

Camera Calibration (Compute Camera Matrix P)

簡韶逸 Shao-Yi Chien

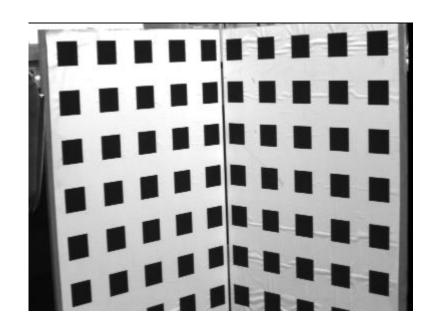
Department of Electrical Engineering

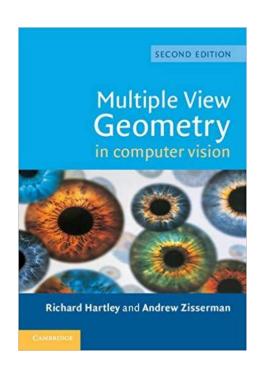
National Taiwan University

Fall 2019

Outline

Camera calibration

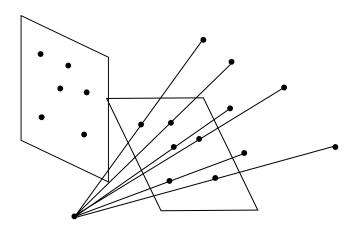




[Slides credit: Marc Pollefeys]

Resectioning

$$X_i \leftrightarrow X_i \qquad P?$$



Basic Equations

$$\mathbf{x}_{i} = \mathbf{PX}_{i}$$
$$\left[\mathbf{x}_{i}\right] \times \mathbf{PX}_{i}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \\ -y_i \mathbf{X}_i^{\top} & x_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$Ap = 0$$

Basic Equations

$$Ap = 0$$

minimal solution

P has 11 dof, 2 independent eq./points

 \Rightarrow 5½ correspondences needed (say 6)

Over-determined solution

$$n \ge 6$$
 points

minimize $\|Ap\|$ subject to constraint

$$\|\mathbf{p}\| = 1$$

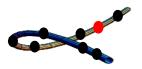
or
$$\|\hat{p}^3\| = 1$$

$$P = \hat{p}^3$$

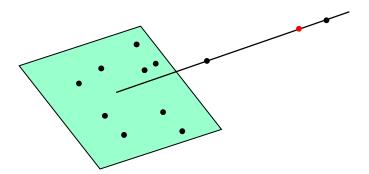
Degenerate Configurations

More complicate than 2D case

(i) Camera and points on a twisted cubic



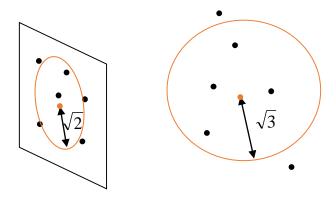
(ii) Points lie on plane or single line passing through projection center



Data Normalization

Less obvious

(i) Simple, as before



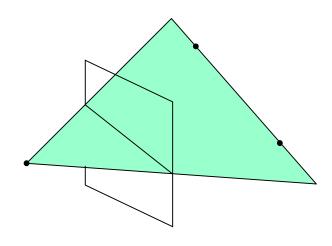
(ii) Anisotropic scaling

Line Correspondences

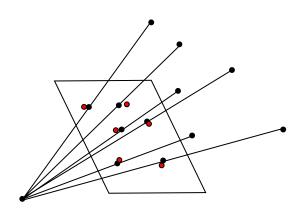
Extend DLT to lines

$$\Pi = \mathbf{P}^{\mathrm{T}} \mathbf{1}_{i}$$
 (back-project line)

$$l_i^T P X_{1i} l_i^T P X_{2i}$$
 (2 independent eq.)



Geometric Error



$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2}$$

$$\min_{\mathbf{P}} \sum_{i} d(\mathbf{x}_{i}, \mathbf{P}\mathbf{X}_{i})^{2}$$

Gold Standard Algorithm

Objective

Given $n \ge 6$ 2D to 2D point correspondences $\{X_i \leftrightarrow x_i'\}$, determine the Maximum Likelyhood Estimation of P

Algorithm

- Linear solution:
 - (a) Normalization: $\tilde{X}_i = UX_i$ $\tilde{x}_i = Tx_i$
 - (b) DLT:
- (ii) Minimization of geometric error: using the linear estimate as a starting point minimize the geometric error:

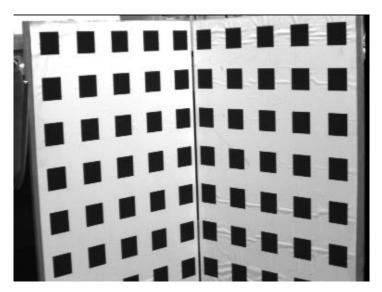
$$\min_{\mathbf{P}} \sum_i d(\tilde{\mathbf{x}}_i, \tilde{\mathbf{P}} \tilde{\mathbf{X}}_i)^2$$
 Denormalization: $\mathbf{P} = \mathbf{T}^{\text{-1}} \tilde{\mathbf{P}} \mathbf{U}$

Calibration Example

- (i) Canny edge detection
- (ii) Straight line fitting to the detected edges
- (iii) Intersecting the lines to obtain the images corners

typically precision <1/10

(HZ rule of thumb: 5n constraints for n unknowns



	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Errors in the World

$$\sum_{i} d(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i})^{2} \qquad \mathbf{x}_{i} = P\widehat{\mathbf{X}}_{i}$$

Errors in the image and in the world

$$\sum_{i=1}^{n} d_{\mathrm{Mah}}(\mathbf{x}_{i}, \mathbf{P}\widehat{\mathbf{X}}_{i})^{2} + d_{\mathrm{Mah}}(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i})^{2}$$

Geometric Interpretation of Algebraic error

$$\sum_{i} (\hat{w}_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}))^{2}$$

$$\hat{w}_{i} (\hat{x}_{i}, \hat{y}_{i}, 1) = PX_{i} \qquad \hat{w}_{i} = \pm \|\hat{p}^{3}\| \operatorname{depth}(\mathbf{X}; \mathbf{P})$$
therefore, if $\|\hat{p}^{3}\| = 1$ then
$$\hat{w}_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}) \sim fd(\mathbf{X}_{i}, \hat{\mathbf{X}}_{i})$$

Estimation of Affine Camera

Last row = (0, 0, 0, 1)

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -\mathbf{X}_i^{\top} \\ \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \end{pmatrix} + \begin{pmatrix} y_i \\ -x_i \end{pmatrix} = \mathbf{0}$$

$$||\mathbf{A}\mathbf{p}||^2 = \sum_i (x_i - \mathbf{P}^{1\top}\mathbf{X}_i)^2 + (y_i - \mathbf{P}^{2\top}\mathbf{X}_i)^2 = \sum_i d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2$$

note that in this case algebraic error = geometric error

Gold Standard Algorithm

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{X_i \leftrightarrow x_i'\}$, determine the Maximum Likelyhood Estimation of P (remember $P^{3T}=(0,0,0,1)$)

Algorithm

- (i) Normalization: $\tilde{X}_i = UX_i$ $\tilde{x}_i = Tx_i$
- (ii) For each correspondence

$$\begin{bmatrix} \mathbf{0}^{\top} & -\mathbf{X}_i^{\top} \\ \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \end{pmatrix} + \begin{pmatrix} y_i \\ -x_i \end{pmatrix} = \mathbf{0}$$

$$A_8p_8 = b$$

(iii) solution is

$$p_8 = A_8^+ b$$

(iv) Denormalization: $P = T^{-1}\tilde{P}U$

Restricted Camera Estimation

Find best fit that satisfies

- skew s is zero
- pixels are square
- principal point is known
- complete camera matrix K is known

$$\mathbf{K} = \left[\begin{array}{ccc} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{array} \right]$$

Minimize geometric error

- →impose constraint through parametrization
- \rightarrow Image only $\graketignize^9 \rightarrow \graketignize^{2n}$, otherwise $\graketignize^{3n+9} \rightarrow \graketignize^{5n}$

Minimize algebraic error

- \rightarrow assume map from param q \rightarrow P=K[R|-RC], i.e. p=g(q)
- \rightarrow minimize | | Ag(q) | |

Reduced Measurement Matrix

One only has to work with 12x12 matrix, not 2nx12

$$||Ap|| = p^{T}A^{T}Ap = ||\hat{A}p||$$

$$\mathbf{A}^{\top}\mathbf{A} = (\mathbf{V}\mathbf{D}\mathbf{U}^{\top})(\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) = (\mathbf{V}\mathbf{D})(\mathbf{D}\mathbf{V}^{\top}) = \hat{\mathbf{A}}^{\top}\hat{\mathbf{A}}$$

