p}^{3}\| depth(X; P)$ therefore, if $\|\hat{\mathbf{p}}^3\| = 1$ then $\hat{w}_i d(\mathbf{X}_i, \hat{\mathbf{X}}_i) \sim f d(\mathbf{X}_i, \hat{\mathbf{X}}_i)$ Å d w

Estimation of Affine Camera

Last row = (0, 0, 0, 1)

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -\mathbf{X}_i^{\top} \\ \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \end{pmatrix} + \begin{pmatrix} y_i \\ -x_i \end{pmatrix} = \mathbf{0}$$

$$||\mathbf{A}\mathbf{p}||^2 = \sum_i \left(x_i - \mathbf{P}^{1\top} \mathbf{X}_i \right)^2 + \left(y_i - \mathbf{P}^{2\top} \mathbf{X}_i \right)^2 = \sum_i d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2$$

note that in this case algebraic error = geometric error

Gold Standard Algorithm

Objective

Given n≥4 2D to 2D point correspondences $\{X_i \mapsto x_i^{i}\}$, determine the Maximum Likelyhood Estimation of P (remember P^{3T}=(0,0,0,1))

Algorithm

(iii)

(i) Normalization: $\widetilde{X}_i = UX_i$ $\widetilde{x}_i = Tx_i$

(ii) For each correspondence

$$\begin{bmatrix} \mathbf{0}^{\top} & -\mathbf{X}_i^{\top} \\ \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \end{pmatrix} + \begin{pmatrix} y_i \\ -x_i \end{pmatrix} = \mathbf{0}$$

solution is

$$p_8 = A_8^+ b$$

 $A_{8}p_{8} = b$

(iv) Denormalization: $P = T^{-1} \tilde{P} U$

Restricted Camera Estimation

Find best fit that satisfies

- skew s is zero
- pixels are square
- principal point is known
- complete camera matrix K is known

$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix}$$

9 unknown parameters

Restricted Camera Estimation

$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix}$$

• Use general DLT

Initialization

• Clamp values to desired values, e.g. s=0, $\alpha_x = \alpha_y$

Note: can sometimes cause big jump in error

Alternative initialization

- Use general DLT
- Impose soft constraints

$$\sum_{i} d(\mathbf{x}_{i}, \mathbf{P}\mathbf{X}_{i})^{2} + ws^{2} + w(\alpha_{x} - \alpha_{y})^{2}$$

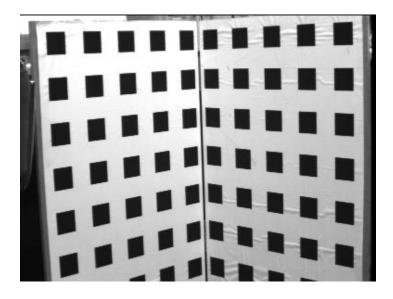
• gradually increase weights

Exterior Orientation

Calibrated camera, position and orientation unkown

 \rightarrow Pose estimation

 $6 \text{ dof} \Rightarrow 3 \text{ points minimal}$ (4 solutions in general)



	f_y	f_x/f_y	skew	x_0	y_0	residual
algebraic	1633.4	1.0	0.0	371.21	293.63	0.601
$\operatorname{geometric}$	1637.2	1.0	0.0	371.32	293.69	0.601

	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

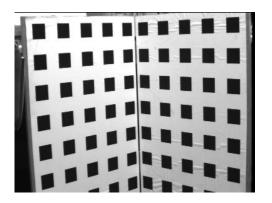
Covariance Estimation

ML residual error

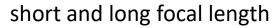
$$\epsilon_{\rm res} = \sigma (1 - d/2n)^{1/2}$$

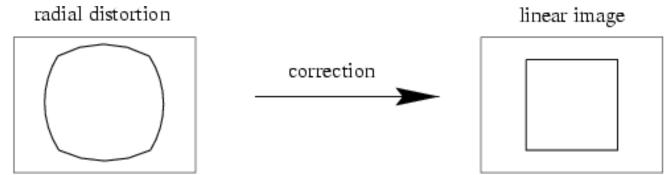
 $\epsilon_{\rm res} \leftrightarrow \sigma$

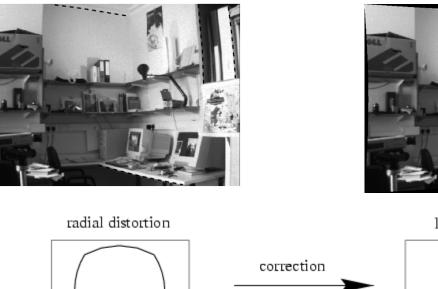
Example: n=197, ϵ_{res} =0.365, σ =0.37

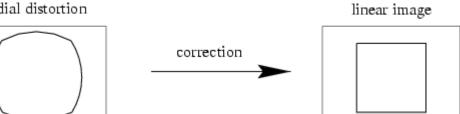


Radial Distortion









 $(\tilde{x}, \tilde{y}, 1)^{\top} = [\mathbf{I} \mid \mathbf{0}] \mathbf{X}_{\operatorname{cam}}$

$$\left(\begin{array}{c} x_d \\ y_d \end{array}\right) = L(\tilde{r}) \left(\begin{array}{c} \tilde{x} \\ \tilde{y} \end{array}\right)$$

