Computer Vision: from Recognition to Geometry

Lecture 6: Convolution Neural Networks for Image Classification

Yu-Chiang Frank Wang 王鈺強
Dept. Electrical Engineering, National Taiwan University

What's to Be Covered Today...

- Intro to Neural Networks & CNN
 - Linear Classification
 - Neural Network for Machine Vision
 - Multi-Layer Perceptron
 - Convolutional Neural Networks
- Image Segmentation* (if time permits)
- Object Detection* (if time permits)

Some Remarks

- Interpreting y = Wx + b
 - What can we say about the learned **W**?
 - The weights in W are trained by observing training data X and their ground truth Y.
 - Each column in W can be viewed as an exemplar of the corresponding class.
 - Thus, **Wx** basically performs inner product (or correlation) between the input **x** and the exemplar of each class. (Signal & Systems!)

Linear Classification

- Remarks
 - Starting points for many multi-class or complex/nonlinear classifier
 - How to determine a proper loss function for matching y and Wx+b, and thus how to learn the model W (including the bias b), are the keys to the learning of an effective classification model.

Biological neuron and Perceptrons

A biological neuron

Input

An artificial neuron (Perceptron)
- a linear classifier

Multi-Layer Perceptron: A Nonlinear Classifier (cont'd)

Let's Get a Closer Look...

inputs to neuron

A single neuron \mathcal{X} output of neuron $x(\mathbf{a}) = \frac{1}{1 + \exp(-\mathbf{a})} \qquad x \in (0, 1)$ $\mathbf{a} = w_0 + \sum_{d=1}^{D} w_d z_d$ activity of neuron w_0 $=\sum_{d=0}^{D} w_d z_d$ w_D $\overline{w_2}$

Weight Space of a Single Neuron

objective function:

$$G(\boldsymbol{w}) = -\sum_n \left[t^{(n)} \log \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) + (1 - t^n) \log \left(1 - \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) \right) \right] \geq 0$$
 surprise $-\log p(\text{outcome})$ when observing $t^{(n)}$ encourages neuron output relative entropy between $\mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w})$ and $t^{(n)}$ to match training data 27

training data

$$\{\boldsymbol{z}^{(n)}\}_{n=1}^{N} \ \{t^{(n)}\}_{n=1}^{N}$$

class labels inputs

objective function:

$$G(w) = -\sum_{n} [t^{(n)} \log x(z^{(n)}; w) + (1 - t^{n}) \log (1 - x(z^{(n)}; w))] \ge 0$$

$$m{w}^* = rg\min_{m{w}} G(m{w})$$
 choose the weights that minimise the network's surprise about the training data

$$\begin{split} & \boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} G(\boldsymbol{w}) \quad \text{choose the weights that minimise the network's surprise about the training data} \\ & \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} G(\boldsymbol{w}) = \sum_n \frac{\mathrm{d}G(\boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}x^{(n)}}{\mathrm{d}\boldsymbol{w}} = -\sum_n (t^{(n)} - x^{(n)}) \boldsymbol{z}^{(n)} = \text{prediction error x feature} \\ & \boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} G(\boldsymbol{w}) \quad \text{iteratively step down the objective (gradient points up hill)} \\ & \boldsymbol{z}_{8} \end{split}$$

$$m{w} \leftarrow m{w} - \eta rac{\mathrm{d}}{\mathrm{d}m{w}} G(m{w})$$
 iteratively step down the objective (gradient points up hill) 28

Overfitting and Weight Decay

training data

$$\{ \boldsymbol{z}^{(n)} \}_{n=1}^{N} \ \{ t^{(n)} \}_{n=1}^{N}$$
 inputs class labels

objective function:

$$\begin{split} G(\boldsymbol{w}) &= -\sum_n \left[t^{(n)} \log \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) + (1 - t^n) \log \left(1 - \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) \right) \right] \\ E(\boldsymbol{w}) &= \frac{1}{2} \sum_i w_i^2 \quad \text{regulariser discourages the network using extreme weights} \\ \boldsymbol{w}^* &= \mathop{\arg\min}_{\boldsymbol{w}} M(\boldsymbol{w}) = \mathop{\arg\min}_{\boldsymbol{w}} \left[G(\boldsymbol{w}) + \alpha E(\boldsymbol{w}) \right] \\ \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} M(\boldsymbol{w}) &= -\sum_n (t^{(n)} - \boldsymbol{x}^{(n)}) \boldsymbol{z}^{(n)} + \alpha \boldsymbol{w} \quad \text{weight decay - shrinks weights towards zero} \end{split}$$

