
Computer Vision:
from Recognition to Geometry

Lecture 6:
Convolution Neural Networks for Image Classification

Yu-Chiang Frank Wang 王鈺強

Dept. Electrical Engineering, National Taiwan University

2019/10/16

What’s to Be Covered Today…

• Intro to Neural Networks & CNN
• Linear Classification
• Neural Network for Machine Vision
• Multi-Layer Perceptron
• Convolutional Neural Networks

• Image Segmentation* (if time permits)

• Object Detection* (if time permits)

Many slides from Richard Turner, Fei-Fei Li, Yaser Sheikh, Simon Lucey, Kaiming He, and J.-B. Huang 2

Some Remarks
• Interpreting y = Wx + b

• What can we say about the learned W?
• The weights in W are trained by observing training data X and their ground truth Y.
• Each column in W can be viewed as an exemplar of the corresponding class.
• Thus, Wx basically performs inner product (or correlation) between the input x and

the exemplar of each class. (Signal & Systems!)

3
Image credit: Stanford CS231n

Linear Classification

• Remarks
• Starting points for many multi-class or complex/nonlinear classifier
• How to determine a proper loss function for matching y and Wx+b, and thus

how to learn the model W (including the bias b), are the keys to the learning
of an effective classification model.

4Image credit: Stanford CS231n

Biological neuron and Perceptrons

A biological neuron An artificial neuron (Perceptron)
- a linear classifier

5

Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)

6

Let’s Get a Closer Look…

一5 0 5
0

0.5

1

output of neuron

activity of neuron

inputs to neuron

• A single neuron

7

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,1]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

8

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.2,1]

z1

x

z 2
0

z1

−5 5
−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

9

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.3,0.9]

z1

x

z 2
0

z1

−5 5
−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

10

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.5,0.9]

z1

x

z 2
0

z1

−5 5
−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

11

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.6,0.8]

z1

x

z 2
0

z1

−5 5
−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

12

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.8,0.6]

z1

x

z 2
0

z1

−5 5
−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

13

Input-Output Function of a Single Neuron

5

0
−5

0
−5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.9,0.5]

z1

x

1

z 2
0

z
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

14

Input-Output Function of a Single Neuron

5

0
−5

0
−5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.9,0.3]

z1

x

1

z 2
0

z
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

15

Input-Output Function of a Single Neuron

5

0
−5

0
−5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [1,0.2]

z1

x

1

z 2
0

z
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

16

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [1,0]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

17

Input-Output Function of a Single Neuron (cont’d)

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,1]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

18

Input-Output Function of a Single Neuron (cont’d)

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,2]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

19

Input-Output Function of a Single Neuron (cont’d)

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,3]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

20

Input-Output Function of a Single Neuron (cont’d)

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,4]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

21

Input-Output Function of a Single Neuron (cont’d)

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,5]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

22

Input-Output Function of a Single Neuron (cont’d)

0
一5

0
5 一5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,1]

z1

x

0
z1

z 2
一5 5
一5

0

5

contours
sets direction of boundary
sets steepness of boundary

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

23

Weight Space of a Single Neuron

0 5 -5

0

0
-5

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5
0.5

1

-2

-2 0 2 4
W1

0
-5

0 5 -5

0

5

0
-5

0 5 -5

0

5
0.5

0
-5

0 5 -5

0

5
0.5

0
-5

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5

x 0.5

0
-5

5z2 -5
0

1

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5
0.5

1

0

2

W2 0.5

1 1 1

0
-5

0 5 -5

0

5
0.5

1

0.5

1

W = [2,2]

z1

24

Training a Single Neuron

0

1

0

0

classclass

training data

inputs class labels

25

Training a Single Neuron

0

1

0

0

classclass

training data

inputs class labels

desired result of training:
neuron outputs for

neuron outputs for

26

Training a Single Neuron

0

1

0

0

classclass

objective function:

training data

surprise
relative entropy between

when observing
and

inputs class labels

desired result of training:
neuron outputs for

neuron outputs for

encourages neuron output
to match training data 27

Training a Single Neuron

0

training data
1

0

objective function:

0

inputs class labels

choose the weights that minimise the network's surprise
about the training data

= prediction error X feature

iteratively step down the objective (gradient points up hill) 28

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,−1]

z1

x

−5 0
z

5
−5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

29

Training a Single Neuron

5 −5

0
−5

0

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.4,−0.7]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

30

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.9,−0.2]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 5 2010
iteration

15

10
0

ob
je

ct
iv

e

31

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [1.1,0.1]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

32

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [1.4,0.4]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

33

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [5.2,12.6]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

34

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [9.7,25.3]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 10 20 30
iteration

40 50

10
−5

10
0

ob
je

ct
iv

e

35

Overfitting and Weight Decay

0

training data
1

0

objective function:

0

inputs class labels

regulariser discourages the network using extreme weights

weight decay - shrinks weights
towards zero 36

Training a Single Neuron (cont’d)

−5 0
z

5
−5

0

5

1

z 2

w = [0,−1]reg

−5 0
z

5
−5

0

5

1

z 2

w = [0,−1]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

37

Training a Single Neuron (cont’d)

−5 0
z

5
−5

0

5

1

z 2

w = [0.4,−0.7]reg

−5 0
z

5
−5

0

5

1

z 2

w = [0.4,−0.7]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

38

Training a Single Neuron (cont’d)

−5 0
z

5
−5

0

5

1

z 2

w = [0.6,−0.4]reg

−5 0
z

5
−5

0

5

1

z 2

w = [0.6,−0.4]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

39

Training a Single Neuron (cont’d)

−5 0
z

5
−5

0

5

1

z 2

w = [0.8,−0.2]reg

−5 0
z

5
−5

0

5

1

z 2

w = [0.8,−0.3]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

40

Training a Single Neuron (cont’d)

−5 0
z

5

0

5

1

z 2

w = [1.2,0.5]reg

−5 0
z

5

0

5

1

z 2

w = [1.4,0.5]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

41

Training a Single Neuron (cont’d)

−5 0
z

5
−5

0

5

1

z 2

w = [1,1.1]reg

−5 0
z

5
−5

0

5

1

z 2

w = [1.9,1.7]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

42

Training a Single Neuron (cont’d)

−5 0
z

5
−5

0

5

1

z 2

w = [1,1.1]reg

−5 0
z

5
−5

0

5

1

z 2

w = [2.5,4]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

43

Single Hidden Layer Neural Networks

inputs
layer

1

0

output

hidden
layer

44

Sampling Random Neural Network Classifiers

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

z 2

0
z

1
−5 5

−5

0

5

45

Sampling Random Neural Network Classifiers

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

z 2

0
z

1
−5 5

−5

0

5

46

Sampling Random Neural Network Classifiers

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

z 2

0
z

1
−5 5

−5

0

5

47

Training a Neural Network with a Single Hidden Layer

objective function:
likelihood same as before

regulariser discourages extreme weights

48

Training a Neural Network with a Single Hidden Layer

objective function:
likelihood same as before

regulariser discourages extreme weights

Networks with hidden layers can be fit using gradient descent using an
algorithm called back-propagation.

49

Training a Neural Network with a Single Hidden Layer

0
一5

0
5 一5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

一5 0
z

5
一5

0

5

1
z 2

50

Training a Neural Network with a Single Hidden Layer

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

−5 0
z

5
−5

0

5

1
z 2

51

Training a Neural Network with a Single Hidden Layer

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

−5 0
z

5
−5

0

5

1
z 2

52

Training a Neural Network with a Single Hidden Layer

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

−5 0
z

5
−5

0

5

1
z 2

53

Training a Neural Network with a Single Hidden Layer

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

−5 0
z

5
−5

0

5

1
z 2

54

Hierarchical Models with Many Layers

inputs
layer

output

hidden
layer

55

What’s to Be Covered Today…

• Intro to Neural Networks & CNN
• Linear Classification
• Neural Network for Machine Vision
• Multi-Layer Perceptron
• Convolutional Neural Networks

• Image Segmentation* (if time permits)

• Object Detection* (if time permits)

Many slides from Richard Turner, Fei-Fei Li, Yaser Sheikh, Simon Lucey, Kaiming He, and J.-B. Huang 56

Convolutional Neural Networks

• How many weights for MLPs for images?