 \tilde{x}, \tilde{y} : non-distorted projection x_d , y_d : distorted projection

Correction of Distortion

$$\hat{x} = x_c + L(r)(x - x_c)$$
 $\hat{y} = y_c + L(r)(y - y_c)$

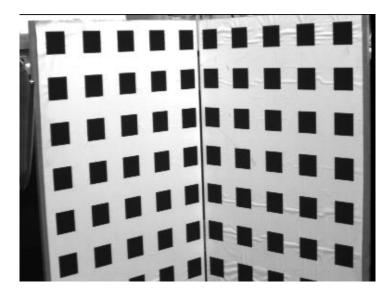
Choice of the distortion function and center $L(r) = 1 + \kappa_1 r + \kappa_2 r^2 + \kappa_3 r^3 + \dots$ $\{\kappa_1, \kappa_2, \kappa_3, \dots, x_c, y_c\}: \text{interior parameters}$ $x = x_o + (x_o - c_x)(K_1 r^2 + K_2 r^4 + \dots)$ $y = y_o + (y_o - c_y)(K_1 r^2 + K_2 r^4 + \dots)$ $r = (x_o - c_x)^2 + (y_o - c_y)^2$

Computing the parameters of the distortion function

- (i) Minimize with additional unknowns
- (ii) Straighten lines

(iii) ...

Correction of Distortion



	f_y	f_x/f_y	skew	x_0	y_0	residual	
linear iterative algebraic iterative	1580.5 1580.7 1556.0 1556.6	1.0044 1.0044 1.0000 1.0000	$\begin{array}{c} 0.75 \\ 0.70 \\ 0.00 \\ 0.00 \end{array}$	377.53 377.42 372.42 372.41	299.12 299.02 291.86 291.86	0.179 0.179 0.381 0.380	After radial correction
linear iterative algebraic iterative	1673.3 1675.5 1633.4 1637.2	1.0063 1.0063 1.0000 1.0000	1.39 1.43 0.00 0.00	379.96 379.79 371.21 371.32	305.78 305.25 293.63 293.69	0.365 0.364 0.601 0.601	

- Notation \mathbf{K} $s\widetilde{\mathbf{m}} = \mathbf{A} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \widetilde{\mathbf{M}}$ with $\mathbf{A} = \begin{bmatrix} \alpha & c & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$
- Homography between the model plane and its image

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

 $s\widetilde{\mathbf{m}} = \mathbf{H}\widetilde{\mathbb{M}}$ with $\mathbf{H} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$

Ref: Zhengyou Zhang, "Flexible camera calibration by viewing a plane from unknown orientations," ICCV1999.

• Constraints on the intrinsic parameters

$$\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

$$\mathbf{r}_1$$
 and \mathbf{r}_2 are orthonormal \Rightarrow
 $\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = 0$
 $\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2$

Close-form solution

• Let

$$\mathbf{B} = \mathbf{A}^{-T} \mathbf{A}^{-1} \equiv \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{12} & B_{22} & B_{23} \\ B_{13} & B_{23} & B_{33} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\alpha^2} & -\frac{c}{\alpha^2\beta} & \frac{cv_0 - u_0\beta}{\alpha^2\beta} \\ -\frac{c}{\alpha^2\beta} & \frac{c^2}{\alpha^2\beta^2} + \frac{1}{\beta^2} & -\frac{c(cv_0 - u_0\beta)}{\alpha^2\beta^2} - \frac{v_0}{\beta^2} \\ \frac{cv_0 - u_0\beta}{\alpha^2\beta} & -\frac{c(cv_0 - u_0\beta)}{\alpha^2\beta^2} - \frac{v_0}{\beta^2} & \frac{(cv_0 - u_0\beta)^2}{\alpha^2\beta^2} + \frac{v_0^2}{\beta^2} + 1 \end{bmatrix}$$

$$\mathbf{h}_i^T \mathbf{B} \mathbf{h}_j = \mathbf{v}_{ij}^T \mathbf{b} \begin{bmatrix} \mathbf{b} = [B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33}]^T \\ \text{the } i^{\text{th}} \text{ column vector of } \mathbf{H} \text{ be } \mathbf{h}_i = [h_{i1}, h_{i2}, h_{i3}]^T \\ \mathbf{v}_{ij} = [h_{i1}h_{j1}, h_{i1}h_{j2} + h_{i2}h_{j1}, h_{i2}h_{j2}, \\ h_{i3}h_{j1} + h_{i1}h_{j3}, h_{i3}h_{j2} + h_{i2}h_{j3}, h_{i3}h_{j3}]^T \end{bmatrix}$$