Single Hidden Layer Neural Networks

Sampling Random Neural Network Classifiers

Sampling Random Neural Network Classifiers

Sampling Random Neural Network Classifiers

$$x(\mathbf{a}) = \frac{1}{1 + \exp(-\mathbf{a})}$$

$$\mathbf{a} = \sum_{k=1}^{K} w_k x_k$$

$$x(\mathbf{a}_k) = \frac{1}{1 + \exp(-\mathbf{a}_k)}$$

$$a_k = \sum_{d=1}^{D} W_{k,d} z_d$$

objective function:

$$\begin{split} G(W, \boldsymbol{w}) &= -\sum_n \left[t^{(n)} \log \mathbf{x}^{(n)} + (1 - t^n) \log \left(1 - \mathbf{x}^{(n)} \right) \right] \text{ likelihood same as before} \\ E(W, \boldsymbol{w}) &= \frac{1}{2} \sum_i w_i^2 + \frac{1}{2} \sum_{ij} W_{ij}^2 \\ \{W, \boldsymbol{w}^*\} &= \mathop{\arg\min}_{W, \boldsymbol{w}} M(W, \boldsymbol{w}) = \mathop{\arg\min}_{W, \boldsymbol{w}} \left[G(W, \boldsymbol{w}) + \alpha E(W, \boldsymbol{w}) \right] \end{split}$$

Networks with hidden layers can be fit using gradient descent using an algorithm called back-propagation.

$$x(\mathbf{a}) = \frac{1}{1 + \exp(-\mathbf{a})}$$

$$\mathbf{a} = \sum_{k=1}^{K} w_k x_k$$

$$x(\mathbf{a}_k) = \frac{1}{1 + \exp(-\mathbf{a}_k)}$$

$$a_k = \sum_{d=1}^{D} W_{k,d} z_d$$

objective function:

$$\begin{split} G(W, \boldsymbol{w}) &= -\sum_n \left[t^{(n)} \log \mathbf{x}^{(n)} + (1 - t^n) \log \left(1 - \mathbf{x}^{(n)} \right) \right) \right] \text{ likelihood same as before} \\ E(W, \boldsymbol{w}) &= \frac{1}{2} \sum_i w_i^2 + \frac{1}{2} \sum_{ij} W_{ij}^2 \qquad \text{regulariser discourages extreme weights} \\ \{W, \boldsymbol{w}^*\} &= \mathop{\arg\min}_{W, \boldsymbol{w}} M(W, \boldsymbol{w}) = \mathop{\arg\min}_{W, \boldsymbol{w}} \left[G(W, \boldsymbol{w}) + \alpha E(W, \boldsymbol{w}) \right] \\ \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}W_{ij}} &= \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}x^{(n)}}{\mathrm{d}W_{ij}} = \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \\ &= \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}x^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}x^{(n)}}{\mathrm{d}W_{ij}} = \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}x^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}W_{ij}} \\ &= \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}W_{ij}} = \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}W_{ij}} \\ &= \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}W_{ij}} = \sum_n \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}W_{ij}} \end{aligned}$$

Hierarchical Models with Many Layers

 w_K

 $W_{K \times D}^{(3)}$

 $W_{K imes D}^{^{(2)}}$

55

What's to Be Covered Today...

- Intro to Neural Networks & CNN
 - Linear Classification
 - Neural Network for Machine Vision
 - Multi-Layer Perceptron
 - Convolutional Neural Networks
- Image Segmentation* (if time permits)
- Object Detection* (if time permits)

Convolutional Neural Networks

• How many weights for MLPs for images?

Convolutional Neural Networks

- Property I of CNN: Local Connectivity
 - Each neuron takes info only from a neighborhood of pixels.

Convolutional Neural Networks

- Property II of CNN: Weight Sharing
 - Neurons connecting all neighborhoods have identical weights.

CNN: Local Connectivity

Hidden layer

Input layer

Global connectivity

Local connectivity

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Global connectivity:
 - Local connectivity:

CNN: Weight Sharing

Hidden layer

Input layer

Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing:
 - With weight sharing :

CNN with Multiple Input Channels

Single input channel

Multiple input channels

CNN with Multiple Output Maps

Single output map

Multiple output maps

Putting them together

- Local connectivity
- Weight sharing
- Handling multiple input channels

LeNet [LeCun et al. 1998]

Convolution Layer in CNN

What is a Convolution?

