
Computer Vision: 
from Recognition to Geometry

Lecture 6: 
Convolution Neural Networks for Image Classification

Yu-Chiang Frank Wang 王鈺強

Dept. Electrical Engineering, National Taiwan University

2019/10/16



What’s to Be Covered Today…

• Intro to Neural Networks & CNN
• Linear Classification
• Neural Network for Machine Vision
• Multi-Layer Perceptron
• Convolutional Neural Networks

• Image Segmentation* (if time permits)

• Object Detection* (if time permits)

Many slides from Richard Turner, Fei-Fei Li, Yaser Sheikh, Simon Lucey, Kaiming He, and J.-B. Huang 2



Some Remarks
• Interpreting y = Wx + b

• What can we say about the learned W?
• The weights in W are trained by observing training data X and their ground truth Y.
• Each column in W can be viewed as an exemplar of the corresponding class.
• Thus, Wx basically performs inner product (or correlation) between the input x and 

the exemplar of each class. (Signal & Systems!)
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Linear Classification

• Remarks
• Starting points for many multi-class or complex/nonlinear classifier
• How to determine a proper loss function for matching y and Wx+b, and thus 

how to learn the model W (including the bias b), are the keys to the learning 
of an effective classification model.

4Image credit: Stanford CS231n



Biological neuron and Perceptrons

A biological neuron An artificial neuron (Perceptron) 
- a linear classifier
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Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)
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Let’s Get a Closer Look…
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• A single neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron (cont’d)

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,1]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

18



Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Weight Space of a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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neuron outputs for
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Training a Single Neuron

0
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0
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Training a Single Neuron

0

training data
1

0

objective function:

0

inputs class labels

choose the weights that minimise the network's surprise 
about the training data

= prediction error X feature

iteratively step down the objective (gradient points up hill) 28



Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Overfitting and Weight Decay
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1

0

objective function:

0
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regulariser discourages the network using extreme weights

weight decay - shrinks weights
towards zero 36



Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Single Hidden Layer Neural Networks

inputs 
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hidden 
layer
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Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Training a Neural Network with a Single Hidden Layer

objective function:
likelihood same as before 

regulariser discourages extreme weights
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Training a Neural Network with a Single Hidden Layer

objective function:
likelihood same as before 

regulariser discourages extreme weights

Networks with hidden layers can be fit using gradient descent using an
algorithm called back-propagation.
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Hierarchical Models with Many Layers

inputs 
layer

output

hidden 
layer
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What’s to Be Covered Today…

• Intro to Neural Networks & CNN
• Linear Classification
• Neural Network for Machine Vision
• Multi-Layer Perceptron
• Convolutional Neural Networks

• Image Segmentation* (if time permits)

• Object Detection* (if time permits)

Many slides from Richard Turner, Fei-Fei Li, Yaser Sheikh, Simon Lucey, Kaiming He, and J.-B. Huang 56



Convolutional Neural Networks

• How many weights for MLPs for images?

57



Convolutional Neural Networks

• Property I of CNN: Local Connectivity
• Each neuron takes info only from a neighborhood of pixels.
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Convolutional Neural Networks

• Property II of CNN: Weight Sharing
• Neurons connecting all neighborhoods have identical weights.

59



• # input units (neurons): 7
• # hidden units: 3
• Number of parameters

• Global connectivity:
• Local connectivity:

Input layer

Hidden layer

Global connectivity Local connectivity

CNN: Local Connectivity
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Input layer

Hidden layer

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters

– Without weight sharing:
– With weight sharing :

w1

w2

w3

w4

w5
w6

w7

w8

w9

Without weight sharing With weight sharing

w1

w2

w3 w1

w2

w3

w1

w2

w3

CNN: Weight Sharing
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Input layer

Hidden layer

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights

CNN with Multiple Input Channels
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Input layer

Hidden layer

Single output map Multiple output maps

Filter weights

Map 1

Map 2

Filter 1 Filter 2

Filter weights

CNN with Multiple Output Maps
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Putting them together

• Local connectivity
• Weight sharing
• Handling multiple input channels
• Handling multiple output maps

Image credit: A. Karpathy

# output (activation) maps # input channels

Local connectivity

Weight sharing
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LeNet [LeCun et al. 1998]

Gradient-based learning applied to document recognition 
[LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993 65

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf





Convolution Layer in CNN

66



What is a Convolution?

• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik
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What is a Convolution?

68



What is a Convolution?

• Toeplitz Matrix Form
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Putting them together (cont’d)

• The brain/neuron view of CONV layer
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Putting them together (cont’d)

• The brain/neuron view of CONV layer
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Putting them together (cont’d)

• The brain/neuron view of CONV layer
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Putting them together (cont’d)

• Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3 
filters shrinks volumes spatially (32 -> 28 -> 24 -> …).
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What is a Convolution?