57

Convolutional Neural Networks

• Property I of CNN: Local Connectivity
• Each neuron takes info only from a neighborhood of pixels.

58

Convolutional Neural Networks

• Property II of CNN: Weight Sharing
• Neurons connecting all neighborhoods have identical weights.

59

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters

• Global connectivity:
• Local connectivity:

Input layer

Hidden layer

Global connectivity Local connectivity

CNN: Local Connectivity

60

Input layer

Hidden layer

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters

– Without weight sharing:
– With weight sharing :

w1

w2

w3

w4

w5
w6

w7

w8

w9

Without weight sharing With weight sharing

w1

w2

w3 w1

w2

w3

w1

w2

w3

CNN: Weight Sharing

61

Input layer

Hidden layer

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights

CNN with Multiple Input Channels

62

Input layer

Hidden layer

Single output map Multiple output maps

Filter weights

Map 1

Map 2

Filter 1 Filter 2

Filter weights

CNN with Multiple Output Maps

63

Putting them together

• Local connectivity
• Weight sharing
• Handling multiple input channels
• Handling multiple output maps

Image credit: A. Karpathy

output (activation) maps # input channels

Local connectivity

Weight sharing

64

LeNet [LeCun et al. 1998]

Gradient-based learning applied to document recognition
[LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993 65

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolution Layer in CNN

66

What is a Convolution?

• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik
67

What is a Convolution?

68

What is a Convolution?

• Toeplitz Matrix Form

69

Putting them together (cont’d)

• The brain/neuron view of CONV layer

70

Putting them together (cont’d)

• The brain/neuron view of CONV layer

71

Putting them together (cont’d)

• The brain/neuron view of CONV layer

72

Putting them together (cont’d)

• Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3
filters shrinks volumes spatially (32 -> 28 -> 24 -> …).

73

What is a Convolution?

• Zero Padding
• Output is the same size as input (doesn’t shrink as the network gets deeper).

74

What is a Convolution?

• Stride
• Step size across signals

75

What is a Convolution?

• Stride
• Step size across signals

76

What is a Convolution?

• Stride
• Step size across signals

77

What is a Convolution?

• Zero Padding + Stride

78

Nonlinearity Layer in CNN

79

Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)

80

Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)

81

Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)

82

Pooling Layer in CNN

83

Pooling Layer
• Makes the representations smaller and more manageable
• Operates over each activation map independently

• E.g., Max Pooling

84

Pooling Layer
• Reduces the spatial size and provides spatial invariance

85

• Example
• Nonlinearity by ReLU

86

• Example
• Max pooling

87

Fully Connected (FC) Layer in CNN

88

FC Layer
• Contains neurons that connect to the entire input volume,

as in ordinary neural networks

89

FC Layer
• Contains neurons that connect to the entire input volume,

as in ordinary neural networks

90

CNN

91

LeNet

• Presented by Yann LeCun during the 1990s for reading digits
• Has the elements of modern architectures

92

AlexNet [Krizhevsky et al., 2012]

• Repopularized CNN
by winning the ImageNet Challenge 2012

• 7 hidden layers, 650,000 neurons,
60M parameters

• Error rate of 16% vs. 26% for 2nd place.

93

Deep or Not?
• Depth of the network is critical for performance.

94

CNN: A Revolution of Depth

95

What is 1x1 Convolution?

• Doesn’t 1x1 convolution sound redundant?

96

What is 1x1 Convolution? (cont’d)

• Doesn’t 1x1 convolution sound redundant?
• Simply speaking, it provides…

• Dimension reduction
• Additional nonlinearity

97

What is 1x1 Convolution? (cont’d)
• Example 1

{28 x 28 x 192} convolved with 32 {5 x 5x 192} kernels into {28 x 28 x 32}
• (5 x 5 x 192) muls x (28 x 28) pixels x 32 kernels ~ 120M muls

• Example 2
{28 x 28 x 192} convolved with 16 {1 x 1x 192} kernels into
{28 x 28 x 16}, followed by convolution with into 32 {5 x 5 x 16} kernels
into {28 x 28 x 32}

• 192 mul x (28 x 28) pixels x 16 kernels ~ 2.4M
• (5 x 5 x 16) muls x (28 x 28) pixels x 32 kernels ~ 10M

• 12.4M vs. 120M

98

ResNet
• Can we just increase the #layer?