Weighted moving sum

Input

Feature Activation Map

What is a Convolution?

Convolution is a local linear operator

What is a Convolution?

Toeplitz Matrix Form

Putting them together (cont'd)

The brain/neuron view of CONV layer

Putting them together (cont'd)

The brain/neuron view of CONV layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

Putting them together (cont'd)

• The brain/neuron view of CONV layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Putting them together (cont'd)

• Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3 filters shrinks volumes spatially (32 -> 28 -> 24 -> ...).

- Zero Padding
 - Output is the same size as input (doesn't shrink as the network gets deeper).

- Stride
 - Step size across signals

- Stride
 - Step size across signals

Stride: step size across the signal

- Stride
 - Step size across signals

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Zero Padding + Stride

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

Nonlinearity Layer in CNN

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Pooling Layer in CNN

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently
- E.g., Max Pooling

Pooling Layer

Reduces the spatial size and provides spatial invariance

Example

Nonlinearity by ReLU

Example

Max pooling

Fully Connected (FC) Layer in CNN

FEATURE MAPS FEATURE MAPS OUTPUT $32\times32\times32\times3$ Activation $32\times32\times3$ $32\times32\times2$ $32\times32\times2$ FEATURE MAPS OUTPUT $16\times16\times2$ Full Connection LAYER

FC Layer

 Contains neurons that connect to the entire input volume, as in ordinary neural networks

FC Layer

 Contains neurons that connect to the entire input volume, as in ordinary neural networks

CNN

LeNet

- Presented by Yann LeCun during the 1990s for reading digits
- Has the elements of modern architectures

AlexNet [Krizhevsky et al., 2012]

- Repopularized CNN
 by winning the ImageNet Challenge 2012
- 7 hidden layers, 650,000 neurons,
 60M parameters
- Error rate of 16% vs. 26% for 2nd place.

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Deep or Not?

Depth of the network is critical for performance.

AlexNet: 8 Layers with 18.2% top-5 error

Removing Layer 7 reduces 16 million parameters, but only 1.1% drop in performance!

Removing Layer 6 and 7 reduces 50 million parameters, but only 5.7% drop in performance

Removing middle conv layers reduces 1 million parameters, but only 3% drop in performance

Removing feature & conv layers produces a 33% drop in performance

CNN: A Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

Doesn't 1x1 convolution sound redundant?

What is 1x1 Convolution? (cont'd)

- Doesn't 1x1 convolution sound redundant?
- Simply speaking, it provides...
 - Dimension reduction
 - Additional nonlinearity

What is 1x1 Convolution? (cont'd)

- Example 1
 {28 x 28 x 192} convolved with 32 {5 x 5x 192} kernels into {28 x 28 x 32}
- (5 x 5 x 192) muls x (28 x 28) pixels x 32 kernels ~ 120M muls

- Example 2
 {28 x 28 x 192} convolved with 16 {1 x 1x 192} kernels into
 {28 x 28 x 16}, followed by convolution with into 32 {5 x 5 x 16} kernels into {28 x 28 x 32}
- 192 mul x (28 x 28) pixels x 16 kernels ~ 2.4M
- (5 x 5 x 16) muls x (28 x 28) pixels x 32 kernels ~ 10M
- 12.4M vs. 120M

ResNet

• Can we just increase the #layer?

- How can we train very deep network?
 - Residual learning

method	top-5 err. (test)		
VGG [41] (ILSVRC'14)	7.32		
GoogLeNet [44] (ILSVRC'14)	6.66		
VGG [41] (v5)	6.8		
PReLU-net [13]	4.94		
BN-inception [16]	4.82		
ResNet (ILSVRC'15)	3.57		

DenseNet

- Shorter connections (like ResNet) help
- Why not just connect them all?

ResNet (cont'd)

Can we just increase # of layers?

- How to train very deep networks?
 - Residual learning

Non-Bottleneck (ResNet-18, 34)

Bottleneck (ResNet-50, 101, 152)

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Ref: He, Kaiming, et al. "Deep residual learning for image recognition." *CVPR*, 2016.