Restricted Camera Estimation

$$\mathbf{K} = \left[\begin{array}{cccc} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{array} \right]$$

Initialization

- Use general DLT
- Clamp values to desired values, e.g. s=0, $\alpha_x = \alpha_y$

Note: can sometimes cause big jump in error

Alternative initialization

- Use general DLT
- Impose soft constraints

$$\sum_{i} d(\mathbf{x}_{i}, PX_{i})^{2} + ws^{2} + w(\alpha_{x} - \alpha_{y})^{2}$$

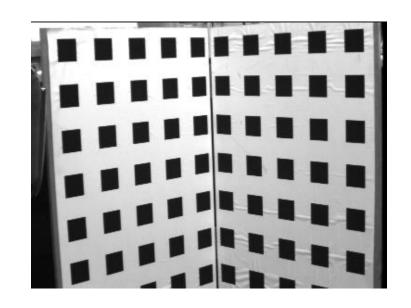
gradually increase weights

Exterior Orientation

Calibrated camera, position and orientation unknown

→ Pose estimation

6 dof \Rightarrow 3 points minimal (4 solutions in general)



	f_y	f_x/f_y	skew	x_0	y_0	residual
algebraic	1633.4	1.0	0.0	371.21	293.63	0.601
geometric	1637.2	1.0	0.0	371.32	293.69	0.601

	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

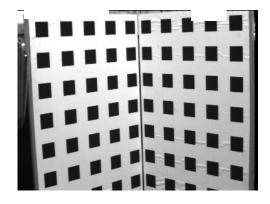
Covariance Estimation

ML residual error

$$\epsilon_{\rm res} = \sigma (1 - d/2n)^{1/2}$$

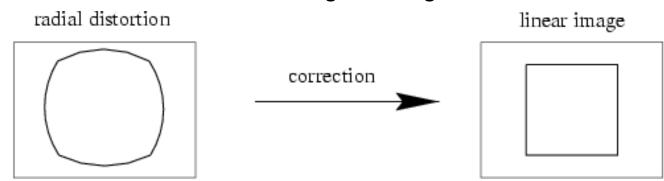
$$\epsilon_{\rm res} \leftrightarrow \sigma$$

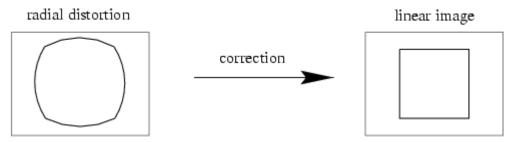
Example: n=197, ϵ_{res} =0.365, σ =0.37



Radial Distortion

short and long focal length





$$(\tilde{x}, \tilde{y}, 1)^{\top} = [\mathbf{I} \mid \mathbf{0}] \mathbf{X}_{cam}$$

$$\left(\begin{array}{c} x_d \\ y_d \end{array} \right) = L(\tilde{r}) \left(\begin{array}{c} \tilde{x} \\ \tilde{y} \end{array} \right) \quad \underset{x_d, y_d: \text{ distorted projection}}{\tilde{x}_d, y_d: \text{ distorted projection}}$$

 x_d , y_d : distorted projection

Correction of Distortion

$$\hat{x} = x_c + L(r)(x - x_c)$$
 $\hat{y} = y_c + L(r)(y - y_c)$

Choice of the distortion function and center

$$L(r) = 1 + \kappa_1 r + \kappa_2 r^2 + \kappa_3 r^3 + \dots$$

$$\{\kappa_1, \kappa_2, \kappa_3, \dots, x_c, y_c\}: \text{interior parameters}$$

$$x = x_o + (x_o - c_x)(K_1r^2 + K_2r^4 + \dots)$$

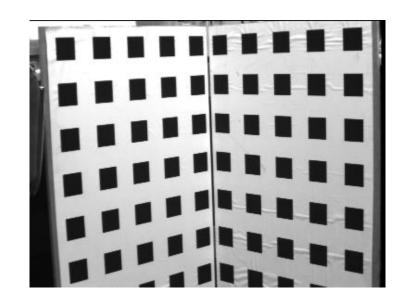
$$y = y_o + (y_o - c_y)(K_1r^2 + K_2r^4 + \dots)$$

$$r = (x_o - c_x)^2 + (y_o - c_y)^2.$$

Computing the parameters of the distortion function

- (i) Minimize with additional unknowns
- (ii) Straighten lines
- (iii) ...