• Zero Padding
• Output is the same size as input (doesn’t shrink as the network gets deeper).
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What is a Convolution?

• Stride
• Step size across signals
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What is a Convolution?

• Stride
• Step size across signals
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What is a Convolution?

• Stride
• Step size across signals
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What is a Convolution?

• Zero Padding + Stride

78



Nonlinearity Layer in CNN

79



Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)
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Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)

82



Pooling Layer in CNN

83



Pooling Layer
• Makes the representations smaller and more manageable 
• Operates over each activation map independently

• E.g., Max Pooling
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Pooling Layer
• Reduces the spatial size and provides spatial invariance
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• Example
• Nonlinearity by ReLU
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• Example
• Max pooling
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Fully Connected (FC) Layer in CNN

88



FC Layer
• Contains neurons that connect to the entire input volume, 

as in ordinary neural networks
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FC Layer
• Contains neurons that connect to the entire input volume, 

as in ordinary neural networks

90



CNN

91



LeNet

• Presented by Yann LeCun during the 1990s for reading digits
• Has the elements of modern architectures
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AlexNet [Krizhevsky et al., 2012]

• Repopularized CNN 
by winning the ImageNet Challenge 2012

• 7 hidden layers, 650,000 neurons, 
60M parameters

• Error rate of 16% vs. 26% for 2nd place.
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Deep or Not?
• Depth of the network is critical for performance.
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CNN: A Revolution of Depth
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What is 1x1 Convolution? 

• Doesn’t 1x1 convolution sound redundant?
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What is 1x1 Convolution? (cont’d)

• Doesn’t 1x1 convolution sound redundant?
• Simply speaking, it provides…

• Dimension reduction
• Additional nonlinearity

97



What is 1x1 Convolution? (cont’d)
• Example 1

{28 x 28 x 192} convolved with 32 {5 x 5x 192} kernels into {28 x 28 x 32}
• (5 x 5 x 192) muls x (28 x 28) pixels x 32 kernels ~ 120M muls

• Example 2
{28 x 28 x 192} convolved with 16 {1 x 1x 192} kernels into
{28 x 28 x 16}, followed by convolution with into 32 {5 x 5 x 16} kernels
into {28 x 28 x 32}

• 192 mul x (28 x 28) pixels x 16 kernels  ~ 2.4M
• (5 x 5 x 16) muls x (28 x 28) pixels x 32 kernels ~ 10M

• 12.4M vs. 120M
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ResNet
• Can we just increase the #layer?

• How can we train very deep network?
- Residual learning

99



DenseNet
• Shorter connections (like ResNet) help
• Why not just connect them all?
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ResNet (cont’d)
• Can we just increase # of layers?

• How to train very deep networks?
• Residual learning

Bottleneck
(ResNet-50, 101, 152)

Non-Bottleneck
(ResNet-18, 34) Ref: He, Kaiming, et al. "Deep residual learning for image 

recognition." CVPR, 2016.
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ResNeXT
• Deeper and wider → better…what else?

• Increase cardinality

ResNet block ResNeXt block

Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." CVPR, 2017.
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Squeeze-and-Excitation Net (SENet)
• How to improve acc. without much overhead?

• Feature recalibration (channel attention)

Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR, 2018. 133



Remarks
• CNN:

• Reduce the number of parameters
• Reduce the memory requirements
• Make computation independent of the size of the image

• Neuroscience provides strong inspiration on the NN design, but little 
guidance on how to train CNNs.

• Few structures discussed: convolution, nonlinearity, pooling

104



Training Convolutional Neural Networks

• Backpropagation +
stochastic gradient descent with momentum 

• Neural Networks: Tricks of the Trade

• Dropout
• Data augmentation
• Batch normalization
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An Illustrative Example

𝑓𝑓 𝑥𝑥, 𝑦𝑦 = 𝑥𝑥𝑥𝑥,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑦𝑦,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝑥𝑥

Example: 𝑥𝑥 = 4, 𝑦𝑦 = −3 ⇒ 𝑓𝑓 𝑥𝑥, 𝑦𝑦 = −12

Example credit: Andrej Karpathy

Partial derivatives
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −3,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 4

Gradient

𝛻𝛻𝛻𝛻 = [
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

]
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𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧 = 𝑞𝑞𝑞𝑞

Example credit: Andrej Karpathy

𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦
𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

= 1,
𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

= 1

𝑓𝑓 = 𝑞𝑞𝑞𝑞
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

= 𝑧𝑧,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑞𝑞

Goal: compute the gradient

𝛻𝛻𝛻𝛻 = [
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

]
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𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧 = 𝑞𝑞𝑞𝑞

Example credit: Andrej Karpathy

𝑓𝑓 = 𝑞𝑞𝑞𝑞
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

= 𝑧𝑧,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑞𝑞

Chain rule:
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥

𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦
𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

= 1,
𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

= 1
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Backpropagation (recursive chain rule)

𝑞𝑞

𝑤𝑤1

𝑤𝑤2

𝑤𝑤𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖

=
𝜕𝜕𝑞𝑞
𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

Gate gradientLocal gradient

The gate receives this during backpropCan be computed during forward pass 109



Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Intuition: successful conspiracies
• 50 people planning a conspiracy
• Strategy A: plan a big conspiracy involving 50 people

• Likely to fail. 50 people need to play their parts correctly.