ResNeXT

- Deeper and wider → better...what else?
 - Increase cardinality

ResNet block

ResNeXt block

	setting	top-1 error (%)		
ResNet-50	1 × 64d	23.9		
ResNeXt-50	$2 \times 40d$	23.0		
ResNeXt-50	4 × 24d	22.6		
ResNeXt-50	8 × 14d	22.3		
ResNeXt-50	$32 \times 4d$	22.2		
ResNet-101	1 × 64d	22.0		
ResNeXt-101	$2 \times 40d$	21.7		
ResNeXt-101	4 × 24d	21.4		
ResNeXt-101	8 × 14d	21.3		
ResNeXt-101	$32 \times 4d$	21.2		

Squeeze-and-Excitation Net (SENet)

- How to improve acc. without much overhead?
 - Feature recalibration (channel attention)

SE-ResNet Module

	original		re-implementation			SENet		
	top-1 err.	top-5 err.	top-1 err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs
ResNet-50 [13]	24.7	7.8	24.80	7.48	3.86	$23.29_{(1.51)}$	$6.62_{(0.86)}$	3.87
ResNet-101 [13]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60
ResNet-152 [13]	23.0	6.7	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32
ResNeXt-50 [19]	22.2	-	22.11	5.90	4.24	$21.10_{(1.01)}$	5.49(0.41)	4.25
ResNeXt-101 [19]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00
VGG-16 [11]	-	-	27.02	8.81	15.47	25.22(1.80)	7.70(1.11)	15.48
BN-Inception [6]	25.2	7.82	25.38	7.89	2.03	24.23(1.15)	$7.14_{(0.75)}$	2.04
Inception-ResNet-v2 [21]	19.9 [†]	4.9^{\dagger}	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76

Remarks

- CNN:
 - Reduce the number of parameters
 - Reduce the memory requirements
 - Make computation independent of the size of the image
- Neuroscience provides strong inspiration on the NN design, but little guidance on how to train CNNs.
- Few structures discussed: convolution, nonlinearity, pooling

Training Convolutional Neural Networks

- Backpropagation + stochastic gradient descent with momentum
 - Neural Networks: Tricks of the Trade
- Dropout
- Data augmentation
- Batch normalization

An Illustrative Example

$$f(x,y) = xy, \qquad \frac{\partial f}{\partial x} = y, \frac{\partial f}{\partial y} = x$$

Example:
$$x = 4$$
, $y = -3 \Rightarrow f(x, y) = -12$

Partial derivatives

$$\frac{\partial f}{\partial x} = -3, \qquad \frac{\partial f}{\partial y} = 4$$

Gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$f(x,y,z) = (x+y)z = qz$$

$$\frac{q = x + y}{\frac{\partial q}{\partial x}} = 1, \qquad \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \qquad \frac{\partial f}{\partial z} = q$$

Goal: compute the gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$$

$$f(x,y,z) = (x+y)z = qz$$

set some inputs

$$\frac{q = x + y}{\frac{\partial q}{\partial x}} = 1, \qquad \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \qquad \frac{\partial f}{\partial z} = q$$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

```
x = -2; y = 5; z = -4

# perform the forward pass
q = x + y \# q becomes 3

f = q * z \# f becomes -12

# perform the backward pass (backpropagation) in reverse order:
# first backprop through f = q * z

dfdz = q \# df/dz = q, so gradient on z becomes 3

dfdq = z \# df/dq = z, so gradient on q becomes -4

# now backprop through q = x + y

dfdx = 1.0 * dfdq \# dq/dx = 1. And the multiplication here is the chain rule!

dfdy = 1.0 * dfdq \# dq/dy = 1
```

Backpropagation (recursive chain rule)

Dropout

Intuition: successful conspiracies

- 50 people planning a conspiracy
- Strategy A: plan a big conspiracy involving 50 people
 - Likely to fail. 50 people need to play their parts correctly.
- Strategy B: plan 10 conspiracies each involving 5 people
 - Likely to succeed!

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Main Idea: approximately combining exponentially many different neural network architectures efficiently

Model	Top-1 (val)	$\begin{array}{c} ext{Top-5} \\ ext{(val)} \end{array}$	$egin{array}{c} \mathbf{Top-5} \ (\mathbf{test}) \end{array}$
SVM on Fisher Vectors of Dense SIFT and Color Statistics	-	-	27.3
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT	-	-	26.2
Conv Net + dropout (Krizhevsky et al., 2012)	40.7	18.2	-
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012)	38.1	16.4	16.4

Table 6: Results on the ILSVRC-2012 validation/test set.