Correction of Distortion



	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1580.5	1.0044	0.75	377.53	299.12	0.179
iterative	1580.7	1.0044	0.70	377.42	299.02	0.179
algebraic	1556.0	1.0000	0.00	372.42	291.86	0.381
iterative	1556.6	1.0000	0.00	372.41	291.86	0.380
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364
algebraic	1633.4	1.0000	0.00	371.21	293.63	0.601
iterative	1637.2	1.0000	0.00	371.32	293.69	0.601

After radial correction

Notation

$$s\widetilde{\mathbf{m}} = \mathbf{A} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \widetilde{\mathbf{M}}$$

$$s\widetilde{\mathbf{m}} = \mathbf{A} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \widetilde{\mathbf{M}}$$
 with $\mathbf{A} = \begin{bmatrix} \alpha & c & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$

 Homography between the model plane and its image

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$s\widetilde{\mathbf{m}} = \mathbf{H}\widetilde{\mathbf{M}}$$
 with $\mathbf{H} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$

Ref: Zhengyou Zhang, "Flexible camera calibration by viewing a plane from unknown orientations," ICCV1999.

Constraints on the intrinsic parameters

$$\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

 \mathbf{r}_1 and \mathbf{r}_2 are orthonormal \rightarrow

$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = 0$$

$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2$$

Close-form solution

• Let
$$\mathbf{B} = \mathbf{A}^{-T} \mathbf{A}^{-1} \equiv \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{12} & B_{22} & B_{23} \\ B_{13} & B_{23} & B_{33} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\alpha^2} & -\frac{c}{\alpha^2\beta} & \frac{cv_0 - u_0\beta}{\alpha^2\beta} \\ -\frac{c}{\alpha^2\beta} & \frac{c^2}{\alpha^2\beta^2} + \frac{1}{\beta^2} & -\frac{c(cv_0 - u_0\beta)}{\alpha^2\beta^2} - \frac{v_0}{\beta^2} \\ \frac{cv_0 - u_0\beta}{\alpha^2\beta} & -\frac{c(cv_0 - u_0\beta)}{\alpha^2\beta^2} - \frac{v_0}{\beta^2} & \frac{(cv_0 - u_0\beta)^2}{\alpha^2\beta^2} + \frac{v_0^2}{\beta^2} + 1 \end{bmatrix}$$

$$\mathbf{h}_{i}^{T}\mathbf{B}\mathbf{h}_{j} = \mathbf{v}_{ij}^{T}\mathbf{b} \begin{cases} \mathbf{b} = [B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33}]^{T} \\ \text{the } i^{\text{th}} \text{ column vector of } \mathbf{H} \text{ be } \mathbf{h}_{i} = [h_{i1}, h_{i2}, h_{i3}]^{T} \\ \mathbf{v}_{ij} = [h_{i1}h_{j1}, h_{i1}h_{j2} + h_{i2}h_{j1}, h_{i2}h_{j2}, \\ h_{i3}h_{j1} + h_{i1}h_{j3}, h_{i3}h_{j2} + h_{i2}h_{j3}, h_{i3}h_{j3}]^{T} \end{cases}$$

- Close-form solution
 - From the two constraints on the intrinsic parameters

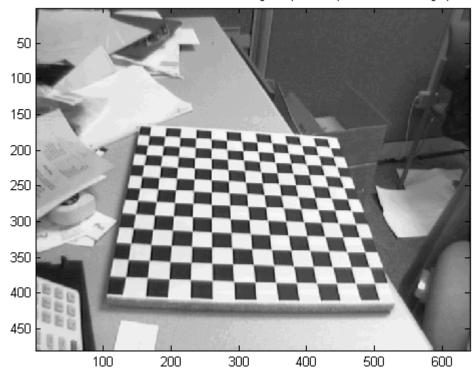
$$\begin{bmatrix} \mathbf{v}_{12}^T \\ (\mathbf{v}_{11} - \mathbf{v}_{22})^T \end{bmatrix} \mathbf{b} = \mathbf{0}$$

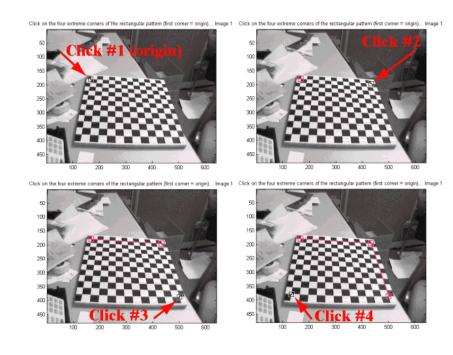
$$Vb = 0$$

• **V** is a 2n x 6 matrix, if $n \ge 3$, we will have in general a unique solution **b** defined up to a scale factor. Once **b** is estimated, we can compute the camera intrinsic matrix **A**.