• How can we train very deep network?
- Residual learning

99

DenseNet
• Shorter connections (like ResNet) help
• Why not just connect them all?

100

ResNet (cont’d)
• Can we just increase # of layers?

• How to train very deep networks?
• Residual learning

Bottleneck
(ResNet-50, 101, 152)

Non-Bottleneck
(ResNet-18, 34) Ref: He, Kaiming, et al. "Deep residual learning for image

recognition." CVPR, 2016.

131

ResNeXT
• Deeper and wider → better…what else?

• Increase cardinality

ResNet block ResNeXt block

Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." CVPR, 2017.
132

Squeeze-and-Excitation Net (SENet)
• How to improve acc. without much overhead?

• Feature recalibration (channel attention)

Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR, 2018. 133

Remarks
• CNN:

• Reduce the number of parameters
• Reduce the memory requirements
• Make computation independent of the size of the image

• Neuroscience provides strong inspiration on the NN design, but little
guidance on how to train CNNs.

• Few structures discussed: convolution, nonlinearity, pooling

104

Training Convolutional Neural Networks

• Backpropagation +
stochastic gradient descent with momentum

• Neural Networks: Tricks of the Trade

• Dropout
• Data augmentation
• Batch normalization

105

https://books.google.com/books?hl=en&lr=&id=VCKqCAAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Networks:+Tricks+of+the+Trade&ots=cBbpUBGkVG&sig=rbBCsTUJEjyZc419s4TZ5X2RM3g#v=onepage&q=Neural%20Networks%3A%20Tricks%20of%20the%20Trade&f=false

An Illustrative Example

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥𝑦𝑦,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑦𝑦,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 𝑥𝑥

Example: 𝑥𝑥 = 4,𝑦𝑦 = −3 ⇒ 𝑓𝑓 𝑥𝑥,𝑦𝑦 = −12

Example credit: Andrej Karpathy

Partial derivatives
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= −3,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 4

Gradient

𝛻𝛻𝑓𝑓 = [
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

]

106

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧 = 𝑞𝑞𝑧𝑧

Example credit: Andrej Karpathy

𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦
𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥

= 1,
𝜕𝜕𝑞𝑞
𝜕𝜕𝑦𝑦

= 1

𝑓𝑓 = 𝑞𝑞𝑧𝑧
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

= 𝑧𝑧,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑞𝑞

Goal: compute the gradient

𝛻𝛻𝑓𝑓 = [
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

]

107

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧 = 𝑞𝑞𝑧𝑧

Example credit: Andrej Karpathy

𝑓𝑓 = 𝑞𝑞𝑧𝑧
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

= 𝑧𝑧,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑞𝑞

Chain rule:
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥

𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦
𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥

= 1,
𝜕𝜕𝑞𝑞
𝜕𝜕𝑦𝑦

= 1

108

Backpropagation (recursive chain rule)

𝑞𝑞

𝑤𝑤1

𝑤𝑤2

𝑤𝑤𝑛𝑛

𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤𝑖𝑖

=
𝜕𝜕𝑞𝑞
𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

Gate gradientLocal gradient

The gate receives this during backpropCan be computed during forward pass 109

Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Intuition: successful conspiracies
• 50 people planning a conspiracy
• Strategy A: plan a big conspiracy involving 50 people

• Likely to fail. 50 people need to play their parts correctly.

• Strategy B: plan 10 conspiracies each involving 5 people
• Likely to succeed!

