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Outline

• Segmentation

• Image segmentation
• Object selection with interactive segmentation

• Super-pixel methods

• Semantic segmentation

• Video segmentation
• Segmentation in motion field

• Change detection method
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Segmentation

• Group pixels that share similar attributes in 
perception into regions
• Over-segmentation v.s. under-segmentation

• Used as pre-processing or post-processing

• Select region-of-interest (ROI) in an image/video 
with/without users’ inputs (ex. stroke)
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What We Will Introduce Today
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Image Segmentation

Video Segmentation

Object Selection Super-pixel Semantic Segmentation



Image Segmentation: Object Selection 
with Interactive Segmentation

• Select region-of-interest (ROI) in an image/video 
with users’ help

• Active contour

• Graphcut/Grabcut

• Deep interactive 
object selection

5



Where is the Foreground?

• Determining foreground objects is subjective
• All people and horses, or…

• The person in the middle
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The Form of User Input

• Some examples

7

Interactive 
Segmentation



The Form of User Input

• Clicks
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Active Contour
• To minimize the total energy of an active contour

9[Kass, Witkin, Terzopoulos IJCV1988]

𝜀𝑖𝑛𝑡 + 𝜀𝑒𝑥𝑡



Active Contour
• To minimize the total energy of an active contour
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Graphcut

• Formulate the problem as a Markov-Random-Field 
(MRF)

11

[Boykov and Jolly ICCV 2001]

Region Properties 
Term (Data Term)

Boundary 
Properties Term 
(Smooth Term)



Graphcut

• An example

12

[Boykov and Jolly ICCV 2001]

Can be modeled by histogram 



GrabCut
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1. Define graph 
• usually 4-connected or 8-connected

• Divide diagonal potentials by sqrt(2)

2. Define unary potentials
• Color histogram or mixture of Gaussians for background 

and foreground

3. Define pairwise potentials

4. Apply graph cuts

5. Return to 2, using current labels to compute 
foreground, background models
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GrabCut

• Color model

14
Gaussian Mixture Model (typically 5-8 components)

Foreground &

Background

Background
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GrabCut

• Easier examples
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GrabCut

• More difficult examples
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Harder CaseFine structure

Initial 

Rectangle

Initial

Result



Deep Interactive Segmentation

• FCN model

• User clicks are transformed into distance maps

• Input color image and the user clicks are cascaded as 5D input features

17

Ref: Ning Xu, Brian Price, Scott Cohen, Jimei Yang, Thomas Huang. Deep Interactive Object Selection. In CVPR 2016



Deep Interactive Segmentation

• Select different instances

• Select different parts

18

Ref: Ning Xu, Brian Price, Scott Cohen, Jimei Yang, Thomas Huang. Deep Interactive Object Selection. In CVPR 2016



Deep Interactive Segmentation
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Image Segmentation: Superpixel
• Superpixels are grouping of 

pixels (over-segmentation)

• Watershed

• K-means

• Mean-shift

• Modern superpixel

20



Watershed

21http://cmm.ensmp.fr/~beucher/wtshed.html[Vincent and P. Soille PAMI91]



Watershed

• Can be implemented efficiently

22

Ref: S.-Y. Chien, Y.-W. Huang, and L.-G. Chen, “Predictive 
Watershed: A Fast Watershed Algorithm for Video 
Segmentation,” IEEE T. Circuits and Systems for Video 
Technology, 2003.



K-means

• K-means in HSV color 
space

• The H term should be 
handled carefully

23
Ref: T.-W. Chen, Y.-L. Chen, and S.-Y. Chien, “Fast Image Segmentation Based on K-Means
Clustering with Histograms in HSV Color Space,” MMSP2008.



K-means

• K-means in HSV 
color space

24
Ref: T.-W. Chen, Y.-L. Chen, and S.-Y. Chien, “Fast Image Segmentation Based on K-Means
Clustering with Histograms in HSV Color Space,” MMSP2008.