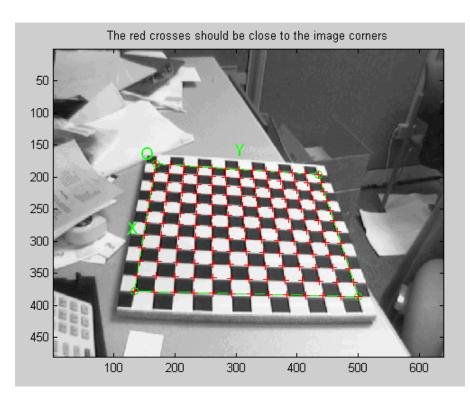
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

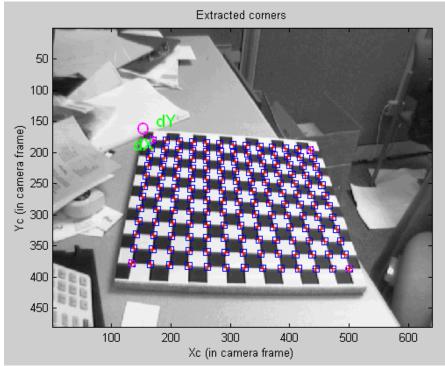
Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1



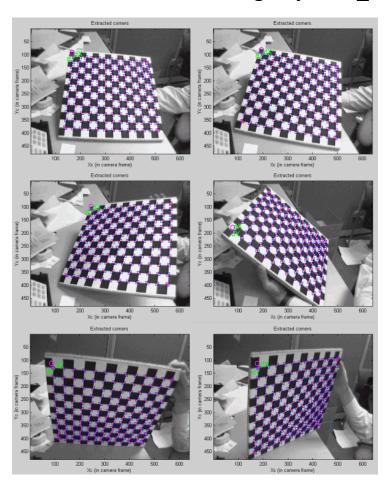


http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples





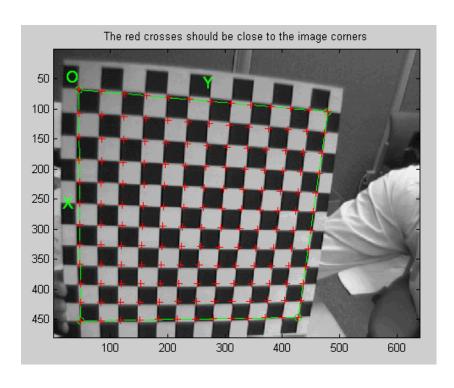
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

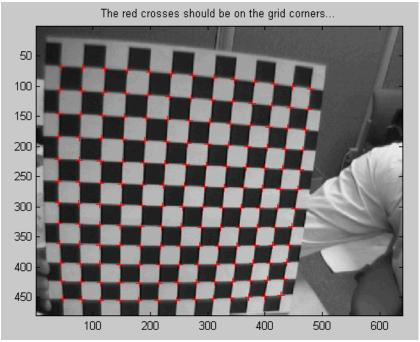


http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

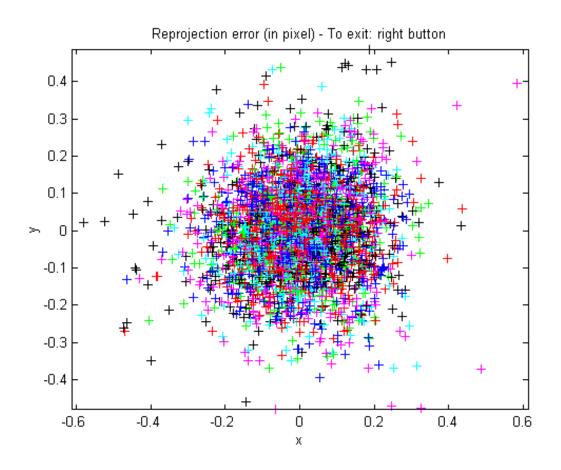
If the location of the corners are not correct

 adjust radial distortion manually





http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples



Switch to world-centered view

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