110

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Main Idea: approximately
combining exponentially many
different neural network
architectures efficiently

111

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Data Augmentation (Jittering)
• Create virtual training samples

• Horizontal flip
• Random crop
• Color casting
• Geometric distortion

Deep Image [Wu et al. 2015] 112

http://arxiv.org/pdf/1501.02876v2.pdf

Batch Normalization

Credit: Andrew Ng 113

Batch Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

114

http://arxiv.org/pdf/1502.03167v3.pdf

What’s to Be Covered Today…

• Intro to Neural Networks & CNN
• Linear Classification
• Neural Network for Machine Vision
• Multi-Layer Perceptron
• Convolutional Neural Networks

• Image Segmentation
• Object Detection

Many slides from Richard Turner, Fei-Fei Li, Yaser Sheikh, Simon Lucey, Kaiming He, and J.-B. Huang 115

Image Segmentation

• Goal:
Group pixels into meaningful or perceptually similar regions

116

Segmentation for Object Proposal

“Selective Search” [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres Hoiem ECCV 2010, IJCV 2014]
117

Segmentation via Clustering

• K-means clustering
• Mean-shift*

• Find modes of the following non-parametric density

*D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE PAMI 2002. 118

Superpixels

• A simpler task of image segmentation
• Divide an image into a large number of regions,

such that each region lies within object boundaries.

• Examples
• Watershed
• Felzenszwalb and Huttenlocher graph-based
• Turbopixels
• SLIC

119

Multiple Segmentations

• Don’t commit to one partitioning
• Hierarchical segmentation

• Occlusion boundaries hierarchy:
Hoiem et al. IJCV 2011 (uses trained classifier to merge)

• Pb+watershed hierarchy: Arbeleaz et al. CVPR 2009
• Selective search: FH + agglomerative clustering
• Superpixel hierarchy

• Vary segmentation parameters
• E.g., multiple graph-based segmentations or mean-shift segmentations

• Region proposals
• Propose seed superpixel, try to segment out object that contains it

(Endres Hoiem ECCV 2010, Carreira Sminchisescu CVPR 2010)

120

http://www.eecs.berkeley.edu/%7Earbelaez/publications/Arbelaez_Maire_Fowlkes_Malik_CVPR2009.pdf
https://ivi.fnwi.uva.nl/isis/publications/2011/vandeSandeICCV2011/vandeSandeICCV2011.pdf
https://arxiv.org/pdf/1605.06325.pdf

More Tasks in Segmentation

• Cosegmentation
• Segmenting common objects from multiple images

• Instance Segmentation
• Assign each pixel an object instance

121

More Tasks in Segmentation

• Semantic Segmentation
• Assign a class label to each pixel in the input image
• Don’t differentiate instances, only care about pixels

122

Semantic Segmentation

• Sliding Window

123

Semantic Segmentation

• Fully Convolutional Nets

124

Semantic Segmentation

• Fully Convolutional Nets (cont’d)

125

In-Network Upsampling

• Unpooling

126

In-Network Upsampling

• Max Unpooling

127

In-Network Upsampling

• Learnable Upsampling: Transpose Convolution

128

In-Network Upsampling

• Learnable Upsampling: Transpose Convolution

129

In-Network Upsampling

• Transpose Convolution

130

In-Network Upsampling

• Transpose Convolution
• 1D example

131

In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication

132

In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication

133

Fully Convolutional Networks (FCN)

• Remarks
• All layers are convolutional.
• End-to-end training.

134

Fully Convolutional Networks (FCN)

• More details
• Adapt existing classification network to fully convolutional forms
• Remove flatten layer and replace fully connected layers with conv layers
• Use transpose convolution to upsample pixel-wise classification results

135

Fully Convolutional Networks (FCN)

136

Fully Convolutional Networks (FCN)

• Example
• VGG16-FCN32s
• Loss: pixel-wise cross-entropy
i.e., compute cross-entropy between each pixel and its label, and average over all of them

VGG16 (Pretrained)

Input shape: 256 x 256

Coarse prediction shape: 8 x 8

Upsample 32x (transpose conv)

Pixel-wise prediction shape: 256 x 256

137

SegNet

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation” [link]

• Efficient architecture (memory + computation time)
• Upsampling reusing max-unpooling indices
• Reasonable results without performance boosting addition
• Comparable to FCN

138

https://arxiv.org/pdf/1511.00561.pdf

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation [link]

139

	Computer Vision: �from Recognition to Geometry��Lecture 6: �Convolution Neural Networks for Image Classification
	What’s to Be Covered Today…
	Some Remarks
	Linear Classification
	Biological neuron and Perceptrons
	Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)
	Let’s Get a Closer Look…
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron (cont’d)
	Input-Output Function of a Single Neuron (cont’d)
	Input-Output Function of a Single Neuron (cont’d)
	Input-Output Function of a Single Neuron (cont’d)
	Input-Output Function of a Single Neuron (cont’d)
	Input-Output Function of a Single Neuron (cont’d)
	Weight Space of a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Overfitting and Weight Decay
	Training a Single Neuron (cont’d)
	Training a Single Neuron (cont’d)
	Training a Single Neuron (cont’d)
	Training a Single Neuron (cont’d)
	Training a Single Neuron (cont’d)
	Training a Single Neuron (cont’d)
	Training a Single Neuron (cont’d)
	Single Hidden Layer Neural Networks
	Sampling Random Neural Network Classifiers
	Sampling Random Neural Network Classifiers
	Sampling Random Neural Network Classifiers
	Training a Neural Network with a Single Hidden Layer
	Training a Neural Network with a Single Hidden Layer
	Training a Neural Network with a Single Hidden Layer
	Training a Neural Network with a Single Hidden Layer
	Training a Neural Network with a Single Hidden Layer
	Training a Neural Network with a Single Hidden Layer
	Training a Neural Network with a Single Hidden Layer
	Hierarchical Models with Many Layers
	What’s to Be Covered Today…
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	CNN: Local Connectivity
	CNN: Weight Sharing
	CNN with Multiple Input Channels
	CNN with Multiple Output Maps
	Putting them together
	LeNet [LeCun et al. 1998]
	Convolution Layer in CNN
	What is a Convolution?
	What is a Convolution?
	What is a Convolution?
	Putting them together (cont’d)
	Putting them together (cont’d)
	Putting them together (cont’d)
	Putting them together (cont’d)
	What is a Convolution?
	What is a Convolution?
	What is a Convolution?
	What is a Convolution?
	What is a Convolution?
	Nonlinearity Layer in CNN
	Nonlinearity Layer
	Nonlinearity Layer
	Nonlinearity Layer
	Pooling Layer in CNN
	Pooling Layer
	Pooling Layer
	投影片編號 86
	投影片編號 87
	Fully Connected (FC) Layer in CNN
	FC Layer
	FC Layer
	CNN
	LeNet
	AlexNet [Krizhevsky et al., 2012]
	Deep or Not?
	CNN: A Revolution of Depth
	What is 1x1 Convolution?
	What is 1x1 Convolution? (cont’d)
	What is 1x1 Convolution? (cont’d)
	ResNet
	DenseNet
	ResNet (cont’d)
	ResNeXT
	Squeeze-and-Excitation Net (SENet)
	Remarks
	Training Convolutional Neural Networks
	An Illustrative Example
	𝑓 𝑥, 𝑦,𝑧 = 𝑥+𝑦 𝑧=𝑞𝑧
	𝑓 𝑥, 𝑦,𝑧 = 𝑥+𝑦 𝑧=𝑞𝑧
	Backpropagation (recursive chain rule)
	Dropout
	Dropout
	Data Augmentation (Jittering)
	Batch Normalization
	Batch Normalization
	What’s to Be Covered Today…
	Image Segmentation
	Segmentation for Object Proposal
	Segmentation via Clustering
	Superpixels
	Multiple Segmentations
	More Tasks in Segmentation
	More Tasks in Segmentation
	Semantic Segmentation
	Semantic Segmentation
	Semantic Segmentation
	In-Network Upsampling
	In-Network Upsampling
	In-Network Upsampling
	In-Network Upsampling
	In-Network Upsampling
	In-Network Upsampling
	In-Network Upsampling
	In-Network Upsampling
	Fully Convolutional Networks (FCN)
	Fully Convolutional Networks (FCN)
	Fully Convolutional Networks (FCN)
	Fully Convolutional Networks (FCN)
	SegNet
	U-Net