Mean-shift Algorithm
• Try to find modes of this non-parametric density

Ref: D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach toward Feature Space Analysis,” PAMI 2002. 
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Simple Mean Shift procedure:

• Compute mean shift vector

•Translate the Kernel window by m(x)
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Real Modality Analysis



• Attraction basin: the region for which all 
trajectories lead to the same mode

• Cluster: all data points in the attraction basin of a 
mode

Slide by Y. Ukrainitz & B. Sarel

Attraction basin



Attraction basin



Mean shift clustering

• The mean shift algorithm seeks modes of the 
given set of points

1. Choose kernel and bandwidth

2. For each point:
a) Center a window on that point

b) Compute the mean of the data in the search window

c) Center the search window at the new mean location

d) Repeat (b,c) until convergence

3. Assign points that lead to nearby modes to the same 
cluster



• Compute features for each pixel (color, gradients, texture, etc); also store 
each pixel’s position

• Set kernel size for features Kf and position Ks

• Initialize windows at individual pixel locations

• Perform mean shift for each window until convergence

• Merge modes that are within width of Kf and Ks

Segmentation by Mean Shift



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html


Modern Superpixel Methods
What Are Superpixels?
• Most image processing algorithms use the pixel grid as the underlying 

representation.
• Processing time grows with the number of pixels.

• Superpixels are grouping of pixels.
• Pixels in the same superpixel are near and 

visually similar (local and edge-preserving)

• A favor superpixel segmentation algorithm
should be efficient

• Processing time depends on the number of
superpixels (regardless of image resolution)

41



Graph-Based Algorithms

• FH [Felzenszwalb and Huttenlocher, IJCV 2004]

• GBVS [Grundmann et al., CVPR 2010]

• ERS [Liu et al., CVPR 2011]

42

𝑁 pixels as 𝑁 disjoint sets After 2 merges, we have 𝑁 − 2 sets To obtain 𝐾 superpixels, 
we do 𝑁 − 𝐾 merges (𝐾 = 3 here)

• P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. IJCV, 2004
• M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based video segmentation. In CVPR, 2010
• M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy-rate superpixel segmentation. In CVPR, 2011



Graph-Based Algorithms

• Graph-based methods are able to generate superpixel hierarchy

43

Figure from ERS paper



Graph-Based Algorithms

• Graph-based methods are able to generate superpixel hierarchy

44

Example of salient object segmentation based on the superpixel hierarchy



Clustering-Based Algorithms

• SLIC (Simple Linear Iterative Clustering)
• RGB → CIELab

• 5D feature (𝐿, 𝑎, 𝑏, 𝑥, 𝑦)

• Initialize the 𝐾 superpixel centers on the uniform grid

• Localized 𝐾-means clustering in 2S x 2S region

45

Localized k-means

• R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. “SLIC superpixels compared to state-of-the-art superpixel methods.” TPAMI, 2012

m is a constant



Other SLIC-Like Algorithms

• LSC [Li and Chen, CVPR 2015]
• 10D feature + localized K-means

• Manifold-SLIC [Liu et al., CVPR 2016]
• Project 5D feature to a 2D space + localized K-means

• SNIC [Achanta and Susstrunk, CVPR 2017]
• 5D feature + iteration free clustering

46

• Z. Li and J. Chen. Superpixel segmentation using linear spectral clustering. In CVPR, 2015
• Yong-Jin Liu, Cheng-Chi Yu, Min-Jing Yu, and Ying He. Manifold slic: A fast method to compute content-sensitive superpixels. In CVPR, 2016
• R. Achanta and S. Susstrunk. Superpixels and polygons using simple non-iterative clustering. In CVPR, 2017



Grid-Based Algorithms

• SEEDS [Van den Bergh et al., IJCV 2015]
• Superpixels as an energy optimization (color consistency, boundary shape, …)

• Switch nearby blocks if it makes the total energy lower

• Coarse to fine strategy

47

Multi-scale block switching

• M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool. SEEDS: Superpixels extracted via energy-driven sampling. IJCV, 2015



Drawbacks of Existing Methods

• All above methods are based on hand-crafted features to compute pixel 
distances/affinities