• Strategy B: plan 10 conspiracies each involving 5 people
• Likely to succeed!
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Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Main Idea: approximately 
combining exponentially many 
different neural network 
architectures efficiently
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Data Augmentation (Jittering)
• Create virtual training samples

• Horizontal flip
• Random crop
• Color casting
• Geometric distortion

Deep Image [Wu et al. 2015] 112

http://arxiv.org/pdf/1501.02876v2.pdf


Batch Normalization

Credit: Andrew Ng 113



Batch Normalization

Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]
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http://arxiv.org/pdf/1502.03167v3.pdf


What’s to Be Covered Today…

• Intro to Neural Networks & CNN
• Linear Classification
• Neural Network for Machine Vision
• Multi-Layer Perceptron
• Convolutional Neural Networks

• Image Segmentation
• Object Detection

Many slides from Richard Turner, Fei-Fei Li, Yaser Sheikh, Simon Lucey, Kaiming He, and J.-B. Huang 115



Image Segmentation

• Goal: 
Group pixels into meaningful or perceptually similar regions
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Segmentation for Object Proposal

“Selective Search” [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres Hoiem ECCV 2010, IJCV 2014]
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Segmentation via Clustering

• K-means clustering
• Mean-shift*

• Find modes of the following non-parametric density

*D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE PAMI 2002. 118



Superpixels

• A simpler task of image segmentation
• Divide an image into a large number of regions, 

such that each region lies within object boundaries.

• Examples
• Watershed
• Felzenszwalb and Huttenlocher graph-based
• Turbopixels
• SLIC
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Multiple Segmentations

• Don’t commit to one partitioning
• Hierarchical segmentation

• Occlusion boundaries hierarchy:
Hoiem et al. IJCV 2011  (uses trained classifier to merge)

• Pb+watershed hierarchy: Arbeleaz et al. CVPR 2009
• Selective search: FH + agglomerative clustering 
• Superpixel hierarchy 

• Vary segmentation parameters
• E.g., multiple graph-based segmentations or mean-shift segmentations

• Region proposals
• Propose seed superpixel, try to segment out object that contains it 

(Endres Hoiem ECCV 2010, Carreira Sminchisescu CVPR 2010)
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http://www.eecs.berkeley.edu/%7Earbelaez/publications/Arbelaez_Maire_Fowlkes_Malik_CVPR2009.pdf
https://ivi.fnwi.uva.nl/isis/publications/2011/vandeSandeICCV2011/vandeSandeICCV2011.pdf
https://arxiv.org/pdf/1605.06325.pdf


More Tasks in Segmentation

• Cosegmentation
• Segmenting common objects from multiple images

• Instance Segmentation
• Assign each pixel an object instance
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More Tasks in Segmentation

• Semantic Segmentation
• Assign a class label to each pixel in the input image
• Don’t differentiate instances, only care about pixels
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Semantic Segmentation

• Sliding Window
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Semantic Segmentation

• Fully Convolutional Nets
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Semantic Segmentation

• Fully Convolutional Nets (cont’d)
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In-Network Upsampling

• Unpooling
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In-Network Upsampling

• Max Unpooling
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In-Network Upsampling

• Learnable Upsampling: Transpose Convolution
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In-Network Upsampling

• Learnable Upsampling: Transpose Convolution
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In-Network Upsampling

• Transpose Convolution
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In-Network Upsampling

• Transpose Convolution
• 1D example
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In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication
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In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication
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Fully Convolutional Networks (FCN)

• Remarks
• All layers are convolutional.
• End-to-end training.
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Fully Convolutional Networks (FCN)

• More details
• Adapt existing classification network to fully convolutional forms
• Remove flatten layer and replace fully connected layers with conv layers
• Use transpose convolution to upsample pixel-wise classification results
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Fully Convolutional Networks (FCN)
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Fully Convolutional Networks (FCN)

• Example
• VGG16-FCN32s
• Loss: pixel-wise cross-entropy
i.e., compute cross-entropy between each pixel and its label, and average over all of them 

VGG16 (Pretrained)

Input shape: 256 x 256

Coarse prediction shape: 8 x 8

Upsample 32x (transpose conv)

Pixel-wise prediction shape: 256 x 256
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SegNet

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”  [link]

• Efficient architecture (memory + computation time)
• Upsampling reusing max-unpooling indices
• Reasonable results without performance boosting addition
• Comparable to FCN
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https://arxiv.org/pdf/1511.00561.pdf


U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation  [link]
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