- Close-form solution
 - From the two constraints on the intrinsic parameters

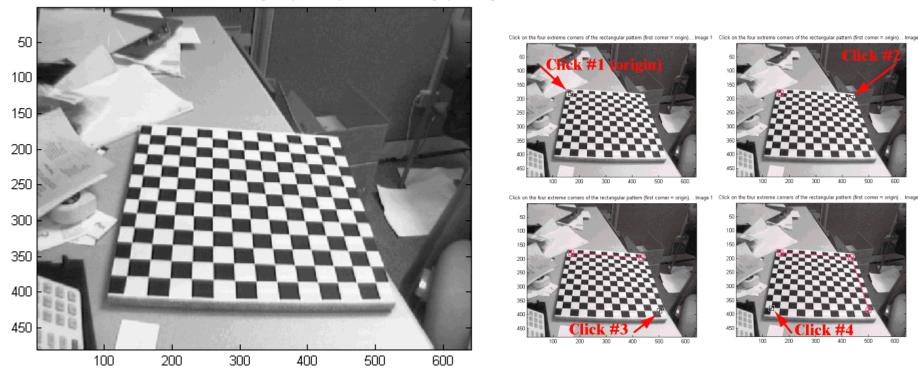
$$\begin{bmatrix} \mathbf{v}_{12}^T \\ (\mathbf{v}_{11} - \mathbf{v}_{22})^T \end{bmatrix} \mathbf{b} = \mathbf{0}$$

$$Vb = 0$$

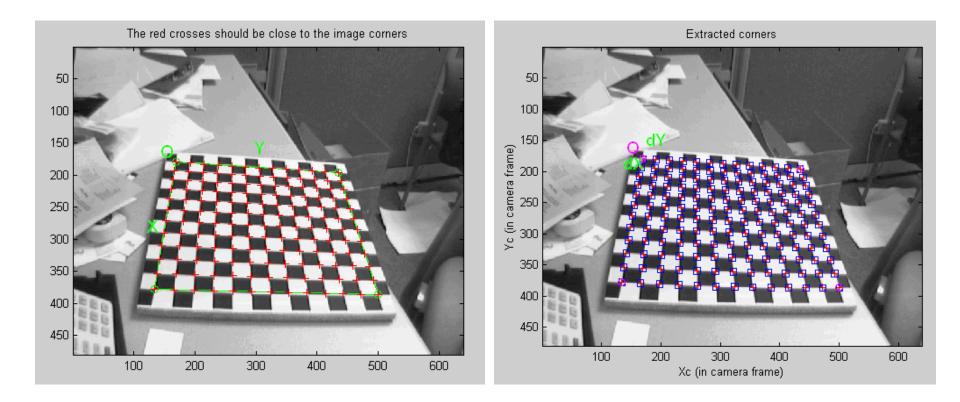
V is a 2n x 6 matrix, if n ≥ 3, we will have in general a unique solution b defined up to a scale factor. Once b is estimated, we can compute the camera intrinsic matrix A.

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1



http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

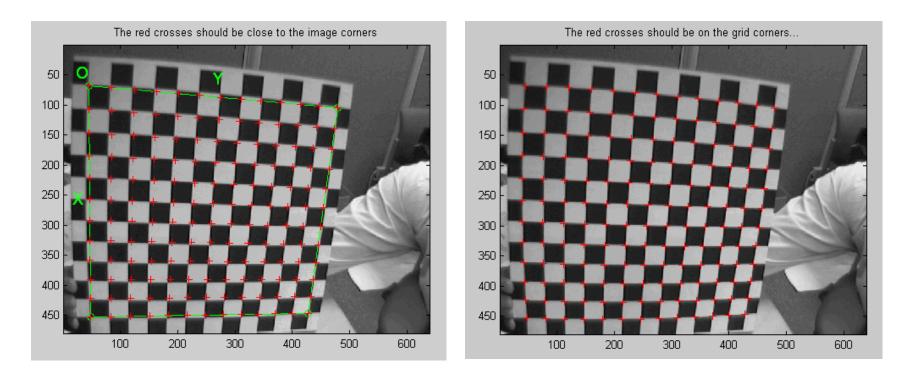


http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

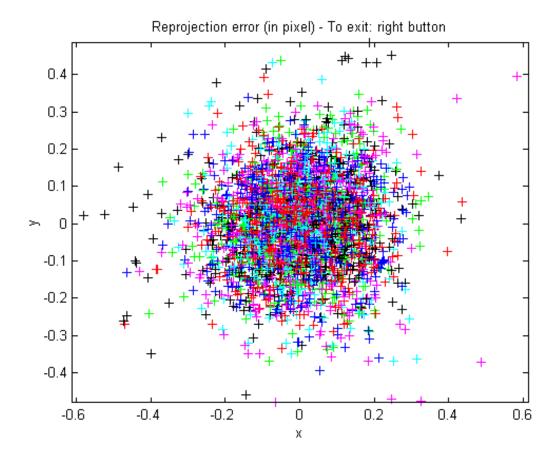


http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

 If the location of the corners are not correct → adjust radial distortion manually



http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples



http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