• They often fail to preserve weak object boundaries

48

Input SLIC SNIC LSC SEEDS ERS Ours



Superpixels Meet Deep Learning

• Supervised learning is not easy
• There is no ground-truth

• Label indices are interchangeable

• Superpixel algorithms are non-differentiable

49

Superpixel
Algorithm

Image Superpixels



Superpixels Meet Deep Learning

• Supervised learning is not easy
• There is no ground-truth

• Label indices are interchangeable

• Superpixel algorithms are non-differentiable

• Our main idea: learning pixel affinities (distances) for the graph-based 
algorithms
[Tu et al., CVPR 2018]

50

Graph-based
Algorithm

(ERS)
Deep ModelImage Pixel affinities Superpixels

Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Shao-Yi Chien, Ming-Hsuan Yang, Jan Kautz. 
Learning superpixels with segmentation-aware affinity loss. In CVPR, 2018



Segmentation-Aware Loss

51

Superpixel
Segmentation

Segmentation-Aware
Loss (SEAL)

Input

Ground-truth Segments

Superpixels

Deep Model

Pixel Affinities



Comparisons with the State-of-
the-Arts
• Results on BSDS500

• SEAL-ERS = learned affinities + ERS algorithm (proposed)

55

Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Shao-Yi Chien, Ming-Hsuan Yang, Jan Kautz. 
Learning superpixels with segmentation-aware affinity loss. In CVPR, 2018



Comparisons with the State-of-
the-Arts

56

Input SLIC SNIC LSC SEEDS ERS Ours



Comparisons with the State-of-
the-Arts
• Results on Cityscapes

57

Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Shao-Yi Chien, Ming-Hsuan Yang, Jan Kautz. 
Learning superpixels with segmentation-aware affinity loss. In CVPR, 2018



Image Segmentation: Semantic 
Segmentation
• Fully convolutional networks (FCN)

• DeepLab

60



What is Semantic Segmentation?

• Segmentation + labeling

Example from ADE20K dataset.
61



Why Semantic Segmentation?

• As a vision aid for the blind

https://arxiv.org/pdf/1602.06541.pdf
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Why Semantic Segmentation?

• Autonomous driving

63



Previous Image Recognition 
Networks
• LeNet, AlexNet or their successors take fixed size 

input and produce non-spatial outputs.

64



Previous Image Recognition 
Networks
• Spatial pyramid pooling can take arbitrary size input 

but still no spatial output.

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV 2014
65



Previous Image Recognition 
Networks
• Spatial pyramid pooling can take arbitrary size input 

but still no spatial output.

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV 2014
66



VGG16 Model

• Pre-trained on image classification



Fully Convolutional Networks 
(FCN)
• Fully connected layers can also be viewed as convolutions 

with kernels that cover their entire input regions

Fully convolutional networks for semantic segmentation, CVPR 2015
68



FCN Architecture

• Fully connected layers are replaced by convolutions

• Append 1x1 convolution with channel dimension 21 in the 
end (20 classes + 1 background class)



Fully Convolutional Networks 
(FCN)
• Results

Fully convolutional networks for semantic segmentation, CVPR 2015
70

• Definition

• 𝑛𝑖𝑗: number of pixels in class 𝑖 predicted to be class 𝑗

• 𝑡𝑖 = σ𝑗 𝑛𝑖𝑗 be the total number of pixels in class 𝑖

• 𝑛𝑐𝑙: number of classes

• Pixel accuracy

• σ𝑖 𝑛𝑖𝑖 /σ𝑖 𝑡𝑖

• Mean accuracy

•
1

𝑛𝑐𝑙
σ𝑖 𝑛𝑖𝑖/𝑡𝑖

• Mean IU (intersection over union)

•
1

𝑛𝑐𝑙
σ𝑖

𝑛𝑖𝑖

𝑡𝑖+σ𝑗 𝑛𝑗𝑖−𝑛𝑖𝑖



Fully Convolutional Networks 
(FCN)
• FCN is still not good at segmenting objects… 

Fully convolutional networks for semantic segmentation, CVPR 2015
71



DeepLab

• FCN + Atrous convolution + dense CRFs (conditional 
random field )