Data Augmentation (Jittering)

- Create *virtual* training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion

Batch Normalization

Batch Normalization

10K 20K 30K 40K 50K

(a)

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
                      Parameters to be learned: \gamma, \beta
       Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
          \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                                 // mini-batch mean
          \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                       // mini-batch variance
            \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                              // normalize
             y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                                      // scale and shift
0.9
0.8
                   Without BN
                    With BN
```

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [loffe and Szegedy 2015]

(b) Without BN

(c) With BN

What's to Be Covered Today...

- Intro to Neural Networks & CNN
 - Linear Classification
 - Neural Network for Machine Vision
 - Multi-Layer Perceptron
 - Convolutional Neural Networks
- Image Segmentation
- Object Detection

Image Segmentation

• Goal: Group pixels into meaningful or perceptually similar regions

Segmentation for Object Proposal

"Selective Search" [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres Hoiem ECCV 2010, IJCV 2014]

Segmentation via Clustering

- K-means clustering
- Mean-shift*
 - Find modes of the following non-parametric density

*D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE PAMI 2002.

Superpixels

- A simpler task of image segmentation
- Divide an image into a large number of regions, such that each region lies within object boundaries.
- Examples
 - Watershed
 - Felzenszwalb and Huttenlocher graph-based
 - Turbopixels
 - SLIC

Multiple Segmentations

- Don't commit to one partitioning
- Hierarchical segmentation
 - Occlusion boundaries hierarchy:
 Hoiem et al. IJCV 2011 (uses trained classifier to merge)
 - Pb+watershed hierarchy: Arbeleaz et al. CVPR 2009
 - <u>Selective search</u>: FH + agglomerative clustering
 - Superpixel hierarchy
- Vary segmentation parameters
 - E.g., multiple graph-based segmentations or mean-shift segmentations
- Region proposals
 - Propose seed superpixel, try to segment out object that contains it (Endres Hoiem ECCV 2010, Carreira Sminchisescu CVPR 2010)

More Tasks in Segmentation

- Cosegmentation
 - Segmenting common objects from multiple images

- Instance Segmentation
 - Assign each pixel an object instance

More Tasks in Segmentation

- Semantic Segmentation
 - Assign a class label to each pixel in the input image
 - Don't differentiate instances, only care about pixels

Semantic Segmentation

Sliding Window

overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation

Fully Convolutional Nets

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Semantic Segmentation

Fully Convolutional Nets (cont'd)

Upsampling: 222

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Unpooling

Nearest Neighbor

1	2	 1	1	2	2
3	4	3	3	4	4
		3	3	4	4

Input: 2 x 2

Output: 4 x 4

"Bed of Nails"

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Input: 2 x 2

Output: 4 x 4

Max Unpooling

• Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

• Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, <u>stride 2</u> pad 1

Transpose Convolution

- Transpose Convolution
 - 1D example

- Transpose Convolution
 - Example as matrix multiplication

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & x & 0 & 0 & 0 \\ 0 & x & y & x & 0 & 0 \\ 0 & 0 & x & y & x & 0 \\ 0 & 0 & 0 & x & y & x \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix} \begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1 Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$egin{bmatrix} x & 0 & 0 & 0 \ y & x & 0 & 0 \ z & y & x & 0 \ 0 & z & y & x \ 0 & 0 & z & y \ 0 & 0 & 0 & z \end{bmatrix} egin{bmatrix} a \ b \ c \ d \ \end{bmatrix} = egin{bmatrix} ax \ ay + bx \ az + by + cx \ bz + cy + dx \ cz + dy \ dz \end{bmatrix}$$

When stride=1, convolution transpose is just a regular convolution (with different padding rules)

- Transpose Convolution
 - Example as matrix multiplication

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix} \qquad \begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1 Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

When stride>1, convolution transpose is no longer a normal convolution!

- Remarks
 - All layers are convolutional.
 - End-to-end training.

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

High-res: D₁ x H/2 x W/2

Upsampling: Unpooling or strided transpose convolution

Predictions:

D₁ x H/2 x W/2

- More details
 - Adapt existing classification network to fully convolutional forms
 - Remove flatten layer and replace fully connected layers with conv layers
 - Use transpose convolution to upsample pixel-wise classification results

- Example
 - VGG16-FCN32s
 - Loss: pixel-wise cross-entropy

i.e., compute cross-entropy between each pixel and its label, and average over all of them

SegNet

- Efficient architecture (memory + computation time)
- Upsampling reusing max-unpooling indices
- Reasonable results without performance boosting addition
- Comparable to FCN

"SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation" [link]

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation [link]