Semantic image segmentation with deep convolutional nets and fully connected CRFs, ICLR 2015
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DeepLab

• Atrous convolution (dilated convolution)

Semantic image segmentation with deep convolutional nets and fully connected CRFs, ICLR 2015

Figure from http://www.itdadao.com/articles/c15a500664p0.html

73

http://www.itdadao.com/articles/c15a500664p0.html


DeepLab

• Dense CRFs

Efficient inference in fully connected CRFs with Gaussian edge potentials, NIPS 2011

From FCN output From input image

74



DeepLab

• Effect of dense CRF refinement

Semantic image segmentation with deep convolutional nets and fully connected CRFs, ICLR 2015

Problem: 
1. No joint training
2. More number of iterations means longer inference time

75



DeepLab

• Results on PASCAL VOC 2012 test set

Semantic image segmentation with deep convolutional nets and fully connected CRFs, ICLR 2015

76



Motion and Perceptual  
Organization
• Sometimes, motion is foremost cue



Motion and Perceptual 
Organization
• Even “impoverished” motion data can evoke a 

strong percept



Motion and Perceptual 
Organization
• Even “impoverished” motion data can evoke a 

strong percept



Video Segmentation: 
Segmentation in Motion Field 

80

• Break image sequence into “layers” each of which 
has a coherent (affine) motion

Ref: J. Wang and E. Adelson, “Layered Representation for Motion Analysis,” CVPR 1993



Video Segmentation: 
Segmentation in Motion Field 
• What are layers?

• Each layer is defined by an alpha mask and a motion 
model (such as affine model)

81



Video Segmentation: 
Segmentation in Motion Field 
• 1. Obtain a set of initial affine motion hypotheses

• Divide the image into blocks and estimate affine motion 
parameters in each block by least squares
• Eliminate hypotheses with high residual error

• Map into motion parameter space
• Perform k-means clustering on affine motion parameters

• Merge clusters that are close and retain the largest clusters to 
obtain a smaller set of hypotheses to describe all the motions in 
the scene

• 2. Iterate until convergence:
• Assign each pixel to best hypothesis 

• Pixels with high residual error remain unassigned
• Perform region filtering to enforce spatial constraints

• Re-estimate affine motions in each region

82



Video Segmentation: 
Segmentation in Motion Field 

83



Video Segmentation: 
Segmentation in Motion Field 
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Ref: J. Vertens, A. Valada, and W. Burgard, “SMSnet: Semantic Motion Segmentation using Deep 
Convolutional Neural Networks,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots 
and Systems, Vancouver, Canada, 2017.
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Video Segmentation:
Change Detection Method

• Background substraction

• 4 modes
• Baseline mode

• Shadow cancellation mode (SC 
mode)

• Global motion compensation 
mode (GMC mode)

• Adaptive threshold mode (AT 
mode)

Gradient

Filter

Video

Segmentation

Baseline

GMC
Threshold

Decision

Object mask

Input frame

Ref: Shao-Yi Chien, Yu-Wen Huang, Bing-Yu Hsieh, Shyh-Yih Ma, and Liang-Gee Chen, “Fast video segmentation algorithm with shadow cancellation, 
global motion compensation, and adaptive threshold techniques,” IEEE Transactions on Multimedia, vol. 6, no. 5, pp. 732--748, Oct 2004.
Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 12, no. 7, pp. 577 –586, July 2002.
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Flow Chart



Background Registration
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Segmentation Results
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Segmentation Results
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Video Segmentation:
Change Detection Method
• Background modeling with Gaussian Mixture 

Model (GMM)

92Ref: Chris Stauffer W.E.L G rimson, “Adaptive b ackground mixture mo dels for real-time tracking,” CVPR1998.

Variation of background information

◼ Background information is modeled as:

◼ Every new pixel value, Xt, is checked against 
the existing K Gaussian distributions, until a 
match is found. A match is defined as a 
pixel value within 2.5 standard deviations of 
a distribution.

◼ Background model updating:


